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Abstract— We investigate how to disperse the certifi-
cates, issued in an ad hoc network, among the network
nodes such that the following condition holds. If any node
u approaches any other nodev in the network, then u can
use the certificates stored either inu or in v to obtain the
public key of v (so that u can securely send messages tov).
We define the cost of certificate dispersal as the average
number of certificates stored in one node in the network.
We give upper and lower bounds on the dispersability cost
of certificates, and show that both bounds are tight. We
also present two certificate dispersal algorithms, and show
that one of those algorithms is more efficient than the other
in several important cases. Finally, we identify a rich class
of “certificate graphs” for which the dispersability cost is
within a constant factor from the lower bound.

I. INTRODUCTION

We consider a network where each nodeu has a
private keyrk:u and a public keybk:u. In this network,
in order for a nodeu to securely send a messagem to
another nodev, nodeu needs to encrypt the messagem
using the public keybk:v, before sending the encrypted
message, denotedbk:v< m>, to nodev. This necessi-
tates that nodeu know the public keybk:v of nodev.

If a nodeu knows the public keybk:v of another node
v in this network, then nodeu can issue a certificate,
called a certificate fromu to v, that identifies the public
key bk:v of nodev. This certificate can be used by any
node in the network that knows the public key of node
u to further acquire the public key of nodev.

A certificate from nodeu to nodev is of the following
form:

rk:u< u;v;bk:v>
This certificate is encrypted using the private keyrk:u
of nodeu, and it includes three items: the identity of the
certificate issueru, the identity of the certificate subject
v, and the public key of the certificate subjectbk:v. Any
node that knows the public keybk:u of nodeu can use
bk:u to decrypt the certificate fromu to v and obtain the
public keybk:v of nodev.

The certificates issued by different nodes in a network
can be represented by a directed graph, called the certifi-
cate graph of the network. Each node in the certificate
graph represents a node in the network. Each directed
edge from nodeu to node v in the certificate graph
represents a certificate issued by nodeu for nodev in
the network.
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Fig. 1. A certificate graph example

Figure 1 shows a certificate graph for a network with
five nodes:a, b, c, d, ande. According to this graph,

nodea issued two certificates (a, b), and (a, d)
nodeb issued one certificate (b, c)
nodec issued no certificate
noded issued one certificate (d, e)
nodee issued one certificate (e, b).

Node a can use the two certificates (a, b) and (b, c) to
obtain the two public keysbk:b and bk:c, and so can
securely send messages to nodesb andc. Also, nodea
can use the two certificates (a, d) and (d, e) to obtain
the public keysbk:d and bk:e, and can securely send
messages to nodesd and e. Node d can use the three
certificates (d, e), (e, b), and (b, c) to obtain the public
keys of bk:e, bk:b, and bk:c, and can securely send
messages to nodese, b, andc.

We assume that the network is ad hoc and its nodes
are mobile so move around. In this case, the issued
certificates need to be dispersed among the nodes in the
network such that if a nodeu approaches another node
v and wishes to securely send messages to it, thenu can
obtain the public key ofv from the set of certificates
stored either inu or in v (provided there is a directed
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path fromu to v in the certificate graph).
As an example, assume that each node in the cer-

tificate graph in Figure 1 stores the certificates in the
maximal, shortest-path, incoming tree rooted at the node:

nodea stores no certificates
nodeb stores the certificates (a, b), (d, e), (e, b)
nodec stores the certificates (a, b), (d, e), (e, b),

(b, c)
noded stores the certificates (a, d)
nodee stores the certificates (a, d), (d, e)

Thus, if nodea approaches nodee, thena can use the
two certificates stored ine to obtain the public key ofe
and securely send messages toe. (Note that nodee can
never obtain the public key of nodea because there is
no directed path from nodee to nodea in the certificate
graph in Figure 1).

As an application of this situation, consider the tanks
in an armored division. Each tank has a computer and
can be viewed as a node in an ad hoc network. Before the
tanks are deployed into the field, a certificate graph needs
to be designed to secure the future communications
between the tanks in the field. Then the certificates from
this certificate graph need to be dispersed amongst the
tanks before they are deployed. Later, the tanks are
deployed into the field and each of them has a number
of certificates in its local storage. Now, if two tanks
approach each other in the field, then the two tanks have
enough certificates in their local storage so that each of
them can compute the public key of the other and two
tanks can securely exchange messages.

