Research Proposal:
Efficient and Effective Symbolic Model Checking

Subramanian Iyer

October 26, 2003

1 Introduction

In this proposal, we briefly outline some of the major challenges facing the
adoption of Formal Verification techniques. We focus on the model checking
approach, which is completely automated in principle and quite automated
in practice. These challenges include handling the state explosion prob-
lem associated with large industrial designs, which manifests itself as large
representation sizes and being able to reconcile verification with debugging.

Large State Spaces: As is well known, the main challenge in model check-
ing for design verification is what is termed as the “state explosion problem”
— given a design, the state space that it encompasses is often exponential in
the size of the design description. Traditionally, the state explosion problem
has been handled close to the design level, using for example abstraction,
symmetry reduction, compositional reasoning, etc. These approaches have
been shown to produce significant gains in many cases. Their main draw-
back is that the user needs to discover the applicability of these techniques
on almost a case by case basis; hence, they cannot be easily automated.

It is therefore vital to handle large state spaces automatically in a man-
ner that is transparent to the designer. The earliest approach to model
checking [6] emphasized an enumerative implementation, while a symbolic
technique using BDDs [3] was suggested by McMillan [15]. Symbolic model
checking can exhaustively cover the state space when handling small de-
signs but cannot handle industrial sized designs, which can often be orders
of magnitude larger. The main issue is that current symbolic data struc-
tures quickly grow quite large, thereby often not fitting in main memory and
being cumbersome to perform operations upon at such large sizes. One solu-
tion is functional partitioning as proposed by Jain, et.al.[13], and extended
by Narayan, et.al.[17]. More recently satisfiability-based model checkinghas

been proposed which can detect shallow bugs in large designs and sometimes
quicker, often at the cost of selective coverage of the state space.

While symbolic model checking and bounded model checking have ex-
tended the domain of applicability of formal verification techniques to larger
designs than was originally feasible, they fall considerably short of what
would be considered as being “production sized” in the electronic design
automation community.

Verification vs. Debugging: Another important issue is that of debug-
ging, sometimes also referred to as falsification, as opposed to verification.
While this may theoretically appear to be a trivial complementation issue,
it is of paramount importance in practical verification. We consider the
reasons.

Historically, designs have been checked using simulation and test tech-
niques. These techniques can run for a unlimited number of instances, as
each simulation can be considered to be independent of others. On the other
hand, formal methods like model checking proceed one step at a time. These
quickly produce rather large data structures, and are unable to progress any
further. Consequently, on large designs, simulation based techniques can
often be run for much longer.

With the increasing complexity and size of designs, the verification prob-
lem of certifying the correctness of the entire design only gets harder. Simul-
taneously, the cost of an undetected error can escalate. Simulation-based
techniques are inherently incomplete, in the sense of not being exhaustive.
Sophisticated statistical analysis techniques are used in test/simulation but
design errors still slip by.

In short, simulation-based techniques scale to large designs but are not
exhaustive in their coverage of the state space whereas formal methods can
be exhaustive but can only handle smaller designs. In practice, scalability
is perceived to be of a greater importance than exhaustive coverage. This
is especially so because “time to market” considerations often dictate the
need to locate and fix bugs as soon as possible. A certain threshold of error
is considered acceptable, even unavoidable.

Verification techniques are increasingly being integrated into the design
flow to complement simulation based tests. This creates an even greater need
for formal verification techniques to be focused toward rapid falsification in
order to actively and meaningfully interact with the modified design process
— design, verify, find bug, fix bug via redesign, repeat. This has led to a
much greater focus in practice on finding and fixing errors in designs rather
than proving their correctness.

Accordingly, the focus of this work is on the use of formal verification,

specifically symbolic model checking, to detect errors quickly, especially on
large practical designs while retaining the ability to verify design correctness,
as the situation demands.

2 Preliminaries

2.1 Temporal Logics

Temporal logic provides the simple but basic temporal operators Xp (next
p), F'p (sometime p), Gp (always p), pUq (p until ¢) that can be easily
combined in order to specify many interesting temporal properties. The
restriction to formulae along single paths generates what is known as the
Propositional Linear Temporal Logic. More generally, use of the existential
and universal path quantifiers, I/ and A resp., generates the branching time
temporal logic CTL*. The Computation Tree Logic, CTL, is a special subset
that pairs uniquely each temporal operator with exactly one quantifier. The
propositional p-calculus subsumes all the above mentioned temporal logics,
and can be thought of as a unifying framework.

It should be noted that it is possible to express any CTL formula in
terms of the Boolean connectives of propositional logic and the existential
temporal operators FX, EU and EG. Such a representation is called the
existential normal form.

We omit further details of the syntax and semantics of temporal logics as
they are widely known and readily available in the literature. The interested
reader is referred to [8].

2.2 Symbolic Reachability and Model Checking

We assume a Kripke structure M = (S,T, L), where S is the set of states, the
relation 7' C S x S, and the labeling function L defined as L(s) = s,Vs € S.
When working with BDDs, we further have S = B™ where B = {0,1}.
So each state s € S is a bit string b = (b1,b2,...by). A set of states
P can be associate with formula p, described over boolean variables 5 =
(s1,82,...5n), such that s € P if and only if v = p(s). State variables
S are said to describe the current state. Analogously we can define next
state variables (s],s),...s],) corresponding to state s’, represented by the
bit-string b’ = (b, b5, ...b),). Then we can say that a transition s — s’ € T
if and only if (b1, b, ... by, b1, b5, ...0),) = T(s1,82,...5n,8],8h,...5,). For
the sake of brevity, we shall just write this as (?, 17) ET(%, ?) Where
clear from context, we use the symbol for a set of states to also stand for

the propositional formula representing it. Similarly, the state variables will
also represent the variables of the formula.

The standard reachability algorithm is based on a fixpoint computation
which performs a breadth-first traversal of finite-state structures [7, 15, 18].
The algorithm takes as inputs the set of initial states, I(5), expressed in

terms of the present state variables, s, and the transition relation, 7'(s, s').
For sequential designs, T is obtained as the conjunction of the transition
relations, s) = fx(75,14), of the individual state elements, i.e., T(?,?) =
[T.(s), = fu(F)). Given a set of states, R(), that the system can reach,
the set of next states is defined as N(?) = 3F[T(F, ?) A R(S)]. This
calculation of N is also known as image computation. The set of reached
states is computed by adding N(75"), obtained by substituting variables 5

for ?, to R(7S) and iteratively performing this image computation step
until a fixpoint is reached.

