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Congestion Control and an Analysis of TCP-friendly Rate Control 

Abstract 

 This paper presents a history of congestion control research and an analysis of a 
specific rate-based congestion control protocol, TCP-friendly rate control (TFRC). Two 
taxonomies of congestion control mechanisms are presented, and later used to classify 
general end-to-end congestion control schemes including window-based and rate-based 
methods. The classic TCP congestion control mechanisms are introduced as an instance 
of window-based congestion control. To address the research in congestion control for 
UDP flows, we discuss datagram congestion control protocol (DCCP) and the congestion 
manager (CM). Implemented in DCCP, TFRC is examined in detail for its TCP-
friendliness and ability to provide smooth transmission for the applications. The sender’s 
and receiver’s protocols are presented using AP notation, and the equations used in the 
protocols are analyzed for their conduciveness to TCP-friendliness and smooth 
transmission. Lastly, two empirical studies of TFRC performance are summarized to 
validate the effectiveness of this protocol.  
 
1. Introduction  
 

In October 1986, the first occurrence of what is called “congestion collapse” 
spurred the studies in Internet congestion control [JK88]. During this event, the dropping 
of throughput from 32 Kbps to 40 bps between Lawrence Berkeley Lab (LBL) and UC 
Berkeley fulfilled Nagle’s earlier prediction of such phenomenon [N84]. In fact, research 
in congestion control and flow control had begun even before the collapse in 1986. 
Because congestion control is often related to the types and the patterns of Internet 
traffic, which largely depends on the kinds of applications most commonly used, the 
continually changing Internet environment has kept the research area of congestion 
control active even decades later.  

Congestion collapse is indicated by near-zero data throughput in a connection. 
Too many senders sending packets that are too large or too frequently is the cause of 
network congestion [KR01]. The large data flows of bursty traffic, can quickly saturate 
the network bandwidth, overflowing the buffers of the intermediate routers. Because 
packets at the congested routers now have to wait in an extended queue, and some even 
get dropped due to the lack of buffer space, the delay or the absence of 
acknowledgements result, which in turn triggers the retransmission timeout at the senders 
[APS99]. As the duplicates of the dropped or the slowly-transmitted packets enter the 
already congested network, the congestion condition becomes worse, and the 
retransmission timeout continues to expire at the senders. Thus, no new packets will be 
transmitted while the senders keep attempting to retransmit the packets that are dropped 
or assumed to be dropped. The throughput will eventually reach the minimum. The 
cycling of the state of low throughput is congestion collapse.  

Congestion control is the mechanism for preventing congestion collapse. Its 
targets are the routers inside the network where congestion collapse occurs. Congestion 
control can work from the sending source by regulating traffic entering the network, or 
directly on the router by managing packet arrivals in the router’s buffer queue. In this 
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paper, we will focus our discussion on the first approach, end-to-end congestion control. 
An end-to-end congestion control regulates the amount or the rate at which the data is 
sent according to the network conditions. It can be viewed as a transport-level congestion 
control, because the protocol is implemented on the transport layer of the sender and the 
receiver, and estimates the network congestion level basing on information returned or 
not returned by the receiver. Congestion control is often implemented together with flow 
control, the concept of which is different from congestion control. Flow control is the 
regulation of traffic to prevent buffer overflow at the destination, the receiver, which 
provides sender with information about its buffer availability. For instance, the TCP 
congestion control, which is an end-to-end congestion control mechanism, incorporates 
the feature of TCP flow control as well. The number of segments can be sent is 
determined by taking the minimum of the congestion window and the receive window 
(see section 2.3). Here, congestion window is the limit to prevent network congestion, 
while receive window is the limit to prevent destination buffer overflow. The TCP 
congestion control mechanism also introduces the notion of congestion avoidance, which 
refers to the additive increase and multiplicative decrease phase (AIMD) of the protocol 
(see section 2.3). Congestion avoidance is characterized by the adjustment of window 
size with a certain degree of reservation. The window size is increased in at a slower rate 
compared to the slow start phase, and is decreased drastically.  

Without the congestion control mechanisms, TCP was vulnerable to congestion 
collapse. Even though the implementation of TCP congestion control has successfully 
stabilized the Internet, the studies continued because of the lack of regulation for UDP 
flows. UDP is a best-effort (unreliable) protocol that provides no connection 
establishment, error recovery, flow control, or congestion control. It is popular among 
real-time and streaming media applications, to which reliability is not as important as 
timeliness, smooth transmission and sending of large amount of data (see section 2.4). 
When notified of network congestion, while TCP decreases transmission (see section 
2.3), UDP flows do not adjust their transmission, thus continue to take advantage of the 
bandwidth made available by TCP’s congestion control. The result is that UDP flows 
unfairly dominate the bandwidth, and the throughput of TCP flows reaches minimum. 
Thus, with the congestion control mechanisms, TCP is still vulnerable to low throughput 
with the presence of unregulated UDP flows. 

Today, the affordability and versatility of the Internet and its resources cause a 
significant increase in traffic, especially that of real-time streaming media applications, 
which run on top of UDP. For instance, software for online conferencing, streaming 
video/audio, multi-user games, etc. has become increasingly popular. This situation drew 
researchers’ attention to the lack of congestion control mechanisms in the best-effort 
protocols, for which the TCP congestion control mechanisms are inappropriate, as we 
will discuss later.  

Some key general congestion control principles that the protocol designs should 
follow are fairness, robustness, scalability, and feasibility [LB99]. Fairness means 
concurrent flows of different congestion control protocols should have approximately 
equal throughput [YKL01]. Fairness is often known as TCP-friendliness, which is the 
main motivation for congestion control for UDP. Robustness refers to the ability of the 
congestion control protocol to act against misbehaving users who may try to manipulate 
parameters used in the congestion control to its own advantage while risking the stability 
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of the network. It is a property of congestion control from the security perspective, and its 
implementation often involves identity verification [WESSA01]. We will not discuss 
protocols with robustness in this paper. Lastly, scalability entails the feature of adapting 
heterogeneous flows to various bandwidth.  

Section 2 is a study of past congestion control research in the general-to-specific 
fashion. We first present two congestion control taxonomies to show how the various 
implementations of congestion control can be categorized. This will provide a 
macroscopic view of the congestion control schemes. Then we examine the difference 
between two streams of end-to-end congestion controls, window-based and rate-based 
congestion controls, and see where they fit under the two taxonomies. TCP congestion 
control and its variants, which are examples of window-based schemes, are then 
discussed. This is important because it is the transport-level congestion control in use, 
and other congestion controls are designed to be compatible with these schemes. The 
following section will be an introduction to a few other congestion control schemes for 
UDP-based applications. This leads to our analysis of a particular rate-based congestion 
control, TCP-friendly rate control (TFRC). Section 3 is devoted to the description and 
examination of TFRC to the granularity of equations used and procedures taken in sender 
and receiver. We will discover how rate-based schemes are designed to be TCP-friendly 
and to provide application with smoother transmission than TCP congestion control 
would. Before concluding, we survey two experiments on the performance of TFRC for 
validating its design goals. In general, as we will see in section 4, the empirical results are 
good.   
 
