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Abstract 
 
 
A sensor network consists of a large number of tiny computers; each capable of  sensing  
 
magnetism, movement, heat, or sound in their vicinities. The computers in this network  
 
collaborate to achieve a global sensing objective. The characteristics of each computer  
 
usually include constrained battery power, small memory resources, and limited computational  
 
power. Moreover, the failure rate of each tiny computer is high. The computers communicate  
 
wirelessly through  radio signals, and because each computer has a limited communication  
 
radius, the sensor network is in fact a multi-hop system. Sensor networks may be used in  
 
various applications including monitoring and surveillance, object tracking and inventory  
 
keeping, military awareness, natural disaster detection in remote places, monitoring sensitive  
 
areas, and so on. Because of the nature of these applications, it is essential for the message  
 
transmission in these networks to be secure from an adversary who might attempt to  
 
compromise the network effectiveness. 
 
 
In this thesis, we formally specify a simple routing protocol, called the grid routing protocol,  
 
that can be used for routing data messages in a sensor network. We also specify several  
 
enhancements of this protocol to make it secure against mote impersonation and infiltration  
 
attacks. 
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1 The Grid Routing Protocol        
 
The Logical Grid Routing Protocol is a protocol for routing data messages in sensor networks. [2], [4]  
 
This protocol overcomes random message loss and mote failure.   
 
 
1.1 The Grid 
 
We consider a network that consists of a number of tiny computers called motes.  The  
 
characteristics of each mote usually include constrained battery power, small memory resources, and  
 
limited computational power. Moreover, the failure rate of each mote is high. These motes  
 
communicate wirelessly through  radio signals, and because each mote has a limited communication  
 
radius, this network is in fact a multi-hop system. 
  
 
The motes in the network are placed in an arbitrary physical configuration, but they are labeled as if  
 
they are points in an M*N logical grid. Therefore, each mote has a label (i, j) where i := 0 .. M – 1 and  
 
j := 0 .. N – 1.  
 
 
It is required that the physical connectivity of the motes is a superset of the grid connectivity  
 
implied by the mote labels. As an example,    
       

                                                         (0,1)                (2,1) 
 

         (1,1)                 (2,0) 
Figure 1          

 
 
 
       

         (0, 0)    (1, 0) 
 
 
 
 
 
    4 



         (0,1)                  (1,1)                  (2,1)  
  
      

Figure 2 
      
  
             

        (0,0)         (1,0)          (2,0) 
  

Figure 1 shows a network with six motes; the edges between the motes describe which motes can  
       
communicate with which other motes. Thus, Figure 1 describes the physical connectivity in the  
 
network. Figure 2 describes the logical connectivity in the same network based on the chosen labels  
 
of the motes. Note that the edges in Figure 1 (i.e. the physical connectivity of the network) are a  
 
superset of the edges in Figure 2 (i.e. the grid connectivity of the same network). 

 
 

 1.2 Logical Neighbors 
 
Each mote [i, j] in the middle of the grid has four logical neighbors. These logical neighbors are mote  
 
[i, j + 1], mote (i, j – 1), mote [i + 1, j] and mote [i - 1, j]. Two of those four motes are called low  
 
neighbors, and the other two are called high neighbors. The two low neighbors of mote [i, j] are  
 
motes [i, j – 1] and [i – 1, j], and the two high neighbors are motes [i + 1, j] and [i, j + 1]. If mote [i, j] is  
 
located on the boundaries of the grid, then it has a smaller number of logical neighbors. There are  
 
four cases to consider. In the first case, where i = 0, mote [0, j] has only one low neighbor, namely  
 
mote [0, j – 1]. In the second case, where j = 0, mote [i, 0] has only one low neighbor, namely mote  
 
[i – 1, 0]. (Therefore, mote [0, 0] has no low neighbors.) In the third case, where i = M – 1, mote  
 
[M – 1, j] has only one high neighbor, namely mote [M – 1, j + 1]. In the fourth case, where j = N – 1,  
 
mote [i, N – 1] has only one high neighbor, namely mote [i +  1, N – 1]. (Therefore, mote  
 
[M – 1, N – 1] has no high neighbors.) 
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1.3 Communication Pattern 
 
Each mote [i, j] in the network broadcasts messages whose ultimate destination is mote [0, 0]. To  
 
facilitate communication between motes, the motes need to maintain an incoming spanning tree whose  
 
root is mote [0. 0]. As an example, Figure 3 shows a spanning tree for the grid network in Figure 2.  
 
Each mote in the network maintains a pointer to its parent in the tree, and these pointers form the  
             
spanning tree.  When a mote receives a message, it forwards the message to its parent in the tree.  
 
This process continues, until the message reaches the tree root, namely mote [0, 0]. 
 
               
                             (0,1)                (1, 1)           (2, 1) 
 
 Figure 3 
 
   
 

                 
          (0, 0)                 (1, 0)                (2,0) 

 
 
The parent of a mote in the spanning tree is chosen from the logical neighbors of this mote so that  
 
the parent of the mote is within the communication range of the mote. When a mote [i, j] broadcasts  
 
a message, the message reaches to all motes within the communication range of [i, j]. All motes within  
 
the communication range, excluding the parent, discard the message, and the parent forwards the  
 
message to its parent, and so on, until the message reaches mote [0. 0]. Clearly, if all logical      
             

neighbors of a mote fail, then this mote cannot have a parent in the spanning tree and so cannot  
 
broadcast any messages to mote [0. 0].  
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 1.4 Choosing the Parent 
 
Each mote [i, j] chooses its parent from its logical neighbors based on the distance of each logical  
 
neighbor. The logical distance of a mote [i, j] is defined to be i + j. It is advantageous for a mote [i, j]  
 
to choose its parent with as small a distance as possible. Therefore, when a mote chooses its parent  
 
from its logical neighbors, the mote prefers a low neighbor. However, if both low neighbors of a mote  
 
fail, then the mote chooses one of its high neighbors to be its parent. This situation is called an  
 
inversion. Thus, an inversion is defined to be an occurrence where a mote chooses one of its high  
 
neighbors to be its parent. As an example, one inversion occurs at mote (1, 2) in the network in Figure  
       
4, because both low neighbors of mote (1, 2) have failed.     