In practice, Model Checking is usually performed in two stages: In the
first stage, the finite state machine that represents the transition relation is
reduced with respect to the formula being model checked and the reachable
states are computed. The second stage involves computing the set of states
falsifying the given formula. In this step, the reachable states computed
earlier are used as a substitute for the entire state space. Thus the model
checking step has to deal with only the reachable states, which is a smaller
— often substantially smaller — fraction of the state space. It should be
noted that model checking is performed usually in the backward direction,
involving the computation of pre-images.

Since there exist computational procedures for efficiently performing
Boolean operations on symbolic BDD data structures, including POBDDs,
model checking of CTL formulas primarily is concerned with the symbolic
application of the temporal operators. FEXgq is a backward image and
uses the same machinery as image computation during reachability, with
the adjustment for the direction. E(pUq) (resp. EGp) has been tradi-
tionally represented as the least (resp. greatest) fixpoint of the operator
T(Z) = qV (pNEXZ) (resp. 7(Z) = p A\ EXZ) and can therefore be
computed as a fixpoint.

2.3 Partitioned-ROBDDs

The idea of partitioning was used to discuss a function representation scheme
called partitioned-ROBDDs in [13, 12] which was extensively developed
in [17].

Definition. [17] Given a Boolean function f : B"™ — B, defined over n
inputs X,, = {z1,..., 2y}, the partitioned-ROBDD (henceforth, POBDD)
representation x s of f is a set of k function pairs, x y = {(w1, f1), ..., (w, fx)}
where, w;: B™ — B and f;: B — B, are also defined over X,, and satisfy
the following conditions:

1. w; and f; are ROBDDs respecting the variable ordering m;, for 1 <1 < k.
2. VwaV...Vu =1

3. wi ANw; =0, for i # j

4. fi=w; A f, for 1 <i <k The set {w1,...,wg} is denoted by W. Each
w; is called a window function and represents a partition of the Boolean
space over which f is defined. Each partition is represented separately as
an ROBDDs and can have a different variable order. Most ROBDD based
algorithms can be adapted easily for POBDDs.

Partitioned-ROBDDs are canonical and various Boolean operations can
be efficiently performed on them just like ROBDDs. In addition, they can
be exponentially more compact than ROBDDs for certain classes of func-
tions. The practical utility of this representation is also demonstrated by
constructing ROBDDs for the outputs of combinational circuits [17]. An
excellent comparison of the computational power of various BDD based rep-
resentations and POBDDs may be found in [2].

2.3.1 Creating Windows for Partitions

An approach involving partitioning clearly depends heavily on the criteria
used for creating the partitions, i.e., for selecting the “windows”.

A static algorithm is presented in [16] to obtain window functions when
the number of partitions has been determined a priori. These window func-
tions, w(s)’s, are cubes on the present state variables. The algorithm assigns
a cost to each variable and selects the best logak variables (for k partitions)
for partitioning. From these logok variables k partitions are created which
correspond to all the binary assignments of these variables. The goal is
to create small and balanced partitions. The cost of partitioning a tran-
sition relation T'(s,s’,i) on variable s as costs(T) = alps(T)] + B[rs(T)]
where ps(T') represents the partitioning factor and is given by, ps(T) =
maz(|Ts|,|Ts|)/|T| and rs(T') represents the redundancy factor and is given
by, rs(T') = (|Ts| + |T5])/|T| Here, Ts and Ts represent the positive and the
negative cofactors of T' with respect to s respectively. Notice that a lower
partitioning factor is good as it implies that the worst of the two partitions
is small and similarly a lower redundancy factor is good since it implies that
the total work involved in creating the two partitions is less.

It must be ensured that the functions being partitioned do indeed depend
upon the variables selected, in the sense that the valuation of the function
changes depending upon the valuation of the variable. The above approach
performs such an analysis heuristically by requiring a low redundancy factor.
Notice that if T' does not depend on s, then T and 73 would be identical,
and therefore the redundancy factor would equal 1, and therefore such a
variable s would not be selected for partitioning.

2.3.2 Reachability using POBDDs

Since the state space S is disjunctively partitioned into n disjoint subspaces
S1...5y, any subset s C S can be considered an implicit disjunction of
corresponding subsets of the subspaces, s1 C 51,...s, € S,. This induces
a partition of the transition relation 7' C S x S into n? pieces, denoted Ty,
where any Tj; may be considered as transiting from a state in partition j to a
state in partition /. One can derive the transition relation T'; by conjoining
T with the respective window functions expressed appropriately in terms of
present and next state variables, as Tj(s, s') = w;(s)w;(s")T(s,s").

The POBDD based traversal algorithm uses the ROBDD based algo-
rithm in its inner loop to perform fixed point on individual partitions.
Let us assume that we are given a partitioned representation of the set
of reachable states xp = {(w;(s),R;)|1 < j < k}. If we take the im-
age of the projection in the jth partition R; under the projection of the
transition relation 7}; from partition j into itself, we obtain the set of next
states N;(s") = Is[w;(s)w;(s')T (s, s")R;(s)] represented in terms of the next
state variables. Since w;(s’) is independent of the variables that are to
be quantified, it can be taken out of existential quantification, giving us
N;(s') = wy(s)] Felwy ()T (s, ') Ry (5)]]

The image of R; under T}; lies completely within partition j. Similarly,
the image, N; of R; under T); will lie completely within partition /. This
observation motivates us to define the image computation in terms of the
image computed within the same partition and the image communicated to
another partition. The former will be called ImgPart and the latter will be
called as ImgComm.

3 Proposed Research

We begin with an examination of the issues that confront the adoption of
model checking for the verification of large designs. The primary issue is
that the individual BDDs that represent sets of states often grow so large

that boolean operations and image computation can no longer be performed
efficiently on them. To counter this explosion of sizes, we propose a decom-
positional approach as opposed to the classical “monolithic” model checking.
We present an algorithm for model checking CTL formulae that is designed
to break up the model checking problem into partitions that are handled
independently of each other.

Notice that decompositional model checking performed with a fixed num-
ber of such partitions, determined a priori, essentially encounters the same
problems as classical symbolic model checking, namely of the BDDs grow-
ing too large in each partition. Therefore, we propose a new data structure,
namely “dynamically partitioned BDD”. This improves the statically parti-
tioned OBDD data structure by introducing a technique to vary the number
of partitions in the representation of state sets. This change is dynamic in
nature as the need arises depending on the blowup of BDD sizes during the
computation. Further more, this exploits the result of Wegener et.al. [2]
that partitioned OBDDs with k£ + 1 partitions can be exponentially more
succinct than ones with k partitions.

