
Time-Varying Contour Topology

Bong-Soo Sohn
Department of Computer Sciences

University of Texas at Austin

bongbong@cs.utexas.edu

Chandrajit Bajaj
Department of Computer Sciences

University of Texas at Austin

bajaj@cs.utexas.edu

ABSTRACT
The contour tree has been used to compute the topology of iso-
contours, generate a minimal seed set for accelerated isocontour
extraction, and provide a user interface to segment individual con-
tour components in a scalar field. In this paper, we extend all the
benefits of the contour tree to time-varying data visualization. We
define temporal correspondence of contour components, and de-
scribe an algorithm to compute the correspondence information in
time dependent contour trees. A graph representing the topology
changes of time-varying isocontours is constructed in real-time for
any selected isovalue using the pre-computed correspondence in-
formation. Quantitative properties such as surface area and vol-
ume changes of contour components are computed and labelled on
the graph. This topology change graph helps users to easily detect
the significant topological and geometric changes in time-varying
isocontours. The graph is also used as a user interface to quickly
segment, track and visualize the evolution of any selected contour
component over time.

Keywords
Contour Tree, Level Set Topology, Feature Tracking, Time-Varying
Volume Visualization

1. INTRODUCTION
Scientific simulations of today are increasingly generating densely

sampled time-varying fields. Computational visualization techniques
use modeling and rendering methods to aid scientific discovery and
calibration of simulations. This involves identification, extraction
and quantitative analysis of features present in data, which is then
visualized. Isocontouring or volume rendering is a common way to
visualize the evolution of features in data. However, just rendering
a sequence of volumes or isocontours does not explicitly provide
the dynamic features. In this paper, we describe an algorithm to
compute the correspondence information of contours for all isoval-
ues in time-varying scalar fields. This allows to interactively track
the topology changes of time-varying isocontours and is used to ex-
tract dynamic features in the data set. For instance, a cosmological
simulation generates time-varying density and temperature fields

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

(a)

(c)

(b)

<time 3><time 2><time 1>

isovalue

w

w

���
���
���
���
���
���
���
���

������
321

Figure 1: Evolution of three consecutive isocontours. An in-
tersection point on an edge of a contour tree corresponds to a
contour component. By using pre-computed correspondence
information in time dependent contour trees (a), a graph rep-
resenting the topology changes of time-varying isocontours is
constructed in real-time for any selected isovalue (b). Seed sets
generated from the contour trees are used to quickly extract the
time dependent surfaces of segmented contours (c). Note that
colors are used for showing the correspondence.

of the universe to understand the formation of galaxy clusters. The
images and movies of the data are available in our website [10].
We are able to detect when and where an individual galaxy cluster
is created, vanished, split and merged with other clusters, and to
measure how much a galaxy cluster grows or shrinks. Other exam-
ples of feature tracking can be found in [14, 20].

The Contour Tree (CT) [6, 16, 25] is useful for the visualiza-
tion of a scalar field. First, CT provides topological structures of
a scalar field, which are not easily obtained from rendering tech-
niques. Second, CT is used to generate a minimal seed set for effi-
cient isocontouring. Third, CT provides a user interface to segment
and render an individual connected component of an isocontour.
Each edge of CT represents a single connected component of an
isocontour. Clicking a point on an edge yields fast extraction of the
corresponding isocontour component by propagation from a seed
cell computed from the contour tree. However, CT is used for a
single scalar field and the benefits are limited to the visualiztion of
a static scalar field. Our main objective is to extend all the benefits
of CT to time-varying data visualization.

The input is time-varying scalar fields {f 1, ..., fT } defined on
a simplicial mesh M . Time dependent contour trees {CT 1, ...,
CTT } can be computed for each timestep. Each contour tree is

laid on a 2D plane such that the y coordinate of each node in CT t

is its function value. The x coordinate of a node can be any ar-
bitrary value. When an isovalue w is selected, let the intersec-
tion points between a contour tree CT t and a line y = w be
P t = {pt1, ..., p

t
nt
}. Each point ptj represents a connected com-

ponent Ct
j of an isocontour It, where It = {Ct

1, ..., C
t
nt
}. We

call a connected component of an isocontour, C t
j , a contour. Now,

we consider two consecutive contour trees, CT t and CT t+1, and
an arbitrary isovalue w. P t and P t+1 can be obtained from the
contour trees. We represent correspondence information pt+1

j ←

{ptπ(1), ..., p
t
π(nj)} to mean that each of Ct

π(1), ..., C
t
π(nj) corre-

sponds (evolves) to Ct+1
j .

Since w is an arbitrary floating point value in an interactive ap-
plication, it is difficult to compute the correspondence information
for every possible value of w as a preprocessing. Fortunately, the
correspondence information of contours has coherence such that
we can store the same information over a range of isovalues. Let
each edge of CT t be labelled as etj . The goal is to assign a set
of edges for time t, Et = {etπ(1), ..., e

t
π(n)}, to a correspond-

ing edge et+1
j′

with the value range [fa, fb] in CT t+1, which is

represented as (et+1
j′

, [fa, fb]) ← {e
t
π(1), ..., e

t
π(n)}. This means

that for any isovalue w ∈ [fa, fb], an intersection point pt+1
j′

on

et+1
j′

has correspondence with intersection points ptπ(1),..., p
t
π(n)

on etπ(1), ..., e
t
π(n), and hence Ct+1

j′
← {Ct

π(1),...,C
t
π(n)}.

Once this correspondence information is computed as a prepro-
cessing, a graph representing the topology changes of time-varying
isocontours can be constructed in real-time for any selected iso-
value. This graph is called a Topology Change Graph (TCG). Let
P t+1 = {pt+1

1 , ..., pt+1
nt+1
} and pt+1

c ← {pt(1,c), ..., p
t
(nc,c)

} for an
isovalue w0, where c = 1, ..., nt+1. TCG is constructed by creat-
ing nodes for every intersection point and connecting each pair of
(pt(j,c), p

t+1
c) for the time sequence t = 1 , ... , T − 1 and j = 1 ,

... , nc, as shown in Figure 1. An additional quantitative informa-
tion such as surface area and volume of each contour can also be
computed and labelled on TCG. Some of the applications of TCG
are as follows :

• Dynamic Structure Extraction : One can easily determine
the topology changes of time-varying isocontours (eg. merge,
split, create, vanish, and genus change of contours).

• Feature Tracking : One can quickly segment, track, quan-
tify and visualize the evolution of any individual contours.

The main contributions of this paper are to (i) define the temporal
correspondence of contours, describe an algorithm to compute the
correspondence information in time-varying contour trees and ana-
lyze its time complexity, (ii) apply the correspondence information
to construct TCG in real-time for any selected isovalue, and (iii)
present real-life applications of TCG for dynamic structure extrac-
tion and feature tracking.