 
                        failed         (1, 2) 
                   

      
   

                               failed 
Figure 4   

 
 

                                   
           (0, 0) 
 
           
 
 
1.5 Inversion Count 
 
The inversion count of a mote [i, j] is defined to be the number of inversions that occur along the  
 
spanning tree route from mote [i, j] to mote [0. 0]. As an example, Figure 5 shows the inversion  
 
counts of each mote in the network in Figure 4: the inversion count of mote [1, 2] is 1, whereas the   
 
inversion count of every other mote is 0.   
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failed      (1, 2), 1    (2, 2), 0 
 

     
                                    

             (0, 1), 0       failed               (2, 1), 0 
 Figure 5       
                

                              
 

        (0, 0), 0            (1, 0), 0                  (2, 0), 0 
 
 
 
The inversion count of a mote has an upper bound, namely M + N, and a lower bound, namely 0. We can  
 
limit the upper bound of the inversion count artificially to be a smaller number. One advantage of  
 
having an artificial upper bound on the inversion count is that a message has a shorter distance to the  
             
root. A disadvantage of having this artificial upper bound is that a mote could potentially be isolated  
 
from the network and therefore unable to forward messages to mote [0. 0]. As an example, in Figure  
 
6, if cmax equals 1, then mote (2, 0) is disconnected from the network and cannot forward any  
 
messages.  

      (0, 2), 0      (1, 2), 0 (2, 2), 0 
     
      
      
           (0, 1), 0               failed    (2, 1), 1 

Figure 6 
 

          failed 
                          

                (0, 0), 0    failed  (2, 0)        
 
 
 
1.6 Protocol Message 
 
When, and only when, a mote [i, j] has a parent (x, y), every t seconds mote [i, j] broadcasts a  
 
connected message to all motes within its communication range. This connected message has three  
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fields: (i, j, c), where (i, j) is the label of the mote broadcasting the message and c represents its  
 
current inversion count. All motes within the communication range of mote [i, j], excluding the  
 
neighbors of mote [i, j], discard the connected (i, j, c) message broadcasted by mote [i, j].  Mote  
 
[0. 0] broadcasts a connected (0, 0, 0) message every t seconds.  
 
 
If all logical neighbors of mote [i, j] fail, then mote [i, j] has no parent, and it will not broadcast any  
 
messages. In this case, mote [i, j] becomes isolated from the spanning tree and can no longer forward  
 
any message to mote [0. 0]. 
 

        
1.7 Acquiring a Parent 
 
Initially, mote [i, j] has no parent. When mote [i, j] has no parent and receives a connected (x, y, d)  
 
message from a neighbor (x, y), mote [i, j] chooses this neighbor as its parent in two cases. The first  
 
case occurs when mote [x, y] is a low neighbor. The second case occurs when mote [x, y] is a high  
 
neighbor and the inversion count d is less than cmax.  
             
             
When mote [i, j] receives a connected (x, y, d) message where (x, y) is a low neighbor of mote [i, j],  
 
mote [i, j] chooses this neighbor to be its parent and computes its inversion count using c := d. If the  
 
parent [x, y] is a high neighbor and d is less than cmax, mote [i, j] computes its inversion count using  
 
c := d + 1.  
 
 
Consider the network in Figure 6. Mote [0. 0] broadcasts the message connected (0, 0, 0) every t  
 
seconds. When mote [0, 1] receives this message, it recognizes that [0. 0] is its low neighbor, and so  
 
it chooses (0. 0) to be its parent in the spanning tree and makes its own inversion count equal 0. From  
 
this point on, mote [0, 1] broadcasts the message connected (0, 1, 0) every t seconds. When mote  
 
[0, 2] receives the message connected (0, 1, 0) and recognizes that mote [0, 1] is its low neighbor, it   
      9 



chooses mote [0, 1] to be its parent and its inversion count to be 0, and the cycle repeats. When  
       
finally mote [2, 1] receives the message connected (2, 2, 0) and recognizes that mote [2, 2] is its high  
 
neighbor, it chooses mote [2, 2] to be its parent and its inversion count to be 1. From this point on,  
 
mote [2, 1] starts to broadcast the message connected (2, 1, 1) every t seconds. When mote [2, 0]  
 
receives the message connected (2, 1, 1), it will not choose mote [2, 1] to be its parent because that  
 
would make its own inversion count 2, violating the upper bound of 1 on the inversion count. Thus,  
 
mote [2, 0] remains without a parent, cannot join the spanning tree, and cannot forward any message  
 
toward mote [0. 0]. 
 
       
1.8 Keeping the Parent 
 
Once a mote [i, j] has a parent (x, y) and receives any connected (x, y, d) message, mote [i, j] uses the  
 
received e to update its own inversion count c as follows. The inversion count c is calculated as c := d  
 
if the parent (x, y) is a low neighbor of [i, j], and it is calculated as c := d + 1 if the parent (x, y) is a  
 
high neighbor of [i, j] and d is less than cmax. When the parent (x, y) is a high neighbor and e equals  
 
cmax, then mote [i, j] loses its parent. 

 
 

 1.9 Losing the Parent 
 
There are two cases where a mote [i, j] loses its parent (x, y). In the first case, mote [i, j] receives a  
 
connected (x, y, cmax) message from its parent (x, y) and the parent is a high neighbor of [i, j]. In  
 
the second case, mote [i, j] does not receive a connected (x, y, d) message from its parent (x, y) for  
 
4*t seconds. 
 
 
Consider the network in Figure 6. Based on this network, mote [2, 2] has its parent to be mote [1, 2].  
 
In Figure 7, mote [2, 2] loses its parent, after receiving no message connected (1, 2, 0) for 4*t    
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seconds. From this point on, mote [2, 2] is disconnected from the network, so it is unable to  
       
broadcast connected (2, 2, 0) messages. Since mote [2, 1] does not receive any connected (2, 2, 0)  
 
message from its parent for 4*t seconds, it also loses its parent and is disconnected from the  
 
network as shown in Figure 7.    

           failed             (2, 2) 
          (0, 2), 0     

          
  

Figure 7                             
           (0, 1), 0     failed  (2, 1) 

 
    

    
             failed  (2, 0) 

        (0, 0), 0 
 
 
  

1.10 Replacing the Parent 
 
There is one case where mote [i, j] replaces its parent (x, y) with a new parent (u, v). This case occurs  
 
only when mote [i, j] has a parent (x, y) and receives a connected (u, v, f) message, where (u, v) is the  
 
label of a neighbor and f is the inversion count of this neighbor. Mote [i, j] chooses (u, v) as its  
 
parent, if using f to compute the inversion count c of mote [i, j] reduces the value of c. In this case,  
 
mote [i, j] chooses its parent to be (u, v) and computes its inversion count using f. Mote [i, j] always  
 
chooses the parent with the smallest inversion count in order to minimize the length of the route  
 
from mote [i, j] to mote [0. 0] in the incoming spanning tree. 
 
