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Abstract—We investigate how to disperse the certifi-  The certificates issued by different nodes in a network
cates, issued in an ad hoc network, among the network can be represented by a directed graph, called the certifi-
nodes such that the following condition holds. If any node cate graph of the network. Each node in the certificate
u approaches any other nodev in the network, then ucan  granh represents a node in the network. Each directed
use the certificates stored either inu or in v to obtain the edge from nodeu to nodev in the certificate graph

public key of v (so thatu can securely send messages W. o . .
We define the cost of certificate dispersal as the averagerepresemS a certificate issued by nadéor nodev in

number of certificates stored in one node in the network. the network.
We give upper and lower bounds on the dispersability cost

of certificates, and show that both bounds are tight. We @ @
also present two certificate dispersal algorithms, and show

that one of those algorithms is more efficient than the other @ @
in several important cases. Finally, we identify a rich clas

of “certificate graphs” for which the dispersability cost is

within a constant factor from the lower bound. G

Fig. 1. A certificate graph example

|. INTRODUCTION . - _
. Figure 1 shows a certificate graph for a network with
We consider a network where each nodehas a fiye nodesa, b, ¢, d, ande. According to this graph,

private keyrk.u and a public keybk.u. In this network,
in order for a nodau to securely send a messageto nodea issued two certificatesa( b), and @, d)
another node, nodeu needs to encrypt the message nodeb issued one certificatéy c)
using the public keypk.v, before sending the encrypted nodec issued no certificate
message, denotdik.v < m >, to nodev. This necessi- noded issued one certificatel( e)
tates that node know the public keybk.v of nodev. nodee issued one certificate,(b).

If a nodeu knows the public keyk.v of another node
v in this network, then node& can issue a certificate,Node a can use the two certificates, (b) and @, c) to
called a certificate fronu to v, that identifies the public obtain the two public keydkb and bkc, and so can
key bk.v of nodev. This certificate can be used by angecurely send messages to nobddemndc. Also, nodea
node in the network that knows the public key of nodean use the two certificates, (d) and @, €) to obtain

u to further acquire the public key of node the public keysbkd and bke, and can securely send
A certificate from nodeai to nodev is of the following messages to nodesand e. Noded can use the three

form: certificates g, €), (e, b), and @, c) to obtain the public
rk.u < u,v,bkv > keys of bke, bkb, and bkc, and can securely send

messages to nodesb, andc.

This certificate is encrypted using the private kéyu We assume that the network is ad hoc and its nodes
of nodeu, and it includes three items: the identity of thare mobile so move around. In this case, the issued
certificate issueu, the identity of the certificate subjectcertificates need to be dispersed among the nodes in the
v, and the public key of the certificate subjéétv. Any network such that if a node approaches another node
node that knows the public keyk.u of nodeu can use v and wishes to securely send messages to it, thesm

bk.u to decrypt the certificate from to v and obtain the obtain the public key ofv from the set of certificates
public keybk.v of nodev. stored either inu or in v (provided there is a directed



path fromu to v in the certificate graph). us to use these results without significant overhead to
As an example, assume that each node in the cire networks. In traditional networks, one can assume
tificate graph in Figure 1 stores the certificates in thtbat the communication between nodes is reliable and
maximal, shortest-path, incoming tree rooted at the nodeasonably fast. In ad hoc networks, finding routes
between nodes itself is challenging, let alone maintaining

nodea stores no certificates the relevant information of the found routes. Also, nodes
nodeb stores the certificates a(b), (d, €), (& b) in ad hoc networks often have very limited resources. For
nodec stores the certificates a(b), (d, €), (e, b), example, computational capability, storage, and power

B (b, 0 supply are much less than what most nodes have in
noded stores the cer'qﬂcates a(d) traditional networks. To accommodate these limitations,
nodee stores the certificates a(d), (d, €) different architectures for issuing, storing, discovery

_ validating certificates in ad hoc networks have been
Thus, if nodea approaches node thena can use the geyeloped.

