
Creation of a fine controlled action for a robot

Ellie Lin
Supervisor: Dr. Peter Stone

Department of Computer Sciences
University of Texas at Austin

Austin, TX

December 15, 2003

Abstract

A common problem facing roboticists is the creation of fine controlled actions for

a robot that must be interspersed with a baseline motion. We define a fine controlled

action to be one in which small errors can make the difference in the success or failure

of the action. A baseline motion is one that is executed repeatedly over time, such

as walking straight or remaining idle. We examine the considerations that can affect

the success of a fine controlled action that transitions between baseline motions. We

introduce a general technique for implementing a fine controlled action that transitions

from and to a baseline motion using the example of pushing an elevator button. We

implement this technique in the area of robotic soccer. Our results demonstrate that

this technique can successfully create fine controlled actions for a robot.

1 Introduction

One of the fundamental challenges in robotics is the implementation of a fine controlled

action for a robot that is executed from and to a baseline motion. We define a fine controlled
action to be one in which small errors can make the difference in the success or failure of
the action. One example of such is the pressing of an elevator button. Success in this task
leaves little room for error. If the robot’s arm contacts any part of the elevator other than
the button while trying to press the elevator button, the robot runs the risk of pushing an
incorrect button. Also, the success of a robot’s fine controlled action is also dependent on
the location at which the robot begins its action. In the elevator button example, if the
distance between the robot and the elevator is too great, the robot will not make contact
with the elevator button. A baseline motion such as walking or standing in place leads into
and directly follows the fine controlled action. It is important for the robot to successfully
begin the action from and return to the baseline motion.

Transitions between the fine controlled action and the baseline motion are tricky in that
one could very well disrupt the operation of the other. Thus, creating a fine controlled
action that executes from and to a baseline motion requires careful attention to detail. We
explore the necessary considerations for creating a fine controlled action in the elevator
button scenario. We then present a general technique for creating a fine controlled action
and test it in an application relevant to robotic soccer, namely kicking the ball.

For the purposes of this research, we use the Sony Aibo robot. [1] The Aibo has multiple
joints that can be set at certain angles. We specify the fine controlled action with a sequence

1



of poses, where each pose consists of all the angles of the joints. The Sony Aibo has a PID
mechanism that moves the joint angles from one specified pose to the next over a specified
time. PID is a control filter that helps the robot reach a pose without overshooting or
oscillating. [2] Thus, we specify each action with a sequence of poses and a transition time
between consecutive poses. The following table depicts the used joints and joint descriptions
for the Sony Aibo robot.

joint joint description

j1 front right leg joint 1
j2 front right leg joint 2
j3 front right leg joint 3
j4 front left leg joint 1
j5 front left leg joint 2
j6 front left leg joint 3
j7 back right leg joint 1
j8 back right leg joint 2
j9 back right leg joint 3
j10 back left leg joint 1
j11 back left leg joint 2
j12 back left leg joint 3
j13 head joint 1
j14 head joint 2
j15 head joint 3
j16 mouth joint

Table 1: Joints used in fine controlled action

2 Pushing the elevator button: a case study

We use a pretend button that is visible to the Aibo (orange) and placed at roughly the height
of the Aibo’s head when standing. The following picture shows the Aibo standing next to
the elevator button.

We use walking as the baseline motion for the robot to transition from and to the button
pushing action. The robot must walk to the elevator button, push the elevator button, and
then walk away from the elevator button. The robot must not make contact with anyone
else besides the elevator button. There are several considerations in this task:
(1) The difficulty of creating the button pushing action that transitions smoothly from all
possible joint configurations of the walking baseline motion. It is easier to first create the
button pushing action in isolation from the baseline motion and later address the transition.
(2) The negative effect the transition from walking to button pushing could have on the

2



success of pushing the button. An awkward transition (e.g. one that causes the robot
to sway drastically to the side before pushing the button) can cause the robot to miss the
elevator button. In this case, the beginning of the button pushing action needs to be modified
to enable smoother transitions.
(3) The negative effect the transition from button pushing back to the walk could have on
the success of the button pushing action. An awkward transition back to walking (e.g. one
that causes the robot to push an incorrect button on the elevator after having already pushed
the correct one) could negatively affect the success of the task. In the case of an awkward
transition, the end of the button pushing action needs to be modified to enable a smoother
transition.