 
Consider the network in Figure 6 and assume that mote [1, 1] wakes up. When mote [1, 1] wakes up,  
 
receives a message connected (0, 1, 0), and recognizes that mote [0, 1] is its low neighbor, mote [1, 1] 
 
chooses (0, 1) to be its parent and makes its inversion count 0. From this point on, mote [1, 1] 
 
broadcasts a connected (1, 1, 0) message every t seconds. When mote [2, 1] receives the connected  
      11 



(1, 1, 0) message and recognizes that mote [1, 1] is its low neighbor, mote [2, 1] replaces its parent  
        
(2, 2) with mote [1, 1} and reduces its inversion count from 1 to 0. From this point on, mote [2, 1]  
 
broadcasts a connected (2, 1, 0) message every t seconds. When mote [2, 0] receives a message  
 
connected (2, 1, 0) and recognizes that mote [2, 1] is its high neighbor, mote [2, 0] chooses mote [2, 1] to  
 
be its parent and sets its inversion count to 1.  The resulting spanning tree is shown in Figure  
 
8.                       (0, 2), 0      (1, 2), 0    (2, 2), 0 

  
   

                      
Figure 8           (0, 1), 0        (1, 1), 0     (2, 1), 0 

 
 

(0, 0), 0             
          failed     (2, 0), 1 

 
 
 
2 Formal Definition of the Grid Routing Protocol 
 
It is beneficial to specify the above grid routing protocol using an abstract notation, called the SP  
 
(Sensor Protocol) notation [3] to explain the protocol precisely. The English language, or any natural  
 
language for that matter, is too imprecise to describe such a protocol. Precision provides a clearer  
 
understanding of the protocol. Using the SP notation, we model each mote in the network as a  
 
process. Each process has constants, inputs, variables, and actions. 
 
           

2.1 Constants, Inputs and Variables 
 
Each process mote [i, j] has one constant, cmax, that represents the maximum possible value for the  
 
inversion count of mote [i, j]. The constant cmax is declared as follows: 
 
const   cmax  : integer 

 
Each process mote [i, j] has two set inputs. The first is called ‘L’, and it contains the indices of the  
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low neighbors of mote [i, j]. The second set is called ‘H’, and it contains the high neighbors of mote  
 
[i, j]. These two sets are declared as follows:  
 
inp  L : set {(i, max  (j – 1, 0)), (max  (i – 1, 0), j), 
  H : set {(i, min  (j + 1, n – 1)), (min  (i + 1, m – 1), j) } 
 
 
Each process mote [i, j] has five variables. The first variable, named pid, stores the identity of the  
 
parent of mote [i, j]. Recall that the value of pid is to be taken from the set L U H. The second  
 
variable, named trc, is discussed in the next paragraph. The third variable, named c, stores the  
 
inversion count of mote [i, j]. The fourth variable, named d, stores the inversion count of the parent  
 
of mote [i, j]. The fifth variable, named tout, is a timeout variable. The timeout variable and the  
 
concept of timeout is explained below in sections 3.2 and 3.3.  
 
 
The second variable trc represents the remaining time period that mote [i, j] has a parent and is  
       
connected to the spanning tree. Each time mote [i, j] receives a connected message from its parent, trc is  
 
set to 4. Each t seconds trc is decremented by 1. Thus, if mote [i, j] does not receive a connected  
 
message from its parent for a period of 4t seconds, trc becomes zero, and mote [i, j] is no longer  
 
connected to the spanning tree. In section 2.9, Losing a Parent, recall that one way a mote loses its parent  
 
is to receive no connected message from its parent for 4t seconds.  
 
 
The five variables of each process mote [i, j] are declared as follows:   
 

var  pid : L U H 
   trc  : 0 .. 4 

c, d : 0 .. cmax 
   tout : boolean 
 
 
In the initial state of the network, mote [0. 0] has the following values for its variables:  

pid = (0, 0) 
trc = 4           
    13 



c = 0 
tout = true  

       
Every other mote [i, j] has the following values for its variables:  
  trc = 0 
  c = 0 
  tout = false  
 
 
2.2 Timeout Variables 
 
In the initial state of the protocol, variable trc has the value 4 in mote [0, 0] and has the value 0 in  
 
every other mote. If a mote [i, j] receives a connected message from a neighbor and chooses that  
 
neighbor to be its parent, the value of trc in mote [i, j} becomes 4, and variable tout is set to true. While  
 
tout in mote [i, j] is true, mote [i, j] times out and broadcasts a connected message every t seconds, the  
 
timeout action decrements the value of trc by 1 and activates another timeout after t seconds, until the  
 
value of trc becomes 0. Once the trc variable becomes zero, the mote loses its parent, is no longer  
 
connected to the spanning tree, and finally tout becomes false and no timeout is activated. Recall that a  
 
mote loses its parent if the mote receives no connected message for 4t seconds.  
 
 
As an example, consider a network where a mote [i, j] receives a connected message (x, y, d) and  
 
chooses mote [x, y] to be its parent. The pid of mote [i, j] becomes (x, y), the trc variable becomes 4,  
 
and tout becomes true. Mote [i, j] waits to receive another connected message. After t seconds, the  
 
timeout action is executed, and trc is decremented by 1. If mote [i, j] waits t more seconds and  
 
receives no connected message, once again the timeout action is executed, and trc is decremented by  
 
1. Finally, when trc becomes zero, mote [i, j] loses its parent and is disconnected from the spanning tree.  
 
The tout variable is declared as follows:  
 

tout  : boolean 
 
In the initial state of the network, for mote [0, 0], tout = true. Otherwise, tout = false . 
      14 



2.3 Timeout Actions 
 
The timeout action in mote [i, j] can be viewed as consisting of two parts. In the first part, mote [i, j]  
 
checks whether it is mote [0, 0]. If not, mote [i, j] sets its trc variable to the maximum of trc – 1 and  
 
0. If so, mote [0, 0] does nothing. This first action of the timeout is defined as follows:  
 

  timeout à if i ‡ 0 ^ j ‡ 0 à trc = max (trc – 1, 0) 
       [] i = 0 ^ j = 0 à skip 
         fi;  

 
In the second part of the timeout, each mote [i, j] broadcasts a connected (i, j, c) message and  activates  
 
the timeout to expire next after t seconds. If trc equals 0, the value of tout becomes false. The second  
 
part of the timeout action is defined as follows: 

           
     if trc > 0 à broadcast conn (i, j, c);  

                                    activate timeout in t seconds 
      [] trc = 0 à tout := false 
     fi 

         
The entire timeout action is as follows:  
 

timeout à if i ‡ 0 ^ j ‡ 0 à trc = max (trc – 1, 0) 
       [] i = 0 ^ j = 0 à skip 
         fi;  
           if trc > 0 à broadcast conn (i, j, c);  
                             activate timeout in t seconds 

      [] trc = 0 à tout := false 
      fi 

 
 
2.4 Receive Action           
 
The receive action of each mote [i, j] has one if … fi statement that consists of branches. This action  
 
is specified as follows: 
 

 [] rcv conn (x, y, d) à     
       
  if ~((x, y) in L U H) à skip  {discard conn} 

 
  [] (x, y) in L ^ (trc = 0) à  < statement S0 > 
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  [] (x, y) in L ^ (trc > 0) à   < statement S1 > 
 

  [] (x, y) in H ^ (trc = 0) à     < statement S2 > 
 

  [] (x, y) in H ^ (trc > 0) à   < statement S3 > 
 
  fi 
 
Note that statement S0 is executed if the received conn (x, y, d) was broadcast by a low neighbor of mote  
 
[i, j], and mote [i, j] currently has no parent. Statement S1 is executed if the received conn (x, y, d) was  
 
broadcast by a low neighbor of mote [i, j], and mote [i, j] currently has a parent. Statement S2 is  
 
executed if the received conn (x, y, d) is broadcast by a high neighbor of mote [i, j], and mote [i, j]  
 
currently has no parent. Statement S3 is executed if the received conn (x, y, d) was broadcast by a high  
 
neighbor of mote [i, j], and mote [i, j] currently has a parent.  
 
