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Abstract tency ensures that a network is fully connected, i.e., there
exists a path from any node to any other node.) Anotherim-
Constructing and maintaining consistent neighbor tables portant issue is to optimize neighbor tables so that the av-
and optimizing neighbor tables to improve routing locality erage distance traveled for each hop (locality) is optimized.
are two important issues in p2p networks. In this paper, we Various ideas have been proposed to optimize neighbor ta-
address the problem of preserving consistency while opti- bles for improving routing locality [1, 2, 3, 11].
mizing neighbor tables for p2p networks with node dynam-  An important problem that has not been addressed is
ics. We present a general strategy: identify a consistent sub-how to preserve consistency (and thus preserve established
net as large as possible and only replace a neighbor with a reachability) while optimizing neighbor tables, when there
closer one if both of them belong to the subnet. We real- are nodes that join, |eave, or fail Concurrenﬂy and fre-
ize the general strategy in the context of hypercube routing. quently. We address the problem in this paper and present a
First, we present a join protocol that enables the identifi- general strategy: identify a consistent subnet as large as pos-
cation of a large consistent subnet with very low cost whensiple, and only allow a neighbor to be replaced by a closer
new nodes join. Next, we define an optimization rule to con-one if both of them belong to the subnet. To implement
strain neighbor replacements to preserve consistency, anchis strategy in a distributed p2p network, where there is no
pl’esent a set of Optimization heuristics to Optimize neighbor g|oba| know]edge7 the fo”owing prob]ems need to be ad-
tables with low cost. The join protocol is then integrated dressed: (1) how to identify nodes that belong to such a
with a failure recovery protocol. By evaluating the pro- consistent subnet with minimum cost, (2) how to expand

tocols through simulation experiments, we found our pro- the subnet when new nodes join, and (3) how to maintain
tocols and optimization heuristics to be effective, efficient, consistency of the subnet when nodes leave or fail.

and scalable to a large number of network nodes. In this paper, we realize the general strategy in the con-

_ . text of the hypercube routing scheme that is used in sev-
Keywords: peer-to-peer network, consistency, neighbor ta- g5 hroposed systems [9, 12, 16] to achieve scalable rout-
ble, optimization, consistency-preserving optimization, hy- jnq - \with additional distributed directory information, the
percube routing, join protocol scheme tends to satisfy each object request with a nearby
) copy. Givenconsisten{7] and optimal (that is, they store

1 Introduction nearest neighbors) neighbor tables, it is guaranteed to lo-

Structured peer-to-peer networks are being investigated as £21€ an object with asymptotically optimal cost if the object
platform for building large-scale distributed systems [9, 10, €XiSts [9].
12, 13, 16]. The primary function of these networks is ob-  In [7], we have proposed a join protocol for the hyper-
ject location, that is, mapping an object ID to a node in the cube routing scheme. We proved that when an arbitrary
network. For efficient routing, each node maintains neigh- number of nodes join an initially consistent network us-
bor pointers in a table, called iteighbor table The design  ing the join protocol, the network is consistent again after
of protocols to construct and maintain “consistent” neigh- all joins have terminated. The protocol is later extended
bor tables for network nodes that may join, leave, and fail to constructi’-consistent neighbor tables to improve sys-
concurrently and frequently is an important issue. (Consis-tem robustness [4]. Correctness of the join protocol relies
on preserved reachability: once a node can reach another
*Research Spr?ﬁzrergr:y f;laSnlt: gganéog%sgﬁzgglzﬂ?olsf aAnr? ;t?l;(::/ igtde- node, it always can thereafter. In order not to break es-
z:?sciiﬂ Sfetshei:rrceportt% appgear l?roc.eedings The Tenth IEEE Interna- d[ab“She_d reachability \.Nh.en .rEpIacmg. nelghb_ors, O.ne ap-
tional Conference on Parallel and Distributed Systeewport Beach, ~ Proach is to apply optimization algorithms without inter-
CA, July 2004, fering with joins, that is, applying optimization algorithms