We can now use the considerations from the elevator button problem to generalize a
technique for creating fine controlled actions. We will discuss the implementation of the
elevator button pushing action as we describe the technique in the following section.

3 The general technique

The technique assumes that there is a mechanism that enables us to position a robot in
some pose and access all the joint angle values for the robot in that pose. We define a
Pose = (j1, . . . , jn), ji ∈ ℜ, where j represents the positions of the n joints of the robot.
The robot has a PID mechanism that moves joints 1 through n from one Pose to another
over a time interval t. We specify each action as a series of moves {Move1, . . . , Movem}
where a Move = (Posei, P osef , ∆t), and MovejPosef

= Move(j+1)Posei
, ∀j ∈ [1, m − 1].

Each t unit for the robots we used represents 8 milliseconds of execution time, so ∆t is the
amount of time (in 8 millisecond units) it takes to transition from one Pose to the next.

The technique is comprised of two steps:
(1) Critical action: Creating the fine controlled action in isolation from the baseline motion.
(2) Integration: Integrating the fine controlled action into the baseline motion.

3.1 Creating the critical action

The first step in creating the fine controlled action involves isolating the action from the
baseline motion. We call the Moves that comprise this isolated action the critical action.
To obtain the joint angle values for each Pose, we use a tool that captures all the joint
angle values of the robot after physically positioning the robot in its desired pose. We first
manually position the robot in the ending pose of the critical action and record j1, . . . , jn

for that Pose. We call this Posecriticalf . The ending pose is the Pose in which the robot
completes its task. In the elevator button pushing task, Posecriticalf is the Pose in which
the robot makes contact with the elevator button.

We then physically position the robot in the Pose from which we want the robot to move
to Posecriticalf . We called this Posecritical0. We then create a Move m = (Posecritical0, P osecriticalf , ∆t)
and watch the robot execute m via its PID control mechanism. At this point of fine controlled
action creation, we are primarily concerned with the path the robot takes from Posecritical0

to Posecriticalf . Thus, during this manual process of manipulating the robot’s joints and cap-
turing the Pose, we select a large ∆t for the Move that enables us to watch the path from
Posecritical0 to Posecriticalf . Since each t unit for the robots we used represented 8 millisec-
onds of execution time, we typically selected ∆t to be 64, so this Move took approximately
1/2 second to execute.

3



Above, the figure on the left is Posecritical0, and the figure on the right Posecriticalf . Note
that the front right leg is lifted in the air to the height of our button. This Move is specified
by the following table:

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Posecritical0 -6 -10 -6 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0
Posecriticalf 95 0 0 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 64

Table 2: Pushing elevator button critical action

If the Move does not travel a path that allows the robot to perform the action success-
fully, we then add an intermediary Posecritical1 between Posecritical0 and Posecriticalf , create
a sequence of two Moves {(Posecritical0, P osecritical1, ∆ti), (Posecritical1, P osecriticalf , ∆ti+1)},
and watch the execution. Again, we abstract away ∆ti and ∆ti+1, typically selecting 64.
After watching the path for this sequence of Moves, we repeat the process if necessary.

We added intermediary Posecritical1 (above left) and Posecritical2 (above right) in between
Posecritical0 and Posecriticalf . Without these intermediary Poses, the robot would make
contact with the elevator during the Move from Posecritical0 to Posecriticalf before it pushed
the button. The added Moves are specified by the following table:

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Posecritical0 -6 -10 -6 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0
Posecritical1 -6 -10 144 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 64
Posecritical2 95 -10 144 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 64
Posecriticalf 95 0 0 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 64

Table 3: Pushing elevator button critical action with intermediary Moves

After we are finally satisfied with the sequence of Moves in the critical action, we tune
the ∆t for each Move. We would like to execute each Moveof the critical action as quickly
as possible. Thus, we reduce ∆t for each Move individually, stopping if the next decrement
disrupts the action.

The following table depicts the critical action with tuned ∆t.

4



j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Posecritical0 -6 -10 -6 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0
Posecritical1 -6 -10 144 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 32
Posecritical2 95 -10 144 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 16
Posecriticalf 95 0 0 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 64

Table 4: Pushing elevator button critical action with tuned ∆t

3.2 Integrating the critical action into the baseline motion

The second step in creating the fine controlled action involves integrating the critical action

into the baseline motion. There are two points of integration: (1) the transition from the
baseline motion to the fine controlled action, (2) the transition from the fine controlled action
to the baseline motion.