The remainder of this paper is organized as follows. After re-
viewing related works in section 2, we define the temporal cor-
respondence of contours and test conditions in section 3. In sec-
tion 4 and 5, we describe an algorithm to construct contour trees
and compute correspondence information in time dependent con-
tour trees. The time complexity is analyzed. In section 6, we de-
scribe how to construct a topolgy change graph. In section 7, we
compute quantitative properties of contours in a contour tree. In
section 8, an interactive system to segment and track the evolution
of interesting contours is built. Experimental results are presented
in section 9. Finally, in section 10, we conclude this paper.

2. RELATED WORK
In this section, we review previous works on contour trees, time-

varying data visualization, and feature tracking.

Contour Tree CT has been used in various fields such as image
processing and GIS [21, 23]. Our main interest is to use it in vi-
sualization. van Kreveld et al. [25] described an O(mlogm) and
O(m2) algorithm to construct a contour tree from a 2D and 3D
scalar field defined on a simplicial mesh with m elements and n
vertices. The computed contour tree is used to generate a minimal
seed set for optimal isocontour extraction [2]. Tarasov and Vya-
lyi [24] improved the time complexity to O(mlogm) in the 3D
case. Carr, Snoeyink and Axen [6] simplified the Tarasov and Vya-
lyi’s algorithm to construct the contour tree in all dimensions. The
join tree and split tree are constructed and merged to build the con-
tour tree in O(m+ nlogn). Pascucci [15] computed betti numbers
of contours to distinguish different topology of contours within an
edge of CT. The divide and conquer approach [16] allows output-
sensitive construction [8] of contour trees and easy extension to
parallel implementation. Carr and Snoeyink [5] used CT as an in-
terface to display topological structures of isocontours and segment
individual contours in a scalar field. They computed path seeds for
each edge, which generate a seed cell necessary for rapidly extract-
ing a selected contour in run-time. CT is also used for preserv-
ing the topology of isosurfaces during progressive simplification of
tetrahedral meshes where a function is defined [9].

Isocontouring in Time-Varying Fields Visualization of time-
varying fields has been a challenging problem because of over-
whelming data sizes and heavy computation requirements. Time-
based data structures [18] [22] are used for minimizing unneces-
sary I/O access and supporting out-of-core isosurface extraction [7]
in time-varying fields. The high dimensional isocontouring ap-
proach [3, 26] considers the time dependent data in 4-dimensional
space f(x, y, z, t). They first extract a 3-dimensional solid mesh
f(x, y, z, t) = w. Then, an isocontour at time t0, t(x, y, z) = t0,
is extracted from the mesh.

Since the data sets are often large and contain many timesteps, it
is useful to automatically detect significant timesteps and isovalues
containing interesting features. The Contour Spectrum [1] com-
putes and shows geometric and topological properties such as sur-
face area, volume, and gradient integral of isocontours over all iso-
values and timesteps. A similar interface called contour plane [13]
displays the number of contours over all isovalues and timesteps in
a 2D plane. This represents the amount of topological changes in
time-varying isocontours.

Feature Tracking Silver et al. [19, 20] defined a feature in a
volume as a region of interests which satisfies a predefined thresh-
olding criteria. After feature extraction, they perform a correspon-
dence matching test of features based on the degree of overlap
to track and quantify the movement of each isolated feature over
time. Dynamic events of the features are classified as continuation,
creation, dissipation, bifurcation and amalgamation. High dimen-
sional isocontouring can be applied to feature tracking [12].

3. CONTOUR CORRESPONDENCE
Given two consecutive isocontours, I t = {Ct

1 , ..., C
t
nt
} and

It+1 = {Ct+1
1 , ..., Ct+1

nt+1
}, a correspondence test determines

whether a contour Ct
kt

corresponds (evolves) to a contour Ct+1
kt+1

.
There is no absolute rule for the test because it is impossible to
know how the isocontour changes between the two timesteps un-
less a specific assumption is made. We provide our own rule for

the correspondence test and then justify its validity.
A region defined as Xt(w) = {x|f t(x) ≥ w} is termed an

object set. An object set consists of connected components, called
objectsXt

k. We can representXt(w) = {Xt
1, ... , X

t
n}. B(Xt

k(w)),
the border of an object Xt

k(w), is defined as an intersection of the
object and the isocontour, Xt

k(w) ∩ I(w). The border of each ob-
ject has one or more than one contour, B(X t

k(w)) = {Ct
(Xt

k
,1) , ...

, Ct
(Xt

k
,l)}. Similarly, we can define Y t(w) = {x| f t(x) ≤ w},

Y t
k , and Ct

(Y t
k′
,l′). We term Xt

k an upper object and Y t
k′ a lower

object for convenience.
Consider two contours, Ct

k and Ct+1
k′ . Suppose Ct

k is on the
border of an upper object Xt

a and a lower object Y t
a′ , and Ct+1

k′

is on the border of Xt+1
b and Y t+1

b′
. If two upper objects Xt

a and
Xt+1
b overlap each other and so do lower objects Y t

a′ and Y t+1
b′

,
then we callCt

k corresponds toCt+1
k′ , which is denoted asCt+1

k′ ←
Ct
k. This definition is formally stated in :

Definition 1 : Contour Correspondence

SupposeCt
k ∈ B(Xt

a) ,Ct
k ∈ B(Y t

a′) ,Ct+1
k′ ∈ B(Xt+1

b) ,Ct+1
k′

∈ B(Y t+1
b′

).

(Xt
a ∩X

t+1
b) 6= ∅ and (Y t

a′ ∩ Y t+1
b′

) 6= ∅ ⇐⇒ Ct+1
k′ ← Ct

k.

Figure 2 shows an example of the correspondence test. There
are two contours Ct

1 and Ct
2 at time t, and three contours Ct+1

1

, Ct+1
2 , Ct+1

3 at time t + 1. As can be seen in Figure 2, upper
objects of Ct+1

1 and Ct+1
2 overlap with an upper object of Ct

1 and
so do lower objects. On the other hand, the upper object of C t+1

3

does not overlap with the upper object of Ct
1 and Ct

2. The lower
object of Ct

2 does not overlap with other lower objects. Therefore,
Ct+1

1 ← Ct
1 , Ct+1

2 ← Ct
1 , and Ct+1

3 ← ∅. ∅ ← Ct
2.

To justify the validity of the condition for the correspondence
test, we make an assumption on the movement of contours over
time. Let w be an isovalue. We first define signt(x), a sign of a
point x on the domain in the function f t (Figure 3 (a)).

signt(x) = 1 , if f t(x) > w
signt(x) = -1 , if f t(x) < w
signt(x) = 0 , if f t(x) = w

Consider the case when f t and f t+1 are placed on the same do-
main. We define signchange(t,t+1)(x) = signt(x) · signt+1(x),
indicating whether the sign of x changes over time. The whole
sign change area can be decomposed into a set of sign change sub-
regions r1, ..., rn where each rk is enclosed by contour segments.
Intuitively, each sign change subregion rk is considered as a ho-
mogenious region whose signchange value is negative (inside the
region) or zero (the border of the region) as shown in Figure 3 (b).