when joins have terminated and the network is already con- messages.
sistent. However, in a distributed p2p network, where nodes e \We integrate the extended join protocol with our fail-

keep joining, it is difficult, if not impossible, to identify a ure recovery protocol and evaluate the protocols and
quiescent time period in which there is no node joining and the optimization heuristics by simulation experiments.
which is long enough for optimizations. Executing opti- e We show that the extended join protocol and the opti-
mization algorithms while nodes are joining, on the other mization heuristics can also be used for initializing a

hand, may resultin an inconsistent network, since replacing K-consistent and optimized network.
neighbors arbitrarily may break established reachability of ~ Among related work, both Pastry [12] and Tapestry [16]
some source-destination pairs, and thus affect the correctmake use of hypercube routing. Pastry’s approach for im-
ness of the join protocol. proving system robustness is very different from ours. In
We observe that within a subnet that is already consis-addition to a neighbor table for hypercube routing, each
tent, replacing any neighbor with another, when both of Pastry node maintains a set of nearest nodes on the ID
them belong to the subnet, does not break consistency conring, which is actively maintained and ensures success of
ditions and thus does not break established reachabilityrouting as well as object location. Pointers for hypercube
(Consistency conditions require that for each table entry, routing, on the other hand, are used as shortcuts and main-
if there exist qualified nodes in the network for the entry, tained lazily. Therefore, how to preserve established reach-
then the entry is filled with at least one such node.) Follow- ability while optimizing neighbor tables is not addressed.
ing the observation, we first extend our join protocol in [4] Tapestry’s join and failure recovery protocols are based
so that at any time, the set of nodes whose join processes!pon use of a lower-layer Acknowledged Multicast protocol
have terminated (including the nodes in the initial network) supported by all nodes [2], which also relies on established
form a consistent subnet. The extended join protocol leadsreachability. An algorithm to locate nearest neighbors for
to solutions to the first two problems mentioned before: (1) each table entry; > 1, is also presented [2]. However, how
identifying whether a neighbor is in the consistent subnet to preserve established reachability when nearest neighbors
or not can be easily achieved by recording the state of theare located and old neighbors are replaced has not been ad-
neighbor to indicate whether its join process has terminateddressed. Thus it is not clear how optimization operations
or not; (2) the consistent subnet is expanded whenever awill interfere with the correctness of their join protocol.
node’s join process terminates by including the node. Next, The rest of this paper is organized as follows. In Sec-
we integrate the extended join protocol with our failure re- tion 2, we briefly review the hypercube routing scheie,
covery protocol presented in [5]. (Node leave is treated asconsistency, our original join protocol [4], and our theoreti-
a special case of failure.) The failure recovery protocol al- cal foundation of protocol design and proofs. In Section 3,
ways tries to repair a hole left by a failed neighbor with a we present our general strategy for consistency-preserving
qualified node that is in the consistent subnet, thus it natu-optimization, extend the join protocol following the strat-
rally follows the general strategy and provides a solution to €gy, and present an optimization rule and a set of optimiza-
problem (3). Through extensive simulation experiments [5], tion heuristics. Correctness of the extended join protocol is
we have shown that the failure recovery protocol is able to proved and scalability of the protocol is analyzed. In Sec-
maintain 1-consistency and re-establiBhconsistency in  tion 4, we evaluate the effectiveness of optimization heuris-
every experiment with failures, fag > 2. tics by conducting simulation experiments in which nodes
Contributions of this paper are the following: may join and fail concurrently and frequently. In Section 5,

e We present a general strategy to preserve consistenc;‘/’ve explain how to '”'“?"Ze d(_-conmstent and optimized
while optimizing neighbor tables for p2p networks hetwork. We conclude in Section 6.
with node dynamics.

