
 1

Congestion Control and an Analysis of TCP-friendly Rate Control

By Mei Lin
(carine@cs.utexas.edu)

Supervisor: Prof. Chris Edmondson-Yurkanan
(chris@cs.utexas.edu)

Computer Science Honors Thesis
CS379H
Fall 2003

Department of Computer Sciences
The University of Texas at Austin

 2

Congestion Control and an Analysis of TCP-friendly Rate Control

Abstract

 This paper presents a history of congestion control research and an analysis of a
specific rate-based congestion control protocol, TCP-friendly rate control (TFRC). Two
taxonomies of congestion control mechanisms are presented, and later used to classify
general end-to-end congestion control schemes including window-based and rate-based
methods. The classic TCP congestion control mechanisms are introduced as an instance
of window-based congestion control. To address the research in congestion control for
UDP flows, we discuss datagram congestion control protocol (DCCP) and the congestion
manager (CM). Implemented in DCCP, TFRC is examined in detail for its TCP-
friendliness and ability to provide smooth transmission for the applications. The sender’s
and receiver’s protocols are presented using AP notation, and the equations used in the
protocols are analyzed for their conduciveness to TCP-friendliness and smooth
transmission. Lastly, two empirical studies of TFRC performance are summarized to
validate the effectiveness of this protocol.

1. Introduction

In October 1986, the first occurrence of what is called “congestion collapse”
spurred the studies in Internet congestion control [JK88]. During this event, the dropping
of throughput from 32 Kbps to 40 bps between Lawrence Berkeley Lab (LBL) and UC
Berkeley fulfilled Nagle’s earlier prediction of such phenomenon [N84]. In fact, research
in congestion control and flow control had begun even before the collapse in 1986.
Because congestion control is often related to the types and the patterns of Internet
traffic, which largely depends on the kinds of applications most commonly used, the
continually changing Internet environment has kept the research area of congestion
control active even decades later.

Congestion collapse is indicated by near-zero data throughput in a connection.
Too many senders sending packets that are too large or too frequently is the cause of
network congestion [KR01]. The large data flows of bursty traffic, can quickly saturate
the network bandwidth, overflowing the buffers of the intermediate routers. Because
packets at the congested routers now have to wait in an extended queue, and some even
get dropped due to the lack of buffer space, the delay or the absence of
acknowledgements result, which in turn triggers the retransmission timeout at the senders
[APS99]. As the duplicates of the dropped or the slowly-transmitted packets enter the
already congested network, the congestion condition becomes worse, and the
retransmission timeout continues to expire at the senders. Thus, no new packets will be
transmitted while the senders keep attempting to retransmit the packets that are dropped
or assumed to be dropped. The throughput will eventually reach the minimum. The
cycling of the state of low throughput is congestion collapse.

Congestion control is the mechanism for preventing congestion collapse. Its
targets are the routers inside the network where congestion collapse occurs. Congestion
control can work from the sending source by regulating traffic entering the network, or
directly on the router by managing packet arrivals in the router’s buffer queue. In this

 3

paper, we will focus our discussion on the first approach, end-to-end congestion control.
An end-to-end congestion control regulates the amount or the rate at which the data is
sent according to the network conditions. It can be viewed as a transport-level congestion
control, because the protocol is implemented on the transport layer of the sender and the
receiver, and estimates the network congestion level basing on information returned or
not returned by the receiver. Congestion control is often implemented together with flow
control, the concept of which is different from congestion control. Flow control is the
regulation of traffic to prevent buffer overflow at the destination, the receiver, which
provides sender with information about its buffer availability. For instance, the TCP
congestion control, which is an end-to-end congestion control mechanism, incorporates
the feature of TCP flow control as well. The number of segments can be sent is
determined by taking the minimum of the congestion window and the receive window
(see section 2.3). Here, congestion window is the limit to prevent network congestion,
while receive window is the limit to prevent destination buffer overflow. The TCP
congestion control mechanism also introduces the notion of congestion avoidance, which
refers to the additive increase and multiplicative decrease phase (AIMD) of the protocol
(see section 2.3). Congestion avoidance is characterized by the adjustment of window
size with a certain degree of reservation. The window size is increased in at a slower rate
compared to the slow start phase, and is decreased drastically.

Without the congestion control mechanisms, TCP was vulnerable to congestion
collapse. Even though the implementation of TCP congestion control has successfully
stabilized the Internet, the studies continued because of the lack of regulation for UDP
flows. UDP is a best-effort (unreliable) protocol that provides no connection
establishment, error recovery, flow control, or congestion control. It is popular among
real-time and streaming media applications, to which reliability is not as important as
timeliness, smooth transmission and sending of large amount of data (see section 2.4).
When notified of network congestion, while TCP decreases transmission (see section
2.3), UDP flows do not adjust their transmission, thus continue to take advantage of the
bandwidth made available by TCP’s congestion control. The result is that UDP flows
unfairly dominate the bandwidth, and the throughput of TCP flows reaches minimum.
Thus, with the congestion control mechanisms, TCP is still vulnerable to low throughput
with the presence of unregulated UDP flows.

Today, the affordability and versatility of the Internet and its resources cause a
significant increase in traffic, especially that of real-time streaming media applications,
which run on top of UDP. For instance, software for online conferencing, streaming
video/audio, multi-user games, etc. has become increasingly popular. This situation drew
researchers’ attention to the lack of congestion control mechanisms in the best-effort
protocols, for which the TCP congestion control mechanisms are inappropriate, as we
will discuss later.

Some key general congestion control principles that the protocol designs should
follow are fairness, robustness, scalability, and feasibility [LB99]. Fairness means
concurrent flows of different congestion control protocols should have approximately
equal throughput [YKL01]. Fairness is often known as TCP-friendliness, which is the
main motivation for congestion control for UDP. Robustness refers to the ability of the
congestion control protocol to act against misbehaving users who may try to manipulate
parameters used in the congestion control to its own advantage while risking the stability

 4

of the network. It is a property of congestion control from the security perspective, and its
implementation often involves identity verification [WESSA01]. We will not discuss
protocols with robustness in this paper. Lastly, scalability entails the feature of adapting
heterogeneous flows to various bandwidth.

Section 2 is a study of past congestion control research in the general-to-specific
fashion. We first present two congestion control taxonomies to show how the various
implementations of congestion control can be categorized. This will provide a
macroscopic view of the congestion control schemes. Then we examine the difference
between two streams of end-to-end congestion controls, window-based and rate-based
congestion controls, and see where they fit under the two taxonomies. TCP congestion
control and its variants, which are examples of window-based schemes, are then
discussed. This is important because it is the transport-level congestion control in use,
and other congestion controls are designed to be compatible with these schemes. The
following section will be an introduction to a few other congestion control schemes for
UDP-based applications. This leads to our analysis of a particular rate-based congestion
control, TCP-friendly rate control (TFRC). Section 3 is devoted to the description and
examination of TFRC to the granularity of equations used and procedures taken in sender
and receiver. We will discover how rate-based schemes are designed to be TCP-friendly
and to provide application with smoother transmission than TCP congestion control
would. Before concluding, we survey two experiments on the performance of TFRC for
validating its design goals. In general, as we will see in section 4, the empirical results are
good.