3.2.1 The initial action

We first focus on the Move i = (Poseinitial0 , P osecritical0, ∆t), where Poseinitial0 ∈ {all possible
poses of the baseline motion}. Since i precedes the critical action, there may be cases in
which i adds unwanted momentum to the critical action and disrupts the critical action.
For example, in the elevator button scenario, the transition from the walk to the beginning
of the critical action sometimes caused the robot to move sideways before executing the
critical action. When the elevator button pushing action was isolated from the walk, the
robot successfully pushed the button 85% of the time (in 20 trials). However, once the action
was incorporated into the walk, the robot only successfully pushed the button 60% of the
time (in 20 trials). In such cases where i disrupts the critical action, we find a Poseinitial1 ,
in which {(Poseinitial0 , P oseinitial1 , ∆t), (Poseinitial1 , P osecritical0, ∆t)} does not disrupt the
critical action. We call this the initial action.

Poseinitial1 is shown above. The added Move is specified by the following table:

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Poseinitial1 -5 23 102 -5 23 102 -35 6 75 -35 6 75 0 0 0 0 64
Posecritical0 -6 -10 -6 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 32
Posecritical1 -6 -10 144 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 32
Posecritical2 95 -10 144 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 16
Posecriticalf 95 0 0 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 64

Table 5: Pushing elevator button initial action and critical action

Oftentimes, the Poseinitial1 we use mirrors the idle position of the walk. The idle position
of the walk is the Pose the robot assumes when walking with 0 velocity. Thus, it effectively
causes the robot to stop before performing the critical action. We then add the Move

5



(Poseinitial1 , P osecritical0, ∆t), abstracting away the ∆t, to the moves of the critical action

and watch the path of execution.
As with the creation of the critical action, we then add intermediary Poses until we were

satisfied with the sequence of Moves from Poseinitial0 to Posecritical0. We then fine-tune the
∆t for the added Moves.

3.2.2 The final action

We finally focus on the Move f = (Posecriticalf , P osefinalf , ∆t), where Posefinalf is the first
position of the baseline motion after the robot completes its fine controlled action. For the
walk, Posefinalf is the idle position of the walk. At the end the elevator button pushing
action, the robot assumes Posefinalf before continuing the walk. Due to constraints of the
movement module we used, this transition to Posefinalf takes 1 unit of t (8 milliseconds). [3]
Thus, we consider the last Move of the action, f , to be (Posecriticalf , P osefinalf , 1). Since f

follows the critical action, there may be cases in which f causes unwanted side-effects (e.g.
the hindering of the robot’s ability to resume walking). In the elevator button scenario, f

caused the robot to make contact with the elevator after it had already pushed the elevator
button. Since the robot’s task required that it not make contact with anything other than
the elevator button, this resulted in the unsuccessful completion of the robot’s task.

In cases where f causes undesirable side-effects, we find a Posefinal0 , in which
{(Posecriticalf , P osefinal0 , ∆t), (Posefinal0, P osefinalf , ∆t)} does not cause unwanted side-effects.
We call this the final action. As with the critical action and the initial action, we add in-
termediary Poses until we are satisfied with the sequence of Moves from Posecriticalf to
Posefinalf . We then fine-tune the ∆t for the final action.

While transitioning from the button pushing action to the walk, for 80% of the time (out
of 20 trials), the robot would make contact with the elevator after having already pushed the
button. After adding Posefinal0 (shown below) to the end of the critical action, the robot
no longer exhibited the unwanted side-effect.

The sequence of Moves constituting the initial action, critical action, and final action

make up the fine controlled action. The following table depicts the complete elevator button
pushing action.

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Poseinitial1 -5 23 102 -5 23 102 -35 6 75 -35 6 75 0 0 0 0 64
Posecritical0 -6 -10 -6 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 32
Posecritical1 -6 -10 144 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 32
Posecritical2 95 -10 144 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 16
Posecriticalf 95 0 0 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 64
Posefinal0 95 -10 144 -6 -10 -6 -7 -10 146 -7 -10 146 38 89 24 0 64

Table 6: Pushing elevator button initial action, critical action, and final action

6



By using this sequence of moves defined by the Poses in the above table, the Aibo
successfully walks up to a small button, pushes the button, and walks away from the button.
In the experiment, the Aibo has an 85% success rate (in 20 trials).