In this paper, we discuss three contributions to the
problem of certificate dispersal in ad hoc networks. First,
we present tight upper and lower bounds on the average
number of certificates stored in one node. Second, we
present a somewhat efficient certificate dispersal algo-
rithm that ensures that the average number of certificates
stored in a node is small (if not the smallest). Third, we
identify rich classes of certificate graphs for which the
average number of certificates to be stored in a node
approaches the lower bound.

II. RELATED WORK

Several papers have investigated the use of certificates
to provide security in traditional and in ad hoc networks.
We summarize the results of these papers in the follow-
ing paragraphs.

Architectures for issuing, storing, discovery, and val-
idating certificates in traditional networks are presented
in [1], [2], [3], [4], [5], [6], [7], and [8]. There are
several limitations in ad hoc networks that do not allow

us to use these results without significant overhead to
the networks. In traditional networks, one can assume
that the communication between nodes is reliable and
reasonably fast. In ad hoc networks, finding routes
between nodes itself is challenging, let alone maintaining
the relevant information of the found routes. Also, nodes
in ad hoc networks often have very limited resources. For
example, computational capability, storage, and power
supply are much less than what most nodes have in
traditional networks. To accommodate these limitations,
different architectures for issuing, storing, discovery,and
validating certificates in ad hoc networks have been
developed.

In [9], Zhou and Haas have presented an architecture
for issuing certificates in an ad hoc network. According
to this architecture, the network hask servers. Each
server has a different share of some private keyrk. To
generate a certificate, each server uses its own share of
rk to encrypt the certificate. If no more thant servers
have suffered from Byzantine failures, wherek� 3t+1,
then the resulting certificate is correctly encrypted using
the private keyrk, thanks to threshold cryptography.
The resulting certificate can be decrypted using the
corresponding public key which is known to every node
in the ad hoc network.

In [10], Kong, Perfos, Luo, Lu and Zhang presented
more distributed architecture for issuing certificates. In-
stead of employingk servers in the ad hoc network, each
node in the network is provided with a different share of
the private keyrk. For a nodeu to issue a certificate, the
nodeu forwards the certificate to its neighbors and each
of them encrypt the certificate using its share ofrk. If
nodeu has at leastt+1 correct neighbors (i.e. they have
not suffered from any failures), the resulting certificate
is correctly encrypted using the private keyrk.

In our paper, we propose an architecture where every
node has both a public key and a private key so it can
issue certificates for any other node in the network. This
architecture is very efficient in issuing and validating
certificates but cannot tolerate Byzantine failures. In par-
ticular, if one node suffers from Byzantine failure, then
this node can successfully impersonate any other node
that is reachable from this node in the certificate graph of
the network. This vulnerability to Byzantine failures is
not unique to our certificate work in ad hoc networks. In
fact, many proposed certificate architectures, e.g. [1], [2],
[3], [7], and [8] yield similar vulnerabilities in traditional
networks. Recently, we have developed a technique for
augmenting the certificates with additional information
to ensure that the network can tolerate some degree of
Byzantine failures[11].

Perhaps the closest work to ours is [12] where the
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authors, Hubaux, Buttyán, and Capkun, investigated how
to disperse certificates in a certificate graph among the
network nodes under two conditions. First, each node
stores the same number of certificates. Second, with high
probability, if two nodes meet then they have enough
certificates for each of them to compute the public key
of the other. By contrast, our work is based on two
different conditions. First, different nodes may store
different number of certificates, but the average number
of certificates stored in one node is minimized. Second,
it is guaranteed (i.e. with probability 1) that if two nodes
meet then they have enough certificates for each of them
to compute the public key of the other.

Later, the same authors have showed in [13] that a
lower bound on the number of certificates to be stored
in a node is

p
n�1 wheren is the number of nodes in

the system. By contrast, we show below that the tight
lower bound on the average number of certificates to be
stored in a node ise=n, wheree is the number of edges
in the system.