2. A History of the Congestion Control Research

2.1 Taxonomies of Congestion Control Schemes

The principles by which the taxonomies differentiate the various schemes

demonstrate the different ways to view the common characteristics and distinctions in
these congestion control schemes. The taxonomies also provide large pictures
encompassing various congestion control mechanisms.
 Gerla and Kleinrock’s taxonomy, which dates back to 1980, classifies congestion
control as well as flow control mechanisms based on the layer of the network where
congestion is to be prevented [GK80]. In this taxonomy, the term “flow control” is used
throughout to refer to flow control and congestion control on all levels of the network:
hop level, entry-to-exit level, network access level, and transport level. On the hop level,
the control focuses on avoiding local buffer congestion (e.g. on a router) to ensure
transfer between neighboring routers. The schemes on the hop level are in fact congestion
control, rather than flow control. The entry-to-exit level flow control schemes works to
avoid end router’s buffer overflow by limiting amount of transfer from the router at
network entry. On the network access level, throttling the incoming traffic is the goal
when the internal network is congested. The network access level schemes should also be
considered congestion control. And the transport level flow control attempts to ensure
reliable delivery of packet from the source process to the destination process by
preventing buffer overflow at the destination host. The entry-to-exit level and transport
level flow controls are similar in that they are both concerned with the buffer over flow at

 5

the destination, thus controlling data flow from the source. The difference is that the
entry-to-exit level flow control is only on the two end routers, while the transport level
flow control extends a bit further out to the end hosts. Because the taxonomy is based on
the locality of the congestion, a robust congestion control scheme is likely to spread over
multiple levels. Therefore, a particular flow control scheme can very well be a hybrid
scheme according to this taxonomy. For example, the end-to-end congestion control is
likely to be network access level and transport level; because it regulates the amount of
data transmission based on network congestion as well as receiver’s buffer availability.

Local

Congestion control schemes

Open loop control Closed loop control

Source
control

Destination
control

Implicit feedback
(Global)

Explicit feedback

Persistent
(Global)

Responsive

Global

Figure 1: Control theory based taxonomy [YR95]

Local

Congestion control schemes

Open loop control Closed loop control

Source
control

Destination
control

Implicit feedback
(Global)

Explicit feedback

Persistent
(Global)

Responsive

Global

Figure 1: Control theory based taxonomy [YR95]

Yang and Reddy’s paper, a more modern taxonomy of congestion control
schemes, divides the various schemes into open-loop and closed-loop controls based on
control theory [YR95]. They view the network as a large and complex control system,
where control policies are needed in order to maintain stability. Analogously, congestion
control schemes are the control policies, and are separated into open-loop and closed-
loop categories according to whether the feedback is used. The two categories are further
divided into sub-categories (see figure 1). The open-loop congestion control schemes do
not provide or use feedback functionality; thus, the regulation is based on local

 6

knowledge of the network. Open-loop schemes often involve how to distribute buffer
space and bandwidth to arriving packets, how many packets should be admitted into the
network, and how to discard packets when buffers are full. This category spreads over
hop-level and network access level in Gerla and Kleinrock’s taxonomy. The closed-loop
congestion control schemes utilize either implicit or explicit feedbacks and regulate
transmission dynamically. The closed-loop control schemes using implicit feedback rely
on observation of the network. Usually, the absence of certain events is the trigger for
action. The explicit feedback category, on the other hand, receives information regarding
the network condition from the feedback messages. Thus, the control is more proactive
with the tradeoff of increased network traffic. Moreover, the category of explicit
feedback is further divided into, (1) persistent feedback, feedback is generated and sent
periodically; (2) and responsive feedback, feedback is sent only when triggered by certain
network conditions. [YR95] points out that open-loop control is generally less robust
against all traffic patterns of the network. It is not necessarily so, when open-loop
schemes are used in a relatively small network with predictable behaviors, where there
are fewer variations in traffic patterns. In fact, open-loop schemes are more efficient than
closed-loop schemes, if enough knowledge about the network has been gathered by
conducting large number of experiments and statistical analysis. This way, no feedback
traffic needs to be generated to the network, and no delay or over-reaction is created. The
latter advantage is especially important, because in closed-loop, due to delay of feedback
and non-precision in the adjustment process, it often takes some time for the state of the
network to reach stability; open-loop schemes do not have this problem, simply due to its
non-reactive nature. Therefore, an open-loop scheme with well-research pre-determined
parameters and policies can produce more desirable performance than a closed-loop
scheme. However, in a network with capricious traffic patterns, appropriate close-loop
schemes should be implemented to adapt to the dynamical behaviors that may lead to
congestion.

2.2 Window-based versus Rate-based Congestion Control

In this section, we will compare the two main approaches of the end-to-end

congestion control, window-based and rate-based schemes, and apply the network-level
based and control theory based taxonomy techniques on these two types of schemes.

Window-based congestion control is also known as credit-based congestion
control. For congestion control, the size of the window limits the amount of data that the
sender is permitted to send. The window size increases at a certain rate if there are few or
no packet losses, and decreases or resets when the network becomes congested. The fine-
tuning of the rate of increase while probing for bandwidth and the rate of decrease based
on congestion severity is critical for the performance of the protocol.

Window-based methods are often designed for applications that need fast
adaptation to traffic change. However, this responsiveness often creates large fluctuation
in transmission. Thus, for applications that prefer smoother transmission, rate-based
schemes are more suitable. In rate-based schemes, the sender transmits data according to
the sending rate, which is periodically recalculated using the changing network
parameters (e.g. loss rate, round trip time, etc.). In tradeoff to the smoother transmission,
the rate-based methods are often slow to respond to freed-up bandwidth. Although they

 7

respond slower to congestion as well, they share bandwidth fairly with other flows with
window-based congestion control schemes.

Window-based and rate-based congestion control schemes are both on network-
access level and transport level in Gerla and Kleinrock’s taxonomy. Although one is by
the quantity of transmission and the other the rate of transmission, both regulate the data
entering the network and to the destination host. These two types of schemes are in the
closed-loop category in Yang and Reddy’s taxonomy, because it is clear that the
congestion control in both are based on feedback information. In addition, implicit and
explicit feedbacks are used in both schemes. Usage of implicit feedback is reflected in
actions according to the observation of absence of feedback; and usage of explicit
feedback is apparent.

2.3 TCP Congestion Control

Following the congestion collapse in 1986, Jacobson proposed the original TCP
congestion control flavor, TCP Tahoe [JK88]. It works in two phases: slow-start, and
AIMD congestion avoidance. TCP Tahoe and other TCP variants use window-based
congestion control schemes. The two variables that indicate the shifting of one phase to
another are cwnd and ssthresh. The variable cwnd is the number of segments that the
sender is allowed to send at one time. The cwnd value increases exponentially in the
slow-start phase and linearly in the AIMD phase. The variable ssthresh sets the upper
bound of cwnd in the slow-start phase and before it enters AIMD phase. Once cwnd
exceeds ssthresh as it grows in the slow-start phase, it increases linearly in the AIMD
phase.