3.3 Implementation of the technique

This technique was first developed while creating a legged-league RoboCup team at the
University of Texas at Austin in spring 2003. [3] The RoboCup is an international initiative
to foster improvements in technology while using the game of soccer as a testbed. [4] We
used this technique to create kicks for the Sony Aibo. The baseline motion that we used for
the Sony Aibo was a walk on four legs.

Different situations call for different kicks. In this section, we detail the creation of two
of the kicks using the technique presented in Section 2 and summarize three additional kicks
created by the same method.

3.3.1 Chest push kick

In the field of robosoccer, it is often useful for the robot to kick the ball quickly and return
to the walking motion quickly. The chest push kick was designed to address this issue. The
chest push kick utilizes the robot’s chest to propel the ball forward while the robot remains
in a standing position. Since the robot’s chest can contact the ball without drastically ad-
justing the robot’s body height, the robot can quickly transition into and out of the kick
from and to the walk.

The above images show the poses of the isolated kick. The following table shows the
critical action for the chest push kick after tuning for ∆t.

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Posecritical0 -12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0
Posecritical1 -120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1
Posecriticalf -12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64

Table 7: Chest push kick critical action

We then integrated the walk with the kick. Testing revealed that the robot successfully
kicked the ball 55% of the time and fell over after 55% of the successful kicks (in 20 trials).
Since (Poseinitial0 , P osecritical0, ∆t) added unwanted momentum to the critical action (caus-
ing the robot to fall over after the kick), we created an initial action to precede the critical
action. {(Poseinitial0 , P oseinitial1, 64), (Poseinitial1, P osecritical0, 64)} does not lend unwanted
momentum to the critical action. Testing revealed that the robot now successfully kicked
the ball 100% of the time (in 20 trials).

7



The above picture shows the added Poseinitial1 . The following table shows the initial
action with the critical action after tuning for ∆t.

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Poseinitial1 -12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64
Posecritical0 -12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0 64
Posecritical1 -120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1
Posecriticalf -12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64

Table 8: Chest push kick initial action and critical action

Since the critical action did not add unwanted momentum that hindered the robot’s
ability to resume its baseline motion, there was no need to create a final action. The above
table represents the complete fine controlled action.

3.3.2 Fall forward kick

It is also important in robosoccer for the robot to have a strong kick that propels the ball a
great distance away. Thus, we created the fall forward kick. The fall forward kick makes use
of the forward momentum of the robot as it falls from standing position to lying position.
Since the kick begins in a standing position, the robot can quickly transition from the walk
to the kick. However, since the kick ends in a lying position, the robot does not transition
from the kick back to the walk as quickly.

The above images show the poses of the isolated kick. The following table shows the
critical action for the fall forward kick after tuning for ∆t.

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Posecritical0 -5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0
Posecriticalf -100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32

Table 9: Fall forward kick critical action

We then integrated the walk with the kick. There was no unwanted momentum resulting
from (Poseinitial0 , P osecritical0, 32), so there was no need to create an initial action. Testing

8



revealed that (Posecriticalf , P osefinalf , ∆t) caused the robot to fall forward on its face every
time. Although the robot had successfully kicked the ball, the robot could not immediately
resume walking. In this situation, the robot had to wait for its fall detection to trigger and tell
it to get up (which takes time) before resuming the walk. Thus, we found a Posefinal1 such
that {(Posecriticalf , P osefinal1, 32), (Posefinal1, P osefinalf , ∆t)} does not hinder the robot’s
ability to resume walking.

The above image shows the Posefinal1 . The table shows the critical action with
Move(Posecriticalf , P osefinal1 , 32).

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Posecritical0 -5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32
Posecriticalf -100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32
Posefinal1 90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32

Table 10: Fall forward kick critical action and {(Posecriticalf , P osefinal1 , 32)}

From observation, it is noted that transitioning from Posecriticalf directly to Posefinal1 is
not ideal. The robot would fall over 25% of the time (in 20 trials) during (Posecriticalf , P osefinal1 , 32).
Thus, we added Posefinal0 to precede Posefinal1 in the final action.

The above image shows the Posefinal0. Afterward adding Posefinal0 , the robot no longer
fell over when transitioning from the kick to the walk. The following table shows the entire
fine controlled action, consisting of the contact action and the final action.

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 ∆t

Posecritical0 -5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32
Posecriticalf -100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32
Posefinal0 -100 90 0 -100 90 0 100 6 75 100 6 75 45 -90 0 0 32
Posefinal1 90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32

Table 11: Fall forward kick critical action and final action

9



3.3.3 Other kicks

We created several other kicks with this technique. These included the front power kick, the
head kick, and the arms together kick.