III. C ERTIFICATE DISPERSAL

A certificate graph Gis a directed graph in which each
directed edge, called acertificate, is a pair (u, v), where
u and v are distinct nodes inG. For each certificate (u,
v) in G, u is called theissuerof the certificate andv is
called thesubjectof the certificate.

Note that according to this definition a certificate
graph is a directed graph that does not have self-loops
and does not have multiple edges from any node to any
other node.

A directed path (v0, v1), (v1, v2), � � � , (vk�1, vk) in a
certificate graphG, where the nodesv0, v1, � � � , vk are
distinct, is called a certificatechain from v0 to vk. The
length of a chain is the number of certificates in the
chain. A chain fromu to v is shortestiff its length is
not larger than the length of any other chain fromu to
v in the same certificate graph.

Let c denote the chain (v0, v1), � � � , (vk�1, vk). Then,
each of the chains (v0, v1), � � � , (v j�1, v j), where 1� j �
k, is called aprefixof c that ends at nodev j . Also, each of
the chains (v j , v j+1), � � � , (vk�1, vk), where 0� j � k�1,
is called asuffixof c that starts at nodev j .

A certificatedispersal algorithmF is an algorithm that
takes as input any certificate graphG and computes a
subset of the certificates, denotedF:(G;v), for every node
v in G such that the following two conditions hold:

i) Connectivity:
For every distinct pair of nodesu and v in G, if
there is a chain fromu to v in G, then there is a
chain fromu to v in the setF:(G;u)[F:(G;v).

ii) Completeness:
For every certificate inG, there is a nodev in G
such that this certificate is inF:(G;v).

Let G be a certificate graph, and F be a certificate
dispersal algorithm. Thecostof using F to disperse the
certificates inG among the nodes ofG, denotedc:(F;G),
is computed as follows:

c:(F;G) = 1
n
( ∑

v in G

jF:(G;v)j)
where n is the number of nodes inG, and jF:(G;v)j
denotes the number of certificates in the setF:(G;v)
assigned by F to nodev. Note thatc:(F;G) is the average
number of certificates assigned by F to a node inG.

The dispersability costof a certificate graphG, de-
notedd:G, is computed as follows:

d:G= min
F

c:(F;G)
A certificate dispersal algorithmFe is efficient iff for

every certificate graphG,

c:(Fe;G) = d:G
It follows from this definition that ifFe is an efficient

certificate dispersal algorithm andF is a certificate
dispersal algorithm then for every certificate graphG,

c:(Fe;G)� c:(F;G)
Lemma 1 : (Upper Bound on Dispersability Cost)
For every certificate graphG with n nodes,

d:G� n�1

.

Proof :
In the next section, we present a certificate dispersal
algorithmFf ull that assigns to every nodev in a certificate
graph G, the certificates in a maximal outgoing tree
rooted atv. Because each maximal outgoing tree in a
certificate graphG has at mostn�1 certificates, where
n is the number of nodes inG, we havejFf ull(G;v)j � n�1

c:(Ff ull ;G) = 1
n
( ∑

v in G

jF:(G;v)j)� (n�1)
Let Fe be any efficient dispersal algorithm; hence

d:G= c:(Fe;G)� c:(Ff ull ;G))� n�1 2
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Lemma 2 : (Lower Bound on Dispersability Cost)
For every certificate graphG with n nodes ande certifi-
cates,

d:G� e
n

.

Proof :
Let Fe be any efficient certificate dispersal algorithm.
From the completeness condition of a dispersal algo-
rithm, every edge in a certificate graphG is assigned by
Fe to some node inG. Thus,

∑
v in G

jFe:(G;v)j � e

wheree is the number of certificates inG. We conclude

d:G= c:(Fe;G)= 1
n
( ∑

v in G

jFe:(G;v)j)� e
n 2

Lemma 3 : (Achieving the two Bounds on Dispersability
Cost)
There is a certificate graphG with n nodes ande
certificates such that the following two conditions hold.

i) d:G= n�1
ii) d:G= e

n

Proof :
Let G be a fully connected certificate graph; i.e, for any
two distinct nodesu andv in G, there is a certificate from
u to v and a certificate fromv to u. Thus, the number of
certificatese in G is n(n�1), and the following relations
hold in G.

n�1= n(n�1)
n

= e
n

Hence the upper and lower bounds on dispersability cost
meet atG, andd:G is equal to each of the two bounds.
Therefore, the two conditions of Lemma 3 hold forG.2

It is also possible to construct certificate graphs that
meet the upper bound on dispersability cost but not its
lower bound, and to construct certificate graphs that meet
the lower bound on dispersability cost but not its upper
bound.