two certificates stored ie to obtain the public key oé In [9], Zhou and Haas have presented an architecture
and securely send message®i¢Note that nodee can  fqr issuing certificates in an ad hoc network. According

never obtain the public key of nodebecause there ISty this architecture, the network has servers. Each
no directed path from nodeto nodea in the certificate geryer has a different share of some private KeyTo
graph in Figure 1). o _ generate a certificate, each server uses its own share of
~ As an application of this situation, consider the tankg to encrypt the certificate. If no more thanservers
in an armored division. Each tank has a computer apdye suffered from Byzantine failures, where 3t + 1,
can be viewed as a node in an ad hoc network. Before §@n the resulting certificate is correctly encrypted using
tanks are d'eployed into the field, a certificate graph ngqﬁg private keyrk, thanks to threshold cryptography.
to be designed to secure the future communicatiofifie resulting certificate can be decrypted using the
between the tanks in the field. Then the certificates fro&%rresponding public key which is known to every node
this certificate graph need to be dispersed amongst {h&he ad hoc network.
tanks befpre they_are deployed. Later, the tanks argp [10], Kong, Perfos, Luo, Lu and Zhang presented
deployed into the field and each of them has a numbgpre distributed architecture for issuing certificates. In
of certificates in its local storage. Now, if two tankstead of employing servers in the ad hoc network, each
approach each other in the field, then the two tanks haygge in the network is provided with a different share of
enough certificates in their I_ocal storage so that eachigg private keyk. For a nodeu to issue a certificate, the
them can compute the public key of the other and Wygey forwards the certificate to its neighbors and each
tanks can securely exchange messages. of them encrypt the certificate using its sharerkf If

In this paper, we discuss three contributions t0 thg,jey has at least+1 correct neighbors (i.e. they have
problem of certificate dispersal in ad hoc networks. Firg{ot suffered from any failures), the resulting certificate
we present tlgh't_upper and |0VY€F bounds on the averggeorrectly encrypted using the private ke
number of certificates S‘Fo_red in one node_. Second, wen our paper, we propose an architecture where every
present a somewhat efficient certificate dispersal alg@sde has both a public key and a private key so it can
rithm that ensures that the average number of certificajggye certificates for any other node in the network. This
stored in & node is small (if not the smallest). Third, Wgchitecture is very efficient in issuing and validating
identify rich classes of certificate graphs for which thgertificates but cannot tolerate Byzantine failures. In par

average number of certificates to be stored in a nog&ar, if one node suffers from Byzantine failure, then

approaches the lower bound. this node can successfully impersonate any other node

that is reachable from this node in the certificate graph of

the network. This vulnerability to Byzantine failures is
Several papers have investigated the use of certificates unique to our certificate work in ad hoc networks. In

to provide security in traditional and in ad hoc networkgact, many proposed certificate architectures, e.g. [1], [2

We summarize the results of these papers in the folloy8], [7], and [8] yield similar vulnerabilities in traditizal

ing paragraphs. networks. Recently, we have developed a technique for
Architectures for issuing, storing, discovery, and vahugmenting the certificates with additional information

idating certificates in traditional networks are presentéd ensure that the network can tolerate some degree of

in [1], [2], [3], [4], 5], [6], [7], and [8]. There are Byzantine failures[11].

several limitations in ad hoc networks that do not allow Perhaps the closest work to ours is [12] where the
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authors, Hubaux, Buttyan, and Capkun, investigated howii) Completeness

to disperse certificates in a certificate graph among the For every certificate irG, there is a node in G
network nodes under two conditions. First, each node such that this certificate is iR.(G,V).

stores the same number of certificates. Second, with high_ et G be a certificate graph, and F be a certificate

probability, if two nodes meet then they have enoudfispersal algorithm. Theostof using F to disperse the

certificates for each of them to compute the public kesertificates inG among the nodes @, denotect.(F,G),
of the other. By contrast, our work is based on twg computed as follows:

different conditions. First, different nodes may store 1
different number of certificates, but the average number c.(F,G) = ﬁ( z |F.(G,v)])
of certificates stored in one node is minimized. Second, vinG

it is guaranteed (i.e. with probability 1) that if two nodesvhere n is the number of nodes i, and |F.(G,V)|

meet then they have enough certificates for each of thelenotes the number of certificates in the BgG,v)

to compute the public key of the other. assigned by F to node Note thatc.(F,G) is the average
Later, the same authors have showed in [13] thatnamber of certificates assigned by F to a nod&in

lower bound on the number of certificates to be storedThe dispersability costof a certificate graplG, de-

in a node isy/n—1 wheren is the number of nodes innotedd.G, is computed as follows:

Ithe system. By contrast, we show below thgt the tight d.G = minc.(F,G)

ower bound on the average number of certificates to be F

stored in a node is/n, wheree is the number of edges A certificate dispersal algorithrf. is efficientiff for
in the system. every certificate grapls,
[1l. CERTIFICATE DISPERSAL ¢(Fe,G) =dG

A certificate graph Gs a directed graph in which each It_:_ollowsc:‘_rom th'IS dffm'.t'r?n thatalﬂ:.e IS an eff_:((_:lent
directed edge, called eertificate is a pair (1, v), where c_ertl icate ISpersa algorithm  an IS a certificate
u andyv are distinct nodes 5. For each certificateu( dispersal algorithm then for every certificate graph
V) in G, u is called theissuerof the certificate and is c.(Fe,G) <c.(F,G)
called thesubjectof the certificate.

Note that according to this definition a certificat
graph is a directed graph that does not have seIf—Ioop%
and does not have multiple edges from any node to any d.G<n-1
other node.

A directed path\, v1), (V1i, Vo), -++, (Vk—1, W) In &
certificate graphG, where the nodesy, vy, ---, Vk are Proof :
distinct, is called a certificatehain from v to vi. The In the next section, we present a certificate dispersal
length of a chain is the number of certificates in thalgorithmF;, that assigns to every nodeén a certificate
chain. A chain fromu to v is shortestiff its length is graph G, the certificates in a maximal outgoing tree
not larger than the length of any other chain frento rooted atv. Because each maximal outgoing tree in a

emma 1 : (Upper Bound on Dispersability Cost)
r every certificate grap® with n nodes,

v in the same certificate graph. certificate graptG has at mosh— 1 certificates, where
Let c denote the chainvg, vi), ---, (Vk_1, Vk)- Then, nis the number of nodes i6, we have

each of the chains/g, v1), ---, (Vj_1, Vj), where 1< j <

k, is called gorefixof ¢ that ends at node. Also, each of [Frun(G V)l <n—1

the chains\j, vj;1), -+, (\k-1, V), where 0< j <k -1, c.(Frun,G) = }( z IF.(G,v)])

is called asuffixof ¢ that starts at node;. n &c
A certificatedispersal algorithnF is an algorithm that <(n-1)

takes as input any certificate gra@and computes a
subset of the certificates, denotedG, v), for every node
v in G such that the following two conditions hold: d.G=c.(F,G)

i) Connectivity: < ¢.(Fiur,G))
For every distinct pair of nodeg andv in G, if “n-1
there is a chain fronu to v in G, then there is a -
chain fromu to v in the setF.(G,u) UF.(G,v). O

Let F be any efficient dispersal algorithm; hence



Lemma 2 : (Lower Bound on Dispersability Cost) Q/O\Q

For every certificate grap@ with n nodes anc certifi-
cates,
dG>E
T Q O
\O/
Proof : Fig. 2. A ring certificate graph

Let F. be any efficient certificate dispersal algorithm.
From the completeness condition of a dispersal algo-
rithm, every edge in a certificate grafhis assigned by

Fe to some node irG. Thus,

Fe.(G,v)| > e
ng| e(G,V)| o NS
wheree is the number of certificates 6. We conclude . o
Fig. 3. An hourglass certificate graph
d.G=c.(F,G)

= %( > [Fe(GV)]) As a second example, considertaurglasscertificate
e vinG graphG; in Figure 3. This graph has nodes anch— 1

> n certificates, wheren is odd, arranged in an hourglass

shape with one center nod@g — 1)/2 input nodes, and
(n—1)/2 output nodes. There is a certificate dispersal
Lemma 3 : (Achieving the two Bounds on Dispersabilitylgorithm F that assigns certificates to every nod@

a

Cost) G, as follows.
There is a certificate grapke with n nodes ande i) If vis the center node, thef(Gy,v) = {}.
certificates such that the following two conditions hold. jiy |f v is an input node, thenF.(Giv) =

) dG=n-1 {(v,centernodg}.