Based on sign change subregions, we are able to estimate the
movement of contours (Figure 3(c)). An isocontour at t + 1 may
partition a contour at t into several segments. We define Si(Ct

k)
as an i-th segment of Ct

k, which is separated by It+1. In a similar
way, S′i′(C

t+1
k′) is defined as an i′-th segment of Ct+1

k′ separated
by It. We assume that Si(Ct

k) moves to S′i′(C
t+1
k′) if Si(Ct

k) and
S′k′(Ct+1) are on the border of the same sign change subregion,
and vice versa. If the border contains only Ct+1

k′ , Ct+1
k′ is created

as a point between t and t + 1, and the point grows into C t+1
k′ .

If the border contains only Ct
k, Ct

k shrinks into a point between t
and t + 1, and disappears. The contour segments and their move-
ment are shown in Figure 4 (a) and (b). This assumption is rea-
sonable because the sign change subregion is the only possible area
which the contour segment on the border of the subregion can move
through, if f t0 is linearly interpolated between f t and f t+1, where

Figure 2: Contour correspondence test of two consecutive iso-
contours. (a)(b) Upper objects. (d)(e) lower objects. (c) and (f)
check overlaps of upper and lower objects respectively.

(c)(b)(a)

−

−

+ −+

+

+

Figure 3: (a) Consecutive isocontours at time t (green) and t+1
(blue). Each bounded region is marked as either ‘+’ or ‘-’ based
on its sign. (b) Each sign change subregion is marked with lines.
(c) Contour movement. Points on a contour Ct

k at time t move
toward corresponding points on the contours at time t+1 which
share the same sign change subregion with Ct

k.

t < t0 < t+ 1.
Our rule for the correspondence test guarantees to decide (i)

Ct+1
k′ ← Ct

k if Si(Ct
k) moves to a segment S′i′(C

t+1
k′), (ii)Ct+1

k′ ←

∅ if Ct+1
k′ is newly created, (iii) ∅ ← Ct

k if Ct
k disappears, based

on the movement assumption we made in the previous paragraph.
The properties (i),(ii) and (iii) shows the validity of the definition 1.
A brief proof is as follows. Assume Si(Ct

k) moves to S′i′(C
t+1
k′).

That means a sign change subregion r has Si(Ct
k) and S′i′(C

t+1
k′)

on its border. Let’s assume a sign changes from negative to positive
in r. The case of a sign change from positive to negative is sym-
metric. Then Xt

a containing Ct
k on its border is laid just outside of

the sign change subregion r, andX t+1
b contains r. Therefore, there

is an overlap between Xt
a and Xt+1

b at least on Si(Ct
k). The case

of lower objects is also same. Y t+1
b′

is laid just outside of r and Y t
a′

contains r. Therefore, there is an overlap between Y t
a′ and Y t+1

b′
at

least on S′i′(C
t+1
k′). This meansCt+1

k′ ← Ct
k. In the case of (ii) and

(iii), the associated sign change subregion r is covered by only one
upper object or lower object. Overlapping between either upper ob-
jects or lower objects does not happen. Therefore, C t+1

k′ ← ∅ (ii),
or ∅ ← Ct

k (iii). The converses of (i),(ii) and (iii) are true for most
cases, but some weird cases do not satisfy the converses of (i),(ii)
and (iii).

4. CONTOUR TREES
The Contour Tree (CT) with a vertex set V and an edge set E

is defined from a scalar field f as follows. V consists of critical
points of f where a contour is created, merged, split and dissipated.

t+1
t

(a)

t
t+1

(b) (c)

Figure 4: (a) Each contour segments are colored differently. (b)
The movement of each segment through sign change subregion.
Dashed contours are defined from interpolated function at t0 ∈
(t, t + 1). A contour at t continuously evolves to a contour at
t+ 1. (c) Contour evolution.

Define a contour class as a maximal set of continuous contours
which do not contain critical points. E consists of edges connecting
two critical points where a contour class is created and destroyed.

Our algorithm for computing correspondence information be-
tween consecutive contour trees is based on [6]. This section pro-
vides high level algorithm descriptions for constructing and merg-
ing the Join Tree(JT) and Split Tree(ST) to build CT. Since con-
struction of JT and ST is symmetric, we only describe the algorithm
for JT construction.

Start from the maximum function value w = max(f). We
continuously decrease an isovalue w and mark regions X(w) =
{x|f(x) ≥ w} = {X1, X2, ...Xn} on the domain space, where
Xk is a connected component. Each connected component of the
marked regions is conceptually same as an upper object. As an iso-
value passes through the function value of a local maximum, called
upper leaf, a new component Xn+1 is created. At this moment, a
JT node for the upper leaf is created. In the case of ST construc-
tion, it is called lower leaf. As an isovalue passes through a joining
saddle point, called join, two or more components are merged into
one. split is defined in a similar way as join. A new JT node for
the saddle point is created and edges connecting the new node and
the node for the latest critical point which each joining component
created. When w reaches the global minimum function value, a JT
node is created and connected to the latest joining node.

JT and ST are used to construct CT. The upper leaves of JT and
lower leaves of ST are successively deleted and adjacent edges of
the leaves are inserted to form Augmented Contour Tree(ACT). CT
can be obtained by successively deleting regular nodes in ACT.

5. CORRESPONDENCE COMPUTATION

5.1 Algorithm Overview
In this section, we aim to design an algorithm to compute the

contour correspondence over all isovalues as a preprocessing. The
problem is formally stated as follows. Each edge of CT t is labeled
as etj . The goal is to assign a set of edges Et

k = {etπ(1) , ... ,
etπ(n)} to a corresponding edge et+1

k′ with a function range [fa, fb]

in CT t+1, which is represented as (et+1
k′ , [fa, fb])← {e

t
π(1) , ... ,

etπ(n)}. This means any intersection point on et+1
k′ with an isovalue

w0 ∈ [ra, rb] corresponds to intersection points on eπ(1) , ... , eπ(n)

with w0. The correspondence information needs to be computed
for every edge in CT t+1.

As can be noted, definition 1 and the process to construct join/split
trees have an interesting relationship. The process of JT construc-
tion is very similar to checking an overlap of two upper objects,
(Xt

a(w)∩Xt+1
b (w)) 6= ∅, as the threshold value w decreases from

the highest function value. Given f t and f t+1 on the same do-
main, we start from the highest value of f t and f t+1, gradually de-
crease the isovalue, and mark the regions where the function value
is greater than the isovalue in f t and f t+1 at the same time. The
marked regions form objects Xt and Xt+1, which are created and
merged each other. If an upper object X t

a and Xt+1
b collides at a

point xc and isovalue w0, Xt
a and Xt+1

b starts to have an overlap
area at isovalue w0. Objects Xt

a and Xt+1
b always grows as the

isovalue decreases. Therefore two objects always have an overlap
area after collision between the two objects. This can be formu-
lated as Xt

a(w) ∩ Xt+1
b (w) 6= ∅, where w ≤ w0. This relation-

ship is exactly same for the split tree construction and checking
(Y t

a′(w) ∩ Y t+1
b′

(w)) 6= ∅. Using this property, we use JTs and
STs of f t and f t+1 to compute the overlap information of upper
and lower objects over all isovalues. The overlap information is
used to construct CT t+1 where the temporal correspondence in-
formation of contours are computed.