Not as its name suggests, the slow-start phase grows rather fast, but starts low.
cwnd is initialized to 1. As long as the acks for the segments sent are received before the
corresponding timeouts, cwnd is incremented by the number of acks received (the case of
acks arriving after timeout will be discussed shortly). Thus, assuming the acks are
received before their corresponding timeouts, the sender starts by sending one segment;
after the ack of that segment arrives, the sender sends two; after the arrival of those two
acks, the sender sends four, and so on. cwnd increases exponentially, and eventually
reaches ssthresh. The AIMD phase now begins. During AIMD, sender is transmitting at a
window size larger than the threshold, thus the protocol conservatively probe the
available bandwidth while actively cuts back whenever necessary. For every cwnd
number of acks received before their timeouts, instead of incrementing cwnd by the
number of acks, cwnd is now incremented by 1. As cwnd continues to grow beyond
ssthresh, the network capacity will eventually reach its limit of stability, and become
congested or start losing packets. The congestion or the loss of packets is identified by
the tardiness or absence of acks. In both cases, the sender will not receive acks before
their timeouts. To recover, once an ack does not arrive after its timeout, ssthresh is set to
half of the current cwnd, and cwnd is set to 1 returning to the slow-start phase.

As briefly mentioned in section 1, flow control is incorporated in TCP congestion
control by using a variable rcvwnd. While cwnd guards against congestion inside the
network, rcvwnd limits the amount of transmission to prevent buffer overflow on the
receiver. The receiver attaches its most current value of rcvwnd in each segment sent to
the sender; and the sender keeps track of the last byte sent and the last byte acked, and

 8

makes sure that the difference does not exceed rcvwnd. To clearly present the congestion
control aspect of TCP congestion control, the description of congestion control in the
above paragraph disregards flow control; thus, in integrating flow control, TCP takes the
minimum of cwnd and rcvwnd for the number of segments to send. This allows the
transmission to not exceed the limit for preventing network congestion as well as the
limit for preventing destination buffer overflow.

TCP Tahoe works effectively against congestion, however shortcomings of this
scheme were discovered and studied. Hence, many variants of TCP flavors were
proposed to improve efficiency and throughput. TCP SACK is designed to provide
information in the acks for the sender to make an intelligent decision on which packet to
retransmit [MMFR96]. The fast retransmit algorithm attempts to shorten the time (ack
timeout) that the sender needs to wait in order to detect a loss [APS99]. In TCP Reno,
fast recovery was proposed to prevent sender from entering the slow-start phase upon the
detection of a loss [APS99]. The fast recovery algorithm is further improved in TCP
NewReno to achieve a better performance in various scenarios [FH99].

While most other TCP flavors have the same fundamental congestion control
mechanisms, TCP Vegas differs from the rest [BOP94]. Rather than simply observing the
acks and detecting losses, it keeps track of round trip time (RTT) and throughput rate and
change the window size according to the difference between the actual and expected
throughput rates. TCP Vegas estimates an RTT by recording the timestamp when a
segment is sent and subtract it from the timestamp of the arrival of its ack. The smallest
RTT is called BaseRTT, which is used in calculation of the expected throughput, (current
window size)/BaseRTT. The actual throughput is calculated measuring the RTT and
number of bytes transmitted. For the congestion avoidance scheme, the difference
between the expected and the actual throughput, diff, is compared to two parameters to
determine if cwnd should be linearly increased or decreased. In TCP Vegas’s slow-start,
the window size is increased exponentially every other RTT. And when the actual
throughput is lower than the expected throughput—indicating there is congestion in the
network—congestion avoidance starts. By measuring RTTs and calculating throughput
constantly, TCP Vegas gives a better estimate of network condition than the original TCP
congestion control mechanisms. However, the recording and sending of timestamps, and
the calculation and comparisons of throughputs add overhead to the segments and the
sender process.

2.4 Other Congestion Control Mechanisms

 TCP congestion control has been successfully implemented on the transport level.
And the Internet has been stable ever since. However, the research did not stop there.
While TCP congestion control limits the sending of segments of the TCP connections,
UDP, the connectionless and unreliable protocol, has no regulation on the transport level.
Applications that run on UDP, such as online conference, real media player, multi-user
games, etc., typically send large amount of data within a certain amount of time to ensure
quality of service. They use the lightweight protocol UDP, because it allows freer and
more frequent sending of large amount of data without error recovery such as
retransmission. In fact, these applications can tolerate a certain data loss rate, but requires
a certain sending rate. Consider a user who is trying to watch a trailer of an upcoming

 9

movie. The frame rate requires that the images be sent in a timely manner that the video
will not be choppy. If a few images are lost during the transmission, as long as they are
reasonably spaced out, the user probably can hardly notice the loss; however, the
retransmission of the loss images would be extraneous—the user would not be interested
in seeing the frames that are a few seconds late. Many researchers believe that in order to
maintain the stability of today’s Internet, congestion control mechanisms for UDP need
to be implemented as well to achieve the fair sharing of bandwidth with the TCP flows.

Balakrishnan et al. proposed the congestion manager (CM) that works between
the application and transport layers. This application- and transport-level independent
approach allows cooperation between flows and apportioning bandwidth to different
flows [BRS99]. The congestion manager uses a hybrid of window-based and rate-based
congestion control mechanism to provide proper regulation with traffic shaping. The CM
adaptation API communicates with the applications and the transport layer by passing
information about the network congestion and varying bandwidth, so that the applications
can make intelligent decision on what to send. The simulation results show that the CM
effectively performs congestion control while providing sufficient transmission rate for
streaming media applications such as real audio. Although the CM is able to coordinate
flows on the same network path, the end-to-end nature of this mechanism poses limitation
on flows joining on to the same network path from other sources. Thus, this unique
approach works to its best only when widely implemented at the senders and the receiver.
Moreover, it appears that the applications need to have the knowledge of the existence
and semantics of the CM in order to take advantage of the information received from it.
Therefore, the removal of the dependency of congestion control on the application level
creates a new inter-dependency of exchanging of data.

Even though many applications running on top of UDP have their own built-in
congestion control schemes, congestion control adds too much complexity to the
applications, and may be too difficult for the applications to handle properly [KHF03].
Thus, Floyd et al. proposed the transport-level Datagram Congestion Control Protocol
(DCCP), which is designed to replace UDP with the additional congestion control
features. DCCP allows the application to choose from two congestion control schemes:
TCP-like congestion control [FK032] and TCP-friend rate control (TFRC) [FK033]. Due
to the different needs of the applications—some prefer a aggressive TCP-like probing
scheme, and others prefer a relatively more stable transfer—the choice of the two
congestion control schemes provides more flexibility. The choice of congestion control
scheme and other features are decided by exchanging a set of values during the
negotiation phrase between the sender and the receiver [KHFP03][KHF03].

In the next section, we will pore over one of the congestion control schemes of
DCCP, TFRC.

3. TCP-friendly Rate Control (TFRC)

We now start exploring in detail a specific rate-based congestion control scheme,
TCP-friendly rate control (TFRC). [HFPW03] and [FHPW00] are the main references of
most of materials in this section. We start by providing an overview of this protocol, then
present the sender and receiver behaviors in AP notation [G98], and finally, analyze the
equations and procedures in the sender’s and the receiver’s protocols.

 10

3.1 Overview of TFRC

TFRC is an end-to-end transport-level congestion control scheme for unicast
flows in a best-effort environment. Intended for real-time applications, TFRC is designed
to have smoother throughput than TCP while being TCP-compatible. It responds to
changes in available bandwidth more slowly than TCP, and adjusts sending rate
periodically according to change of loss event rate. In steady-state, TFRC flows use no
more bandwidth than TCP flows under the comparable conditions. TFRC achieves this
by using similar congestion avoidance algorithms and a simplified Reno TCP throughput
equation with parameters used by TCP congestion control algorithms. This will be
discussed in detail in section 3.4.1.