Front Power Kick

The front power kick was the first kick we created for the RoboCup. We modeled this
kick after what seemed to be the predominant goal-scoring kick from previous RoboCup
competitions. [5] During the kick, the robot raises its two front legs up and drops them onto
the sides of the ball from a ’broadbase’ position. The force of the falling legs propels the
ball forward.

We wanted our front power kick to transition from any walk without prematurely tapping
the ball out of the way. Thus, we started the kick in a ’broadbase’ position in which the
robot’s torso is on the ground with its legs spread out to the side. If the robot were to
transition into the front power kick from a standing position, the robot would drop to the
ground while pulling its legs away from the ball.

From this broadbase position, the robot then moves its front legs together to center the
ball.

After the ball has been centered, the robot moves its front legs up above its head and
then quickly drops the front legs onto the sides of the ball, kicking the ball forward.

We found that the kick moves the ball relatively straight forward a distance of up to 3
meters. However, we noticed that the robot’s front legs would miss the ball if the ball lies
within 3 cm of the robot’s chest. We resolved this issue by utilizing the robot’s mouth to
push the ball slightly forward before dropping its legs on the ball.

10



Head Kick

The head kick was created to satisfy the need for a kick in a non-forward direction. We
decided that the head could be used to kick the ball to the left or to the right. During the
head kick, the robot first leans in the direction opposite of the direction it intends to kick
the ball.

The robot then moves its front leg (left leg when kicking left, right leg when kicking right)
out of the way.

Finally, the robot leans in the direction of the kick as the head turns to kick the ball.

The head kick moves the ball almost due left (or right) a distance of up to 0.5 meters.
We discovered that the head kick was especially useful when the ball was close to the edge
of the field. The robot could walk to the ball, head kick the ball along the wall, and
almost immediately continue walking, whereas the front power kick oftentimes kicked the
ball against the wall, in essence moving the ball very little, if at all.

Arms Together Kick

After creating kicks geared toward ball scoring, we realized that we needed a kick for the
goalie to block the ball from entering its goal. Deciding that speed and coverage area were
more important than the direction of the kick, we created the arms together kick. During
the arms together kick, the robot first drops into broadbase position.

11



The robot then swings its front left leg inward, swings it back out, swings its front right
leg inward, and swings it back out.

The arms together kick proved successful at quickly propelling the ball away from the
goal.

4 Conclusions

In this paper, we introduce a general technique for creating fine controlled actions for robots.
Our experiments indicate that a wide variety of fine controlled actions can be created with
this technique. The technique that had originally been developed to create kicks that transi-
tioned from and to a walk has been generalized to apply other kinds of motion. The technique
successfully created a fine controlled action for pushing an elevator button and transitioning
from and to a baseline walking motion. The results demonstrate the improvement in an
action’s success from the inclusion of the initial action and/or final action.

References

[1] Sony. Sony Global - AIBO Global Link, 2003.
URL=http://www.sony.net/Products/aibo/index.html.

[2] Bill Messner and Dawn Tilbury. Control Tutorials for Matlab: PID Tutorial, 1996.
URL=http://rclsgi.eng.ohio-state.edu/matlab/PID/PID.html.

[3] Stone, Peter, Kurt Dresner, Selim T. Erdogan, Peggy Fidelman, Nicholas K. Jong, Nate
Kohl, Gregory Kuhlmann, Ellie Lin, Mohan Sridharan, Daniel Stronger, and Gurushyam
Hariharan. ”UT Austin Villa 2003: A New RoboCup Four-Legged Team.” The Uni-
versity of Texas at Austin, Department of Computer Sciences. AI Technical Report
03-304. October 6, 2003. 76 pages. URL=http://www.cs.utexas.edu/users/UTCS/ai-
lab/index/html/Abstracts.2003.html.

[4] The RoboCup Federation. RoboCup Official Site, 1998-2003.
URL=http://www.robocup.org/02.html.

12



[5] Manuela Veloso, Scott Lenser, Douglas Vail, Maayan Roth, Ashley Stroupe,
and Sonia Chernova. CMPack-02: CMU’s Legged Robot Soccer Team. 2002.
URL=http://www.openr.org/robocup/code2002SDK/CMU/cmu teamdesc.pdf.

13