The key issue in any decompositional approach is the determination of
how the partitions are created. Notice that partitions created as a set of
minterm cubes can be assembled together as a Free BDD, the succinctness
of which is the same as classical ROBDDs. Therefore, there is a need for
effective partitioning in order to leverage the advantage in succinctness of-
fered by the limited non-determinism available in POBDDs. We propose
the study of such partitioning techniques.

The advantages proffered by such an approach, while considerable, can
be further enhanced by parallelization and we could explore this in greater
detail. From a practical standpoint, it is found that bugs in designs are often
found only after the circuit is unrolled a number of times, which roughly
corresponds to a notion of depth of the state space. It is an interesting
question as to whether this intuitive notion of deep state space exploration
can be put to practical use.

Some of these ideas are now described in greater detail. First we de-
scribe the decompositional model checking approach and the dynamically
partitioned BDD data structure, both of which are in an advanced stage of
completion. Then we move on to the issue of time scalability in verification,
and to achieving more compact function representations by exploiting the
non-determinism in partitioned BDDs using generalized window functions.
Finally, we consider the problem of debugging “deeply” located errors in
industrial designs.

3.1 Decompositional CTL Model Checking

In this section, we propose a technique to perform model checking in a
decompositional fashion and break the computation into partitions that can
be handled largely independently of each other.

Formulae of Computation Tree Logic can be expressed in terms of the
Boolean connectives of propositional logic and the existential temporal op-
erators EX, EU and EG. The operation EXp computes the pre-image of
the set p. Classically, this pre-image is treated as the atomic operation in
model checking and the other operations are defined in terms of £X. In the
decompositional approach, this operator can be split into two operations -
one of which is local to each partition and is therefore relatively inexpensive
whereas the other operation transcends the boundaries of partitions and is
consequently more expensive. This is analyzed in the next section. Then,
we present the refined model checking algorithms.

3.1.1 Computing the pre-image EXp

We define the backward image, i.e. pre-image, as comprised of the com-
putations prelmgPart which computes the pre-image restricted to a specific
partition and preImgComm which computes the pre-image across partitions.
This is illustrated in the pseudo-code of Fig 1. The pre-image, i.e., com-
puteE X, is then obtained by their union, as

computeEX (p) := \/pre]mgPart(pi, i) V preImgComm/(p) (1)
(2

Notice that two approaches are possible for the computation of the com-
municated image: In the first, an image is computed from partition j into
each partition k # j separately, using the transition relation Tj,. Alter-
nately, one can compute the image from partition j into the boolean space
that is the complement of partition j, denoted by j. The former has the
advantage that the BDD representations of the transition relations 7} are
much smaller, but in return it has to perform O(n?) image computations.
We use the second method in defining imgComm. This method requires only
O(n) image computations, but each of these is followed by O(n) restrict op-
erations. Thus this method is seen to enjoy a linear gain over the naive
approach in terms of number of image computation operations performed.
Further, we claim that this procedure for image computation (and pre-
image computation) has comparable linear gains over the naive approach.
Let us adopt the following model of computation. Each partition is handled
by one process. The BDDs belonging to a partition are owned by that

prelmgPart(Bdd, j) {
return prelmage(Bdd, T} ;)
¥

preImgComm(S){
result := ()
foreach (partition j)
temp := prelmage(S;, T]j)
foreach (partition k # j)
tempy, := temp restricted to wy
reorder BDD temp;, from partition order j to order k
resulty := result, V tempy,
end for
end for
return result

}

computeEX(p) {
R:=p
forall (partitions j)
S; = preImgPart(R;,j)
end for
S =8V preImgComm(R)
output S

Figure 1: pre-image Computation Algorithm

process. The transition relation from partition ¢ to partition j is kept with
process i, consequently image computations from partition i to partition j
need to be performed by process ¢ and the state set has to be transmitted
to the process j.

Notice that multiple processes can be assigned to a single processor.
Indeed our current implementation uses only one processor for all processes.
In fact, a naive implementation is to serialize using a First Come First Served
scheduling order.

If an extra process is dedicated to be “a communication cache”, the
image computation can be done using O(n) messages transmitted between
processes, rather then the O(n?) messages required for the naive approach
at the expense of performing some boolean operations when storing or re-
trieving data from the cache.

Communication is expensive

It is important to notice that there are fundamental differences between
the two image operations - preImgPart and preImgComm. Observe that
prelmgPart(R;) is in the same partition j as the original BDD R; and there-
fore only one partition needs to be in memory for its computation. On the
other hand, prelmgComm(R;) computes an image into j, i.e., every partition
other than j, therefore it needs to finally access and modify every partition.
This gives rise to two important issues with respect to communication.

Firstly, the reached state set of every partition needs to be accessed. In
the case of large designs, where the BDDs of even a single partition can run
into millions of nodes, this usually means accessing stored partitions from
secondary memory.

Secondly, the BDD variable order of the computed image set must be
changed from the order of the j** partition to that of each of its target
partitions, before the new states can be added to the reached set in the
target. Again, for large designs, reordering a large BDD can be an extremely
expensive operation.

In this context, pre-image computation within a partition, preImgPart,
is a relatively inexpensive operation as compared to communication between
partitions, prelmgComm. Therefore, in the interest of minimizing transfer
of BDDs from one partition to another, we need to decrease the number of
invocations of prelmgComm when possible.

An associated advantage of performing pre-image computation repeat-
edly within a partition before communicating, is that it allows some errors
to be caught much earlier. When a formula fails in any partition, it becomes
unnecessary to explore the other partitions any further. In this manner, it
may be possible to locate the error by exploring a smaller fraction of the
state space than otherwise necessary.

Algorithms were proposed by Narayan, et. al.[16] to address this issue
in the context of forward reachability. In the rest of this section, we will
present, in the context of partitioning, the improved model checking algo-
rithm designed to reduce inter-partition communication.

3.1.2 Evaluating the Least Fixpoint E(pUq)

The classical algorithm for the least fixpoint operator is presented in Figure 2
in a partitioned form.

Notice that in the computation of E(pUgq), the pre-image computation
forms the bulk of the work performed by the algorithm. As noted before,

10

computeEU(p, q) {
S :=gqand S.old := ¢
repeat
S.old := S
S:=qV (pAcomputeEX(S))
until(S = S.old)
output S

}

Figure 2: Classical Algorithm for F(pUq)

the cost of performing communication during every pre-image is quite large
in terms of the resources required to transfer BDDs between partitions, to
reorder the BDDs before such transfer can occur and to fetch the partitions
from storage in order that the new states can be conjuncted with p and
disjuncted with g. Therefore, it is important to postpone the call to prelmg-
Comm, i.e., to perform as many image computations as possible locally
within each partition before communication is performed.