TFRC is receiver-based, i.e. most of the calculation is done by the receiver. The
values carried by sender’s data packets are used by the receiver to calculate the loss event
rates, which are sent periodically to the sender in the feedback packets. The sender
receives feedback packets from the receiver and adjusts its sending rate accordingly.
Receiver-based is a desirable feature, because the sender is likely to be a server handling
numerous connections simultaneously; the receiver only receives data packets most of the
time, thus is probably less occupied. Assigning the receiver the task of calculation allows
more efficient use of receiver’s CPU time in the sender-receiver system. Moreover, this
feature provides a solid basis for developing congestion control for multicast traffic. In a
multicast environment, one sender transmits data to multiple receivers. If the protocol is
sender-based, heavy workload will be assigned to the sender computer leaving all the
receivers few jobs to do. Hence, receiver-based is the more desirable option.

We should also note that, TFRC adjusts the sending rate of packets of a fixed
packet size, while TFRC-PS (specified in a different document) has fixed sending rate
and varied packet sizes.

Two types of packets are used in this protocol: the data packets sent by the sender,
and the feedback packets sent by the receiver. Each data packet contains the following
values:

• Sequence number
• Sender’s timestamp when packet is sent
• Sender’s current estimate of RTT

And each feedback packet contains,

• Sender’s timestamp found in the most recent data packet received
• Time between the receipt of last data packet and the generation of this

feedback packet
• The current receiving rate of data packets since the last feedback packet

was sent
• Receiver’s current estimate of loss event rate

3.2 The sender’s behavior in AP notation [G98]

 11

Var. name Description

s packet size (bytes)

R round trip time (seconds)

p loss event rate (0 – 1.0) (number of loss events/number of packets sent)

t_RTO TCP retransmission timeout value (seconds)

b number of packets acked by one ack message

Table 1: TCP Throughput Equation Variables

Var. name Description

s packet size (bytes)

R round trip time (seconds)

p loss event rate (0 – 1.0) (number of loss events/number of packets sent)

t_RTO TCP retransmission timeout value (seconds)

b number of packets acked by one ack message

Var. name Description

s packet size (bytes)

R round trip time (seconds)

p loss event rate (0 – 1.0) (number of loss events/number of packets sent)

t_RTO TCP retransmission timeout value (seconds)

b number of packets acked by one ack message

Var. nameVar. name DescriptionDescription

ss packet size (bytes)packet size (bytes)

RR round trip time (seconds)round trip time (seconds)

pp loss event rate (0 – 1.0) (number of loss events/number of packets sent)loss event rate (0 – 1.0) (number of loss events/number of packets sent)

t_RTOt_RTO TCP retransmission timeout value (seconds)TCP retransmission timeout value (seconds)

bb number of packets acked by one ack messagenumber of packets acked by one ack message

Table 1: TCP Throughput Equation Variables

process s

inp q : float {init 0.9, used for EWMA}
inp s, b : float {TCP throughput equation inputs, see table 4.1.1}
inp t_mbi : float {init 64, maximum interpacket backoff interval (see section 4.4)}
inp R, tld, t_RTO : float {TCP throughput equation inputs, see table 4.1.1}
var X : float {init 1, sending rate}
var nofb : float {init 2, nofeedback timer}
var snd : float {init s/X, sending data packet timer}
var t_recvdata, t_delay, X_recv, p : float {values from feedback packet, see section 4.4}
var R_sample, X_calc: float {RTT sample, sending rate obtained from TCP thpt equation}
var 1fb : Boolean {init true, true if it is the first feedback packet received}
var t_now : float {current timestamp}
var seq : integer {sequence number of outgoing data packets}
def fb_pk(float, float, float, float), dt_pk(integer, float, float) : msg {packet definitions}

begin

rcv fb_pk(t_recvdata, t_delay, X_recv, p) from r ->

R_sample := (t_now – t_recvdata) – t_delay ;
if 1fb -> R, 1fb := R_sample, false
[] ~1fb -> R := q*R + (1-q)*R_sample
fi ;
t_RTO := 4*R ;
if p > 0 -> X_calc := {TCP throughput equation (s, R, b, p, t_RTO)};
 X := min(X_calc, 2*X_recv) {lower bound = s/t_mbi};
[] p <= 0 -> if (t_now – tld) >= R -> X := min(2*X, 2*X_recv) {upper bound = s/R);

 tld := t_now
 [] (t_now – tld) < R -> skip
 fi
 fi;

 12

 nofb := max(4*R, 2*s/X)

[] {nofb expires} -> if {R_sample is not null} ->

if X_calc > 2*X_recv -> X_recv := max(X_recv/2, s/(2*t_mbi));
[] X_calc <= 2*X_recv -> X_recv := X_calc/4
fi;
if p > 0 -> X_calc := {TCP thput equation (s, R, b, p, t_RTO)};

 X := min(X_calc, 2*X_recv) {lower bound = s/t_mbi};
 [] p <= 0 -> if (t_now – tld) >= R ->

X := min(2*X, 2*X_recv) {upper bound = s/R);
tld := t_now

 [] (t_now – tld) < R -> skip
 fi;
 fi;
 [] {R_sample is null} -> X := max(X/2, s/t_mbi)
 fi;
 nofb := max(4*R, 2*s/X)

[] {snd expires} -> send dt_pk(seq, t_now, R) to r;
 snd := s/X;
 seq := seq + 1

end

3.3 The receiver’s behavior in AP notation [G98]

The receiver protocol is more complex than the sender protocol given that the
receiver needs to analyze message loss and message reordering in order to estimate the
loss event rate. Thus, we present the AP notation of receiver protocol in two parts: error
handling and loss event rate calculation. The error handling protocol shows how the
receiver detects lost packets, reorders packets arrived out-of-order, and keeps track of
loss events. And the protocol for the loss event rate calculation demonstrates how the
receiver uses the values in the data packets along with its own records to estimate the loss
event rate.

3.3.1 The Error Handling Protocol

process r

inp n : integer {init 8, number of loss intervals used in estimating p}
var p : float {init 0, loss event rate}
var p_prev, fb, t_sent, R, I_tot0, I_tot1, I_tot, W_tot, I_mean, t_now, t_recv : float
var X_recv : float {init 0}
var seq : integer {nonnegative, sequence number in the data packet}
var init : Boolean {init true, first data packet received}
var I : array [integer] {an array of loss event intervals}
var w : array [integer] of float
var i : integer {nonnegative, index}
var recv_data : Boolean {init false}
var nr : integer {sequence number of next data packet expected, init. 0}
var lpk : array [0..2, integer] of integer