i) d.G=7 iy if v is an output node, thenF.(Gi,v) =
Proof - {(centernodev)}.
Let G be a fully connected certificate graph; i.e, for anyhus,
two distinct nodesi andv in G, there is a certificate from C.(F,Gy) = n-1
u to v and a certificate fronv to u. Thus, the number of A PL =T
certificatesein G is n(n— 1), and the following relations = the lower bound on dispersability cost
hold in G. —d.G,

No1— n(n—1) _e
n n Hence,G; meets the lower bound on dispersability cost

Hence the upper and lower bounds on dispersability cdmtt not its upper bound.
meet atG, andd.G is equal to each of the two bounds. The above discussion suggests the following two prob-
Therefore, the two conditions of Lemma 3 hold ©8r lems which we explore in the rest of this paper.

P{oblem 1:

O
It is also possible to construct certificate graphs th@ - - : :
meet the upper bound on dispersability cost but not |se\/6|0p an efficient certificate dispersal algoritfien

lower bound, and to construct certificate graphs that meet

the lower bound on dispersability cost but not its uppé&roblem 2 :

bound. Identify rich classes of certificate graphs whose dis-
As an example, consider @ng certificate graphGy persability costs meet the lower bound or are within a

in Figure 2. This graph has nodes andh certificates constant factor of this lower bound.

arranged in a directed ring. It is straightforward to show O

that any dispersal algorithm will assign to every node in Problem 1 remains open: Instead of solving Problem

the graph at leagt— 1 certificates. Thus].Go > n—1, 1, we present two certificate dispersal algorithFg,

and Gy meets the upper bound on dispersability cost bahd R4t (in Sections 4 and 5 respectively), and show

not its lower bound. that in several important cas€sgy, is not as efficient as

a



Fhat- We then present a solution of Problem 2 in Section The chain set for noda has five chains:

6.
IV. FULL TREEALGORITHM FOR CERTIFICATE Sa={<(ab)>,
DISPERSAL < (a,c) >,

Before we introduce our first certificate dispersal al- < (a,¢);(c,d) >,
gorithm, we need to introduce the following definition < (a,0);(c,d); (d,e) >,
of chain sets.

< (a,c)i(c,d);(d, f) >}

Let G be a certificate graph andbe a node inG. A
chain setfor v, denotedSy, is a set of chains s that

satisfies the following three conditions.

The following two comments are in order. First, each

i) If Ghas no chains that starts\athenSvis empty. cpain setSv for a nodev defines a maximal, shortest-
Ij) If G has a chain fronv to w, thenSv has exactly 1y outgoing tree rooted at nodgein the certificate

one shortest chain from to w.

graph. Second, it is possible to have two or more distinct

iii) It Svhas a chain, theBvalso has every nonemptycpin sets for a node. For example, a second chain set for

prefix of this chain.

& %

(@
© ©®

Fig. 4. The diamond certificate graph

As an example, consider tlitamondcertificate graph

nodea in the certificate graph in Figure 4 is as follows:

Using the above definition of a chain set, we are now

in Figure 4. In this graph, there are no certificate chaif§2dY t0 present our first certificate dispersal algorithm,

that start at node or f, and the chain sets for no

and f are both empty:

Se={}
st={)

The chain set for nodd has two chains:

Sd={<(d,e) >,
<(d,f) >}

Also the chain set for each of the two nodeandc

has three chains:

Sb={< (b,d) >,
< (b,d); (d,e) >,
< (b,d);(d, f) >}
Sc={<(c,d) >,
< (c,d); (d,e) >,
< (c,d);(d, f) >}

de called thefull tree algorithm and denotedrs . This

algorithm assigns to every nodeall the certificates in
a chain seS.v for v. In other words,

Frun-(G,v) = the set of all certificates that exist in a
chain setS.v for v.

Lemma 4 :
Frun is a certificate dispersal algorithm.