A New Algorithm for FE(pUq)

We now describe a new algorithm for model checking least fixpoint CTL
formulas and sketch a proof of its correctness. Figure 3 for computing the

computeEU(p, q) {
S :=gqand S.old := ¢
repeat
S.old := S
forall (partitions j)
repeat
Sj.Old = Sj
S; = 8; V (p; A prelmgPart(S;,5))
until(S; = S;.0ld)
end for
S =8V (p ApreImgComm(S))
until(S = S.old)
output S

}

Figure 3: New Algorithm for E(pUq)

set of states satisfying E(pUq) is designed to take advantage of the parti-
tioned nature of the data structure. Notice that we explore each partition

11

independently of the others until they reach a fixpoint individually. Then,
we perform the communication across partitions. This allows us to keep
just one partition in memory at any given time. It also greatly reduces the
number of communication induced BDD transfers, disk accesses and variable
reordering calls.

Before proving the correctness of the new algorithm, we define some
notation. Let the set of states S at the end of the k! iteration of the
outermost repeat-until loop in algorithm 3 be represented by S*.

For every state s = E(pUq), either s = ¢ or there exists a sequence of
states sg, S1,...,S; that has the smallest length k # 0 such that sg = s,
sk Eq,Vi<k:s;Epand Vi <k:s; €prelmage(s;+1). Such a sequence
of states is called a witness for the inclusion of s in E(pUq), and k is its
length. For the sake of convenience, we will use the symbol for a formula to
also mean the set of states it represents. It should be clear from context as
to which is meant.

We first show that algorithm 3 terminates.

Lemma 3.1 (Termination) For any integer i, 1 D St. The inequality is
strict unless a fixpoint is reached.

The proof is evident from the construction of sets S*. Since any step
of the procedure must add at least one new state to the set S, we have
termination at the end of at most as many iterations as there states in the
space under consideration.

Theorem 3.2 The procedure computeEU of algorithm 3, given the set of
states corresponding to formulas p and q as inputs, terminates with the out-
put S being precisely the set of states that model the formula E(pUgq).

Proof: Soundness: We prove by induction on the sets S* that the proce-
dure is sound, i.e., at all times S = F(pUgq). This clearly holds for any state
in the initial set S° = ¢, since any state satisfying ¢ also satisfies E(pUq).

Assume, it holds for S, i.e., that S* = E(pUq). Consider a state s €
S+l — 8¢ Then, by construction of S from S?, we have s = p. Either s
is added during some step of the inner fixpoint loop or it is added in a step
of communication, i.e., s € preImgComm(S?).

Suppose s is added in the inner fixpoint loop of some partition j. Since
St is a POBDD, let us call the projection of S? in partition j as S; From (1),
for all j, pre[mgPart(S;:,j) C preImage(S?). Also notice that the variable
for the inner fixpoint is initialized to S; Therefore, every state added in the

12

first step of the inner fixpoint models p A EX (E(pUq)) and therefore models
E(pUq). Consequently, we can show by induction that any state added in
the inner fixpoint loop for partition j must model E(pUq).

In the second case, s was added in some step of the communication.
Considering that preImgComm(S?) C preImage(S?), any state added in
the communication step models p A EX (E(pUq)), and therefore E(pUgq). In
particular, s = E(pUq).

Consequently, S*t! — S = E(pUq) and the soundness of the procedure
follows by induction.

Completeness: We next show the completeness, i.e., that every state
of E(pUq) is indeed in set S. Let T* be the set of states whose inclusion in
E(pUq) is witnessed by a path of length at most k. We prove by induction
on k that 7% C S. In the base case, this trivially holds because T° = ¢ =
s0cCs.

Now, let us assume that 7% C S. For any state s € 7! consider the

sequence of states sgp = s, S1, ..., s;+1 that witnesses its inclusion in E(pUq).
We will show that s € S.
Now, the sequence s1, ..., ;11 is a witness for s1, therefore s; € T* C S.

In particular, there exists a smallest j so that s; € S7. We know that s = p
and s € prelmage(s1) C prelmage(S?). From the definition of S/ and
Algorithm 3, we have that

St D 8TV (p AprelmgPart(S?)) V (p A preImgComm(S?)
= SV (pA (prelmgPart(S?) V preImgComm(S7)))
STV (p A (preImage(S7))).

Therefore, s € S7t! C S, whereby T%*! C S. By induction, this gives us
E(pUq) C S.
Together with lemma 3.1, this proves that algorithm 3 terminates with
the set S = E(pUq).
O

This work on the least fixpoint operator has been completed and was
presented at IWLS 2003[?]. We propose to extend this idea to handle all of
CTL.

3.1.3 Evaluating the Greatest Fixpoint EGp

The model checking of EGp is done by computation of the greatest fixpoint
of the operator 7(Z) = pAEXZ. As in the case of least fixpoint, one would

13

like to postpone the communication until after each partition has reached
its individual fixpoint independent of the other partitions.
We will provide a new algorithm for the same.

3.2 Improved state space traversal

Having described a technique to perform model checking in a piecewise “de-
compositional” manner, we will now describe a data structure to perform
this effectively. Partitioned Ordered Binary Decision Diagrams (POBDDs)
described before serve as the starting point for our approach. However, the
partitioning scheme proposed and presented there uses a fixed number of
state space partitions, which are determined by the user before the compu-
tations are begun entirely based on the initial size of the transition relation.

We posit that this is insufficient for such a partitioning scheme based
on an a priori selection of th number of partitions faces the sames obstacles
as an approach based on ROBDDs - the data structure sizes eventually get
large enough as to become unwieldy.

Consequently, we propose a dynamic partitioning scheme where the num-
ber of partitions can be increased or decreased as the computation pro-
gresses. This can be shown to be exponentially more succinct than the use
of a fixed constant number of partitions. Such “dynamically partitioned OB-
DDs” can serve as a good data structure for handling designs much larger
than what can be handled using ROBDDs or the statically partitioned OB-
DDs of Narayan, et.al.

Dynamic Partitioning: Dynamic repartitioning of the state space is trig-
gered whenever the size of any partition under observation crosses a certain
threshold. The partitioning variables are selected using the history of pre-
viously computed windows. Repartitioning is performed by splitting the
given partition by cofactoring the entire state space based on one or more
splitting variables until the blowup has been ameliorated in each partition
created so far. Initially, the partitioning is done using one splitting variable.
The choice of this variable is as explained before. At this point, each new
partition is checked to see whether the blowup has subsided. If not, repar-
titioning is called again on that partition until the blowup has subsided in
each partition created.