 13

{log of lost pk, each elem: lost pk seq num (init –1), lost pk ts, subseq pk cnt (init 0), loss event
num (init –1)}
var lpk_s : integer {init. 0}
var lpk_e : integer {init. 0}
var levnt_t : array [integer] of float {timestamp of the first lost pk of the lost events}
var levnt_n : array [integer] of integer {seq num of the first lost pk of the lost events}
var levnt_e : integer {init. 0}
var ni : integer {init. 0}
var found : Boolean
var k, j : integer
var s_bf : integer
var s_aft : integer
var s_loss : integer
var t_bf : float
var t_aft : float
var t_loss : float

begin

rcv data_pk(seq, t_sent, R_i) from s ->
 k := lpk_s;
 {count the number of pks arriving after the lost pk}
 do k < lpk_e ->
 if (lpk[k][0] < seq) ^ (lpk[k][2] < 3) ->

lpk[k][2] := lpk[k][2] + 1;
 if lpk[k][2] = 3 ->

lpk_s := k+1;
 if (levnt_e = 0) v (lpk[k][1] – levnt_t[levnt_e-1] > R_i) ->
 levnt_t[levnt_e] := lpk[k][1];
 levnt_n[levnt_e] := lpk[k][0];
 lpk[lpk_e-1][3] := levnt_e;
 I[ni] := lpk[k][0] – levnt_n[levnt_e – 1];
 ni := ni + 1 ;
 levnt_e := levnt_e + 1
 [] (levnt_e > 0) ^ (t_loss – levnt[levnt_e][0] <= R_i) ->
 lpk[lpk_e-1][3] := levnt_e - 1
 fi;
 [] lpk[k][2] < 3 -> skip
 fi
 [] (lpk[k][0] >= seq) v (lpk[k][2] = 3) -> skip
 fi;
 k := k+1
 od;
 s_aft, t_aft := seq, t_now;

if seq = nr -> nr := nr + 1
[] seq < nr -> {erase a previously lost packet}

 found, k := false, 0;
 do (~found ^ k<lpk_e) ->

if lpk[k][0] = seq -> found := true;
 lpk[k][0] := -1;
 if lpk[k][2] = 3 ->
 if levnt_n[lpk[k][3]] = lpk[k][0] ->
 j := k + 1;

 14

 {update loss event array and I}
 do j < lpk_e ->
 if lpk[j][2]=3 ^ lpk[j][3]=lpk[k][3]
 -> levnt_n[lpk[k][3]]:=lpk[j][0];
 levnt_t[lpk[k][3]]:=lpk[j][1];
 I[lpk[k][3]-1]:=

levnt_n[lpk[k][3]]-levnt_n[lpk[k][3]-1];
 I[lpk[k][3]]:=

levnt_n[lpk[k][3]+1]-levnt_n[lpk[k][3]]
[] lpk[j][2]~=3 ^ lpk[j][3]~=lpk[k][3];
 j:=lpk_e
 -> skip
fi; j:=j+1

 od
 [] levnt_n[lpk[k][3]] ~= lpk[k][0] -> skip
 fi

 [] lpk[k][2] < 3 -> skip
 fi;
 lpk[k][2] := 0

[] l_pk[k][0] ~= seq -> k := k+1
fi

 od;
 [] seq > nr -> {log a lost packet}
 k := 0;
 do k < seq – nr ->

s_loss := nr + k;
 t_loss := t_bf + ((t_aft - t_bf)*(s_loss – s_bf)/(s_after – s_bf));
 lpk[lpk_e][0] := s_loss;
 lpk[lpk_e][1] := t_loss;
 lpk[lpk_e][2] := 1;
 lpk_e := lpk_e + 1;
 k := k+1
 od;
 fi;

s_bf, t_bf := seq, t_now;
{calculation the loss event rate p}
if p > p_prev -> {cause fb to expire}

 [] p <= p_prev -> skip
 fi;

[] {fb expires} -> {prepare and send fb pk}

end

3.3.2 The Procotol for the Loss Event Rate Calculation

process r

{same variables as the error handling protocol}
begin

rcv data_pk(seq, t_sent, R_i) from s ->

recv_data, t_recv := true, t_now;

 15

if init -> fb, p, X_recv, init:= R_i, 0, 0, false;
 {cause fb to expire}

 [] ~init -> skip
fi;

 {add the data packet to the packet history};
 p_prev, i := p, 0;
 do i < n ->

if i < n/2 -> w[i] := 1
 [] i >= n/2 -> w[i] := 1–(i–(n/2–1))/(n/2+1)
 fi; i := i + 1
 od;
 I_tot0, I_tot1, W_tot, i := 0, 0, 0, 0;
 do i < n -> I_tot0 := I_tot0 + (I[i]*w[i]);
 W_tot, i := W_tot + w[i], i + 1;

od;
 i := 1;

do i <= n -> I_tot1, i := I_tot1 + (I[i]*w[i-1]), i + 1;
 od;
 I_tot := max(I_tot0, I_tot1);
 I_mean := I_tot/W_tot;

p := 1/I_mean;
if p > p_prev -> {cause fb to expire}

 [] p <= p_prev -> skip
 fi;

[] {fb expires} -> if recv_data -> i := 0;
 do i < n -> if i < n/2 -> w[i] := 1
 [] i >= n/2 -> w[i] := 1–(i–(n/2–1))/(n/2+1)
 fi; i := i + 1
 od;
 I_tot0, I_tot1, W_tot, i := 0, 0, 0, 0;

 do i < min(n, ni) ->
I_tot0 := I_tot0 + (I[ni – i - 1]*w[i]);

 W_tot, i := W_tot + w[i], i + 1;
 od;
 i := 1;
 do i <= n -> I_tot1, i := I_tot1 + (I[i]*w[i-1]), i + 1;
 od;
 I_tot := max(I_tot0, I_tot1);
 I_mean := I_tot/W_tot;
 p := 1/I_mean;
 X_recv:= {number of packets received in last R_i seconds}/R_i;
 send fb_pk(t_sent, t_now-t_recv, X_recv, p) to s;
 recv_data := false
 [] ~recv_data -> skip
 fi;
 fb := R_i;

end

3.4 Analysis of TFRC Equations

 16

In this section, we explore the equations and procedures used by the sender and
the receiver, and analyze how they contribute to the smoother throughput and TCP-
friendly features of TFRC.

3.4.1 Analysis of Sender Equations and Procedures

Sender’s actions depend on whether a feedback packet is received or nofeedback
timer expires. Initially, the sending rate is set to 1 packet per second, and the nofeedback
timer is set to 2 seconds.
 When a feedback packet is received, the sender performs the following 5 steps:
calculate a most recent sample of RTT, estimate a new smoothed RTT, calculate the TCP
retransmission timeout value, adjust the sending rate, and reset the nofeedback timer.

1. Calculate a sample of RTT
R_sample := (t_now – t_recvdata) – t_delay ; (equ. 1)

The sender calculates a new RTT sample every time a feedback packet is

received. Then it recalculates the RTT estimate based on the past values and the new
RTT sample. t_recvdata is the sending time of the last data packet received by the
receiver upon the generation of this feedback packet, and t_delay is the time elapsed from
the receipt of the last data packet to the generation of this feedback packet on the receiver
(see figure 2). Thus, equation 1 gives the most recent sample of RTT.

Receiver receives the data packet

Receiver finishes preparing the
feedback packet and sends it

Time line Sender Receiver

T0

Action

Sender sends a data packet

T1

T2

T3 Sender receives the feedback
packet.

Data(T0)

Feedback(t_recvdata = T0, t_delay = T2-T1)

t_now = T3

R_sample = t_now – t_recvdata – t_delay
= T3 – T0 – (T2 – T1)

Figure 2: RTT sample calculation

Receiver receives the data packet

Receiver finishes preparing the
feedback packet and sends it

Time line Sender Receiver

T0

Action

Sender sends a data packet

T1

T2

T3 Sender receives the feedback
packet.