As an example, consider aring certificate graphG0

in Figure 2. This graph hasn nodes andn certificates
arranged in a directed ring. It is straightforward to show
that any dispersal algorithm will assign to every node in
the graph at leastn�1 certificates. Thus,d:G0 � n�1,
andG0 meets the upper bound on dispersability cost but
not its lower bound.

Fig. 2. A ring certificate graph

Fig. 3. An hourglass certificate graph

As a second example, consider anhourglasscertificate
graphG1 in Figure 3. This graph hasn nodes andn�1
certificates, wheren is odd, arranged in an hourglass
shape with one center node,(n�1)=2 input nodes, and(n�1)=2 output nodes. There is a certificate dispersal
algorithm F that assigns certificates to every nodev in
G1 as follows.

i) If v is the center node, thenF:(G1;v) = fg.
ii) If v is an input node, thenF:(G1;v) =f(v;centernode)g.
iii) if v is an output node, thenF:(G1;v) =f(centernode;v)g.

Thus,

c:(F;G1) = n�1
n= the lower bound on dispersability cost= d:G1

Hence,G1 meets the lower bound on dispersability cost
but not its upper bound.

The above discussion suggests the following two prob-
lems which we explore in the rest of this paper.

Problem 1 :
Develop an efficient certificate dispersal algorithmFe.2
Problem 2 :
Identify rich classes of certificate graphs whose dis-
persability costs meet the lower bound or are within a
constant factor of this lower bound. 2

Problem 1 remains open: Instead of solving Problem
1, we present two certificate dispersal algorithmsFf ull

and Fhal f (in Sections 4 and 5 respectively), and show
that in several important casesFf ull is not as efficient as
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Fhal f . We then present a solution of Problem 2 in Section
6.

IV. FULL TREE ALGORITHM FOR CERTIFICATE

DISPERSAL

Before we introduce our first certificate dispersal al-
gorithm, we need to introduce the following definition
of chain sets.

Let G be a certificate graph andv be a node inG. A
chain setfor v, denotedS:v, is a set of chains inG that
satisfies the following three conditions.

i) If G has no chains that starts atv, thenS:v is empty.
ii) If G has a chain fromv to w, thenS:v has exactly

one shortest chain fromv to w.
iii) If S:v has a chain, thenS:v also has every nonempty

prefix of this chain.

a
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Fig. 4. The diamond certificate graph

As an example, consider thediamondcertificate graph
in Figure 4. In this graph, there are no certificate chains
that start at nodee or f , and the chain sets for nodee
and f are both empty:

S:e= fg
S: f = fg

The chain set for noded has two chains:

S:d= f< (d;e)>;< (d; f )>g
Also the chain set for each of the two nodesb andc

has three chains:

S:b= f< (b;d)>;< (b;d);(d;e)>;< (b;d);(d; f )>g
S:c= f< (c;d)>;< (c;d);(d;e)>;< (c;d);(d; f )>g

The chain set for nodea has five chains:

S:a= f< (a;b)>;< (a;c)>;< (a;c);(c;d)>;< (a;c);(c;d);(d;e)>;< (a;c);(c;d);(d; f )>g
The following two comments are in order. First, each

chain setS:v for a nodev defines a maximal, shortest-
path, outgoing tree rooted at nodev in the certificate
graph. Second, it is possible to have two or more distinct
chain sets for a node. For example, a second chain set for
nodea in the certificate graph in Figure 4 is as follows:f< (a;b)>;< (a;c)>;< (a;b);(b;d)>;< (a;b);(b;d);(d;e)>;< (a;b);(b;d);(d; f )>g

Using the above definition of a chain set, we are now
ready to present our first certificate dispersal algorithm,
called the full tree algorithm and denotedFf ull . This
algorithm assigns to every nodev all the certificates in
a chain setS:v for v. In other words,

Ff ull :(G;v) = the set of all certificates that exist in a
chain setS:v for v.