Sometimes it is found that the blowup in the BDD-sizes during an in-
termediate step of image computation is a temporary phenomenon which
eventually subsides by the time the image computation is completed. In
such a case the invocation of dynamic global repartitioning of the state
space could create a large number of partitions, whose BDD-sizes become

14

eventually very small. These partitions create an unnecessary amount of
computational overhead. Hence, it is advantageous to create these parti-
tions locally only for that particular image computation and then recombine
them before the end of the image computation. To create these local par-
titions, we can cofactor the state space using the ordered list of splitting
variables that was generated earlier.

Our algorithm for checking invariants performs successive steps of image
computation on each R; under Tj;. Since these steps, imgPart, of image
computation add states only within the same partition, and since different
partitions are disjoint, we are guaranteed that the same state is not being
visited multiple times within different partitions. Once a fixpoint is reached
within a partition j, the procedure imgComm is used to communicate the
new set of states to the partition [for for 1 <[< k and [# j. At any
stage, where new states are added into the reached states set, we check for
the violation of the invariant presented. If failure is detected, we stop and
call the error trace mechanism to retrieve a path from the initial states to
an error state. Otherwise, we proceed with traversing more states until the
entire state space is exhausted, at which point, the formula has passed.

Tracing Erroneous Paths: The idea behind the storage and retrieval of
computation paths from a state violating the property back to an initial
state, also known as an Error Trace, is now described.

To obtain a path from an error state e back to an initial state 4, the
naive idea would be to compute successive pre-images beginning with e,
until ¢ is reached. After a few steps of computing backward images, one
would be faced again with a rapidly increasing BDD size. In order to avoid
this blowup in BDD-size, we need to be able to isolate a set of candidate
predecessors for the current state so that the next pre-image computation
does not have have to handle too large BDDs. In the case of ROBDDs,
this is accomplished by keeping the so called “onion rings” or the frontier of
states encountered during each image computation.

Novel data structure for tracing errors with POBDDs: In the partitioned
setting, the set of possible predecessors may be spread across multiple par-
titions. Thus it is possible to store these frontier states in a partitioned
manner. Therefore the backward image can be computed with respect to
only a portion of the frontier states.

So, the image computations need to be recorded in a tree-like data struc-
ture in order to be able to find the correct subspace for the backward image.
For each state s in the set of reachable states S, this tree contains the image
computation when the state s was first added to the reachable set S. The
structure stores the information required to trace a backward path as follows:

15

For each partition of the boolean space, its frontier is defined as the states
added to this partition by the most recent invocation of imgComm and the
subsequent imgPart operations. Each such frontier is actually a collection
of sets, each represented as a BDD, whose set union represents the set of all
states that have been reached in this partitions for the first time, but have
not yet been used for communication to other partitions. Thus, the number
of BDDs in this frontier can be, in the worst case O(M + d;) where M is the
number of partitions, and d; is the depth of the fix-point in partition 7. For
the entire graph this can, in the worst case be, O(M * (M + dimaz))-

To retrieve a path from an initial state to a state s, we do the following:
1. Obtain the location in the computation tree that contains s.

2. Take the predecessor frontier of this location in the tree, and compute a
backward image into this frontier to find one or more predecessor states.
3. Pick one such predecessor state.

4. Repeat steps 2 and 3 on successive states until an initial state is reached.
This gives us the path from state s with an error to an initial state.
Advantages of partitioned error trace: Notice that in the case of ROBDDs,
the frontier states can get large in size. An effect of having these large sized
representations is that image computations get more expensive. As noted
before, ignoring the frontier states and performing a backward reachability
is even more expensive, and in that case the backward path can be longer

in length too.

Observe that partitions can often be asymmetric with respect to the
space and time required for performing image computations on them. There-
fore, in the presence of multiple paths from an error state to the initial states,
it would be advantageous to compute the shortest path in terms of compu-
tational effort rather than the length of the path. In order to do this, we
annotate the nodes of the tree with information about the amount of time
the corresponding image computation required. These annotations can be
used as an indicator of how much time the backward image would take, and
thus, in step 3 above, they can assist in reducing the time spent in finding
a more practical path back to the initial states.

Status: This work has already largely been completedand was presented
at CHARME 2003. The key idea is to extend the partitioning model to
allow for on-the-fly repartitioning. This makes practical use of the result of
Bollig and Wegener[2], that a (k + 1)-POBDD can be exponentially more
succinct that a k-POBDD.

16

3.3 Time Scalability in Verification

One of the major disadvantages of using extant OBDD-based formal verifi-
cation methods — besides memory explosion — is their lack of time scalability,
i.e. that at the end of an assigned time for computation one often achieves
no result at all, regardless of whether or not the design is correct. This is
because the data structures — BDDs — may grow so large that the tool either
thrashes, or sometimes even crashes.

We present algorithms based on partitioning to achieve time scalability
in formal verification, so that as the time allocated for the total computation
increases, so does the fraction of the design state space explored.

These algorithms find errors in designs faster and traverse the state
space more efficiently than OBDDs and other known Partitioned-OBDD ap-
proaches. They tackle the core problems in practical adoption of Partitioned-
OBDDs, namely choice and scheduling of partitions.

What is missing in the classical approach? For performing operations
on many functions, ROBDDs suffice. In such cases, esp on small sized rep-
resentations, they are sometimes more efficient than the partitioning based
approaches. If we accept the premise that the function representations typi-
cally analyzed are too large for efficient monolithic representation as a single
graph, such as an ROBDD, they should benefit by partitioning. In this con-
text, certain problems arise naturally and have not been addressed effectively
in the literature. For example, it is natural to ask:

1. When should a function be broken into disjoint subspaces?

2. How many subspaces should be created? Which subspaces of an ex-
ponential number of possibilities should be generated?

3. Further, we perform operations on the representations that are cre-
ated. What if the results of these operations are very simple? Should
we then combine a subset of such simple representations into a single
graph? How and when should this be performed?

4. Finally, since partitioning generates multiple independent representa-
tion and operations can be performed on these largely independently,
what is a good order of required computations?

We posit that above questions are fundamental to creating any practical
partition handling algorithm. We wish to address questions like the above
and expect that an efficient solution to these problems would lead to vastly
improved practical results in the ability to handle large designs.