5.2 Algorithm Details
Each edge of CT t has a unique id et. Any point pt on an

edge et corresponds to a contour Ct and vice versa. This is rep-
resented as E(Ct) = et. We define various forms of join and split
trees and contour trees. Each edge e = (va, vb) of the original
JT t/ST t/CT t and JT t+1/ST t+1/CT t+1 is decomposed into
subedges (va, v1),(v1, v2) ,..., (vk, vb) such that every point on a
subedge has correspondence with the same set, termed ESET, of
edges in CT t. During the edge decomposition, nodes v1, ..., vk
are created. It is possible that the edge decomposition is not nec-
essary. Depending on the meaning of the ‘correspondence’ and
ESET, different forms of JT/ST/CT, namely JT tE , JT t+1

C , CT t+1
CJT

,

and CT t+1
C are defined as follows.

• JT tE : Any point p on a subedge s of JT tE corresponds to an
upper objectXt

p. The border ofXt
p may contain several con-

tours, B(Xt
p) = {Ct

1, ..., C
t
k}. For any point on the subedge

s, ESET (s) = {E(Ct
1), ..., E(Ct

k)}.

• JT t+1
C : Any point on a subedge s of JT t+1

C corresponds to
an upper object Xt+1

i . There are a set of objects Xt
1, ..., X

t
k

which overlap with Xt+1
i . Let B(Xt

1) ∪ ... ∪ B(Xt
k) =

{Ct
1, ..., C

t
k′}. ESET (s) = {E(Ct

1), ..., E(Ct
k′)}.

• CT t+1
CJT

: Any point on a subedge s ofCT t+1
CJT

corresponds to

a contour Ct+1
i . There exists an upper object Xt+1

i′
contain-

ing Ct+1
i on its border. There are a set of objects X t

1, ..., X
t
k

which overlap with Xt+1
i′

. Let B(Xt
1) ∪ ... ∪ B(Xt

k) =
{Ct

1, ..., C
t
k′}. ESET (s) = {E(Ct

1), ..., E(Ct
k′)}.

• CT t+1
c : Any point on a subedge s corresponds to a contour

Ct+1
i . There exist an upper object Xt+1

a′ and a lower object
Y t+1
b′

containing Ct+1
i on their borders. There are a set of

contours {Ct
1, ..., C

t
k} such that X(Ct

j) ∩ X(Ct+1
i) 6= ∅

and Y (Ct
j) ∩ Y (Ct+1

i) 6= ∅, j = 0, 1, ..., k. X(Ct
j) and

Y (Ct
j) returns Xt

a and Y t
b respectively, where Ct

j ∈ B(Xt
a)

and Ct
j ∈ B(Y t

b). ESET (s) = {E(Ct
1), ..., E(Ct

k)}.

The goal of this section is to construct CT t+1
c . The algorithm

consists of five steps : the construction of (1) CT t,JT t/ST t ,
CT t+1,JT t+1/ST t+1 , (2) JT tE/ST

t
E , (3) JT t+1

C /ST t+1
C , (4)

CT t+1
CJT

/CT t+1
CST

, and (5) CT t+1
C . Each step except the first one

uses the information computed from the previous step. ‘/’ repre-
sents symmetric relationship. Therefore, we describe algorithms
only for the cases of JT tE , JT t+1

C , CT t+1
CJT

in step 2, 3 and 4, re-
spectively. Figure 5 shows the growth of upper objects in f t and

(a) (b) (c) (d) (e) (f)

Figure 5: The growth of upper objects in time t (green) and t+ 1 (blue) as an isovalue decreases.

CJT
STEP5

φ
φ

φ

φ

ST

φ
φ

STEP2STEP1 STEP4STEP3 CT
φ

φφφ
φ

φ

φ φ

φ

(c)
(e)

(d)

(f)

(b)

t+1CTC

t+1

e

{ }

e3{ }

CT t+1
CJT t+1

C

e1{ } e1{ }

2

1

CT t

e3{ }

e1{ }

e

e

{ 3e

, }{ 3e2e

}{ 3

}3

, }{ 3e2e

}{ 1e

}{ 1e

{ }2e
}{ 3e

}{ 1

e

e
3e

1e

C
t+1STE

tST

EJT t

{ } e3 }

e

{

2 e3{ },

Figure 6: Five steps for computing correspondence of contours in consecutive contour trees.

f t+1 on the same domain when w is continuously decreased from
the maximum value. We use the same function f t and f t+1 for Fig-
ure 2, 3, 5, 6 and 9. Figure 6 shows how the trees are constructed
for each five step. The following paragraphs describe the algorithm
of each step in detail.

We use the algorithms described in [6] for step 1. The second
step is to construct JT tE . The vertices of the domain mesh are
sorted in an increasing order and stored in the array va. The func-
tions ‘CreateNode’ and ‘Connect’ generate the nodes and edges of
the output tree. The node needs to be stored with its function value.
The ESET of an edge is determined when the node which has the
higher function value is created. E(v1, v2) returns a CT edge id
where the edge (v1, v2) belongs. Up(v) and Down(v) returns the
parent and child vertex connected to v respectively in ACT. Note
that Up(v) or Down(v) may return more than one vertex if v is a
join or a split. In such a case, the function, ‘Up’ or ‘Down’, is
applied multiple times. We use an array N t[v] to store the node for
the critical point where the contour class containing v is created at
time t. ACT t [6] can be constructed during the CT t construction.

STEP 2
Input : ACT t , va

Output : JT t
E

1: for i← nv − 1 to 0
2: v ← va[i];
3: if (v is upper leaf) then

4: n← CreateNode(f t(v),{E(v,Down(v))});
5: if (v is join or split) then
6: n← CreateNode(f t(v),ESET(N t[Up(v)])

− {E(v,Up(v))} + {E(v,Down(v))});
7: Connect(n,N t[Up(v)]);
8: if (v is lower leaf) then
9: n← CreateNode(f t(v),ESET(N t[Up(v)])−{E(v,Up(v))});
10: Connect(n,N t[Up(v)]);
11: if (v is regular) then
12: N t[v]← N t[Up(v)];
13: else N t[v]← n;

Step 2 computes a join tree where each edge et+1 is labelled with
a set of CT t edge ids which corresponds to et+1. We process each
vertex of ACT t in a decreasing order based on its function value.
If v is a regular vertex of ACT t, no change occurs with respect
to constructing JT tE . Otherwise, the topology of contours changes
at v when w passes through f t(v) and ESET needs to be updated.
Since v is processed in a decreasing order, ESET of N t[Up(v)] is
always computed and accessible before processing v.