Lemma 4 :
Ff ull is a certificate dispersal algorithm.

Proof :
We show thatFf ull satisfies the two conditions of a
certificate dispersal algorithm, connectivity and com-
pleteness. First, if there is a chain fromu to v in G, then
at least one of the shortest chains fromu to v is in S:u
by conditionii in the definition of chain set. Second, any
certificate (u, v) in G is in S:u since it is the shortest chain
from u to v. By the definition ofFf ull , the certificate (u, v)
is in Ff ull :(G;u). Therefore,Ff ull satisfies two properties
of connectivity and completeness. 2

Next, we show that the dispersal algorithmFf ull is
far from being efficient. First, we show in Lemma 5
that the cost of applyingFf ull to any strongly connected
certificate graph meets the upper bound on dispersability
cost. Second, we show in Lemma 6 that the cost of
applyingFf ull to any hourglass certificate graph is within
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a factor of four from the upper bound on dispersability
cost (even though the dispersability cost of an hourglass
graph meets the lower bound).

Lemma 5 :
For any strongly connected certificate graphG with n
nodes,

c:(Ff ull ;G) = n�1

Proof :
The certificate dispersal algorithmFf ull assigns, to every
node v in a certificate graphG, the certificates in a
maximal outgoing tree rooted atv. If G is strongly
connected, then any maximal outgoing tree is in fact
a spanning tree with(n�1) certificates, wheren is the
number of nodes inG. Therefore, for any nodev in G,jFf ull :(G;v)j= n�1

c:(Ff ull ;G) = 1
n
( ∑

v in G

jFf ull :(G;v)j)= n�1 2
Lemma 6 :
For any hourglass certificate graphG with n nodes (see
Figure 3),

c:(Ff ull ;G) = n2+2n�3
4n

� n
4

Proof :
Recall that any hourglass certificate graphG has one
center node,n�1

2 input nodes, andn�1
2 output nodes.jFf ull :(G;center)j= n�1
2

For every input nodev,jFf ull :(G;v)j= n�1
2

+1= n+1
2

For every output nodev,jFf ull :(G;v)j= 0

Thus,

c:(Ff ull ;G) = 1
n
(n�1

2
+(n�1

2
)(n+1

2
))= n2+2n�3

4n� n
4 2

V. HALF TREE ALGORITHM FOR CERTIFICATE

DISPERSAL

Before we introduce our second certificate dispersal
algorithm, we need to introduce the following definition
of consistent chain sets.

Let S:u and S:v be two chain sets for nodesu and
v, respectively, in a certificate graphG. S:u andS:v are
consistentiff for every two nodesx and y in G, if S:u
has a subchain that starts atx and ends aty andS:v also
has a subchain that starts atx and ends aty then these
two subchains are identical.

A collection of chain setsfS:vjv is a node inGg is
consistentiff every two chain sets in the collection are
consistent.

We are now ready to present our second certificate
dispersal algorithm, called thehalf tree algorithmand
denotedFhal f . This algorithm takes as input a consistent
collection of chain setsfS:vjv is a node in a certificate
graphGg and computes a set of certificatesFhal f :(G;v)
for every nodev in G. Algorithm Fhal f is defined as
follows.

1: for every nonemptyS:v in the consistent collection
of chain setsdo

2: let c denote the longest chain< (v0;v1); � � � ;(vk�1;vk)> in S:v: note thatv0 = v;

3: let x := b k
2;

4: find the largesty, 0� y� k, such that all
certificates in the prefix< (v0;v1); � � � ;(vy�1;vy)> are already inFhal f(G;v);

5: if x� y
6: then

store the certificates in every prefix of
the subchain< (vy;vy+1); � � � ;(vk�1;vk)>
in Fhal f :(G;w) wherew is the node at
which the prefix ends;

7: else
7a: store the certificates in the prefix< (vy;vy+1); � � � ;(vx�1;vx)> in Fhal f(G;v);
7b: store the certificates in every prefix of

the subchain< (vx;vx+1); � � � ;(vk�1;vk)>
in Fhal f :(G;w) wherew is the node at
which the prefix ends;

endif;

8: remove chainc from S:v;
9: enddo;
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Lemma 7 :
Fhal f is a certificate dispersal algorithm.