17

3.4 Generalized Windows and Multiply rooted BDDs

It is to be noted that the partitioning schemes in the literature are all based
upon the use of windows that are defined as minterm cubes on present state
variables. Clearly a set of windows constructed in this fashion can be com-
bined into a tree such that each leaf of this tree represents one partition,
and each path along the tree represents a unique window. Under these cir-
cumstances, such a partitioned BDD can be treated as a special case of Free
BDDs, where all subtrees rooted beyond a certain depth are disallowed from
sharing variables. It is well-known that as the number of variables increases,
the succinctness of Free BDDs approaches that of regular ROBDDs in the
asymptotic case.

In other words, the non-deterministic succinctness afforded by the par-
titioned BDD data structure is effectively lost when one uses cube based
partitioning. It is consequently plausible that more compact representations
may be generated by the use of non-cube windows for partitioning.

We would like to analyze the problems associated with state space ex-
ploration and generate compact partitioned representations. Clearly, this
requires the selection of good window functions.

The current partitioning approach is based on minterm cubes, i.e., each
window can be thought of as the conjunction of literals. We propose a shift
from this model to one based on generalized boolean functions. Prior work
in the area of combinational verification [14] shows that substantial gains
may be achieved. We study this in the context of sequential verification.

The complexity of the “compose” operator is cubic for ROBDDs and
quadratic for Partitioned BDDs. Therefore, an exponential gain can be
obtained on multiple sequential nested compositions by the use of partition-
ing. This was shown by Jain, et.al. [14]. The details are provided in an
Appendix of this document.

The discussion above shows the advantage of partitioning in performing
multiple composition operations. We investigate a related question — can
partitioning be defined in terms of composition points? This is expected to
be greatly beneficial because, in practice, the construction of the Transition
Relation for any given design as well as the image computation performs a
sequence of nested functional compositions.

Reachability analysis is typically done by constructing a set of transition
relations, and in conjuncting every member of the set. Then, all primary
inputs and present state variables of the circuits are existentially quantified
out from this formula. It is observed that the graphs typically blowup in
size during this computation, especially during conjunction. Due to this

18

blowup, BDD based formal verification is still not practical for large scale
industrial designs. Often these procedures can be applied only on circuits
with hundreds of latches. But industrial designs have tens of thousand
latches, often even more. POBDDs can be used to make BDD sizes much
smaller. However, all the partitioning techniques rely on splitting the circuit
using cubes - these are assignments for a set of literals, either input variables
or state space variables. A cube based partition can be also interpreted as
being a special case of representation as a free BDD. However free BDDs
and therefore such cube based partitions are known to be less compact
then partitioning schemes where each window is generated using arbitrary
functions, hence one would like to use arbitrary functions as windows. BDDs
thus generated are multiply rooted BDDs since each window can have a
different root variable. This is expected to make image computations and
therefore reachability analysis much faster and more space efficient.

The central idea is as follows. We find splitting variables that are based
upon decomposition points. Since decomposition points represent general
functions (instead of cube like assignments of primary variables) so any
partial assignment on such functions will also be a general function. We
will like to thus process functions where the initial computation and model
can be expressed in terms of decomposition and composition. The proposed
procedure to build BDDs of transition relations is as follows:

1. Decomposition points are used to build BDDs of transition relations.
In a practical verification tool, for e.g. VIS, all BDDs are built using
decomposition points.

2. We compose the decomposition point variables until some composition
blows up.

3. We create two disjunctive partitions for the given composition using
standard BDD techniques and if each disjunction is lower then a pre-
defined threshold then we can this partition to be the root of our
non-cube based partitioning tree (NCPT).

4. For each leaf of the above defined NCPT, we recursively carry out
steps 2 and 3 until all decomposition points have been composed and
all the partitions are created.

5. Using each partition of TR, we carry a reachability analysis till a fixed
point is reached.

The same partitioning as described above can be introduced even when
actual conjunction/quantification are being done during image computation.

19

This above analysis procedures is essential to make use of the most com-
pact form of POBDDs which are non-cube based, overlapping, POBDDs.
Since good results are obtained even when using cube-based POBDDs, we
expect greater savings when we utilize this generalized form of the parti-
tioned data structure.

We would like to examine which computations of the reachability analysis
can be written in terms of a sequence of composition operators. In the above,
we have outlined the use of composition based generation of partitioning
windows during the construction of the transition relation. It would be
interesting to see if image computation can be thus expressed, because that
would readily suggest a technique for dynamic repartitioning during image
computation.

For practical circuits, where BDDs can become very large, any amount
of space reduction is very welcome. Such multiply rooted data structures
can offer exponential reduction in size over cube-based POBDDs.

3.5 “Deep” state space exploration

Satisfiability based Bounded Model Checking is able to explore the state
space of larger designs by bounding the depth of exploration and successively
increasing this bound. However it is difficult to control the direction of the
search. In contrast, restricting the analysis to a subset of partitions provides
a controlled way to perform deep, albeit partial, coverage.

It has been empirically observed that partitioning provides the means
to symbolically explore the state space deeply. In fact, if each subspace is
thought of as a “direction”, then reachability with partitioning is a Breadth
First Search along each such direction - in other words one can perform
a hybrid of breadth first and depth first searches. It would be interesting
to study whether the notions of state space depth and coverage can be
formalized for a precise, quantitative analysis.

Perhaps partitioning can be used in conjunction with bounded model
checking, maybe with ATPG-based model checking, which may be more
suited to sequential verification than SAT-based bounded model checking.[1]

4 Comparison with Related Work

The conjunctive partitioning approach has been suggested for representation
of the transition relation. Additionally, a technique for distributed model
checking has been recently proposed based on disjunctive slicing.

We now compare our method with the above approaches.

20

4.1 Partitioned Transition Relations

The use of partitioned transition relations [4] was proposed to control the size
of symbolic representation of transition relations. In this method, instead
of using a monolithic ROBDD representation of the transition relation, the
transition relations of different latches are kept as separate ROBDDs (or
clustered into small groups of latches [?]). Since ROBDDs representing the
individual latch transition relations are typically much smaller than when
they are combined, this method can result in substantial memory savings. In
addition, it allows for early quantification of variables which are not present
in the support of other transition relations [11, 18]. This technique can also
result in substantial savings in memory during image computation. Notice
though, that the notion of ‘partitioning’ here is restricted to the building of
the transition relation.

Cabodi, et.al. discuss a technique [5] in which the set of reachable states
is decomposed into two or more sets during the intermediate stages of com-
putation and reachability is performed on these decompositions separately.
However, after a few steps of reachability, results from these different sets
are typically combined to obtain a monolithic ROBDD representation of the
reachable state set.