The four statements S0 through S3 can be specified as follows:  
       

Statement S0 à pid, trc, c := (x, y), 4, d; 
      if ~tout à activate timeout in t seconds; tout := true 
     [] tout à skip 
     fi 
 

Statement S1 à if pid = (x, y) à trc, c := 4, d 
  [] pid ‡ (x, y) ^ ( d < c) à pid, trc, c := (x, y), 4, d 
  [] pid ‡ (x, y) ^ (d > c) à skip {discard message} 

    fi 
 
 Statement S2 à if d < cmax à pid, trc, c := (x, y), 4, d + 1; 
        if ~tout à activate timeout in t seconds; tout := true 
        [] tout à skip 
       fi 
       [] d = cmax à skip  {discard message}  
      fi 

 
Statement S3 à if pid = (x, y) ^ (d < cmax) à trc, c := 4, d + 1 

      [] pid = (x, y) ^ (d = cmax) à trc := 0 
      [] pid  ‡ (x, y) ^ (d + 1 < c) à pid, trc, c := (x, y), 4, d + 1 
      [] pid ‡ (x, y) ^ (d + 1 > c) à skip {discard conn} 
      fi 
       
      16 



2.5 Formal Specification 
 
The Grid Routing Protocol can be specified formally as follows:  
 
process mote [i: 0..m – 1, j: 0 .. n – 1] 
 
const  cmax : integer  
 
inp  L : set {(i, max  (j – 1, 0)), (max  (i – 1, 0), j), 
  H : set {(i, min  (j + 1, n – 1)), (min  (i + 1, m – 1), j) } 
  x, y : integer 
             

var  pid : L U H 
  trc  : 0 .. 4 

c, d : 0 .. cmax 
  tout  : boolean 
   
begin 

 timeout à if i ‡ 0 ^ j ‡ 0 à trc = max (trc – 1, 0) 
       [] i = 0 ^ j = 0 à skip 
     fi;  
      if trc > 0 à broadcast conn (i, j, c);  
            activate timeout in t seconds 
      [] trc = 0 à tout := false 
     fi 

 [] rcv conn (x, y, d) à          
     if ~((x, y) in L U H) à skip  {discard conn} 
    [] (x, y) in L ^ (trc = 0) à pid, trc, c := (x, y), 4, d; 
      if ~tout à activate timeout in t seconds; tout := true 
      [] tout à skip 
      fi 
    [] (x, y) in L ^ (trc > 0) à  if pid = (x, y) à trc, c := 4, d 
            []  pid ‡ (x, y) ^ ( d < c) à pid, trc, c := (x, y), 4, d 

       []  pid ‡ (x, y) ^ (d > c) à skip {discard message}   p16 
          fi 
    [] (x, y) in H ^ (trc = 0) à if d < cmax à pid, trc, c := (x, y), 4, d + 1; 
         if ~tout à activate timeout in t seconds; tout := true 
         [] tout à skip 
        fi 
            [] d = cmax à skip  {discard message} 

                        fi 
    [] (x, y) in H ^ (trc > 0) à if pid = (x, y) ^ (d < cmax) à trc, c := 4, d + 1 
            [] pid = (x, y) ^ (d = cmax) à trc := 0 
            [] pid  ‡ (x, y) ^ (d + 1 < c) à pid, trc, c := (x, y), 4, d + 1 
            [] pid ‡ (x, y) ^ (d + 1 > c) à skip 
      17   



          fi 
    fi 
end 
 
initial state: if i = 0 ^ j = 0 then pid = (0, 0), trc = 4, c = 0,  tout = true and timeout is activated 
         else trc  = 0, tout = false, and the timeout is not activated 
 
 
3 Using the Grid Routing Protocol 
 
The function of the Grid Routing Protocol, discussed in the last section, is for each mote [i, j] to maintain  
 
two variables trc and pid. When trc > 0 then mote [i, j] is connected to the spanning tree via its parent  
 
mote [pid]. In this case, mote [i, j] can forward any data message to its parent until the data message  
 
reaches the network root, namely mote [0, 0]. When trc = 0, then mote [i, j] can forward any data  
 
message to its parent which in turn forwards it to its parent until the data message reaches the network  
 
root, mote [0, 0]. When trc = 0, then mote [i, j] is not connected to the spanning tree and can no longer  
 
forward data messages toward the network root.  
 
 
The data transfer protocol, that uses the grid routing protocol, can be specified as follows:  
 
process mote [i: 0 .. m – 1, j: 0 .. n – 1] 
 
inp L  :  set {(i, max  (j – 1, 0)), (max  (i – 1, 0), j), 
 H  :  set {(i, min  (j + 1, n – 1)) (min  (i + 1, m – 1), j) } 

pid  :  L U H  {from grid routing protocol} 
 trc   :   0 .. 4  {from grid routing protocol} 
           
var t  :  integer 

x, y  :  integer 
 
begin 
 trc > 0 à t := any; broadcast data (pid, t) 
 rcv data (x, y, t) à  if  (x ‡ i) v (y ‡ j) v (trc = 0) ^ (x ‡ 0 v y ‡ 0) à skip {discard data} 
         []  (x = i) ^ (y = j) ^ (trc > 0) ^ (x ‡ 0 v y ‡ 0) à broadcast data (pid, t) 
         []  (x = i) ^ (y = j) ^ (trc > 0) ^ x = 0 ^ y = 0 à skip  {store data} 

      fi 
end 
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4 Adversarial Actions 
 
In order to secure the grid routing protocol, it is necessary to consider what types of scenarios the  
 
adversary could use to disrupt the protocol. One of these scenarios is mote impersonation. Mote  
 
impersonation occurs when an adversary removes one of the legitimate motes out of the network and  
 
replaces it with an illegitimate adversarial mote. Another scenario is network infiltration. This scenario  
 
occurs when an adversary adds an adversarial mote to the network. We describe these scenarios in more  
 
detail next.  
 