2. A History of the Congestion Control Research 

 
2.1 Taxonomies of Congestion Control Schemes 

 
The principles by which the taxonomies differentiate the various schemes 

demonstrate the different ways to view the common characteristics and distinctions in 
these congestion control schemes. The taxonomies also provide large pictures 
encompassing various congestion control mechanisms. 
 Gerla and Kleinrock’s taxonomy, which dates back to 1980, classifies congestion 
control as well as flow control mechanisms based on the layer of the network where 
congestion is to be prevented [GK80]. In this taxonomy, the term “flow control” is used 
throughout to refer to flow control and congestion control on all levels of the network: 
hop level, entry-to-exit level, network access level, and transport level. On the hop level, 
the control focuses on avoiding local buffer congestion (e.g. on a router) to ensure 
transfer between neighboring routers. The schemes on the hop level are in fact congestion 
control, rather than flow control. The entry-to-exit level flow control schemes works to 
avoid end router’s buffer overflow by limiting amount of transfer from the router at 
network entry. On the network access level, throttling the incoming traffic is the goal 
when the internal network is congested. The network access level schemes should also be 
considered congestion control. And the transport level flow control attempts to ensure 
reliable delivery of packet from the source process to the destination process by 
preventing buffer overflow at the destination host. The entry-to-exit level and transport 
level flow controls are similar in that they are both concerned with the buffer over flow at 
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the destination, thus controlling data flow from the source. The difference is that the 
entry-to-exit level flow control is only on the two end routers, while the transport level 
flow control extends a bit further out to the end hosts. Because the taxonomy is based on 
the locality of the congestion, a robust congestion control scheme is likely to spread over 
multiple levels. Therefore, a particular flow control scheme can very well be a hybrid 
scheme according to this taxonomy. For example, the end-to-end congestion control is 
likely to be network access level and transport level; because it regulates the amount of 
data transmission based on network congestion as well as receiver’s buffer availability.  
 

Local
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Open loop control Closed loop control

Source 
control

Destination 
control

Implicit feedback
(Global)

Explicit feedback
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Figure 1: Control theory based taxonomy [YR95]
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Yang and Reddy’s paper, a more modern taxonomy of congestion control 
schemes, divides the various schemes into open-loop and closed-loop controls based on 
control theory [YR95]. They view the network as a large and complex control system, 
where control policies are needed in order to maintain stability. Analogously, congestion 
control schemes are the control policies, and are separated into open-loop and closed-
loop categories according to whether the feedback is used. The two categories are further 
divided into sub-categories (see figure 1). The open-loop congestion control schemes do 
not provide or use feedback functionality; thus, the regulation is based on local 
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knowledge of the network. Open-loop schemes often involve how to distribute buffer 
space and bandwidth to arriving packets, how many packets should be admitted into the 
network, and how to discard packets when buffers are full. This category spreads over 
hop-level and network access level in Gerla and Kleinrock’s taxonomy. The closed-loop 
congestion control schemes utilize either implicit or explicit feedbacks and regulate 
transmission dynamically. The closed-loop control schemes using implicit feedback rely 
on observation of the network. Usually, the absence of certain events is the trigger for 
action. The explicit feedback category, on the other hand, receives information regarding 
the network condition from the feedback messages. Thus, the control is more proactive 
with the tradeoff of increased network traffic. Moreover, the category of explicit 
feedback is further divided into, (1) persistent feedback, feedback is generated and sent 
periodically; (2) and responsive feedback, feedback is sent only when triggered by certain 
network conditions. [YR95] points out that open-loop control is generally less robust 
against all traffic patterns of the network. It is not necessarily so, when open-loop 
schemes are used in a relatively small network with predictable behaviors, where there 
are fewer variations in traffic patterns. In fact, open-loop schemes are more efficient than 
closed-loop schemes, if enough knowledge about the network has been gathered by 
conducting large number of experiments and statistical analysis. This way, no feedback 
traffic needs to be generated to the network, and no delay or over-reaction is created. The 
latter advantage is especially important, because in closed-loop, due to delay of feedback 
and non-precision in the adjustment process, it often takes some time for the state of the 
network to reach stability; open-loop schemes do not have this problem, simply due to its 
non-reactive nature. Therefore, an open-loop scheme with well-research pre-determined 
parameters and policies can produce more desirable performance than a closed-loop 
scheme. However, in a network with capricious traffic patterns, appropriate close-loop 
schemes should be implemented to adapt to the dynamical behaviors that may lead to 
congestion.  

 
2.2 Window-based versus Rate-based Congestion Control 

 
In this section, we will compare the two main approaches of the end-to-end 

congestion control, window-based and rate-based schemes, and apply the network-level 
based and control theory based taxonomy techniques on these two types of schemes.  

Window-based congestion control is also known as credit-based congestion 
control. For congestion control, the size of the window limits the amount of data that the 
sender is permitted to send. The window size increases at a certain rate if there are few or 
no packet losses, and decreases or resets when the network becomes congested. The fine-
tuning of the rate of increase while probing for bandwidth and the rate of decrease based 
on congestion severity is critical for the performance of the protocol.  

Window-based methods are often designed for applications that need fast 
adaptation to traffic change. However, this responsiveness often creates large fluctuation 
in transmission. Thus, for applications that prefer smoother transmission, rate-based 
schemes are more suitable. In rate-based schemes, the sender transmits data according to 
the sending rate, which is periodically recalculated using the changing network 
parameters (e.g. loss rate, round trip time, etc.). In tradeoff to the smoother transmission, 
the rate-based methods are often slow to respond to freed-up bandwidth. Although they 
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respond slower to congestion as well, they share bandwidth fairly with other flows with 
window-based congestion control schemes.  

Window-based and rate-based congestion control schemes are both on network-
access level and transport level in Gerla and Kleinrock’s taxonomy. Although one is by 
the quantity of transmission and the other the rate of transmission, both regulate the data 
entering the network and to the destination host. These two types of schemes are in the 
closed-loop category in Yang and Reddy’s taxonomy, because it is clear that the 
congestion control in both are based on feedback information. In addition, implicit and 
explicit feedbacks are used in both schemes. Usage of implicit feedback is reflected in 
actions according to the observation of absence of feedback; and usage of explicit 
feedback is apparent.    