The third step is to find correspondence to compute JT t+1
C from

JT tE , which is the most essential part of the whole algorithm. Let’s
assume we have separate meshesM t for time t = 1, 2, ..., T where
vertex positions and connectivity of each mesh are exactly same.
First, all the vertices in M t and M t+1 are sorted in an increasing
order based on the function value f t and f t+1 defined on the ver-

tices. The sorted vertices are stored in an array va2. The process-
ing is done vertex by vertex starting from the vertex which has the
highest value. Assume that the region defined as {x|f(x) ≥ f(v)}
is marked incrementally on the mesh M t and M t+1 as each vertex
v is processed . The marked area is conceptually same as an up-
per object. Upper objects are updated for each iteration of the loop
(line 1).

STEP 3
Input : JT t

E , ACT t , ACT t+1, va2

Output : JT t+1
C

1: for i = 2vn− 1 to 0
2: (v, time)← va2[i]; // time = t or t + 1.
3: if collisions between object sets Xt and Xt+1 occur

when w is decreased from f(va[i− 1]) to f(va[i]) then
4: for each collision point xc between objects Xt

k
and Xt+1

k′

5: lv1 ← LowestVtx(Xt
k

);
6: lv2 ← LowestVtx(Xt+1

k′
);

7: n← CreateNode(f(xc),ESET(N t[lv1])+ESET(N t+1[lv2]));
8: Connect(n,N t+1[lv2]);
9: N t+1[lv2]← n;
10: ObjectUpdate(Xt

k
,Xt+1

k′
);

11: if time = t + 1 then
11: if (v is upper leaf) then
12: n← CreateNode(f t+1(v),ESET(N t[LowestVtx(Xt(v))]);
13: N t+1[v]← n;
14: if (v is join) then
15: n← CreateNode(f t+1(v),ESET(N t+1[Up(v)]));
16: Connect(n,N t+1[Up(v)]);
17: N t+1[v]← n;
18: if (v is split or lower leaf or regular) then
19: if (v2 is the lowest of the whole tree) then
20: n =CreateNode(f t+1(v),NULL);
21: Connect(n,N t+1[Up(v)]);
22: else N t+1[v]← n;
23: if time = t then
24: if (v is upper leaf) then
25: if Xt+1(v) exists then
26: n′ ← Nt+1[LowestVtx(Xt+1(v))];
27: n=CreateNode(f t(v),ESET(Et(v,Down(v))+ESET(n′);
28: Connect(n , n′);
29: Nt+1[LowestVtx(Xt+1(v))]← n;
30: else if (v is join or split or lower leaf) then
31: for each object Xt+1

k′
in time t + 1

32: if Xt+1
k′

overlaps with Xt
h
(v) then

33: w← LowestVtx(Xt+1
k′

);
34: n=CreateNode(f t(v), ESET(N t+1[w])

− ESET(Et(v,Up(v))) + ESET(Et(v,Down(v))));
35: Connect(n,N t+1[w]);
36: N t+1[w]← n;

As we take vertices v in a decreasing order, objects increase their
sizes. First, we need to check whether two objects X t

k and Xt+1
k′

collide at the point xc during the growth. Two objects already col-
lided before are not considered for the test again. Since we use
simplicial domain meshes, xc is always placed on an edge of the
mesh (Figure 7 (a)). To detect the collision, we check the neigh-
boring vertices of v for each iteration of the loop (line 1). If a
neighboring vertex v′ is covered and v is not covered by an object
from the other time, the collision point x′c on the edge (v, v′) and
f(x′c) can be computed using the values of f t(v), f t(v′), f t+1(v)
and f t+1(v′). x′c and f(x′c) are inserted to a priority queue ordered
based on the value of f(x′c). The queue is efficiently used for the
collision test in line 3 of step 3.

The overlap of the two objects indicates that the contours on the
border of the two objects have correspondence in the case of join
tree. Therefore, a new node having f(xc) is created and the union

cx

k’
t+1X

k
tX

v’

v

(a)

t t
, }{

t t
, }{

φ
φ

JT

2

t }{ 1e
t }{ 1e

2
t+1e

C
t+1JT C

t+1CT
1
t+1e

JT

e1e
2e1e

{ },
t+1t+1
2e1e

E
t+1

(b)

Figure 7: (a) Collision Test. (b) Step 4.

of ESETs in two objects are assigned as ESET of the node. In line
3, f(v) means f time(v). LowestVtx(Xt

k) returns the vertex with
lowest value which is covered by an upper object X t

k.
If v is an upper leaf at t + 1, a new node n having f t+1(v) is

created. If there is already an objectXt(v) at t in the place of v, the
ESET of Xt(v) is inserted into the node n. Otherwise, the ESET
of n becomes empty. If v is a join at t = 2, a new node n having
f t+1(v) is created. Since two or more objects are merged at v,
the union of ESET for the objects is inserted into n and connected
to the nodes N t+1 of merged objects. No change occurs in ESET
computation For other cases in t+ 1,. If v is an upper leaf at t, the
CT t edge id of the newly created contour is inserted into ESET of
the object Xt+1(v) at t + 1 covering the vertex v. If v is a join
or split or lower leaf at t, then find objects at t+ 1 which have an
overlap with the object at time t covering v and update the ESET
of the object at t+ 1.

The fourth step is to convert JT i+1
c into the form of the con-

tour treeCT i+1
cJT

with correspondence information. The example of
processing step 4 is presented in Figure 7 (b).

STEP 4
Input : JT t+1

C
, JT t+1

E

Output : CT t+1
CJT

1: ea← sorted edges of JT t+1
E

2: for i = sizeof(ea)− 1 to 0
3: (va, vb)← two vertices of the edge ea[i];
4: Subdivide (va, vb)→ (va, v1),(v1, v2),...,(vm, vb) where

v1, ..., vm are vertices on the edges in JT t+1
C

equivalent to (va, vb).
5: for each ek ∈ ESET(ea[i])
6: Insert the edges (va, v1),...,(vm, vb) to CT t+1

CJT
in the place of ek

7: ESET of the edges are taken from the JT t+1
C

.

The fifth step is to compute the intersection between ESETs of
CT t+1

cJT
and CT t+1

cST
to build CT t+1

C . Each edge of CT t+1 is cor-
responding to a set of edges with different ESET in CT t+1

cJT
and in

CT t+1
cST

. We compare and compute intersection set of those edges
and their ESET. This process is iterated for each edge of CT t+1.

Time Complexity Analysis n, m and ct are the numbers of ver-
tices, tetrahedra, and critical points in f t, respectively. This means
the number of upper or lower objects at a certain isovalue can not
be greater than ct. The whole algorithm consists of five steps.

• Step 1 : O(nlogn+m). This is analyzed in [6, 16].

• Step 2 : O(n+ (ct)2).