 
4.1. Impersonating motes in a network without shared secrets 
 
One action that an adversary may take to disrupt the Grid Routing Protocol is to remove a legitimate mote  
 
from the network and replace it with an illegitimate foreign mote. This action is called impersonating  
 
a mote.  As an example, consider a network where an adversary removes mote [0, 1] from the network. A  
 
foreign mote takes the place of mote [0, 1]. The foreign mote then broadcasts connected (0, 1, 0)  
 
messages every t seconds. In this network, assume motes [0, 2] and [1, 1] choose the foreign mote to be  
 
their parent, when they receive a connected (0, 1, 0) message from the adversary that is impersonating  
 
mote [0, 1] and recognize that mote [0, 1] is their low neighbor. Mote [0, 2] then broadcasts a connected  
 
(0, 2, 0) message every t seconds, and mote [1, 1] broadcasts a connected (1, 1, 0) message every t  
 
seconds. Mote [0, 3] chooses mote [0, 2] to be its parent; motes [1, 2] and [2, 1] choose mote [1, 1] to be  
 
their parent and so on.  
 
 
Each parent is the root of a subtree. In this example, the root of a subtree is mote [0, 1], and the  
 
subtree includes all of the motes that have chosen mote [0, 1] to be their parent, namely motes [0, 2]  
 
and [1, 1], all of the motes that have chosen mote [0, 2] or [1, 1] to be their parent, and all of the  
 
motes that have chosen motes [0, 3], [1, 2], or [2, 1] to be their parent and so on. 
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All the motes in this subtree forward their messages to their parent, until they get to the foreign  
            

mote. One action that the adversary may take to disrupt the network is to have the foreign mote  
 
discard all of the messages it receives.  This action is extremely disruptive, since all of the messages  
 
in this subtree instead of being forwarded to the root are discarded.  Clearly the result of this  
 
action is message loss. Another action the adversary can take is to receive a connected message,  
 
alter it, and then broadcast the altered message. This action results in message corruption.  
 
 
4.2 Impersonating Motes in a Network with Shared Secrets 
    
To counter the adversarial attack called mote impersonation, it is necessary to enhance the grid routing 
 
protocol by adding shared secrets. Each mote shares a separate secret with each of its neighbors.  
 
Thus, a mote has the same number of shared secrets as it has neighbors. Each mote computes a value  
 
using each of its shared secrets, one value per secret. These values are appended to the connected  
 
message before broadcasting it. When a mote receives a connected message from one of its logical  
       
neighbors, the mote uses the shared secret to authenticate the connected message.   
 
 
In this more secure network, the adversary may once again remove a mote from the network and replace  
 
it with a foreign mote. The legitimate mote broadcasts a connected message every t seconds, but in this  
 
network the shared secret provides an authentication value verifiable by the receiver. For example, in  
 
this more secure network, mote [0, 1] broadcasts a connected (0, 1, 0) message and appends a message  
 
digest value computed using the shared secret. A neighbor of the mote, mote [0, 2], receives the  
 
message, recognizes that the message contains the computed value using its shared secret, verifies this  
    
value, and accepts the message. Mote [0, 2] recognizes that mote [0, 1] is a low neighbor and chooses  
 
mote [0, 1] to be its parent in the spanning tree. This process continues throughout the network; a mote  
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chooses mote [0, 2] to be its parent and so on. In this network, before the foreign mote removes mote  
 
[0, 1] from the network, the foreign mote accepts one of the connected (0, 1, 0) messages from mote  
       
[0, 1] with the appended value computed using the shared secret. The foreign mote then removes mote  
 
[0, 1] from the network and replays this connected (0, 1, 0) message with the computed values appended  
 
for each neighbor using their respective secret keys. Thus, when mote [0, 2] receives this message, it  
 
chooses the foreign mote to be its parent, since the value mote [0, 2] computed using the shared secret is  
 
the same as the received value. Just as in the example of mote impersonation in a network without shared  
 
secrets, mote [1, 1] chooses this foreign mote to be its parent when mote [1, 1] receives the connected  
 
(0, 1, 0) message, verifies the appended message digest value, and recognizes that mote [0, 1] is its low  
 
neighbor, and the process continues. This second scenario also disrupts the grid routing protocol, since  
 
the integrity of the subtree whose root is the foreign mote is compromised by message replay. 
 
 
4.3 Infiltrating the Network 
 
In this attack, the adversary adds an illegitimate mote to the network which broadcasts wrong data  
 
messages containing the identity of a legitimate  mote. The legitimate motes continue to broadcast their  
 
data messages, but the infiltrator also broadcasts data messages with inaccurate data.  
 
 
For example, assume that mote [2, 1] is alive and is broadcasting a data (1, 1, t) message.  Then an  
 
illegitimate mote infiltrates the network and pretends to be this mote. The adversary mote broadcasts a  
 
data (1, 1, ta) message, where ta is the data fabricated by the adversary. Mote [1, 1] receives the data  
 
message and forwards it to its parent, mote [1, 0], who forwards it to mote [0, 0]. Clearly the integrity of  
 
the data transfer protocol is compromised. 
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5 Countering Mote Impersonation 
 
In order to provide integrity to the Logical Grid Routing Protocol, it is necessary to add shared  
 
secrets. Each mote [i, j] has one shared secret for each of its neighbors.  
 
5.1 Enhancing the Network 
 
In this more secure protocl, mote [i, j] and its high neighbor mote [i, j + 1] share one secret. This shared  
 
secret is called N in mote [i, j]. Mote [i, j] and its other high neighbor, mote [i + 1, j], share another  
 
secret. This secret is called E in mote [i, j]. In the same manner, mote [i, j] shares a different secret with  
 
mote [i, j – 1]; this secret is called S in mote [i, j] Mote [i, j] shares yet another secret with its other low  
 
neighbor, mote [i - 1, j]. This last secret is called W in mote [i, j]. Therefore, mote [i, j] has one shared  
 
secret for each of its neighbors. Each time that mote [i, j] broadcasts a connected message, this mote  
 
computes a message digest function (MD) over the message text and each shared secret that mote [i, j]  
 
shares with a neighbor.  
 