 
2.3 TCP Congestion Control 

Following the congestion collapse in 1986, Jacobson proposed the original TCP 
congestion control flavor, TCP Tahoe [JK88]. It works in two phases: slow-start, and 
AIMD congestion avoidance. TCP Tahoe and other TCP variants use window-based 
congestion control schemes. The two variables that indicate the shifting of one phase to 
another are cwnd and ssthresh. The variable cwnd is the number of segments that the 
sender is allowed to send at one time. The cwnd value increases exponentially in the 
slow-start phase and linearly in the AIMD phase. The variable ssthresh sets the upper 
bound of cwnd in the slow-start phase and before it enters AIMD phase. Once cwnd 
exceeds ssthresh as it grows in the slow-start phase, it increases linearly in the AIMD 
phase. 

Not as its name suggests, the slow-start phase grows rather fast, but starts low. 
cwnd is initialized to 1. As long as the acks for the segments sent are received before the 
corresponding timeouts, cwnd is incremented by the number of acks received (the case of 
acks arriving after timeout will be discussed shortly). Thus, assuming the acks are 
received before their corresponding timeouts, the sender starts by sending one segment; 
after the ack of that segment arrives, the sender sends two; after the arrival of those two 
acks, the sender sends four, and so on. cwnd increases exponentially, and eventually 
reaches ssthresh. The AIMD phase now begins. During AIMD, sender is transmitting at a 
window size larger than the threshold, thus the protocol conservatively probe the 
available bandwidth while actively cuts back whenever necessary. For every cwnd 
number of acks received before their timeouts, instead of incrementing cwnd by the 
number of acks, cwnd is now incremented by 1. As cwnd continues to grow beyond 
ssthresh, the network capacity will eventually reach its limit of stability, and become 
congested or start losing packets. The congestion or the loss of packets is identified by 
the tardiness or absence of acks. In both cases, the sender will not receive acks before 
their timeouts. To recover, once an ack does not arrive after its timeout, ssthresh is set to 
half of the current cwnd, and cwnd is set to 1 returning to the slow-start phase.  

As briefly mentioned in section 1, flow control is incorporated in TCP congestion 
control by using a variable rcvwnd. While cwnd guards against congestion inside the 
network, rcvwnd limits the amount of transmission to prevent buffer overflow on the 
receiver. The receiver attaches its most current value of rcvwnd in each segment sent to 
the sender; and the sender keeps track of the last byte sent and the last byte acked, and 
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makes sure that the difference does not exceed rcvwnd. To clearly present the congestion 
control aspect of TCP congestion control, the description of congestion control in the 
above paragraph disregards flow control; thus, in integrating flow control, TCP takes the 
minimum of cwnd and rcvwnd for the number of segments to send. This allows the 
transmission to not exceed the limit for preventing network congestion as well as the 
limit for preventing destination buffer overflow. 

TCP Tahoe works effectively against congestion, however shortcomings of this 
scheme were discovered and studied. Hence, many variants of TCP flavors were 
proposed to improve efficiency and throughput. TCP SACK is designed to provide 
information in the acks for the sender to make an intelligent decision on which packet to 
retransmit [MMFR96]. The fast retransmit algorithm attempts to shorten the time (ack 
timeout) that the sender needs to wait in order to detect a loss [APS99]. In TCP Reno, 
fast recovery was proposed to prevent sender from entering the slow-start phase upon the 
detection of a loss [APS99]. The fast recovery algorithm is further improved in TCP 
NewReno to achieve a better performance in various scenarios [FH99].  

While most other TCP flavors have the same fundamental congestion control 
mechanisms, TCP Vegas differs from the rest [BOP94]. Rather than simply observing the 
acks and detecting losses, it keeps track of round trip time (RTT) and throughput rate and 
change the window size according to the difference between the actual and expected 
throughput rates. TCP Vegas estimates an RTT by recording the timestamp when a 
segment is sent and subtract it from the timestamp of the arrival of its ack. The smallest 
RTT is called BaseRTT, which is used in calculation of the expected throughput, (current 
window size)/BaseRTT. The actual throughput is calculated measuring the RTT and 
number of bytes transmitted. For the congestion avoidance scheme, the difference 
between the expected and the actual throughput, diff, is compared to two parameters to 
determine if cwnd should be linearly increased or decreased. In TCP Vegas’s slow-start, 
the window size is increased exponentially every other RTT. And when the actual 
throughput is lower than the expected throughput—indicating there is congestion in the 
network—congestion avoidance starts. By measuring RTTs and calculating throughput 
constantly, TCP Vegas gives a better estimate of network condition than the original TCP 
congestion control mechanisms. However, the recording and sending of timestamps, and 
the calculation and comparisons of throughputs add overhead to the segments and the 
sender process.  

 
2.4 Other Congestion Control Mechanisms  

 
 TCP congestion control has been successfully implemented on the transport level. 
And the Internet has been stable ever since. However, the research did not stop there. 
While TCP congestion control limits the sending of segments of the TCP connections, 
UDP, the connectionless and unreliable protocol, has no regulation on the transport level. 
Applications that run on UDP, such as online conference, real media player, multi-user 
games, etc., typically send large amount of data within a certain amount of time to ensure 
quality of service. They use the lightweight protocol UDP, because it allows freer and 
more frequent sending of large amount of data without error recovery such as 
retransmission. In fact, these applications can tolerate a certain data loss rate, but requires 
a certain sending rate. Consider a user who is trying to watch a trailer of an upcoming 
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movie. The frame rate requires that the images be sent in a timely manner that the video 
will not be choppy. If a few images are lost during the transmission, as long as they are 
reasonably spaced out, the user probably can hardly notice the loss; however, the 
retransmission of the loss images would be extraneous—the user would not be interested 
in seeing the frames that are a few seconds late. Many researchers believe that in order to 
maintain the stability of today’s Internet, congestion control mechanisms for UDP need 
to be implemented as well to achieve the fair sharing of bandwidth with the TCP flows.  

Balakrishnan et al. proposed the congestion manager (CM) that works between 
the application and transport layers. This application- and transport-level independent 
approach allows cooperation between flows and apportioning bandwidth to different 
flows [BRS99]. The congestion manager uses a hybrid of window-based and rate-based 
congestion control mechanism to provide proper regulation with traffic shaping. The CM 
adaptation API communicates with the applications and the transport layer by passing 
information about the network congestion and varying bandwidth, so that the applications 
can make intelligent decision on what to send. The simulation results show that the CM 
effectively performs congestion control while providing sufficient transmission rate for 
streaming media applications such as real audio. Although the CM is able to coordinate 
flows on the same network path, the end-to-end nature of this mechanism poses limitation 
on flows joining on to the same network path from other sources. Thus, this unique 
approach works to its best only when widely implemented at the senders and the receiver. 
Moreover, it appears that the applications need to have the knowledge of the existence 
and semantics of the CM in order to take advantage of the information received from it. 
Therefore, the removal of the dependency of congestion control on the application level 
creates a new inter-dependency of exchanging of data.  