Data(T0)

Feedback(t_recvdata = T0, t_delay = T2-T1)

t_now = T3

R_sample = t_now – t_recvdata – t_delay
= T3 – T0 – (T2 – T1)

Figure 2: RTT sample calculation

Receiver finishes preparing the
feedback packet and sends it

Time line Sender Receiver

T0

Action

Sender sends a data packet

T1

T2

T3 Sender receives the feedback
packet.

Data(T0)

Feedback(t_recvdata = T0, t_delay = T2-T1)

t_now = T3

R_sample = t_now – t_recvdata – t_delay
= T3 – T0 – (T2 – T1)

Figure 2: RTT sample calculation

Time line Sender Receiver

T0

Action

Sender sends a data packet

T1

T2

T3 Sender receives the feedback
packet.

Data(T0)

Feedback(t_recvdata = T0, t_delay = T2-T1)

t_now = T3

R_sample = t_now – t_recvdata – t_delay
= T3 – T0 – (T2 – T1)

Figure 2: RTT sample calculation

 17

2. Estimate RTT

if 1fb -> R, 1fb := R_sample, false
[] ~1fb -> R := q*R + (1-q)*R_sample (equ. 2)
fi ;

Equation 2 comes directly from TCP’s estimation of RTT [JK88]. Thus, when the

RTT value is used in the TCP throughput equation, a good estimate of TCP sending rate
will be obtained. This equation yields the exponential weighted moving average
(EWMA) of RTT. By using a q value close to 1, the equation puts more weight on the
more recent RTT samples. Consider the EWMA of a 5th estimate of RTT, R5. Let the first
estimate of RTT be R0 = R_sample0.

 R5 = q5 *R_sample0 + q4 * (1-q) * R_sample1 + … + q0 * (1-q) * R_sample5.
So,

 Rn = qn * R_sample0 ∑
=

− ∗−∗
n

i
i

in sampleRqq
1

_)1(.

The first RTT sample is weighted the most. Then, the coefficient is the smallest

for the second RTT sample, and increases gradually toward the most recent RTT sample.
Usually, q is set to be 0.9; the performance of TFRC is not affected by the exact value of
q.

3. Calculate the TCP retransmission timeout value

t_RTO := 4*R ; (equ. 3)

The TCP throughput equation—which will be discussed shortly—that is used by

TFRC to estimate the sending rate needs a retransmit timeout value t_RTO. In TCP
algorithm, it is estimated as,

 t_RTO = R + 4*R_var, where R_var is the variance of RTT.

However, it is difficult to accurately model the TCP retransmit timeout value, because the
various TCP flavors use drastically different clock granularities to measure this value.
Further, TFRC does not rely on this value to determine the retransmission time. Thus, a
rough estimate of it does not result considerable inaccuracies. Through experiments,
equation 3 evolved as an acceptable heuristic estimate.

4. Adjust the sending rate
if p > 0 -> X_calc := {TCP throughput equation (s, R, b, p, t_RTO)};
 X := min(X_calc, 2*X_recv) {lower bound = s/t_mbi}; (equ. 4)
[] p <= 0 -> if (t_now – tld) >= R -> X := min(2*X, 2*X_recv) {lower bound = s/R);
 (equ. 5)

 tld := t_now
 [] (t_now – tld) < R -> skip
 fi
 fi;

 18

The TCP throughput equation used to calculate X_calc is

 X_calc =
))321(

8
33(_

3
2 2ppbpRTOtbpR

s

+∗∗∗∗+∗
 (equ. 6)

TFRC follows the same general principles for adjusting the sending rate. When

loss event rate, p, is greater than zero, it recalculates the sending rate using the TCP
throughput equation; otherwise, the rate is doubled. The TCP throughput equation is the
simplified modeling result of Padhye et al [PFTK98]. using TCP Reno, which is the most
widely implemented version of TCP in the Internet. The original equation is,

 X ≈
)321()

8
33,1min(_

3
2

1

2ppbpRTOtbpRTT ++

The empirical result of the work of Padhye shows that this equation accurately models
the TCP throughput with a wide range of loss rates.
 The result of the sending rate is then compared to twice the receiving rate
measured by the receiver, and the lesser of the two values is chosen. Also, a lower bound
of s/t_mbi is put on the adjusted sending rate. t_mbi is the maximum inter-packet backoff
interval, and is set to 64 seconds. Thus, if the sending rate returned by the TCP
throughput equation falls below the lower bound, it ensures that the sending rate is at
least one packet per every 64 seconds.

When the loss event rate is zero, TFRC doubles the sending rate as TCP would. A
variable named “time last doubled” (tld) is used to keep track of the timestamp when
sending rate was most recently doubled; so only when it has been at least one RTT since
tld, does the sending rate get doubled. Equation 5 doubles the sending rate conservatively
by comparing it with twice the receiving rate measured by the receiver, and picking the
lower value. Symmetric with adjusting the sending rate, equation 5 also puts a lower
bound, s/R. So the sending rate is bumped up to at least one packet per RTT, if it was still
very low.

5. Reset the nofeedback timer

nofb := max(4*R, 2*s/X) (equ. 7)

Equation 7 updates the nofeedback timer to the greater of the two values: 4 times

RTT and amount of time allowed for sending two packets.
When no feedback packet is received for an extended period of time, nofeedback

timer will expire; and the sender performs these three actions: update the receiving rate
last calculated by the receiver, adjust sending rate, and reset nofeedback timer.

1. Update the receiving rate last calculated by the receiver

if X_calc > 2*X_recv -> X_recv := max(X_recv/2, s/(2*t_mbi)); (equ. 8)
[] X_calc <= 2*X_recv -> X_recv := X_calc/4 (equ. 9)
fi;

 19

If no feedback packet is received after the nofeedback timer expires, the sender
decreases the value of supposedly receiver-measured receiving rate, and recalculates the
sending rate. This is also halving of the sending rate. Equation 8 is used when 2*X_recv
was last chosen as the sending rate, thus, X_recv is halved with a lower bound of
s/(2*t_mbi), meaning one packet every 128 seconds. Equation 9 is used with the
condition that the sending rate calculated from the TCP equation was chosen, so X_recv
is assigned X_calc/4, so that 2*X_recv = X_calc/2 will be used in the following step.

2. Adjust sending rate
If there has been feedback packets received since the establishment of the current

connection, the same procedure as step 4 above is performed; Otherwise,

X := max(X/2, s/t_mbi). (equ. 10)

The initial sending rate of one packet/second is halved, and will continue getting halved
if the absence of feedback persists.

3. Reset nofeedback timer
 And the nofeedback timer restarts as above.

3.4.2 Analysis of Receiver Equations and Procedures

The receiver is responsible for receiving data packets, calculating the loss event

rate, and sending feedback packets. It performs a sequence of actions depending on
whether a data packet is being received or the feedback timer expires.
 The calculation of loss event rate is one of the core components of this protocol.
The change of sending rate is partially based on the loss event rate (see section 3.4.1).
Before discussing the loss event rate, it is necessary to first understand the detection of a
loss, a loss event, and a loss interval. A data packet is considered lost if three packets of
greater sequence numbers are received; and its late arrival can erase the packet loss in the
history. A loss event contains one or more losses occurred during one round trip time. A
packet is considered part of an existing loss event, if its timestamp is no more than one
RTT larger than the timestamp of the first packet of the loss event; otherwise, this packet
becomes the first packet of a new loss event (see figure 3). The loss interval is the
number of packets within a loss event; it is obtained by subtracting the sequence number
of the first lost packet in a loss event from the sequence number of the first lost packet in
the subsequent loss event.