 
A message digest MD is a function that computes a unique integer value for any data item d (of type  
 
integer), a data item MD(d) in the range of 0 .. k – 1 such that the following condition is satisfied:  
 
    Finger Printing:  There is no efficient algorithm that computes, for any MD(d), a  
 
    data item d’ such tha t MD(d) = MD(d’). Thus, MD(d) is a finger print of data item d. [1] 
 
Before broadcasting a message, each mote [i, j] computes a message digest of i, j, c, and the shared  
      
secret for each neighbor. The value MD(i|j|c|sc) represents the message digest of the concatenation  
 
of i, j, c, and the shared secret. Each time that a mote broadcasts a message, the mote computes the  
 
message digest for each neighbor, using the shared secret of that neighbor.  For example, if a mote [i, j]  
 
has four neighbors, assume S represents the secret mote [i, j] shares with mote [i, j – 1], W represents  
 
the secret mote [i, j] shares with mote [i - 1, j], N represents the secret mote [i, j] shares with mote  
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[i, j + 1], and E represents the secret mote [i, j] shares with mote [i + 1, j]. The message mote [i, j]  
 
broadcasts would look like the following. Let sd = MD(i|j|c|S) (where a vertical line represents  
 
concatenation), wd = MD(i|j|c|W),  nd = MD(i|j|c|N), and ed = MD(i|j|c|E). The message that mote [i, j]  
 
broadcasts will be connected (i, j, c, sd, wd, nd, ed). If mote [i, j - 1] receives the connected message, it  
 
will compute a message digest function for x, y, d, and the shared key, where the shared key for mote  
 
[i, j – 1] is N. So, mote [i, j - 1] will have a value nd’ = MD(x|y|d|N). If nd’ = sd, mote [i, j - 1] will accept  
 
the connected message; if nd’ ‡ sd, mote [i, j - 1] will discard the connected message. If mote [i - 1, j]  
 
receives the connected (x, y, d, sd, wd, nd, ed) message from mote [i, j], mote [i - 1, j] uses its shared  
 
secret E to compute a message digest function of x, y, d, and the shared secret. Mote [i - 1, j] will have a  
 
value ed’ = MD(x|y|d|E). If ed’ = wd, then mote [i - 1, j] receives the connected message, and if ed’ ? wd,  
 
then mote [i - 1, j] discards the connected message. If mote [i, j + 1] receives the connected (x, y, d, sd,  
 
wd, nd, ed) message, mote [i, j + 1] uses its shared secret S to compute a message digest function of x, y,  
 
d, and the shared secret. Mote [i, j + 1] computes the value sd’ = MD(x|y|d|S). If sd’ = nd, then mote  
 
[i, j + 1] receives the message; otherwise mote [i, j + 1] discards the message. Finally, if mote [i + 1, j]  
 
receives the connected (i, j, c, sd, wd, nd, ed) message from mote [i, j], it computes a value wd’ using the  
 
message digest function with x, y, d, and W concatenated. Thus, wd’ = MD(x|y|d|W), and mote [i + 1, j]  
 
receives the message if wd’ = ed and discards it otherwise. 
 
 
This protocol provides a solution to the first attack, impersonating a mote in a network without  
 
shared secrets. However, this protocol provides no solution to the attack where the foreign mote  
 
replays one of the messages from the mote that it replaces in the network. Upon receiving a message  
 
where the message digest value equals its own computed value, i.e. sd’ = nd, wd’ = ed, nd’ = sd, or  
 
ed’ = wd, each mote will assume that this connected message is from a legitimate mote. Thus, a foreign  
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mote may disrupt the protocol by replaying one of these connected messages, causing other motes to  
 
choose the adversarial mote as their parent and form a subtree,  giving the adversary an opportunity to  
 
discard or alter messages. 
 
 
5.2 Formal Definition of the Enhanced Protocol 
 
In order to prevent the adversary from impersonating a mote in the network, the grid routing protocol  
 
needs added security.  The description of the constants, inputs, variables, and statements added to  
       
the grid routing protocol to provide security follows.   
 
 
When the grid routing protocol is enhanced to include shared secrets, the inputs added represent the  
 
secrets mote [i, j] shares with each of its neighbors: S, W, N, and E. These inputs are declared as follows:  
 

S, W, N, E : integer         {S.(i, j) = N.(i, j – 1),  
       N.(i, j) = S.(i, j + 1) ,     

   W.(i, j) = E.(i – 1, j),  
E.(i, j) = W.(i + 1, j)} 

        
Recall that the secret mote [i, j] shares with mote [i, j – 1] is the S secret for mote [i, j] and the N  
 
secret for mote [i, j – 1]. Similarly, the secret mote [i, j] shares with mote [i – 1, j] is W for mote [i, j] and  
 
E for mote [i – 1, j]. The secret mote [i, j] shares with mote [i, j + 1] is N for mote [i, j], but the same  
 
secret for mote [i, j] is S. Finally, the secret that mote [i, j] shares with mote [i + 1, j] is E for mote [i, j]  
 
and W for mote [i + 1, j]. 
 
 
The additional variables representing the message digest values are these: 
 

sd, wd, nd, ed     : integer 
sd’, wd’, nd’, ed’  : integer 

 
The timeout inputs have the secrets S, W, N, and E, as well as the variables representing the message  
 
digest values sd, ed, nd, and wd. The guard for the timeout actions is still the same, and the first  
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statements are also unchanged. 
 
 if i ‡ 0 v j ‡ 0 à trc = max (trc – 1, 0); 
 

             [] i = 0 ^ j = 0 à skip    {store data} 
 
Next, mote [i, j] compares the value of its trc variable to 0. If the value is more than 0, then mote [i, j]  
 
calculates its message digest values, broadcasts a message including these values, and activiates its  
 
timeout to expire next after t seconds. The statement added is the one where mote [i, j] computes the  
 
message digest values. 
 
 if trc > 0 à sd, wd, nd, ed: =  MD(i|j|c|S), MD(i|j|c|W), MD(i|j|c|N), MD(i|j|c|E); 

                              broadcast conn (i, j, c, sd, wd, nd, ed);  
                  activate timeout in t seconds 

  
 
The timeout is unchanged, except for the additional computation of the message digest values. 

    
  [] trc = 0 à tout := false 
 

The complete timeout action of the secure grid routing protocol is:  
  

timeout  à if i ‡ 0 v j ‡ 0 à trc = max (trc – 1, 0); 
         []  i = 0 ^ j = 0 à skip 
           fi; 

          if trc > 0 à  
   sd, wd, nd, ed: =  MD(i|j|c|S), MD(i|j|c|W), MD(i|j|c|N), MD(i|j|c|E); 
  broadcast conn (i, j, c, sd, wd, nd, ed);  

               activate timeout in t seconds       
               [] trc = 0 à tout := false 
              fi 
  
 

There are several local guards added to the original grid routing protocol, in order to provide security  
 
using shared secrets. The reason for adding these guards is each time that a connected message is   
 
received from a neighbor, mote [i, j] has an extra step to identify by which neighbor the message was  
       
broadcast, so that mote [i, j] can determine whether to use S, W, N, or E in its message digest function.  
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Instead of receiving a connected (x, y, d) message, now mote [i, j] receives a connected (x, y, d, sd, wd,  
 
nd, ed) message from its neighbor. Thus, mote [i, j] determines which neighbor the message is from and  
 
then computes its own message digest value to compare with the MD value received. For example, if  
       
the message is from mote [i, j – 1], then mote [i, j] uses the shared secret S to calculate a value called sd’,  
 
where sd’ = MD(x|y|d|S). The L and H for high neighbors and low neighbors are no longer specific enough  
 
to use, since each high neighbor has a different secret, and each low neighbor has a different secret. The  
 
added local guards are as follows:  