Even though many applications running on top of UDP have their own built-in 
congestion control schemes, congestion control adds too much complexity to the 
applications, and may be too difficult for the applications to handle properly [KHF03]. 
Thus, Floyd et al. proposed the transport-level Datagram Congestion Control Protocol 
(DCCP), which is designed to replace UDP with the additional congestion control 
features. DCCP allows the application to choose from two congestion control schemes: 
TCP-like congestion control [FK032] and TCP-friend rate control (TFRC) [FK033]. Due 
to the different needs of the applications—some prefer a aggressive TCP-like probing 
scheme, and others prefer a relatively more stable transfer—the choice of the two 
congestion control schemes provides more flexibility. The choice of congestion control 
scheme and other features are decided by exchanging a set of values during the 
negotiation phrase between the sender and the receiver [KHFP03][KHF03].  

In the next section, we will pore over one of the congestion control schemes of 
DCCP, TFRC.  

 
3. TCP-friendly Rate Control (TFRC) 

We now start exploring in detail a specific rate-based congestion control scheme, 
TCP-friendly rate control (TFRC). [HFPW03] and [FHPW00] are the main references of 
most of materials in this section. We start by providing an overview of this protocol, then 
present the sender and receiver behaviors in AP notation [G98], and finally, analyze the 
equations and procedures in the sender’s and the receiver’s protocols.  
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3.1 Overview of TFRC 

TFRC is an end-to-end transport-level congestion control scheme for unicast 
flows in a best-effort environment. Intended for real-time applications, TFRC is designed 
to have smoother throughput than TCP while being TCP-compatible. It responds to 
changes in available bandwidth more slowly than TCP, and adjusts sending rate 
periodically according to change of loss event rate. In steady-state, TFRC flows use no 
more bandwidth than TCP flows under the comparable conditions. TFRC achieves this 
by using similar congestion avoidance algorithms and a simplified Reno TCP throughput 
equation with parameters used by TCP congestion control algorithms. This will be 
discussed in detail in section 3.4.1. 

TFRC is receiver-based, i.e. most of the calculation is done by the receiver. The 
values carried by sender’s data packets are used by the receiver to calculate the loss event 
rates, which are sent periodically to the sender in the feedback packets. The sender 
receives feedback packets from the receiver and adjusts its sending rate accordingly. 
Receiver-based is a desirable feature, because the sender is likely to be a server handling 
numerous connections simultaneously; the receiver only receives data packets most of the 
time, thus is probably less occupied. Assigning the receiver the task of calculation allows 
more efficient use of receiver’s CPU time in the sender-receiver system. Moreover, this 
feature provides a solid basis for developing congestion control for multicast traffic. In a 
multicast environment, one sender transmits data to multiple receivers. If the protocol is 
sender-based, heavy workload will be assigned to the sender computer leaving all the 
receivers few jobs to do. Hence, receiver-based is the more desirable option. 

We should also note that, TFRC adjusts the sending rate of packets of a fixed 
packet size, while TFRC-PS (specified in a different document) has fixed sending rate 
and varied packet sizes.  

Two types of packets are used in this protocol: the data packets sent by the sender, 
and the feedback packets sent by the receiver. Each data packet contains the following 
values:  

 
• Sequence number 
• Sender’s timestamp when packet is sent 
• Sender’s current estimate of RTT 
 

And each feedback packet contains, 
 

• Sender’s timestamp found in the most recent data packet received 
• Time between the receipt of last data packet and the generation of this 

feedback packet 
• The current receiving rate of data packets since the last feedback packet 

was sent 
• Receiver’s current estimate of loss event rate 
 

3.2 The sender’s behavior in AP notation [G98] 
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Var. name Description

s packet size (bytes)

R round trip time (seconds)

p loss event rate (0 – 1.0) (number of loss events/number of packets sent)

t_RTO TCP retransmission timeout value (seconds)

b number of packets acked by one ack message

Table 1: TCP Throughput Equation Variables

Var. name Description

s packet size (bytes)

R round trip time (seconds)

p loss event rate (0 – 1.0) (number of loss events/number of packets sent)

t_RTO TCP retransmission timeout value (seconds)

b number of packets acked by one ack message

Var. name Description

s packet size (bytes)

R round trip time (seconds)

p loss event rate (0 – 1.0) (number of loss events/number of packets sent)

t_RTO TCP retransmission timeout value (seconds)

b number of packets acked by one ack message

Var. nameVar. name DescriptionDescription

ss packet size (bytes)packet size (bytes)

RR round trip time (seconds)round trip time (seconds)

pp loss event rate (0 – 1.0) (number of loss events/number of packets sent)loss event rate (0 – 1.0) (number of loss events/number of packets sent)

t_RTOt_RTO TCP retransmission timeout value (seconds)TCP retransmission timeout value (seconds)

bb number of packets acked by one ack messagenumber of packets acked by one ack message

Table 1: TCP Throughput Equation Variables

 

process s 

inp q : float {init 0.9, used for EWMA} 
inp s, b : float {TCP throughput equation inputs, see table 4.1.1} 
inp t_mbi : float {init 64, maximum interpacket backoff interval (see section 4.4)}  
inp R, tld, t_RTO  : float {TCP throughput equation inputs, see table 4.1.1} 
var X : float {init 1, sending rate} 
var nofb : float {init 2, nofeedback timer} 
var snd : float {init s/X, sending data packet timer}  
var t_recvdata, t_delay, X_recv, p : float {values from feedback packet, see section 4.4} 
var R_sample, X_calc: float {RTT sample, sending rate obtained from TCP thpt equation} 
var 1fb : Boolean {init true, true if it is the first feedback packet received} 
var t_now : float {current timestamp} 
var seq : integer {sequence number of outgoing data packets} 
def fb_pk(float, float, float, float), dt_pk(integer, float, float) : msg {packet definitions} 
 
begin 
 
rcv fb_pk(t_recvdata, t_delay, X_recv, p) from r ->  

R_sample := (t_now – t_recvdata) – t_delay ; 
if 1fb -> R, 1fb := R_sample, false 
[] ~1fb -> R := q*R + (1-q)*R_sample 
fi ; 
t_RTO := 4*R ; 
if p > 0 -> X_calc := {TCP throughput equation (s, R, b, p, t_RTO)}; 
      X := min(X_calc, 2*X_recv) {lower bound = s/t_mbi}; 
[] p <= 0 -> if (t_now – tld) >= R -> X := min(2*X, 2*X_recv) {upper bound = s/R); 

            tld := t_now 
           [] (t_now – tld) < R -> skip 
          fi 
 fi; 
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 nofb := max(4*R, 2*s/X) 
 