• Step 3 : O(n+ (ct)2ct+1)

• Step 4 : O((ct+1)
2
ct)

• Step 5 : O((ct+1)2(ct)2)

In step 2, processing a critical point may takeO(ct) for ESET com-
putation, which makes the total complexity O(n + (ct)2). In step
3, collision (line 3) can occur no more than ct · ct+1 times be-
cause there can be at most ct and ct+1 objects at time t and t + 1.
For each collision, we need to compute the union of ESET (line
7) with O(ct) time. The complexities for other parts of step 3
are minor. The total cost for step 3 is O(n + (ct)2 · ct+1). In
step 4, the sorting process (line 1) takes O(ct+1logct+1). The
loop in line 2 has O(ct+1) iterations. In line 5, the maximum
number of ek is ct+1. The line 6 may have O(ct) edges. There-
fore, step 4 has O((ct+1)

2
ct). In step 5, we take intersections of

edges and their ESET in CT t+1
CJT

,CT t+1
CST

. As a result of the step

4, CT t+1
CJT

,CT t+1
CST

has at most (ct+1)2ct edges, which makes the

total cost for the edge intersection O((ct+1)
2
ct). For each inter-

sected edge, we need to perform ESET intersection which takes
O(ct). The cost for step 5 is O((ct+1)2(ct)2).

Processing steps 4 and 5 is generally too slow (see the timing
results in section 9). Although CT t+1

C is the ideal form of hold-
ing the temporal correspondence information, all the information
of CT t+1

C is embedded in JT t+1
C and ST t+1

C which is the output
of the step 3. In run-time, every point pt+1 in CT t+1

C can be easily
mapped to points ptJT and ptST in JT t+1

C and ST t+1
C respectively.

The ESET of CT t+1
C at pt+1 can be computed by intersecting the

ESET of ptJT and ptST . In practice, we perform only the steps 1,
2 and 3 to save the preprocessing time and maintain JT t+1

C and
ST t+1

C for run-time correspondence queries.

6. TOPOLOGY CHANGE GRAPH
The goal of this section is to classify topological events of time-

varying isocontours and describe a run-time algorithm to construct
a graph representing the topological events. When an isovalue
w is selected, isocontours for each timestep are defined as I t =
{Ct

1, ..., C
t
nt}, t = 1, ..., T . The challenge in topology tracking

of contours over time is to find a correspondence between the con-
tours of consecutive isosurfaces It and It+1 for all t in the time
sequence. We define two contour mapping functions, ψ and φ. ψt

maps from a contour Ct
k to a set of corresponding contours at t+1

which are evolved from the Ct
k. φt maps in an opposite direction

from a contourCt
k to a set of corresponding contours at t−1 which

evolves to Ct
k. Using these functions, we can define six topological

events of time-varying isocontours.

• create : Ct
k is created at time t if φt(Ct

k) = ∅.

• disappear : Ct
k disappears at time t+ 1 if ψt(Ct

k) = ∅.

• merge : Ct−1
k1

, ..., Ct−1
km

are merged to form Ct
k at time t if

φt(Ct
k) = {Ct−1

k1
, ..., Ct−1

km
},m ≥ 2.

• split : Ct
k is split into Ct+1

k1
, ..., Ct+1

km
at time t+1 if ψt(Ct

k)

= {Ct+1
k1

, ..., Ct+1
km
}, m ≥ 2.

• continue : Ct
k continues at time t+ 1 if ψt(Ct

k) = {Ct+1
k′ }

and betti(Ct
k) = betti(Ct+1

k′). betti(C) is a betti number
of a contour C, which can be pre-computed for all contours
using [16].

• genus change : Ct
k changes its topology at time t + 1 if

ψt(Ct
k) = {Ct+1

k′ } and betti(Ct
k) 6= betti(Ct+1

k′).

Now, the problem is to implement the function ψt and φt. We
use correspondence information in time dependent contour trees to
compute ψt(Ct

k) and φt(Ct
k).

φ

φ φ

t+1CTc

φ
φ

}{ 1e

}{ 3e
2e

3e

1e

tCT

(a)

t+1t

(b)

Figure 8: (a) Checking Correspondence of Consecutive Con-
tours. (b) Topology Change Graph

Using the algorithms described in section 5 , we can construct
the contour trees CT t and CT t+1

C . When we select an isovalue
w0 in run-time, we can get the intersection points between con-
tour trees CT t and CT t+1

C , and a line y = w0. Each intersec-
tion point in CT t+1

C represents a contour Ct+1
k . Since sets of

corresponding edge, ESET, are already computed on every edge
of CT t+1

C , Ct+1
k has an ESET {etk1 , ..., e

t
ki
}, which uniquely de-

fines {Ct
k1
, ..., Ct

ki
}. Therefore, φt+1(Ct+1

k) = {Ct
k1
, ..., Ct

ki
}

, i = 0, 1, If i = 0, Et+1
k = ∅ and φt+1(Ct+1

k) = ∅. By
checking whether i = 1 and the betti(Ct+1

k) 6= betti(Ct
k1

), the
genus change of a contour can be detected.

Those topological events can be visualized as a graph, called the
Topology Change Graph(TCG). Each contour Ct

k at time t is rep-
resented as a node N t

k and a set of such nodes St at time t are laid
vertically. A sequence of nodes S1,...,ST are laid horizontally in
time order. If Ct

k ∈ φ
t+1(Ct+1

k′), two nodesN t+1
k′ andN t

k are con-
nected with an edge. This process is performed for all contours in
each timestep sequentially to construct TCG. The function ψt(Ct

k)
can be implemented by checking every edge connecting N t

k and
the nodes in time t+ 1. The betti number is stored in each node as
a property and used to detect the genus change of a contour, which
is not described in other feature tracking methods [12, 20].

7. QUANTIFICATION
In this section, we quantify the geometric features of contour

evolution. Quantitative properties such as surface area and volume
for each contour are computed and labelled in the topology change
graph. Those quantitative information helps users to find dynamic
features of contour evolution, and isolate and track interesting con-
tours. For example, the nodes and edges of the graph can be colored
based on the surface area and volume quantities. Users can guess
which components are significant and how a specific component
evolves over time by looking at quantity changes. In most cases,
contours with small surface area/volume are noise and insignifi-
cant. If surface area/volume of a contour increases or decreases,
such contours may contain important dynamic features.

Conventional algorithms [12,20] need to extract the surface first,
and then the quantitative properties can be computed from the sur-
face. However, such approaches are not suitable for interactive ap-
plications because surface extraction is expensive. Our approach
pre-computes the quantitative properties of all possible contours
for each timestep. This allows realtime evaluation of the properties
for any selected contour in an interactive system.

Consider a 2D or 3D scalar field f defined on a simplicial mesh.
The length/area/volume of isocontours over the continuous range

eav
bv

(a) (b)

G(e,w)

w
f (v) b

t+1f (v) a
t+1

(c)

Figure 9: Quantification for segmented contours. (a) CT t+1
C .

(b) Solid region corresponding to e. (c) Quantification Function
for e.

of isovalues in an i-th simplex can be represented with a univariate
B-spline function Gi(w). When such functions for all simplices
are merged, a new single B-spline function G(w) =

∑
Gi(w)

representing the quantitative properties of isocontours for any w is
constructed. If an isovalue w0 is selected as an interactive param-
eter, the length/ area/ volume/ gradient of I(w0) is computed in
real-time by evaluating the function G(w0). We refer to [1, 17] for
detailed description of the G(w) computation.