 
  [] ((x, y) = (i, j – 1)) ^ (trc = 0) à 
 
  [] ((x, y) = (i - 1, j)) ^ (trc = 0) à 
 

[] ((x, y) = (i, j – 1)) ^ (trc > 0) à 
 

[] ((x, y) = (i - 1, j)) ^ (trc > 0) à 
 

[] ((x, y) = (i, j + 1)) ^ (trc = 0) à 
 

[] ((x, y) = (i + 1, j)) ^ (trc = 0) à 
 

[] ((x, y) = (i, j + 1)) ^ (trc > 0) à 
 

[] ((x, y) = (i + 1, j)) ^ (trc > 0) à 
 
Each process mote [i, j] has the additional statements needed to compute its message digest value using  
 
the secret that mote [i, j] shares with the neighbor broadcasting the message and to compare that value  
 
to the one received from the neighbor. This is the additional statement, when mote [i, j] receives a  
 
message from its low neighbor, mote [i, j – 1].  
             

sd’ := MD(i|j|c|S);  
if sd’ = nd à S0 

 
 There is a similar statement for each message received by mote [i, j] from motes [i + 1, j], [i, j – 1],  
 

and [i – 1, j]. Thus, the enhanced protocol includes the constants, inputs, variables, and actions of the  
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original grid routing protocol along with other enhancements to ensure security with respect to mote  
 
impersonation. 

  
  

5.2.e Formal Definition of Enhanced Protocol 
 
process mote [i: 0..m – 1, j: 0 .. n – 1] 
 
const  cmax  : integer  
 
inp  L  : set {(i, max  (j – 1, 0)), (max  (i – 1, 0)} 
  H  : set {(i, min  (j + 1, n – 1)), (min  (i + 1, m – 1), j)} 
  S, W, N, E  : integer       {S.(i, j) = N.(i, j – 1),  

      W.(i, j) = E.(i – 1, j),  
      N.(i, j) = S.[i, j + 1] ,  
      E.(i, j) = N.(i, j)} 

var  pid  : L U H 
  trc   : 0 .. 4 

c, d  : 0 .. cmax 
  tout   : boolean 
  sd, wd, nd, ed   : integer 
  sd’, wd’, nd’, ed’ : integer 
 
begin 
    timeout  à if i ‡ 0 v j ‡ 0 à trc = max (trc – 1, 0); 

   [] i = 0 ^ j = 0 à skip 
   fi; 

  if trc > 0 à  
sd, wd, nd, ed: =  MD(i|j|c|S), MD(i|j|c|W), MD(i|j|c|N),  MD(i|j|c|E); 
broadcast conn (i, j, c, sd, wd, nd, ed);  

            activate timeout in t seconds 
   [] trc = 0 à tout := false 
   fi 
     [] rcv conn (x, y, d, sd, wd, nd, ed) à  

  if ~((x, y) in L U H) à skip  {discard conn} 
    [] ((x, y) = (i, j – 1)) ^ (trc = 0) à sd’ := MD(x|y|d|S);  

         if sd’ = nd à pid, trc, c := (x, y), 4, d; 
                      if ~tout à activate timeout in t seconds; tout := true   
               [] tout à skip 
                fi      

      [] sd’ ‡ nd à skip    {discard conn} 
      fi 
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  [] ((x, y) = (i - 1, j)) ^ (trc = 0) à wd’ := MD(x|y|d|W);  
        if wd’ = ed à pid, trc, c := (x, y), 4, d; 

                      if ~tout à activate timeout in t seconds; tout := true 
               [] tout à skip 
                       fi      

        [] wd’ ‡ ed à skip    {discard conn} 
                               fi 

  [] ((x, y) = (i, j – 1)) ^ (trc > 0) à sd’ := MD(x|y|d|S); 
    if (sd’ = nd) ^ (pid = (x, y)) à trc, c := 4, d 

       [] (sd’ = nd) ^ (pid ‡ (x, y)) à  if d < c à pid, trc, c := (x, y), 4, d 
           [] d > c à skip      {discard conn} 

                              fi 
     [] (sd’ ‡ nd)   à skip   {discard conn } 

     fi 
  [] ((x, y) = (i - 1, j)) ^ (trc > 0) à wd’ := MD(x|y|c|W); 

                              if (wd’ = ed) ^ (pid = (x, y)) à trc, c := 4, d 
              [] (wd’ = ed) ^ (pid ‡ (x, y)) à if d < c à pid, trc, c := (x, y), 4, d 32 

                   [] d > c à skip     {discard conn} 
                         fi 

                              [] (wd’ ‡ ed) à skip {discard conn} 
     fi 

                          [] ((x, y) = (i, j + 1)) ^ (trc = 0) à nd’ := MD(x|y|c|N); 
     if ( nd’ = sd) ^ (d < cmax) à pid, trc, c := (x, y), 4, d + 1; 

                                           if ~tout à activate timeout in t seconds; tout := true 
                     [] tout à skip 
         fi 
        [] ( nd’ ‡ sd) v (d = cmax) à skip  {discard conn} 
        fi 

 [] ((x, y) = (i + 1, j)) ^ (trc = 0) à ed’ := MD(x|y|c|E); 
     if ( ed’ = wd) ^ (d < cmax) à pid, trc, c := (x, y), 4, d + 1; 

                      if ~tout à activate timeout in t seconds; tout := true 
          [] tout à skip 
         fi 
                    [] ( ed’ ‡ wd) v (d = cmax) à skip  {discard conn} 
         fi 
   [] ((x, y) = (i, j + 1)) ^ (trc > 0) à nd’ := MD(x|y|c|N); 

               if (nd’ = sd) ^ (pid = (x, y)) ^ (d < cmax) à trc, c := 4, d + 1 
         [] (nd’ = sd) ^ (pid = (x, y)) ^ (d = cmax) à trc := 0 
          [] (nd’ = sd) ^ (pid  ‡ (x, y)) ^ (d + 1 < c) à pid, trc, c := (x, y), 4, d + 1 

         [] (nd’ = sd) ^ (pid ‡ (x, y)) ^ (d + 1 > c) à skip 
          []  nd’ = sd à skip    {discard conn}   

     fi 
    [] ((x, y) = (i + 1, j)) ^ (trc > 0) à ed’ := MD(x|y|c|E); 
           if (ed’ = wd) ^ (pid = (x, y)) ^ (d < cmax) à trc, c := 4, d + 1 