[] {nofb expires} -> if {R_sample is not null} ->  

if X_calc > 2*X_recv -> X_recv := max(X_recv/2, s/(2*t_mbi)); 
[] X_calc <= 2*X_recv -> X_recv := X_calc/4 
fi; 
if p > 0 -> X_calc := {TCP thput equation (s, R, b, p, t_RTO)}; 

                             X := min(X_calc, 2*X_recv) {lower bound = s/t_mbi}; 
  [] p <= 0 -> if (t_now – tld) >= R ->  

X := min(2*X, 2*X_recv) {upper bound = s/R); 
tld := t_now 

            [] (t_now – tld) < R -> skip 
           fi; 
  fi; 
        [] {R_sample is null} -> X := max(X/2, s/t_mbi) 
        fi; 
        nofb := max(4*R, 2*s/X) 
 

[] {snd expires} -> send dt_pk(seq, t_now, R) to r; 
       snd := s/X; 
       seq := seq + 1 
 
end 
 
3.3 The receiver’s behavior in AP notation [G98] 

The receiver protocol is more complex than the sender protocol given that the 
receiver needs to analyze message loss and message reordering in order to estimate the 
loss event rate. Thus, we present the AP notation of receiver protocol in two parts: error 
handling and loss event rate calculation. The error handling protocol shows how the 
receiver detects lost packets, reorders packets arrived out-of-order, and keeps track of 
loss events. And the protocol for the loss event rate calculation demonstrates how the 
receiver uses the values in the data packets along with its own records to estimate the loss 
event rate.  
 
3.3.1 The Error Handling Protocol  

process r 

inp n : integer {init 8, number of loss intervals used in estimating p} 
var p : float {init 0, loss event rate} 
var p_prev, fb, t_sent, R, I_tot0, I_tot1, I_tot, W_tot, I_mean, t_now, t_recv : float 
var X_recv : float {init 0} 
var seq : integer {nonnegative, sequence number in the data packet} 
var init : Boolean {init true, first data packet received}  
var I : array [integer] {an array of loss event intervals} 
var w : array [integer] of float 
var i : integer {nonnegative, index} 
var recv_data : Boolean {init false} 
var nr : integer {sequence number of next data packet expected, init. 0} 
var lpk : array [0..2, integer] of integer  
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{log of lost pk, each elem: lost pk seq num (init –1), lost pk ts, subseq pk cnt (init 0), loss event 
num (init –1)} 
var lpk_s : integer {init. 0} 
var lpk_e : integer {init. 0} 
var levnt_t : array [integer] of float {timestamp of the first lost pk of the lost events} 
var levnt_n : array [integer] of integer {seq num of the first lost pk of the lost events} 
var levnt_e : integer {init. 0} 
var ni : integer {init. 0} 
var found : Boolean  
var k, j : integer 
var s_bf : integer  
var s_aft : integer 
var s_loss : integer  
var t_bf : float  
var t_aft : float 
var t_loss : float 
 
begin 
 
rcv data_pk(seq, t_sent, R_i) from s ->  
 k := lpk_s; 
 {count the number of pks arriving after the lost pk} 
 do k < lpk_e -> 
  if (lpk[k][0] < seq) ^ (lpk[k][2] < 3) ->  

lpk[k][2] := lpk[k][2] + 1; 
   if lpk[k][2] = 3 ->  

lpk_s := k+1;  
    if (levnt_e = 0) v (lpk[k][1] – levnt_t[levnt_e-1] > R_i) -> 
     levnt_t[levnt_e] := lpk[k][1]; 
     levnt_n[levnt_e] := lpk[k][0]; 
     lpk[lpk_e-1][3] := levnt_e; 
     I[ni] := lpk[k][0] – levnt_n[levnt_e – 1]; 
     ni := ni + 1 ; 
     levnt_e := levnt_e + 1 
    [] (levnt_e > 0) ^ (t_loss – levnt[levnt_e][0] <= R_i) -> 
     lpk[lpk_e-1][3] := levnt_e - 1 
    fi; 
   [] lpk[k][2] < 3 -> skip 
   fi 
  [] (lpk[k][0] >= seq) v (lpk[k][2] = 3) -> skip 
  fi; 
  k := k+1 
 od; 
 s_aft, t_aft := seq, t_now; 

if seq = nr -> nr := nr + 1 
[] seq < nr -> {erase a previously lost packet} 

            found, k := false, 0; 
            do (~found ^ k<lpk_e)  ->  

if lpk[k][0] = seq -> found := true; 
       lpk[k][0] := -1; 
       if lpk[k][2] = 3 ->  
 if levnt_n[lpk[k][3]] = lpk[k][0] ->  
   j := k + 1; 
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   {update loss event array and I} 
   do j < lpk_e ->  
  if lpk[j][2]=3 ^ lpk[j][3]=lpk[k][3] 
   -> levnt_n[lpk[k][3]]:=lpk[j][0]; 
       levnt_t[lpk[k][3]]:=lpk[j][1]; 
       I[lpk[k][3]-1]:= 

levnt_n[lpk[k][3]]-levnt_n[lpk[k][3]-1]; 
           I[lpk[k][3]]:= 

levnt_n[lpk[k][3]+1]-levnt_n[lpk[k][3]] 
[] lpk[j][2]~=3 ^ lpk[j][3]~=lpk[k][3]; 
     j:=lpk_e 
 -> skip 
fi; j:=j+1 

        od 
 [] levnt_n[lpk[k][3]] ~= lpk[k][0] -> skip 
 fi 

            [] lpk[k][2] < 3 -> skip 
            fi;  
            lpk[k][2] := 0   

[] l_pk[k][0] ~= seq -> k := k+1 
fi 

            od; 
 [] seq > nr -> {log a lost packet} 
            k := 0; 
            do k < seq – nr ->  

s_loss := nr + k; 
    t_loss := t_bf + ((t_aft - t_bf)*(s_loss – s_bf)/(s_after – s_bf)); 
    lpk[lpk_e][0] := s_loss; 
    lpk[lpk_e][1] := t_loss; 
    lpk[lpk_e][2] := 1; 
    lpk_e := lpk_e + 1; 
    k := k+1 
   od;    
 fi;  

s_bf, t_bf := seq, t_now; 
{calculation the loss event rate p} 
if p > p_prev -> {cause fb to expire} 

 [] p <= p_prev -> skip 
 fi; 
 
[] {fb expires} -> {prepare and send fb pk} 
 
end 
 
3.3.2 The Procotol for the Loss Event Rate Calculation  

process r 

{same variables as the error handling protocol} 
begin 
 
rcv data_pk(seq, t_sent, R_i) from s ->  

recv_data, t_recv := true, t_now; 
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if init -> fb, p, X_recv, init:= R_i, 0, 0, false; 
  {cause fb to expire} 