Proof :
First, if there is a chain between nodesu andv, then at
least one of the shortest chains fromu to v is stored in
S:u either as it is or as part of a longer chain. All the
certificates in the chain fromu to v will be stored inu
and v by the definition ofFhal f . Second, any certificate
(u, v) in G will be stored inS:u since it will be the
shortest chain fromu to v. By the definition ofFhal f , the
certificate (u, v) is stored inu or in v. Therefore,Fhal f

satisfies two properties of certificate dispersal algorithm.2
Next, we show in Lemma 8 that in the important case

of strongly connected certificate graphs,Fhal f is not less
efficient thanFf ull , and in some instances,Fhal f is in fact
more efficient thanFf ull . Then in Lemma 9, we show that
in the important case of tree certificate graphs,Fhal f is
not less efficient thanFf ull , and in some instances,Fhal f is
in fact more efficient thanFf ull . In Lemma 10, we show
that in the case of the hourglass certificate graphsFhal f

achieves the lower bound on dispersability cost which
is much less than whatFf ull achieves. (For convenience,
the proof of Lemma 9 is moved to the appendix at the
end of the paper.)

Lemma 8 :
For any strongly connected certificate graphG,

c:(Fhal f ;G)� c:(Ff ull ;G)
For some strongly connected certificate graphG,

c:(Fhal f ;G)< c:(Ff ull ;G)
Proof :
Let G be any strongly connected certificate graph, andv
be any node inG. The certificates in the setFhal f :(G;v)
define a graphG0, which is a subgraph of the original
graphG. In G0, there can be at most one path from any
node to nodev, and at most one path from nodev to
any other node. GraphG0 satisfies exactly one of the
following two conditions.

i) G0 has no cycle.
ii) G0 has a cycle, but it has at mostn�1 nodes.

In the first case, the number of certificates inG0 is at
mostn�1, since there is no cycle inG0. In the second
case, the number of certificates inG0 is also at mostn�1,
which is the number of certificates if all then�1 nodes

participate in the cycle. Therefore,jFhal f :(G;v)j � n�1.

c:(Fhal f ;G) = 1
n ∑

v in G

jFhal f :(G;v)j� n(n�1)
n= n�1

BecauseG is strongly connected,c:(Ff ull ;G) = n�1 by
Lemma 5. Therefore,

c:(Fhal f ;G)� c:(Ff ull ;G)
This completes our proof of the first part of the lemma.

u v w

Fig. 5. The two-ring certificate graph

To prove the second part of the lemma, consider the
two-ring certificate graphG00 in Figure 5. This graph is
strongly connected and has three nodes. Then by Lemma
5,

c:(Ff ull ;G00) = n�1= 2

By applyingFhal f to G00, we get

Fhal f :(G00;u) = f(u;v);(v;u)g
Fhal f :(G00;v) = fg
Fhal f :(G00;w) = f(v;w);(w;v)g

Therefore,

c:(Fhal f ;G00) = 1
3
(2+0+2)= 4

3< c:(Ff ull ;G00) 2
Lemma 9 :
For every tree certificate graphT,

c:(Fhal f ;T)� c:(Ff ull ;T)
For any complete tree certificate graphG,

c:(Fhal f ;G)< c:(Ff ull ;G) 2
Lemma 10 :
For any hourglass certificate graphG with n nodes and
e certificates (see Figure 3) wheren is odd,

c:(Fhal f ;G) = e
n
< c:(Ff ull ;G)
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Proof :
Recall that an hourglass certificate graphG with n nodes
has one center node,n�1

2 input nodes, andn�1
2 output

nodes. ApplyingFhal f to this certificate graph, we get

for every input nodeu, Fhal f :(G;u) = f(u;c)g
for the center nodec, Fhal f :(G;c) = fg
for every output nodew, Fhal f :(G;w) = f(c;w)g

Therefore,

c:(Fhal f ;G) = n�1
n

= e
n
< n

4� c:(Ff ull ;G) 2
VI. CERTIFICATE GRAPHS WITH SMALL

DISPERSABILITY COSTS

In this section, we consider Problem 2, stated in
Section 2, and identify a class of strongly connected
certificate graphs that have small dispersability costs.
This class is based on the star certificate graphG in
Figure 6.