         [] (ed’ = wd) ^ (pid = (x, y)) ^ (d = cmax) à trc := 0 
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        [] (ed’ = wd) ^ (pid  ‡ (x, y)) ^ (d + 1 < c) à pid, trc, c := (x, y), 4, d + 1 
          [] (ed’ = wd) ^ (pid ‡ (x, y)) ^ (d + 1 > c) à skip 
          [] ed’ ‡ wd à skip    {discard conn} 

     fi 
     fi 

end 
    
initial state: if i = 0 ^ j = 0 then pid = (0, 0), trc = 4, c = 0,  tout = true and timeout is activated 

         else trc  = 0, tout = false, and the timeout is not activated 
 
 
 
 6 Countering Network Infiltration 
 
 There is a way to secure a sensor network against network infiltration using a message digest  
 

function. In the data transfer protocol, a message digest value is added using a shared secret in order  
 
to provide security. This way, any message that originates from an adversa rial mote can easily be  
 
detected. This concept is similar to that of the secure grid routing protocol. 
 
 
6.1 Enhancing the Protocol 
     
In the data transfer protocol, in order to prevent mote infiltration, a message digest value is added  
 
to the data message. Thus, there are these added inputs: 
 
       
 PS, S, W, N, E  :  integer 
 
PS is the secret that mote [i, j] shares with its parent in the spanning tree. 
 
 
There are also some added variables. The variable d represents the message digest value computed by  
 
mote [i, j], before it broadcasts the data message.  There are six additional variables in the  
 
enhanced protocol called sd, wd, nd, ed, pd, and d. The variable pd stores the message digest value that  
 
mote [i, j} computes before broadcasting data to its parent. Therefore, pd is the message digest of pid  
 
concatenated with t concatenated with PS. The variable d stores the message digest value calculated by  
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the broadcasting mote. These variables are declared as follows: 
 
 pd, sd, wd, nd, ed, d :  integer 
 
 
In the first action, the only statement added to the data transfer protocol is the statement where mote  
          
[i, j] computes the message digest value using the secret shared with its parent. This variable is called pd. 
 
The added statement is this: pd := MD(pid|t|PS), and the pd value is included in the data message.  
 
The first action including its statements is defined as follows: 
 
 if trc > 0 à t := any; pd := MD(pid|t|PS); broadcast data (pid, t, pd) 

  
 

In the second action, mote [i, j] computes the message digest values sd’, wd’, nd’, and ed’ to verify the  
 
authenticity of the message it has received. Next, mote [i, j] compares sd’, wd’, nd’, and ed’ with d to see  
 
whether the values are equal. If not, the message is discarded. Otherwise, if the message digest value is  
 
equal to that computed by mote [i, j], and if (i, j) is other than (0, 0), then the message is forwarded to  
       
the parent as in the original data transfer protocol. If (i, j) equals (0, 0), then the message is stored; thus  
 
mote [i, j] skips. The second action including its statements is as follows:  
 

rcv data (x, y, t, d) à  
if (x ‡ i) V (y ‡ j) V (trc = 0) à skip   {discard data} 

  [] (x = i) ^ (y = j) ^ (trc > 0) à  
sd, wd, nd, ed := MD(x|y|t|S), MD(x|y|t|W), MD(x|y|t|N), MD(x|y|t|E); 

if ((sd = d) V (wd = d) V (nd = d) V (ed = d)) ^ (x ‡ 0 v y ‡ 0) à  
pd := MD(pid|t|PS); broadcast data (pid, t, pd)  

    [] ((sd = d) v (wd = d) v (nd = d)  v (ed = d)) ^ x = 0 ^ y = 0 à skip {store data} 
   [] (sd ‡ d)  ̂(wd ‡ d) ^ (nd ‡ d) ^ (ed ‡ d) à skip      {discard data} 
   fi 
  fi 
 
Thus, the secure data transfer protocol has the same number of actions as the original protocol. It  
 
uses the same message digest function that is in the secure grid routing protocol.  
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6.3 Formal Definition of Enhanced Protocol  
 

process mote [i: 0 .. m – 1, j: 0 .. n – 1] 
 
inp L  :  set {(i, max  (j – 1, 0)), (max  (i – 1, 0), j), 
 H  :  set {(i, min  (j + 1, n – 1)) (min  (i + 1, m – 1), j) } 

pid  :  L U H    
trc   :   0 .. 4  {from grid routing protocol} 
PS, S, W, N, E :  integer  {from grid routing protocol} 

 
 
var t  :  any 
 x, y  :  integer 

pd, sd, wd, nd, ed, d:  integer 
 
 
begin 
 trc > 0 à t := any; pd := MD(pid|t|PS); broadcast data (pid, t, pd) 

rcv data (x, y, t, d) à  
if (x ‡ i) v (y ‡ j) v (trc = 0) à skip   {discard data} 

  [] (x = i) ^ (y = j) ^ (trc > 0) à  
sd, wd, nd, ed := MD(x|y|t|S), MD(x|y|t|W), MD(x|y|t|N), MD(x|y|t|E); 

if ((sd = d) v (wd = d) v (nd = d) v (ed = d)) ^ (x ‡ 0 v y ‡ 0) à  
pd := MD(pid|t|PS); broadcast data (pid, t, pd)  

    [] ((sd = d) v (wd = d) v (nd = d)  v (ed = d)) ^ x = 0 ^ y = 0 à skip   {store data} 
   [] (sd ‡ d) ^ (wd ‡ d) ^ (nd ‡ d) ^ (ed ‡ d) à skip        {discard data} 
   fi 
  fi 
end 
 
 
7 Concluding Remarks 
 
The grid routing protocol provides a straightforward abstraction of the sensor network. In this  
 
abstraction, each mote is defined to be a process. Each mote broadcasts messages to its neighbors,  
 
chooses one of them to be its parent in the spanning tree, and forwards data toward the root of the  
 
spanning tree, via its parent. Due to the sensitive nature of most applications of the sensor network, the  
 
protocol requires security. The secure grid routing protocol and the secure data transfer protocol  
 
protect the sensor network from mote impersonation. The addition of the shared secrets between  
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neighbors and the message digest function provides a solution to the problem of one adversarial mote  
 
replacing a legitimate mote in a sensor network. This shared secret enhancement also secures the network  
 
against mote infiltration.  
 
 
One attack that the adversary may make against the network with shared secrets is that of message  
 
replay. One solution to provide security to the network against anti-replay is to add sequence numbers and  
 
a dynamic memory window in which to store whether or not a message has been received. Using this  
 
protocol, a mote may determine whether a message is new or is being replayed. However, the description  
 
of this protocol is beyond the scope of this paper.  
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