 20

 Loss event rate is the ratio of the number of loss event and the total number of lost
packets. Although it is seems sensible to estimate loss event rate as number of lost packet
over total number of packets transmitted, this estimate is not an accurate representation of
general TCP loss event rate due to the varied implementation of different flavors of TCP.
Because different TCP variants halve the congestion window differently in response to
several losses in a window of data, and different queue management schemes in the
routers cause different packet loss patterns, by ignoring losses after one loss in a round
trip time, TFRC’s loss event estimate closely reflects the loss condition under most TCP
variants.

The detailed calculation of the loss event rate is as follows:

I_tot0, I_tot1, W_tot, i := 0, 0, 0, 0;

 do i < n -> I_tot0 := I_tot0 + (I[i]*w[i]);
 W_tot, i := W_tot + w[i], i + 1;

od;
 i := 1;
 do i <= n -> I_tot1, i := I_tot1 + (I[i]*w[i-1]), i + 1;
 od;
 I_tot := max(I_tot0, I_tot1);
 I_mean := I_tot/W_tot;
 p := 1/I_mean;

 The loss event rate is measured over n most recent loss intervals. n is specified to
be less than 8 so that the loss event rate can sufficiently reflect recent changes in network
congestion level. The larger the value of n, the less the sender will adjust the sending rate,
thus the more slowly the sender responds to severe packet loss. Moreover, n weights are
used on the n most recent intervals, so that the more weights are given to the more recent
intervals. The weighted total number of packets is divided by the sum of the weights to
yield the average loss interval I_mean. And the reciprocal of I_mean is the loss event
rate. The decision on whether to include the packet losses since the most recent loss event
can effect the value of the loss event rate. The n intervals are shifted to include those
packet losses if the resulting average loss interval is larger.

 RTT RTT RTT

Loss event n Loss event n+3 Loss event n+2 Loss event n+1

RTT RTTRTT

Loss event n Loss event n+3Loss event n+2Loss event n+1

Figure 3: Loss events

 RTT RTT RTT

Loss event n Loss event n+3 Loss event n+2 Loss event n+1

RTT RTTRTT

Loss event n Loss event n+3Loss event n+2Loss event n+1

Figure 3: Loss events

 21

The frequency of the sending of feedback packets also determines the sender’s
responsiveness to network congestion. Receiving feedback packets more frequently
allows sender to have the more current information about the network status; however, if
the interval between the receipts of feedback packet is too short, the difference made by
the extra packets may not justify the increased traffic in the network and increased
workload on the receiver’s CPU. Considering the tradeoffs, feedback packets should be
sent at least once per RTT or for every data packet sent if the sending rate is less than one
packet per RTT, and when a new loss event is detected.
 The feedback packets contain a value, X_recv, the receiving rate within the
previous RTT calculated by the receiver. It is simply the number of packets received in
the past RTT divided by the RTT. This is an empirical value that is used by the sender to
compare with the calculated sending rate. This value is chosen over the calculated
sending rate when the theoretic value is inflated. See section 3.4.1 for more details.

4. Discussion of TFRC Empirical Performance Results

Two main goals of TFRC are (1) TCP-friendliness, where UDP flows share
bandwidth fairly with TCP flows by responding appropriately to changing network
conditions, and (2) smoothness, where UDP packets are transmitted at a sending rate with
less abrupt rises and falls while being regulated.

To demonstrate that TFRC is a well-designed protocol, [FHPW00] tested TFRC
on the public Internet, the Dummynet network [Riz98], and in the ns network simulator,
with various numbers of TCP flows and bandwidth parameters. In a network with
utilization greater than 90% at all times, the same number of TFRC flows and TCP flows
are sharing a common bottleneck. The means of the throughputs of two types of flows
measured over a number of small intervals were quite close. This observation shows that
in a busy network, a number of TCP flows competing with a number of TFRC flows has
a similar result as if all flows were TCP. And this observation is consistent with the
protocol design, because TFRC conservatively adjusts its sending rate based on several
network parameters using the TCP throughput equation (see section 3.4.1). This prevents
TFRC flows to have throughput that deviates too far from that of the TCP flows under the
same network conditions. However, the experiment did show considerable deviation of
the throughputs of TFRC flows from the throughputs of TCP flows under certain
conditions. The possible factors that contribute to the deviations are the measure of the
loss rate, the TFRC receiver’s calculation of the actual receiving rate, and the frequency
of updating the round trip time and the sending rate. Thus, in a network of rapidly
changing traffic patterns, TFRC, which does not respond as quickly as TCP, can have a
throughput quite different than that of TCP. The variances of the throughputs of TFRC
and TCP flows were also measured in the experiment. As we expected, the TFRC flows
show a smaller variance than those of TCP flows [FHPW00]. This can be explained by
the smooth sending rates of TFRC flows. Since the TFRC flows do not experience the
halving in number of packets sent like the TCP flows do, and the reduction of sending
amount is reflected by the sending rate over a period of time, the throughputs measured
over the intervals for TFRC flows fluctuate less than those of TCP flows. Hence, the
smoothness of TFRC is evident.

 22

In [YKL01], four congestion control protocols are studied: TCP, GAIMD [YL00],
TFRC, and TEAR [ROY00]. The studies of the protocols are based on four
measurements, defined as follows: (1) fairness, small variations of sending rate compared
with that of the competing flows; (2) smoothness, small variations of sending rate of one
flow over time in a stationary environment; (3) responsiveness, the quickness of
reduction of sending rate in response to congestion; (4) aggressiveness, the quickness of
increase in sending rate for higher utilization when the network recovers from congestion
and more bandwidth becomes available. Fairness and smoothness are measured in a
stationary network environment with fluctuations. Responsiveness and aggressiveness are
studied under increase in network congestion and increase in available bandwidth,
respectively. [YKL01] measures and calculates the practical and theoretical sending rate
coefficient of variation (CoV) in each study case. The value of practical CoV indicates
the performance of the protocol. The calculated CoV is then compared with the observed
CoV to check for consistency. In most cases, the results match the calculations. In the
stationary environment, it was concluded that for all four protocols, smoothness and
fairness are positively correlated. This echoes the earlier discussion about the speed of the
changing of network traffic pattern and the difference in the mean throughputs of TCP
and TFRC. This paper also agrees that smooth traffic patterns promote fairness between
flows of different protocols. Thus, at a low loss rate, TFRC appears to perform well in
smoothness and fairness; while as the loss rate reaches 20%, its smoothness and fairness
were observed to be the worst among the four protocols. Although the numerical result
does not seem optimistic, by examining the lines of TFRC and TCP in figure 5 carefully,
we can see that the TFRC sending rate falls at appropriate places relative to the TCP
sending rates, considering that TFRC is supposed to be smoothed in contrast to the
fluctuations in TCP sending rates. In network environment with increased congestion,
TFRC is shown to have relatively slower responding speed compared to TCP and
GAIMD. This is expected for rate-based protocol as discussed previously. Interestingly, it
was noticed that since TCP over-reacts to congestion, the amount of time for it to reach
the stable state was actually approximately as long as those of slower-responding
protocols. In the environment with increased bandwidth, although rate-based protocols
are expected to have slower response, TFRC performed reasonably well with its history-
discounting feature turned on. The history-discounting feature, which is not studied in
section 3, is an optional feature that allows more weights to be put on the more recent
intervals in calculating the loss event rate [HFPW03]. The motivation of this feature is to
allow quicker response to the sudden disappearance of congestion. [YKL01] shows
TFRC performs well in most conditions except when the loss rate is high. However, it
seems to us that the TFRC sending rate is reasonable, although extremely low, relative to
the TCP sending rate in the same condition.