On the other hand, our goal is to construct a partitioned representation
of not just the transition relation, but also the entire reachable state space
as well as any other boolean functions that are created at all times, and to
perform all operations on such functions on the corresponding partitioned
representation. Thus, in order to distinguish the sense in which partitioning
is performed, it would be more appropriate to call the former approach as
conjunctively clustered-transition relations.

Indeed, the approach is complementary to our disjunctive partitioning
approach, and we use these “clustered”-transition relations in the construc-
tion and use of transition relations.

4.1.1 Distributed Model Checking

Recently, a method for distributed model checking was studied by [10, 9]. It
parallelizes the classical symbolic model checking algorithm using the parti-
tioning approach suggested in [16]. This approach uses “slicing”!, which is
similar to partitioning, with the objective of doing model checking in a dis-
tributed fashion. This approach does not address issues related to costs of
communication and variable ordering in different partitions. In particular,

Tt may be noted that this is unrelated to the notion of program slicing.

21

this approach partitions the computation into a fixed number of fragments
equal to the number of processors available in the distributed environment.
However as noted in the literature [2], a partitioning scheme with k parti-
tions can be exponentially more succinct than one with just k£ — 1 partitions.
Thus, the a priori selection of the number of fragments greatly limits the
efficiency of the partitioned data structure. Indeed the gain from such a
“static” method would be obtained substantially from parallelization rather
than from the inherent algorithmic advantages offered by the POBDD data
structure.

In contrast, our algorithms effectively capitalize on the partitioned na-
ture of the data structure. We require only one partition to be in memory for
any image computation, and each partition can be independently ordered.
Significantly, this approach incorporates a dynamic repartitioning scheme
which allows for an unbounded number of partitions to be automatically
created when necessary. At the same time, we show how to drastically cut
down the number of instances of inter-partition communications as com-
pared to the classical approach. This reduces the number of transfers and
re-orderings of large BDDs between partitions and is found to be a signifi-
cant gain in practice. We also address the issue of efficient determination of
error trace in the presence of partitioning.

5 Conclusion

The main bottleneck in practical BDD-based symbolic model checking is
that it is restricted by the ability to efficiently represent and perform opera-
tions on sets of states. Symbolic representations like BDDs grow very large
quickly due to their necessity to cover the state space in a breadth first
fashion. Satisfiability based techniques result in a proliferation of clauses,
since they have to replicate the transition relation numerous times.

We propose techniques to increase the capacity of automatic sate-based
verification as applied to sequential designs, i.e., symbolic model checking.
Firstly, we propose a decompositional approach to model checking, which
splits the problem into multiple partitions handled independently of each
other. Secondly, we propose the use of dynamically partitioned BDDs as
a capable data structure. This leads to vast improvements in state space
traversal in general and error detection in buggy designs, in particular.

Further, we consider the key issue of selecting good window functions
for the partitioning approach. We would like to take advantage of the
non-determinism afforded by POBDDs, and accordingly propose a study

22

of windows based on general boolean functions. This is likely to shows its
full benefit of potentially exponential savings in the context of operations
expressible as a sequence of compositions.

We would like to address the issue of time scalability in verification,

whereby the availability of larger amounts of computation time enables
greater exploration of the state space. Finally, from a practical standpoint,
we observe that extant verification approaches are unable to proceed very
deep into the state space. It is our conjecture that partitioning can help in
this context and we would like to explore this issue further.

References

1]

2]

J. A. Abraham. Bounded Model Checking without SAT, Private Com-
munication. 2003.

B. Bollig and I. Wegener. Partitioned bdds vs. other bdd models. In
Proc. of the Intl. Workshop on Logic Synthesis, 1997.

R. E. Bryant. Graph based algorithms for Boolean function represen-
tation. IEEE Transactions on Computers, C-35:677-690, August 1986.

J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic Model Checking
with Partitioned Transition Relations. In Proc. of the Design Automa-
tion Conf., pages 403—407, June 1991.

G. Cabodi, P. Camurati, and Stefano Quer. Improved reachability
analysis of large finite state machines. ICCAD, pages 354-360, 1996.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. IBM Workshop
on Logics of Programs, volume 131 of Lecture Notes in Computer Sci-
ence, pages 52—71. Springer-Verlag, 1981.

O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential
Machines Based on Symbolic Execution. In Proc. of the Workshop
on Automatic Verification Methods for Finite State Systems, Grenoble,
France, 1989.

E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor,
Formal Models and Semantics, volume B of Handbook of Theoretical
Computer Science, pages 995-1072. Elsevier Science, 1990.

23

[9]

[12]

[13]

[14]

[15]

[16]

[17]

Orna Grumberg, Tamir Heyman, and Assaf Schuster. Distributed sym-
bolic model checking for p-calculus. In Computer Aided Verification,
pages 350-362, 2001.

Tamir Heyman, Daniel Geist, Orna Grumberg, and Assaf Schuster.
Achieving scalability in parallel reachability analysis of very large cir-
cuits. In Computer Aided Verification, pages 20-35, 2000.

R. Hojati, S.C. Krishnan, and R. K. Brayton. Heuristic Algorithms for
Early Quantification and Partial Product Minimization. Technical Re-
port UCB/ERL M93/58, Electronics Research Lab, Univ. of California,
Berkeley, CA 94720, July 1993.

J. Jain. On analysis of boolean functions. Ph.D Dissertation, Dept.
of Electrical and Computer Engineering, The University of Texas at
Austin, 1993.

J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Functional parti-
tioning for verification and related problems. Brown/MIT VLSI Con-
ference, March 1992.

J. Jain, K. Mohanram, D. Moundanos, I. Wegener, and Y. Lu. Analysis
of composition complexity and how to obtain smaller canonical graphs.
In Proceedings of the 37th conference on Design automation, pages 681—
686. ACM Press, 2000.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

A. Narayan, A. Isles, J. Jain, R. Brayton, and A. Sangiovanni-
Vincentelli. Reachability Analysis Using Partitioned-ROBDDs. In Proc.
of the Intl. Conf. on Computer-Aided Design, pages 388-393, 1997.

A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli.
Partitioned-ROBDDs - A Compact, Canonical and Efficiently Manipu-
lable Representation for Boolean Functions. In Proc. of the Intl. Conf.
on Computer-Aided Design, pages 547-554, 1996.

H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Implicit State Enumeration of Finite State Machines using
BDD’s. In Proc. of the Intl. Conf. on Computer-Aided Design, pages
130-133, November 1990.