 [] ~init -> skip 
fi;  

 {add the data packet to the packet history}; 
 p_prev, i := p, 0;  
 do i < n ->  

if i < n/2 -> w[i] := 1 
 [] i >= n/2 -> w[i] := 1–(i–(n/2–1))/(n/2+1) 
 fi; i := i + 1   
 od; 
 I_tot0, I_tot1, W_tot, i := 0, 0, 0, 0; 
 do i < n -> I_tot0 := I_tot0 + (I[i]*w[i]); 
        W_tot, i := W_tot + w[i], i + 1; 

od; 
 i := 1; 

do i <= n -> I_tot1, i := I_tot1 + (I[i]*w[i-1]), i + 1; 
 od; 
 I_tot := max(I_tot0, I_tot1); 
 I_mean := I_tot/W_tot; 

p := 1/I_mean; 
if p > p_prev -> {cause fb to expire} 

 [] p <= p_prev -> skip 
 fi; 
 
[] {fb expires} -> if recv_data -> i := 0; 
      do i < n -> if i < n/2 -> w[i] := 1 
             [] i >= n/2 -> w[i] := 1–(i–(n/2–1))/(n/2+1) 
             fi; i := i + 1   
      od; 
      I_tot0, I_tot1, W_tot, i := 0, 0, 0, 0;  

  do i < min(n, ni) ->  
I_tot0 := I_tot0 + (I[ni – i - 1]*w[i]); 

     W_tot, i := W_tot + w[i], i + 1; 
      od; 
      i := 1; 
      do i <= n -> I_tot1, i := I_tot1 + (I[i]*w[i-1]), i + 1; 
      od; 
      I_tot := max(I_tot0, I_tot1); 
      I_mean := I_tot/W_tot; 
      p := 1/I_mean; 
      X_recv:= {number of packets received in last R_i seconds}/R_i; 
      send fb_pk(t_sent, t_now-t_recv, X_recv, p) to s; 
      recv_data := false 
       [] ~recv_data -> skip 
       fi; 
       fb := R_i; 
 
end 
 
3.4 Analysis of TFRC Equations 
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In this section, we explore the equations and procedures used by the sender and 
the receiver, and analyze how they contribute to the smoother throughput and TCP-
friendly features of TFRC.  
 
3.4.1 Analysis of Sender Equations and Procedures 
 

Sender’s actions depend on whether a feedback packet is received or nofeedback 
timer expires. Initially, the sending rate is set to 1 packet per second, and the nofeedback 
timer is set to 2 seconds.  
 When a feedback packet is received, the sender performs the following 5 steps: 
calculate a most recent sample of RTT, estimate a new smoothed RTT, calculate the TCP 
retransmission timeout value, adjust the sending rate, and reset the nofeedback timer. 
 

1. Calculate a sample of RTT 
R_sample := (t_now – t_recvdata) – t_delay ;                                              (equ. 1) 
 
The sender calculates a new RTT sample every time a feedback packet is 

received. Then it recalculates the RTT estimate based on the past values and the new 
RTT sample. t_recvdata is the sending time of the last data packet received by the 
receiver upon the generation of this feedback packet, and t_delay is the time elapsed from 
the receipt of the last data packet to the generation of this feedback packet on the receiver 
(see figure 2). Thus, equation 1 gives the most recent sample of RTT. 
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2. Estimate RTT 

if 1fb -> R, 1fb := R_sample, false 
[] ~1fb -> R := q*R + (1-q)*R_sample                                                        (equ. 2) 
fi ; 

 
Equation 2 comes directly from TCP’s estimation of RTT [JK88]. Thus, when the 

RTT value is used in the TCP throughput equation, a good estimate of TCP sending rate 
will be obtained. This equation yields the exponential weighted moving average 
(EWMA) of RTT. By using a q value close to 1, the equation puts more weight on the 
more recent RTT samples. Consider the EWMA of a 5th estimate of RTT, R5. Let the first 
estimate of RTT be R0 = R_sample0.  

 
 R5 = q5 *R_sample0 + q4 * (1-q) * R_sample1 + … + q0 * (1-q) * R_sample5. 
So,  

 Rn = qn * R_sample0 ∑
=

− ∗−∗
n

i
i

in sampleRqq
1

_)1( . 

 
The first RTT sample is weighted the most. Then, the coefficient is the smallest 

for the second RTT sample, and increases gradually toward the most recent RTT sample. 
Usually, q is set to be 0.9; the performance of TFRC is not affected by the exact value of 
q. 

 
3. Calculate the TCP retransmission timeout value 

t_RTO := 4*R ;                                                                                          (equ. 3) 
 
The TCP throughput equation—which will be discussed shortly—that is used by 

TFRC to estimate the sending rate needs a retransmit timeout value t_RTO. In TCP 
algorithm, it is estimated as, 

 
 t_RTO = R + 4*R_var, where R_var is the variance of RTT. 
 
However, it is difficult to accurately model the TCP retransmit timeout value, because the 
various TCP flavors use drastically different clock granularities to measure this value. 
Further, TFRC does not rely on this value to determine the retransmission time. Thus, a 
rough estimate of it does not result considerable inaccuracies. Through experiments, 
equation 3 evolved as an acceptable heuristic estimate.  
 

4. Adjust the sending rate 
if p > 0 -> X_calc := {TCP throughput equation (s, R, b, p, t_RTO)}; 
      X := min(X_calc, 2*X_recv) {lower bound = s/t_mbi};                  (equ. 4) 
[] p <= 0 -> if (t_now – tld) >= R -> X := min(2*X, 2*X_recv) {lower bound = s/R); 
                           (equ. 5) 

            tld := t_now 
           [] (t_now – tld) < R -> skip 
          fi 
 fi; 
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The TCP throughput equation used to calculate X_calc is 

 X_calc = 
))321(

8
33(_

3
2 2ppbpRTOtbpR

s

+∗∗∗∗+∗
           (equ. 6) 

 
TFRC follows the same general principles for adjusting the sending rate. When 

loss event rate, p, is greater than zero, it recalculates the sending rate using the TCP 
throughput equation; otherwise, the rate is doubled. The TCP throughput equation is the 
simplified modeling result of Padhye et al [PFTK98]. using TCP Reno, which is the most 
widely implemented version of TCP in the Internet. The original equation is, 

 

 X ≈
)321()

8
33,1min(_
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The empirical result of the work of Padhye shows that this equation accurately models 
the TCP throughput with a wide range of loss rates.  
 The result of the sending rate is then compared to twice the receiving rate 
measured by the receiver, and the lesser of the two values is chosen. Also, a lower bound 
of s/t_mbi is put on the adjusted sending rate. t_mbi is the maximum inter-packet backoff 
interval, and is set to 64 seconds. Thus, if the sending rate returned by the TCP 
throughput equation falls below the lower bound, it ensures that the sending rate is at 
least one packet per every 64 seconds. 