According to the empirical studies, TFRC performs well in that it shares
bandwidth fairly with the TCP flows, and that it yields a smooth sending rate for its
application. However, TFRC can be slow in responding to changes in the network. With
the aid of the history discounting feature, it can still achieve a reasonable quickness in
response to available bandwidth.

5. Conclusion

 23

 We have explored the field of congestion control by studying the history of
research in this area and a specific rate-based congestion control, TFRC.

The history of congestion control is presented from a macroscopic view gradually
down to specific details. Using Gerla and Kleinrock’s survey of congestion control and
flow control mechanisms based on the targeted network layer of congestion, we classify
end-to-end congestion control mechanisms, window-based as well as rate-based, to be on
both entry-to-exit level and transport-level. Yang and Reddy’s taxonomy of congestion
control schemes takes a totally different approach by using control theory. The end-to-
end congestion control mechanisms are closed loop control using both implicit and
explicit feedbacks. Having generalized the characteristics of window-based and rate-
based congestion control schemes, we introduce the classic TCP congestion control
mechanism with slow start and AIMD congestion avoidance, and provide a brief
description of other TCP variants. Differing drastically from most TCP flavors, TCP
Vegas is pointed out for its usage of round trip time—instead of simply the acks--to
adjust the congestion window. Due to the increasing popularity of applications running
on top of UDP, such as real time and streaming media applications, the absence of
regulation for UDP flows threatens the current stability of the Internet. To address the
research on congestion control for best-effort protocols, we evaluate DCCP that works on
transport level, and the congestion manager, which works between the transport and the
application levels.

The main contribution of the paper is the detailed examination of TCP-friendly
rate control (TFRC) in section 3, where the sender and receiver protocols are presented in
AP notation, and the procedures and equations in the sender’s and the receiver’s
protocols are studied for their originating source and their conduciveness to TCP-
friendliness and transmission smoothness. To evaluate TFRC, two empirical studies of
this protocol are presented for validating the TCP-friendly and smooth transmission
features of TFRC, and with comparison to other window-based and rate-based congestion
control protocols. From the experiment results shown in the papers, we conclude that
when loss rate is high, the performance suffers. However, with a reasonably low loss rate,
TFRC performs well as a congestion control mechanism for best-effort flows sharing
bandwidth fairly with TCP flows without creating an abrupt change in the sending rate.

References

[APS99] Allman, M., V. Paxson, and W. Stevens. "TCP Congestion Control," IETF
RFC2581, Apr. 1999.

[BRS99] Balakrishnan, H., H. Rahul, and S. Seshan, "An Integrated Congestion
Management Architecture for Internet Hosts," Proc. ACM SIGCOMM, Cambridge, MA,
Sept. 1999.

[BOP94] Brakmo, L., S. O’Malley, and L. Peterson. “TCP Vegas: New Techniques for
Congestion Detection and Avoidance,” In Proceedings of the ACM SIGCOMM, pp. 24-
35, August 1994.

 24

[FH99] Floyd, S. and T. Henderson, “The NewReno Modification to TCP’s Fast
Recovery Algorithm.” IETF TFRC 2582, Apr. 1999.

[FK032] Floyd, S., and E. Kohler, “Profile for DCCP Congestion Control ID 2: TCP-like
Congestion Control.” Internet-Draft draft-ietf-dccp-ccid2-02, IETF, May 2003. Work in
progress.

[FK033] Floyd, S., and E. Kohler, “Profile for DCCP Congestion Control ID 3: TFRC
Congestion Control.” Internet-Draft draft-ietf-dccp-ccid3-02, IETF, May 2003. Work in
progress.

[FHPW00] Floyd, S., M. Handley, J. Padhye, J. Widmer, "Equation-Based Congestion
Control for Unicast Applications: the Extended Version," ICSI tech report TR-00-03,
March 2000.

[G98] Gouda, M. G., Elements of Network Protocol Design, John Wiley & Sons, 1998.

[GK80] Gerla, M. and L. Kleinrock, "Flow Control: A Comparative Survey," IEEE
Transactions on Communications, April 1980, pp. 553-574.

[HFPW03] Handley, M., S. Floyd, J. Padhye, and J. Widmer, "TCP Friendly Rate
Control (TFRC): Protocol Specification," RFC3448, Jan. 2003.

[JK88] Jacobson, V., and M. Karels, "Congestion Avoidance and Control," ACM
SIGCOMM 88.

[KHFP03] Kohler, E., M. Handley, S. Floyd, and J. Padhye. “Datagram Control Protocol
(DCCP).” draft-ietf-dccp-spec-05.txt, internet-draft, work in progress, October 2003.

[KHF03] Kohler, E., M. Handley, and S. Floyd, “Designing DCCP: Congestion Control
Without Reliability.” Under submission, May 2003.

[KR01] Kurose, J. and K. Ross, Computer Networking – A Top-Down Approach
Featuring the Internet, Addison Wesley Longman, Inc., 2001.

[LB99] Legout, A. and E. W. Biersack, "Beyond TCP-Friendliness: a New Paradigm for
End to End Congestion Control," Technical Report, Institute Eurecom, June 1999.

[MMFR96] Mathis, M, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgement Options.” RFC 2018, Oct. 1996.

[N84] Nagle, J., “Congestion Control in IP/TCP Internetworks.” IETF RFC896,
Jan.1984.

[PFTK98] Padhye, J., V. Firoiu, D. Towsley, and J. Kurose, "Modeling TCP Throughput:
A Simple Model and its Empirical Validation," Proc. ACM SIGCOMM 1998.

 25

[ROY00] Rhee, I., V. Ozdemir, and Y. Yi, “TEAR: TCP Emulation at Receivers – Flow
Control for Multimedia Streaming,” Tech. Rep., Department of Computer Science, North
Carolina State University, Raleigh, North Carolina, U.S.A., Apr. 2000.

[Riz98] Rizzo, L., “Dummynet and Forward Error Correction.” In Proc. Freenix 98,
1998.

[WESSA01] Wetherall, D., D. Ely, N. Spring, S. Savage, and T. Anderson, "Robust
Congestion Signaling," IEEE International Conference on Network Protocols, Nov. 2001.

[YKL01] Yang, Y.R., M.S. Kim, S.S. Lam, "Transient Behaviors of TCP-friendly
Congestion Control Protocols," Computer Networks, Volume 41, Issue 2, pages 193-210,
February 2003.

[YL00] Yang, Y.R. and S. Lam, “General AIMD Congestion Control.” in Proceedings
ICNP 2000, Osaka, Japan, November 2000.

[YR95] Yang, C. and A. Reddy, "A Taxonomy for Congestion Control Algorithms in
Packet Switching Networks," IEEE Network Magazine, Jul./Aug. 1995, pp. 34-45.