The main goal of this section is to computeG(e, w) representing
quantitative properties for each edge e of a contour tree . Each
edge e in a contour tree corresponds to the region covered by a
continuous contours. Let’s assume the region is contained by a set
of simplices Se = {s(e,1),...,s(e,n)}. The function associated with
the edge e is the sum of the B-spline function for each simplex
s(e,k) (Figure 9).

G(e, w) =
∑n

k=1Gs(e,k)
(w).

Once G(e, w) is computed for each edge e of the contour tree,
the quantitative properties of any contour corresponding to a se-
lected point with isovalue w0 on e can be quickly computed by
evaluating G(e, w0) in run-time. Each node of TCG is colored
based on the magnitude of the geometric property (Figure 10(c)).

In this paragraph, we describe an algorithm to compute Se. Let
e = (v1, v2) such that f(v1) ≤ f(v2). We first pick any seed cell
c in the edge e and use a propagation method similar to [2]. This
takes O(|Se|).

Input : CT , path seeds [5] , e
Output : Se
1: c← a seed cell in an edge e of CT ;
2: Enqueue c;
3: Visit(c);
4: while queue is not empty do
5: s← Dequeue();
6: t← GetFaces(s);
7: for each face ti of s , i = 1, 2, 3, 4
8: if Min(ti) < f(v2) and Max(ti) > f(v1) then
9: c← tetrahedron sharing the face ti with s;
10: if c is not visited then
11: Enqueue(c);
12: Visit(c);

The GetFaces(s) returns the four triangles of a tetrahedron s.
Min(t) and Max(t) return the minimum and maximum function val-
ues defined in the triangle t. The line 8 checks whether the triangle
ti has overlap with the continuous contour class which is corre-
sponding to the edge e. The Visit(c) inserts the cell c to Se.

8. INTERACTIVE CONTOUR TRACKING
When time-varying isocontours have many evolving contours in-

cluding noise, users may want to segment and visualize a subset of

(a) Contour Tree (b) Contour Segmentation

(c) Topology Change Graph (d) Segmented Contour Tracking

Figure 10: Simulations of Turbulent Vortex Structures. The
color of a node in (c) represents the surface area of a contour
which corresponds to the node. The marked nodes correspond
to segmented contours.

contours. This allows the user to focus on the evolution of inter-
esting features. The topology change graph combined with quan-
titative information is used as an interface to guide identifying sig-
nificant contours and their dynamic patterns. In this section, we
describe an interactive algorithm to select and extract specific con-
tours and track their evolution over time.

We use a seed set based isocontouring method for surface ex-
traction [2]. A seed set S is defined as a subset of cells such that
any isocontour component intersects with at least one cell c ∈ S.
Each contour surface can be constructed by mesh propagation from
a seed cell containing the contour.

This process is efficient because visiting unnecessary cells, which
has been considered as a main bottleneck of isocontouring, is avoided.
Another important benefit of the seed set based isocontouring is its
ability to segment a single connected component of an isocontour.
Since we use a simplicial mesh, there can be at most one sheet of
an isocontour in a cell. Starting from a seed cell, we incrementally
track and triangulate the cells which are connected to the contour
segment in the seed cell. Therefore, the surface generated by prop-
agation from a seed cell is a single contour.

CT is useful for obtaining a minimal seed set and isolating in-
dividual contours. When a point on an edge of a CT is selected
in run-time, a seed cell corresponding to the point is computed and
the corresponding contour is quickly extracted by propagation from
the seed cell. A detailed algorithm for computing a seed cell corre-
sponding to a point on an edge of a contour tree is described in [5].

Suppose an isovalue w0 is chosen and the TCG is computed.
When a user selects a node nt at time t in the graph, the corre-
sponding point on the CT t is identified. A seed cell for this point
is computed and the corresponding contour Ct is extracted. The
evolution of the selected contour is quickly tracked and displayed

(a) Volume Rendering (b) Contour Tree (c) Segmentation of four polypeptide chains

(d) Topology Change Graph (e) Four heme groups (f) The heme group at time 1 (g) The heme group at time 4

Figure 11: Visualization of a hemoglobin molecule and its dynamics. In (c) each chain is segmented and colored. (f) and (g) shows a
heme group composed of carbon (grey), nitrogen (blue), iron (yellow), hydrogen (not shown) and oxygen (red) atoms with different
timesteps. Note that oxygen bound to iron in (f) is released in (g). This phenomena is detected in the red circle of (d).

using the adjacency information of the graph. If nt is connected to
the nodes nt+1

1 , ..., nt+1
k at time t+ 1, the corresponding contours

of the nodes nt+1
1 , ..., nt+1

k can be also quickly extracted in the
same way as the extraction of Ct. The backward tracking can be
done in the same manner. This process is shown in Figure 10.

9. RESULTS
We tested two time-varying data sets generated from hemoglobin

molecular dynamics and turbulent vortex simulations. The data sets
are defined on rectilinear grids. We divided each cubic cell into six
tetrahedra because the algorithm requires simplicial meshes. This
cell decomposition reduces the speed of the program and generates
undesirable artifacts [4] in the extracted surface. Visit our web-
site [10] for additional details including pictures, movies and de-
scriptions.

The first time dependent data set is an approximate electron den-
sity map of a deforming hemoglobin molecule (Figure 11(a)). De-
tailed description of the hemoglobin and its dynamics can be found
in [11]. The hemoglobin is a protein that binds to oxygen in oxygen-
rich areas (lung) and releases the oxygen to oxygen-poor areas (tis-
sues). The hemoglobin dynamics data set represents this oxy-deoxy
process and has 30 timesteps with 1283 sized electron density map
for each timestep. As shown in Figure 11, the contour tree (b) of the

density field (a) at time 1 indicates that the hemoglobin molecule
consists of four (almost identical) polypeptide chains. A contour
component of each chain is segmented and visualized with a differ-
ent color using propagation from seed cells computed from the con-
tour tree. Each chain has a flat ring structure called a heme, which
is the active site in the oxy-deoxy process (Figure 11(e)). The rest
of the polypeptide chain is called a globin. The contour tree (b)
shows the contour for each chain is divided into three components
: a heme(ring), iron and globin. Using the topology change graph,
we can detect when and where the oxygen is bound to and released
from the heme group, which is shown in (Figure 11(d)). We can
also track, quantify and visualize the evolution of each heme group
(Figure 11(e)(f)(g).

The other data set is a pseudospectral simulation of coherent tur-
bulent vortex structures [20] with a 1283 resolution and 33 time
steps. Figure 10 shows the result of contour segmentation and
tracking. When an isovalue 6.5 is selected, a TCG is constructed(c)
where each node is colored with the surface area of a correspond-
ing contour. A contour can be segmented and tracked over time
interactively using TCG. The connectivity and colors of nodes are
used to detect topological and geometric changes of contours.