When the loss event rate is zero, TFRC doubles the sending rate as TCP would. A 
variable named “time last doubled” (tld) is used to keep track of the timestamp when 
sending rate was most recently doubled; so only when it has been at least one RTT since 
tld, does the sending rate get doubled. Equation 5 doubles the sending rate conservatively 
by comparing it with twice the receiving rate measured by the receiver, and picking the 
lower value. Symmetric with adjusting the sending rate, equation 5 also puts a lower 
bound, s/R. So the sending rate is bumped up to at least one packet per RTT, if it was still 
very low. 

 
5. Reset the nofeedback timer 

nofb := max(4*R, 2*s/X)                                                                            (equ. 7) 
 
Equation 7 updates the nofeedback timer to the greater of the two values: 4 times 

RTT and amount of time allowed for sending two packets. 
When no feedback packet is received for an extended period of time, nofeedback 

timer will expire; and the sender performs these three actions: update the receiving rate 
last calculated by the receiver, adjust sending rate, and reset nofeedback timer.  

 
1. Update the receiving rate last calculated by the receiver 

if X_calc > 2*X_recv -> X_recv := max(X_recv/2, s/(2*t_mbi));                     (equ. 8) 
[] X_calc <= 2*X_recv -> X_recv := X_calc/4                                               (equ. 9) 
fi; 
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If no feedback packet is received after the nofeedback timer expires, the sender 
decreases the value of supposedly receiver-measured receiving rate, and recalculates the 
sending rate. This is also halving of the sending rate. Equation 8 is used when 2*X_recv 
was last chosen as the sending rate, thus, X_recv is halved with a lower bound of 
s/(2*t_mbi), meaning one packet every 128 seconds. Equation 9 is used with the 
condition that the sending rate calculated from the TCP equation was chosen, so X_recv 
is assigned X_calc/4, so that 2*X_recv = X_calc/2 will be used in the following step. 

 
2. Adjust sending rate 
If there has been feedback packets received since the establishment of the current 

connection, the same procedure as step 4 above is performed; Otherwise,  
 
X := max(X/2, s/t_mbi).                                                                                   (equ. 10) 
 

The initial sending rate of one packet/second is halved, and will continue getting halved 
if the absence of feedback persists.  
 

3. Reset nofeedback timer 
 And the nofeedback timer restarts as above.  
 
3.4.2 Analysis of Receiver Equations and Procedures 

 
The receiver is responsible for receiving data packets, calculating the loss event 

rate, and sending feedback packets. It performs a sequence of actions depending on 
whether a data packet is being received or the feedback timer expires.  
 The calculation of loss event rate is one of the core components of this protocol. 
The change of sending rate is partially based on the loss event rate (see section 3.4.1). 
Before discussing the loss event rate, it is necessary to first understand the detection of a 
loss, a loss event, and a loss interval. A data packet is considered lost if three packets of 
greater sequence numbers are received; and its late arrival can erase the packet loss in the 
history. A loss event contains one or more losses occurred during one round trip time. A 
packet is considered part of an existing loss event, if its timestamp is no more than one 
RTT larger than the timestamp of the first packet of the loss event; otherwise, this packet 
becomes the first packet of a new loss event (see figure 3). The loss interval is the 
number of packets within a loss event; it is obtained by subtracting the sequence number 
of the first lost packet in a loss event from the sequence number of the first lost packet in 
the subsequent loss event.  
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 Loss event rate is the ratio of the number of loss event and the total number of lost 
packets. Although it is seems sensible to estimate loss event rate as number of lost packet 
over total number of packets transmitted, this estimate is not an accurate representation of 
general TCP loss event rate due to the varied implementation of different flavors of TCP. 
Because different TCP variants halve the congestion window differently in response to 
several losses in a window of data, and different queue management schemes in the 
routers cause different packet loss patterns, by ignoring losses after one loss in a round 
trip time, TFRC’s loss event estimate closely reflects the loss condition under most TCP 
variants.  

The detailed calculation of the loss event rate is as follows: 
 
I_tot0, I_tot1, W_tot, i := 0, 0, 0, 0;  

  do i < n -> I_tot0 := I_tot0 + (I[i]*w[i]); 
        W_tot, i := W_tot + w[i], i + 1; 

od; 
 i := 1; 
 do i <= n -> I_tot1, i := I_tot1 + (I[i]*w[i-1]), i + 1; 
 od; 
 I_tot := max(I_tot0, I_tot1); 
 I_mean := I_tot/W_tot; 
 p := 1/I_mean; 

 
 The loss event rate is measured over n most recent loss intervals. n is specified to 
be less than 8 so that the loss event rate can sufficiently reflect recent changes in network 
congestion level. The larger the value of n, the less the sender will adjust the sending rate, 
thus the more slowly the sender responds to severe packet loss. Moreover, n weights are 
used on the n most recent intervals, so that the more weights are given to the more recent 
intervals. The weighted total number of packets is divided by the sum of the weights to 
yield the average loss interval I_mean. And the reciprocal of I_mean is the loss event 
rate. The decision on whether to include the packet losses since the most recent loss event 
can effect the value of the loss event rate. The n intervals are shifted to include those 
packet losses if the resulting average loss interval is larger.      

 RTT RTT RTT 

Loss event n Loss event n+3 Loss event n+2 Loss event n+1 

RTT RTTRTT
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Figure 3: Loss events
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The frequency of the sending of feedback packets also determines the sender’s 
responsiveness to network congestion. Receiving feedback packets more frequently 
allows sender to have the more current information about the network status; however, if 
the interval between the receipts of feedback packet is too short, the difference made by 
the extra packets may not justify the increased traffic in the network and increased 
workload on the receiver’s CPU. Considering the tradeoffs, feedback packets should be 
sent at least once per RTT or for every data packet sent if the sending rate is less than one 
packet per RTT, and when a new loss event is detected.    
 The feedback packets contain a value, X_recv, the receiving rate within the 
previous RTT calculated by the receiver. It is simply the number of packets received in 
the past RTT divided by the RTT. This is an empirical value that is used by the sender to 
compare with the calculated sending rate. This value is chosen over the calculated 
sending rate when the theoretic value is inflated. See section 3.4.1 for more details.  
 
4.  Discussion of TFRC Empirical Performance Results  
 

Two main goals of TFRC are (1) TCP-friendliness, where UDP flows share 
bandwidth fairly with TCP flows by responding appropriately to changing network 
conditions, and (2) smoothness, where UDP packets are transmitted at a sending rate with 
less abrupt rises and falls while being regulated.  