Fig. 6. A star certificate graph

The star graph consists of one center node andm
satellite nodes. In this graph, the center node is connected
with each of the satellite nodes by a directed ring. The
best way to disperse the certificates in this graph is to
assign the two certificates in each ring to the satellite
node in that ring, while assigning no certificates to the
center node. Thus,

d:G= 1
m+1

(2m)
Because the number of nodes in this graph is(m+1)
and the number of certificates in this graph is 2m, the
dispersability cost of this graph achieves its lower bound.

Unfortunately, the star certificate graph has a secu-
rity problem. If the private key of the center node is
compromised by an adversary, then this adversary can
impersonate any node as it communicates with any other
node in the system. Thus, although the dispersability

cost of this graph achieves the lower bound, the security
problem of this graph compels us to seek other certificate
graphs. Next, we discuss how to generalize this star
graph into a class of graphs whose dispersability costs
are small and whose security problems are not so severe.

In our generalization of the star certificate graph, each
of the m rings in the graph hask satellite nodes (beside
the center node that exists in every ring). We refer to
this generalized certificate graph as(m;k)-star. Figure 7
shows an(m;2)-star.

Fig. 7. An (m,2)-star certificate graph

An efficient way to disperse the certificates in the(m;k)-star G is to assign the(k+ 1) certificates in a
ring to every satellite node in that ring, while assigning
no certificates to the center node. Thus,

d:G= 1
mk+1

(mk(k+1))
The number of nodes in the(m;k)-star ismk+1, and

the number of certificates in this graph ism(k+1). Thus,
the lower bound on the dispersability cost for the(m;k)-
star is m(k+1)

mk+1 . Therefore, the dispersability cost of an(m;k)-star is within a factor ofk from its lower bound.
It is straightforward to show that an(m;k)-star, where

k � 2, has better security properties than the original(m;1)-star. In particular, if the private key of the center
node is compromised by an adversary then this adversary
will not be able to impersonate any satellite node in a
ring while it communicates with any other satellite node
in the same ring.

VII. C ONCLUSION

In this paper, we introduce the problem of certificate
dispersal. Tight lower and upper bounds on the cost
of the certificate dispersability are given along with
example certificate graphs that achieve both bounds.
Two certificate dispersal algorithms,Ff ull andFhal f , that
can reach these bounds for certain graphs are devised.
The algorithmFf ull makes each node store a maximal
shortest-path outgoing tree, whereasFhal f makes each
node store half of an outgoing tree and half of an
incoming tree. We show thatFhal f performs better than
Ff ull in strongly connected certificate graphs and in tree
certificate graphs. We also present a class of certificate
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graphs whose dispersability costs is within a constant
factor from the lower bound.

The dispersal algorithm discussed in this paper assume
that all the directed paths between two nodes are equally
good. In some applications this may not be true, as
discussed in [14]. Further research is needed to adapt the
dispersal algorithms in this paper to these applications.
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VIII. A PPENDIX

Lemma 9 :
For every tree certificate graphT,

c:(Fhal f ;T)� c:(Ff ull ;T)

For any complete tree certificate graphG,

c:(Fhal f ;G)< c:(Ff ull ;G)
Proof :
For any nodeu in G, the reduced chain setS:u
of u constructs a maximal shortest-path outgoing tree
Tu. Since we may repeatedly store same incoming
edges in nodes inFhal f , c:(Fhal f ;G)� ∑u2Gc:(Fhal f ;Tu),
while c:(Ff ull ;G) = ∑u2Gc:(Ff ull ;Tu). If we can prove
c:(Fhal f ;Tu)� c:(Ff ull ;Tu) for any treeTu, then

c:(Fhal f ;G)� ∑
u2G

c:(Fhal f ;Tu)� ∑
u2G

c:(Ff ull ;Tu) = c:(Ff ull ;G)
c:(Fhal f ;G)� c:(Ff ull ;G)