Proof :
We show thatF;,, satisfies the two conditions of a
certificate dispersal algorithm, connectivity and com-
pleteness. First, if there is a chain framo v in G, then
at least one of the shortest chains franto v is in Su
by conditionii in the definition of chain set. Second, any
certificate (1, v) in G is in Suu since it is the shortest chain
from u to v. By the definition ofF;, the certificatel, v)
is in Fryy.(G,u). Therefore Fsy, satisfies two properties
of connectivity and completeness.
|

Next, we show that the dispersal algorithiay; is
far from being efficient. First, we show in Lemma 5
that the cost of applying: to any strongly connected
certificate graph meets the upper bound on dispersability
cost. Second, we show in Lemma 6 that the cost of
applyingF¢y to any hourglass certificate graph is within



a factor of four from the upper bound on dispersability V. HALF TREE ALGORITHM FOR CERTIFICATE
cost (even though the dispersability cost of an hourglass DISPERSAL

graph meets the lower bound). Before we introduce our second certificate dispersal

Lemma 5 : algorithm, we need to introduce the following definition
For any strongly connected certificate graphwith n  Of consistent chain sets.
nodes, Let Su and Sv be two chain sets for nodas and

v, respectively, in a certificate gragh S.u andS.v are
consistentff for every two nodesx andy in G, if Su
Proof : has a subchain that startsxaaind ends ay andSv also

The certificate dispersal algorithf assigns, to every Nas @ subchain that starts>aand ends ay then these

node v in a certificate graphG, the certificates in a WO subchains are identical. _ _ _
maximal outgoing tree rooted at If G is strongly A collection of chain set§Sv|vis a node inG} is

connected, then any maximal outgoing tree is in faepns?stentiff every two chain sets in the collection are
a spanning tree witlin— 1) certificates, whera is the Cconsistent.

C.(Ffu”,G) =n-1

number of nodes ifG. Therefore, for any node in G, We are now ready to present our second certificate
dispersal algorithm, called thiealf tree algorithmand
|Ftun.(G,v)| =n—-1 denotedr,q ¢. This algorithm takes as input a consistent
1 collection of chain set§Sv|v is a node in a certificate
C.(Frui, G) = ﬁ( > [Frun-(GV))) graphG} and computes a set of certificatBgyt.(G,V)
vinG for every nodev in G. Algorithm Ryt is defined as
=n-1 follows.
]

1: for every nonemptys.v in the consistent collection

Lemma 6 : of chain setsdo
Ilzic;ruz;lgys)hourglass certificate graghwith n nodes (see 5. let ¢ denote the longest chaia (vVo,v1);---
, (Vi—1,Vik) > in Sv: note thatvy = v,
nP+2n-3 n
c.(Fru, ) =———~ - : : :
(Ftun, G) an 4 3: let X := L%J.
Proof :

find the largesty, 0 <y <k, such that all
certificates in the prefix (vo,v1);--;
(W-1,) > are already irFnat(G,Vv);

Recall that any hourglass certificate gra@hhas one

center node?>* input nodes, and5! output nodes.

[Frun.(G,centej| = nTl 5: if x<y
_ 6: then
For every input node, store the certificates in every prefix of
n—1 n+1 the subchain< (v, Vy;1); -+ 5 (Viee1, Vi) >
|Ftun-(G,v)| = &t 1= 5 in Fnaif-(G,w) wherew is the node at
which the prefix ends;
For every output nodg, 7 else
7a: store the certificates in the prefix
Frun-(G V)] =0 < (V)i 3 (Ve1, V) > N Frai(G,V);
Thus, 7hb: store the certificates in every prefix of
the subchain< (i, Vii1); -+« 5 (Vke1, Vi) >
~1n-1 n-1 n+l in Fhat.(G,w) wherew is the node at
¢-(Frun, 6) = 2 (5= + (=) (=57)) which tr(ua pr)efix ends;
_n?+2n-3 endif;
 4n
L 8: remove chainc from Sy;
4 9: enddg



Lemma 7 : participate in the cycle. Thereforfat.(G,v)| <n-—1.

Fat is a certificate dispersal algorithm. 1
C.(Fhait,G) = - Z |Fhait-(G, V)|

Proof : vinG
First, if there is a chain between nodesndv, then at < n(n—1)
least one of the shortest chains framo v is stored in - n
S.u either as it is or as part of a longer chain. All the =n-1

certificates in the chain from to v will be stored inu

andv by the definition ofF+. Second, any certificate .
(u, v) in G will be stored inSu since it will be the Becauses is strongly connected. (Frui,G) =n—1 by

shortest chain fronu to v. By the definition offng ¢, the Lemma 5. Therefore,

certificate (i, v) is stored inu or in v. Therefore Fnf c.(Fraif, G) < C.(Ftui, G)
satisfies two properties of certificate dispersal algorithm B .
g This completes our proof of the first part of the lemma.
Next, we show in Lemma 8 that in the important case @C@C@
of strongly connected certificate graplfga ; is not less