To demonstrate that TFRC is a well-designed protocol, [FHPW00] tested TFRC 
on the public Internet, the Dummynet network [Riz98], and in the ns network simulator, 
with various numbers of TCP flows and bandwidth parameters. In a network with 
utilization greater than 90% at all times, the same number of TFRC flows and TCP flows 
are sharing a common bottleneck. The means of the throughputs of two types of flows 
measured over a number of small intervals were quite close. This observation shows that 
in a busy network, a number of TCP flows competing with a number of TFRC flows has 
a similar result as if all flows were TCP. And this observation is consistent with the 
protocol design, because TFRC conservatively adjusts its sending rate based on several 
network parameters using the TCP throughput equation (see section 3.4.1). This prevents 
TFRC flows to have throughput that deviates too far from that of the TCP flows under the 
same network conditions. However, the experiment did show considerable deviation of 
the throughputs of TFRC flows from the throughputs of TCP flows under certain 
conditions. The possible factors that contribute to the deviations are the measure of the 
loss rate, the TFRC receiver’s calculation of the actual receiving rate, and the frequency 
of updating the round trip time and the sending rate. Thus, in a network of rapidly 
changing traffic patterns, TFRC, which does not respond as quickly as TCP, can have a 
throughput quite different than that of TCP. The variances of the throughputs of TFRC 
and TCP flows were also measured in the experiment. As we expected, the TFRC flows 
show a smaller variance than those of TCP flows [FHPW00]. This can be explained by 
the smooth sending rates of TFRC flows. Since the TFRC flows do not experience the 
halving in number of packets sent like the TCP flows do, and the reduction of sending 
amount is reflected by the sending rate over a period of time, the throughputs measured 
over the intervals for TFRC flows fluctuate less than those of TCP flows. Hence, the 
smoothness of TFRC is evident.  
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In [YKL01], four congestion control protocols are studied: TCP, GAIMD [YL00], 
TFRC, and TEAR [ROY00]. The studies of the protocols are based on four 
measurements, defined as follows: (1) fairness, small variations of sending rate compared 
with that of the competing flows; (2) smoothness, small variations of sending rate of one 
flow over time in a stationary environment; (3) responsiveness, the quickness of 
reduction of sending rate in response to congestion; (4) aggressiveness, the quickness of 
increase in sending rate for higher utilization when the network recovers from congestion 
and more bandwidth becomes available. Fairness and smoothness are measured in a 
stationary network environment with fluctuations. Responsiveness and aggressiveness are 
studied under increase in network congestion and increase in available bandwidth, 
respectively. [YKL01] measures and calculates the practical and theoretical sending rate 
coefficient of variation (CoV) in each study case. The value of practical CoV indicates 
the performance of the protocol. The calculated CoV is then compared with the observed 
CoV to check for consistency. In most cases, the results match the calculations. In the 
stationary environment, it was concluded that for all four protocols, smoothness and 
fairness are positively correlated. This echoes the earlier discussion about the speed of the 
changing of network traffic pattern and the difference in the mean throughputs of TCP 
and TFRC. This paper also agrees that smooth traffic patterns promote fairness between 
flows of different protocols. Thus, at a low loss rate, TFRC appears to perform well in 
smoothness and fairness; while as the loss rate reaches 20%, its smoothness and fairness 
were observed to be the worst among the four protocols. Although the numerical result 
does not seem optimistic, by examining the lines of TFRC and TCP in figure 5 carefully, 
we can see that the TFRC sending rate falls at appropriate places relative to the TCP 
sending rates, considering that TFRC is supposed to be smoothed in contrast to the 
fluctuations in TCP sending rates. In network environment with increased congestion, 
TFRC is shown to have relatively slower responding speed compared to TCP and 
GAIMD. This is expected for rate-based protocol as discussed previously. Interestingly, it 
was noticed that since TCP over-reacts to congestion, the amount of time for it to reach 
the stable state was actually approximately as long as those of slower-responding 
protocols. In the environment with increased bandwidth, although rate-based protocols 
are expected to have slower response, TFRC performed reasonably well with its history-
discounting feature turned on. The history-discounting feature, which is not studied in 
section 3, is an optional feature that allows more weights to be put on the more recent 
intervals in calculating the loss event rate [HFPW03]. The motivation of this feature is to 
allow quicker response to the sudden disappearance of congestion. [YKL01] shows 
TFRC performs well in most conditions except when the loss rate is high. However, it 
seems to us that the TFRC sending rate is reasonable, although extremely low, relative to 
the TCP sending rate in the same condition.  

According to the empirical studies, TFRC performs well in that it shares 
bandwidth fairly with the TCP flows, and that it yields a smooth sending rate for its 
application. However, TFRC can be slow in responding to changes in the network. With 
the aid of the history discounting feature, it can still achieve a reasonable quickness in 
response to available bandwidth.  

 
5. Conclusion  
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 We have explored the field of congestion control by studying the history of 
research in this area and a specific rate-based congestion control, TFRC.  

The history of congestion control is presented from a macroscopic view gradually 
down to specific details. Using Gerla and Kleinrock’s survey of congestion control and 
flow control mechanisms based on the targeted network layer of congestion, we classify 
end-to-end congestion control mechanisms, window-based as well as rate-based, to be on 
both entry-to-exit level and transport-level. Yang and Reddy’s taxonomy of congestion 
control schemes takes a totally different approach by using control theory. The end-to-
end congestion control mechanisms are closed loop control using both implicit and 
explicit feedbacks. Having generalized the characteristics of window-based and rate-
based congestion control schemes, we introduce the classic TCP congestion control 
mechanism with slow start and AIMD congestion avoidance, and provide a brief 
description of other TCP variants. Differing drastically from most TCP flavors, TCP 
Vegas is pointed out for its usage of round trip time—instead of simply the acks--to 
adjust the congestion window. Due to the increasing popularity of applications running 
on top of UDP, such as real time and streaming media applications, the absence of 
regulation for UDP flows threatens the current stability of the Internet. To address the 
research on congestion control for best-effort protocols, we evaluate DCCP that works on 
transport level, and the congestion manager, which works between the transport and the 
application levels.  

The main contribution of the paper is the detailed examination of TCP-friendly 
rate control (TFRC) in section 3, where the sender and receiver protocols are presented in 
AP notation, and the procedures and equations in the sender’s and the receiver’s 
protocols are studied for their originating source and their conduciveness to TCP-
friendliness and transmission smoothness. To evaluate TFRC, two empirical studies of 
this protocol are presented for validating the TCP-friendly and smooth transmission 
features of TFRC, and with comparison to other window-based and rate-based congestion 
control protocols. From the experiment results shown in the papers, we conclude that 
when loss rate is high, the performance suffers. However, with a reasonably low loss rate, 
TFRC performs well as a congestion control mechanism for best-effort flows sharing 
bandwidth fairly with TCP flows without creating an abrupt change in the sending rate.  
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