We measured the time for computing correspondence informa-
tion for two consecutive functions (time 1 and 2) in an SGI ONYX

Data set Step 1 Step 2 Step 3 Step 4 Step 5
Hemoglobin 116 13 357 5241 25118

Vortex 244 9 411 3683 3412

Table 1: Timing results for CT t+1
C construction. (unit : sec)

2 system with R12000 processors and 25GB main memory. The
timing results are summarized in Table 1. The computation for each
sequence of consecutive functions (f t, f t+1) can be done indepen-
dently in a parallel system. The result shows step 4 and 5 are com-
putationally expensive. As we mentioned in the time complexity
analysis of section 5, all of the information in CT t+1

C are embed-
ded in JT t+1

C /ST t+1
C which is the output of the step 3. Therefore,

in practice, we can just perform only step 1, 2, and 3 to gener-
ate JT t+1

C /ST t+1
C for preprocessing. In run-time, when the corre-

spondence information of a contour is requested, we can compute
it from JT t+1

C /ST t+1
C .

The run-time operations are pretty fast. The construction of a
topology change graph, quantification and tracking is completed
in less than 0.1 sec for both data sets. Each of three contour sur-
faces in Figure 10 (d) are extracted in 0.28s, 0.28s and 0.29 where
the number of triangles are 12025, 12652, and 12253, respectively.
Generally, the contour extraction time scales linearly with the num-
ber of contour triangles.

10. CONCLUSION
We described an algorithm to compute correspondence informa-

tion in time dependent contour trees. We use this information to
extend all the benefits of a contour tree to the visualization of time-
varying scalar fields. First, we extract a graph representing the
topology changes of time-varying isocontours. Second, we seg-
ment, track, visualize and quantify the evolution of any selected
contours. Finally, we accelerate extraction of a contour surface
by generating the seed cells from each contour tree. The user in-
terface which adopted above three features allows users to easily
and quickly detect significant topological and geometric changes
of time-varying isocontours.

11. ACKNOWLEDGEMENT
The authors are grateful to A. Thane for developing the CCV

volume rendering tool (Volume Rover). We would like to thank
Dr. David Goodsell for providing the hemoglobin dynamics data
set, and Dr. V.Fernandez, S.Y. Chen and Dr.Silver for providing
the vortex data set. This work was supported in part by UCSD
1018140 as part of NSF-NPACI, Interaction Environments Thrust,
and a grant from Compaq for the 128 node PC cluster.

12. REFERENCES
[1] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum.

In IEEE Visualization Conference, pages 167–173, 1997.
[2] Chandrajit Bajaj, Valerio Pascucci, and Daniel R. Schikore. Fast

isocontouring for improved interactivity. In Preceedings of the 1996
Symposium for Volume Visualization, pages 39–46, 1996.

[3] Praveen Bhaniramka, Rephael Wenger, and Roger Crawfis.
Isosurfacing in higher dimensions. In IEEE Proceedings of
Visualization ’2000, pages 267–274, 2000.

[4] Hamish Carr, Torsten Möller, and Jack Snoeyink. Simplicial
subdivisions and sampling artifacts. In IEEE Visualization
Conference, pages 99–108, 2001.

[5] Hamish Carr and Jack Snoeyink. Path seeds and flexible isosurfaces
using topology for exploratory visualization. In Proceedings of
VisSym, pages 49–58, 2003.

[6] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour
trees in all dimensions. Computational Geometry: Theory and
Applications, 24(2):75–94, 2003.

[7] Yi-Jen Chiang. Out-of-core isosurface extraction of time-varying
fields over irregular grids. In IEEE Visualization Conference, pages
217–224, 2003.

[8] Yi-Jen Chiang, Tobias Lenz, Xiang Lu, and Günter Rote. Simple and
optimal output-sensitive construction of contour trees using
monotone paths, 2003.
http://cis.poly.edu/chiang/contour.pdf.

[9] Yi-Jen Chiang and Xiang Lu. Progressive simplification of
tetrahedral meshes preserving all isosurface topologies. In
Eurographics ’03, pages 493–504, 2003.

[10] Website for Time-Varying Contour Topology. http:
//www.ices.utexas.edu/˜bongbong/time_analysis.

[11] David Goodsell. Hemoglobin : Cooperation makes it easier.
http://www.scripps.edu/pub/goodsell/pdb/pdb41/
pdb41_2.html.

[12] G. Ji, H.-W. Shen, and R. Wenger. Volume tracking using higher
dimensional isocontouring. In IEEE Visualization Conference, pages
209–216, 2003.

[13] Lutz Kettner, Jarek Rossignac, and Jack Snoeyink. The safari
interface for visualizing time-dependent volume data using
iso-surfaces and contour spectra. Computational Geometry : Theory
and Applications, 25(1-2):97–116, 2003.

[14] W. S. Koegler. Case study: application of feature tracking to analysis
of autoignition simulation data. In IEEE Visualization Conference,
pages 461–464, 2001.

[15] V. Pascucci. On the topology of the level sets of a scalar field. In 12th
Canadian Conference on Computational Geometry, pages 141–144,
2001.

[16] V. Pascucci and K. Cole-McLaughlin. Efficient computation of the
topology of level sets. In IEEE Visualization Conference, pages
187–194, 2002.

[17] Valerio Pascucci. Multi-dimensional and multi-resolution geometric
data-structures for scientific visualization. Technical report, Ph.D.
Thesis. Department of Computer Sciences, Purdue University, 2000.

[18] Han-Wei Shen. Isosurface extraction in time-varying fields using a
temporal hierarchical index tree. In IEEE Visualization ’98, pages
159–166, 1998.

[19] D. Silver. Object-oriented visualization. In IEEE Computer Graphics
and Applications, pages 54–62, 1995.

[20] D. Silver and X. Wang. Tracking and visualization turbulent 3d
features. IEEE Transactions on Visualization and Computer
Graphics, 3(2):129–141, 1997.

[21] J. K. Sircar and J. A. Cerbrian. Application of image processing
techniques to the automated labelling of raster digitized contours. In
Int. Symp. on Spatial Data Handling, pages 171–184, 1986.

[22] Philip M. Sutton and Charles D. Hansen. Isosurface extraction in
time-varying fields using a temporal branch-on-need tree (T-BON).
In David Ebert, Markus Gross, and Bernd Hamann, editors, IEEE
Visualization ’99, pages 147–154, San Francisco, 1999.

[23] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda.
Algorithms for extracting correct critical points and constructing
topological graphs from discrete geographical elevation data.
Computer Graphics Forum, 14(3):C–181–C–192, 1995.

[24] Sergey P. Tarasov and Michael N. Vyalyi. Construction of contour
trees in 3d in o(nlogn) steps. In ACM Symposium on Computational
Geometry, pages 68–75, 1998.

[25] Marc J. van Kreveld, Rene van Oostrum, Chandrajit L. Bajaj, Valerio
Pascucci, and Daniel Schikore. Contour trees and small seed sets for
isosurface traversal. In ACM Symposium on Computational
Geometry, pages 212–220, 1997.

[26] Chris Weigle and David C. Banks. Extracting iso-valued features in
4-dimensional scalar fields. In IEEE Symposium on Volume
Visualization, pages 103–110, 1998.