efficient thanFs,, and in some instanceB,, s is in fact
more efficient tharsy. Then in Lemma 9, we show that
in the important case of tree certificate grapRgy+ is
not less efficient thaRs, and in some instances,y ¢ is two-ring certificate grapl@” in Figure 5. This graph is

in fact more efficient thaifr. In Lemma 10, we show strongly connected and has three nodes. Then by Lemma
that in the case of the hourglass certificate graghs 5

achieves the lower bound on dispersability cost which
is much less than whd;, achieves. (For convenience,

Fig. 5. The two-ring certificate graph

To prove the second part of the lemma, consider the

the proof of Lemma 9 is moved to the appendix at the c.(Frun,G") =n-1

end of the paper.) =2

Lemma 8 : By applying Fha s to G”, we get

For any strongly connected certificate graph Faarr-(G",U) = {(u,V), (v, )}
Fhair-(G",v) = { }

C.(Fait, G) < ¢.(Frui, G) Fratr-(G",W) = {(v,W), (W, v)}

For some strongly connected certificate graah Therefore,

1

C. Fha 7G” =5

C.(Faf,G) < c.(Frun,G) (Frair, G°) 3
< C.

4
(Ftun,G")

Proof : g
Let G be any strongly connected certificate graph, anq_emma 9

be any node irG. The certificates in the s&,¢.(G,V)
define a graphG', which is a subgraph of the original
graphG. In G/, there can be at most one path from any C.(Faif, T) < C.(Frun, T)
node to nodev, and at most one path from nodeto
any other node. Grapl®’ satisfies exactly one of the
following two conditions. c.(Fhait,G) < c.(Fsui, G)

For every tree certificate graph,
For any complete tree certificate gra@h

i) G' has no cycle. |

i G h le, but it has at most- 1 nodes.
i) as a cycle, butit has al most-1 nodes. o ima 10 -

In the first case, the number of certificatesGhis at For any hourglass certificate gra@with n nodes and
mostn— 1, since there is no cycle i6'. In the second e certificates (see Figure 3) whends odd,
case, the number of certificates@is also at mosh—1, e
which is the number of certificates if all tre— 1 nodes C.(Fhaf, G) = n < ¢.(Frui,G)



Proof : cost of this graph achieves the lower bound, the security
Recall that an hourglass certificate graphwith n nodes problem of this graph compels us to seek other certificate
has one center nodé;—l input nodes, and‘%l output graphs. Next, we discuss how to generalize this star
nodes. Applyingra; to this certificate graph, we get graph into a class of graphs whose dispersability costs

are small and whose security problems are not so severe.

for every input nodas,  Fq1.(G,u) = {(u,c)} In our generalization of the star certificate graph, each
of the mrings in the graph hak satellite nodes (beside
for the center node, Fhai.(G,c) = { } the center node that exists in every ring). We refer to

this generalized certificate graph @s,k)-star. Figure 7
for every output nodev, Fnat.(G,w) = {(c,w)} shows an(m, 2)-star.

Therefore,

C.(Fhait,G) = n =

~ C.(Ftui,G)

n-1 e
- <
n

NS

Fig. 7. An (m,2)-star certificate graph
VI. CERTIFICATE GRAPHS WITH SMALL

DISPERSABILITY COSTS An efficient way to disperse the certificates in the

In this section, we consider Problem 2, stated iMk)-starG is to assign the(k+1) certificates in a
Section 2, and identify a class of strongly connectéthd to every satellite node in that ring, while assigning
certificate graphs that have small dispersability cosf certificates to the center node. Thus,

This class is based on the star certificate gr&pin
orép 4.6 (mk(k+ 1))

Figure 6. T mk+1

The number of nodes in thegn, k)-star ismk+ 1, and

the number of certificates in this graphigk+ 1). Thus,

the lower bound on the dispersability cost for {ime k)-

star is ™kt Therefore, the dispersability cost of an

(m,k)-star is within a factor ok from its lower bound.
Q/ . \O It is straightforward to show that aim, k)-star, where
k > 2, has better security properties than the original
(m,1)-star. In particular, if the private key of the center
node is compromised by an adversary then this adversary