We can provec:(Fhal f ;Tu) � c:(Ff ull ;Tu) for any tree
Tu by induction. When the number of certificates is
2 in the maximal tree, there are 2 possible trees. If
the tree looks like Figure 8(a), thenc:(Fhal f ;Tu) =
c:(Ff ull ;Tu) = 2. If the tree looks like Figure 8(b), then
c:(Fhal f ;Tu) = 3, whereasc:(Ff ull ;Tu) = 2. Therefore
c:(Fhal f ;Tu)� c:(Ff ull ;Tu) holds for any maximal treeTu

with 2 certificates.

u

(a)

u

(b)

Fig. 8. Maximal trees with 2 edges

Let’s assume thatc:(Fhal f ;Tu)� c:(Ff ull ;Tu) holds for
trees with up ton certificates. Whenn+1th certificate
(v, v0) is added at a nodev, then it will increase the
chain length from the root nodeu of the tree tov(This
new certificate has to come with a new subject node
v0, otherwise it will break the tree property). For a chain
from u to a leaf nodev0 in the given maximal treeTu, we
show that∑w2u�>v jFhal f(Tu;w)j � ∑w2u�>v jFf ull(Tu;w)j
for any nodew on the path fromu to v0. The number of
certificates stored in the nodes that are not on the path
from u to v0 will not be affected by this new certificate.

v’
v

u

ul−1

Let l be the chain length fromu to v. By the definition
of Ff ull algorithm, the increment ofc:(Ff ull ;Tu) is l +1
because the nodes fromu to v will store the new
certificate (v, v0) locally.
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For Fhal f , if a nodew is far from v0 by even length
of chain, for exampleul�1, the nodew has to store one
more outgoing certificates, as the chain length fromw
to the leaf nodev0 increases. Ifl = 2k, then the number
of such nodes arek. Also c:(Fhal f ;Tu) is increased by
Fhal f :(Tu;v0), which is k+ 1. Therefore, the increment
of c:(Fhal f ;Tu) is also l + 1, which is equal to that of
c:(Ff ull ;Tu). If l = 2k+1, then the nodes which stores
one more outgoing certificate arek, andFhal f :(Tu;v0) is
k+1. But in this case, the certificate fromkth node to
k+1th node on the chain is not going to be stored as
incoming certificate in any nodes any longer. Therefore,
k+1 nodes can reduce theirFhal f :(Tu;v0) by 1. In total,
the increment will bek in l = 2k+1 case.

Since the increment ofc:(Fhal f ;T) is l+1 or (l�1)=2
when that ofc:(Ff ull ;T) is fixed asl +1 whenn+1th
certificate is added,c:(Fhal f ;T) � c:(Ff ull ;T) holds for
any treeT with n+1 number of certificates.

By induction, it is shown thatc:(Fhal f ;G)� c:(Ff ull ;G)
for any maximal treeTu for any nodeu in G. Therefore,
c:(Fhal f ;G)� c:(Ff ull ;G) for any tree certificate graphG.
This completes our proof of the first part of the lemma.

To prove the second part of the lemma, leth beblogd n, which is the height of the tree, whered is the
degree of the tree,d � 2.

c:(Ff ull ;G) = ∑
v in G

the number of certificates that appear

in S:v= ∑
1�i�h

i �di

c:(Fhal f ;G) = ∑
v in G

the number of certificates that appear

in S:v= ∑
1�i�b h

2 i �di + ∑b h
2+1�i�h

di � (h� i)+ ∑b h
2+1�i�h

di � (h� i+1)= ∑
1�i�b h

2 i �di + ∑b h
2+1�i�h

di � (2h�2i+1)
Since

∑b h
2+1�i�h

di � (2h�2i+1)< ∑b h
2+1�i�h

i �di

holds whend� 2 andh� 1,

c:(Fhal f ;G)< c:(Ff ull ;G) 2