24

Appendix: Composition Complexity for ROBDDs

Bryant presented two fundamental algorithms, apply, and compose, for
working with ROBDDs in [3]. The algorithm for apply takes as input two
ROBDDs G and Gy representing functions f and g respectively and a bi-
nary operator ® and produces OBDD G}, representing function f®g. Bryant
has proved that the size |G},| of G}, is bounded by |G| * |G|, and has pro-
vided a function where (for a given variable order) the above quadratic
blow-up can be observed. The algorithm for compose can be regarded as
replacement by functions; for two functions f (given by ROBDD G) and
g (given by ROBDD G,) and a variable z;, the function f,,—, defined by
h = ite(g, fz,=1, fz;—0) (if g then f,.—; else fy,—o) has to be represented.
If Gy, is the ROBDD that represents h, Bryant showed that |G| has an
upper bound of O(|G¢|? x |G,4|). However, Bryant could not find any worst-
case example requiring the above cubic blow-up. Thus, he observed that
“([3],pp-261) It is unclear whether the efficiency of this algorithm truly has
a quadratic dependence on the size of its first argument, or whether this
indicates a weakness in our performance analysis.”

Jain et. al [14] answered Bryant’s open problem and presented a worst-

case example of compose which is also a worst-case example for the more
general ite operation. In the following we excerpt the proof of Jain et al. to
understand the nature of composition and also on why it truly has a cubic
worst-case complexity.
Proof ([14]): Let MU X (a, z) be defined on n+ k variables a,, ..., ax_1 and
Toy ey Tn_1 Where n = 2% The a-variables are control variables describing a
number |a| € {0, ...,n—1}; the z-variables are data variables addressed by a.
Hence, MU X (a,) is defined as x|,. For this multiplexer (or direct storage
access function) the ROBDD variable ordering (a,z) is optimal. The a-
variables may be in arbitrary order. The same holds for the z-variables. The
ROBDD size is 2n+-1 for this ordering. The complete binary a-tree contains
n — 1 nodes with n outgoing edges. For the outgoing edge representing the
address a the variable x|, is tested. This leads to n z-nodes and 2 sinks.

We define f on n+2k+1 variables: ao, ..., ap_1; bo, -y Op_1; Toy oo, Tp—1,
and s. Let f(a,b,s,2) = SAMUX (Ggy vy Q15 Toy eey Tn—1)FSAMUX (bgy ooy bp—1, Toy ooy Tp—1)-
Moreover, we define g on n+ k variables co, ..., Ck—1; Zo, ..., Tn—1 by g(c,z) =
MUX (Coy ey Chi—15 Ty ooy Tpy—1)-

Both functions are considered as functions on all n + 3k + 1 variables
in a, b, c, s and x and we investigate for both functions the optimal variable
ordering: s, Gy ..oy Qk—1; b5y ooy D15 Coyoeey Clo1; Ty oeey Tyy—1-

The ROBDD size of f is 1+2(n—1)+n+2 = 3n+1. We start with an s-

25

node and then realize MU X (a, z) and MUX (b, z). The ROBDDs for these
functions may share the z-nodes and the sinks. The ROBDD size of ¢ is
2n+1. Let h = fo—g = MUX (¢, x) AMUX (a,2)+MUX (¢, 2) \MUX (b, x).
By the characterization of the ROBDD size by Sieling and Wegener [?]
the ROBDD for h contains at least as many xz-nodes as there are different
cofactors which are obtained by assigning constants to the control variables
a,b, and c. If |a| =4, |b] = j, and |c| = k, we obtain the cofactor xyx; +Zyx;.
If ¢ # j, the cofactors depend essentially on all their three variables and are
all different. For i = j we obtain the function x;. Hence, we get n?(n —1) +
3 —n? 4+ n different cofactors which have to be represented by different
z-nodes. These z-nodes are reached by edges from the upper part where
the control variables are tested. Since the ROBDD has a single source, the
ROBDD contains at least n3 — n? +n — 1 nodes where control variables are
tested and 2 sinks. This leads to the lower bound 2n3 — 2n? 4 2n + 1 for
the ROBDD size of h. Hence, |G|?|G,4| = 18n® + 21n? + 8n + 1 and h =
fls=g = ite(g, fs=1, fs=o) = ite(MU X (c,z), MU X (a,), MU X (b, z)) has an
ROBDD size of at least 2n® — 2n? + 2n + 1. Hence, |Gp| = O(|G¢|?|G,))-

n=mn

Cubic-complexity of Composition and Partitioned-OBDDs

Note that on the right hand side of compose operations, the disjuncts v;,,, A
de and ;,,, A fa, are mutually orthogonal, and can thus be represented

as different partitions in a POBDD. In our method we successively compose
the v;,,,5 in fg. If the graph size increases drastically for some composition
(say 1;) we can abort the compose operation and instead separately compute
each of the two disjuncts in the right hand side of equation 1; each of these
disjuncts constitutes a separate partition. In other words, we can create
two orthogonal partitions instead of continuing the ROBDD composition to
completion.

Partitionl : 1;,,, N de; Partition2 : Yiy, N fa,, (2)

Note that each partition can be constructed in quadratic time using the
apply algorithm. That is, the complexity of creating such partitions, during
the composition of 1; in f4, is only O(|fq| - [%iy.]).- We can now individ-
ually call the composition routine on each of the partitions. As remaining
decomposition points are composed inside any partition, a partitioning is
performed each time a blow-up of composition is observed. If in composing
fa by ¥1,...,9Y, a composition blow-up is observed a total of ¢ times, then
we will have produced ¢+ 1 ROBDDs, P,..., P.y1. Together, Pi,..., Py

26

represent the complete Boolean space of F' in terms of primary input vari-
ables z1,...,z; and constitute the POBDD representation of F'.

Contrasting the Complexity of Composition using ROBDDs
with that using a Partitioned Representation

It is instructive to compare the size of the monolithic ROBDD with the
corresponding POBDD that a sequence of k worst case compositions may
lead to.

Complexity of ROBDDs: Due to the cubic complexity of ROBDD
composition, composing k ROBDDs g1, . . ., gk, each of size |g|, in an ROBDD
G can require O(|G|2" x|g|2*~1). The size of POBDDs is bounded by a much
smaller polynomial as discussed below.

Complexity of POBDDs: Considering each of the disjuncts in Equa-
tion 2 as a separate partition, each partition can be constructed in O(|G| *
lg]). While composing the remaining k — 1 decomposition points, each of
the original partitions can be further split into 25~1 partitions. Thus, in
the worst case, we are left with 2% partitions. Note that the size of each
partition is bounded by O(|G| * |g|¥). Thus, the composition complexity of
creating POBDDs by our method is bounded by only O(2* % |G| * |g|*). (In
the above analysis, for simplicity, each decomposition point is assumed to
be a function of primary inputs only.)

27