The star graph consists of one center node and | not be able to impersonate any satellite node in a

satellite nodes. In this graph, the center node is connec;% while it communicates with any other satellite node
with each of the satellite nodes by a directed ring. Thf the same fing.

best way to disperse the certificates in this graph is to
assign the two certificates in each ring to the satellite
node in that ring, while assigning no certificates to the

Fig. 6. A star certificate graph

VIlI. CONCLUSION

center node. Thus, _ In this paper, we introduce the problem of certificate
dispersal. Tight lower and upper bounds on the cost
d_G:_l(Zm) of the certificate dispersability are given along with
m+-

example certificate graphs that achieve both bounds.

Because the number of nodes in this grapl{ns+ 1) Two certificate dispersal algorithmB;,; andFyyf, that

and the number of certificates in this graph s, 2he can reach these bounds for certain graphs are devised.

dispersability cost of this graph achieves its lower bount@he algorithmF;,; makes each node store a maximal
Unfortunately, the star certificate graph has a secshortest-path outgoing tree, wherdag s makes each

rity problem. If the private key of the center node imode store half of an outgoing tree and half of an

compromised by an adversary, then this adversary daooming tree. We show thd ¢ performs better than

impersonate any node as it communicates with any othg(y, in strongly connected certificate graphs and in tree

node in the system. Thus, although the dispersabilitgrtificate graphs. We also present a class of certificate



graphs whose dispersability costs is within a constafdr any complete tree certificate gra@h
factor from the lower bound.

The dispersal algorithm discussed in this paper assume

C.(Fha”, G) < C-(Ffull ) G)

that all the directed paths between two nodes are equadyyof -

good. In some applications this may not be true, #&»r any nodeu in G, the reduced chain seS.u
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VIII. A PPENDIX

Lemma 9 Let| be the chain length frora to v. By the definition
For every tree certificate graph, of Fry algorithm, the increment of.(Fry, Ty) is | +1

because the nodes from to v will store the new
C.(Fat, T) <c.(Ffur, T) certificate ¢, V) locally.



For Fait, if @ nodew is far from v by even length
of chain, for examplay_1, the nodew has to store one
more outgoing certificates, as the chain length fram
to the leaf node/ increases. If = 2k, then the number
of such nodes ar&. Also c.(Fhat, Tu) is increased by
Fhaif-(Ty,V), which is k+ 1. Therefore, the increment
of c.(Faf, Tu) is alsol + 1, which is equal to that of
C.(Fun, Tu). If 1 = 2k+1, then the nodes which stores
one more outgoing certificate ake and Ry ¢.(Ty,V) is
k+ 1. But in this case, the certificate frokth node to
k+ 1th node on the chain is not going to be stored as
incoming certificate in any nodes any longer. Therefore,
k+1 nodes can reduce théi.(Ty,V) by 1. In total,
the increment will bek in | = 2k+ 1 case.

Since the increment af.(Fhas, T) isl+21 or (I —1)/2
when that ofc.(Fsy, T) is fixed asl +1 whenn+ 1th
certificate is added¢.(Fhaif, T) < ¢.(Ffui, T) holds for
any treeT with n+ 1 number of certificates.

By induction, it is shown that.(Fna 1, G) < C.(Ftui, G)
for any maximal tredl, for any nodeu in G. Therefore,
C.(Fhaitr, G) < c.(Frun, G) for any tree certificate grap®.
This completes our proof of the first part of the lemma.

To prove the second part of the lemma, letbe
|logyn], which is the height of the tree, wheceis the
degree of the treg > 2.

C.(Ftun,G) = z the number of certificates that appear
vin G

in Sv
= Z ixd

1<i<h

C.(Fhait,G) = z the number of certificates that appear

vinG
in Sv
= Z ixd + Z d'« (h—i)
1<i<|}] |h]+1<i<h
+ 5 dx(h-i+1)
|3+1<i<h
= Y ixd4+ Y dx(2h-2i+1)
1<i<[ ] |8 +1<i<h

Since

dx(zh-2i+1)< 5 ixd

[h]+1<i<h [h]+1<i<h

holds whend > 2 andh > 1,
c.(Fhat,G) < C.(Frun, G)

10