e We extend the join protocol in [4] and prove that with .
the extended protocoht any timet, the set of initial ~ 2-1 Hypercube routing scheme
nodes plus the set of nodes whose joins have termi-|n this section, we briefly review the hypercube routing
nated form aonsistent subneThe extended protocol  scheme used in PRR [9], Pastry [12], and Tapestry [16].
enables easy identification of nodes in the consistentConsider a set of nodes. Each node has a unique 1D, which
subnet, and the costs of protocol extensions are showris a fixed-length random binary string. A node’s ID is rep-
to be very low. resented byl digits of base, e.g., a 160-bit ID can be rep-

e We present an optimization rule. Optimization algo- resented by 40 Hex digitgl (= 40, b = 16). Hereafter, we
rithms should be applied within the constraint of this will usez.ID to denote the ID of node, z[:] thesth digitin
rule to preserve consistency. To optimize neighbor z.ID, andz[; — 1]...z[0] a suffix ofz.ID. We count digits
tables with low cost, we present a set of heuristics in an ID from right to left, with the Oth digit being thaght-
that primarily use information carried by join protocol mostdigit. See Table 1 for notation used throughout this
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paper. Also, we will use “network” instead of “hypercube
routing network” for brevity.

Notation Definition

(V,N(V)) a hypercube networkY” is the set of nodes in the
network, (V) is the set of neighbor tables

] the se{0, ...,¢ — 1}, £ is a positive integer

d the number of digits in a node’s ID

b the base of each digit

z[] thesth digitin z.ID

z[i — 1]...2[0] | suffix of z.ID; denotes empty string #f= 0

z.table the neighbor table of node

jrw digit j concatenated with suffix

Nz (i,7) the set of nodes i, j)-entry ofz.table, also
referred as thé¢i, j)-neighborsof nodex

Nz (3,7).prim | the primaryg, j)-neighbor of node:

Table 1. Notation

Given a message with destination node 400D, the ob-
jective of each step in hypercube routing is to forward the
message from its current node, sgyto a next node, say,
such that the suffix match betwegriD andz.ID is at least
one digit longer than the match betweedD andz.ID.! If
such a path exists, the destination is reache@ (tog, n)
steps on the average addteps in the worst case, where

Note that node: has the required suffix for each £]])-
entry,i € [d], of its own table. For routing efficiency, we
fill each node’s table such that, (i, z[i]).prim = = for all
z € V, 1 € [d]. Figure 2 shows an example neighbor table.
The string to the right of each entry is the required suffix for
that entry. An empty entry indicates that there does not exist
a node in the network whose ID has the entry’s required
suffix. For clarity, IP addresses are not shown in Figure 2.

Neighbor table of node 21233 ( b=4, d=5)

01233
11233
21233
31233

10233
21233
A
03233

0233
1233
2233
3233

31033
03133
21233

AN

033
133
233
333

22303
13113
00123
21233

03
13
23
33

01100
33121
12232
21233

A
11233
21233

w N = O

level 4 level 3 level 2 level 1 level 0

Figure 2. An example neighbor table

2.2 K-consistent networks

Constructing and maintaining consistent neighbor tables
is an important design objective for structured peer-to-
peer networks. Consider a hypercube routing network,

is the number of network nodes. Figure 1 shows an examplelV> ' (V)), whereV” denotes a set of nodes and(V) the

path for routing from source node 21233 to destination nod

eSet of neighbor tables in nodes. We defined consistency as

03231 6 = 4,d = 5). Note that the ID of each intermediate T0llows [7]: A network, (V, N/(V)), is consistentif and

node in the path matches 03231 by at least one more suffi
digit than its predecessor.

¢>

Figure 1. An example hypercube routing path

Lonly if the following conditions hold: (i) For every table en-

try in V(V), if there exists at least one qualified node in
V', then the entry stores at least one qualified node. (ii) If
there is no qualified node ilf for a particular table entry,
then that entry must be empty. In a consistent network, any
nodez can reach any other nogausing hypercube routing

in k steps,k < d; more precisely, there exists a neighbor

To implement hypercube routing, each node maintains asequencepath), (uo, ...,ux), k < d, such thatu is z, uk

neighbor tableghat hasi levels withb entries at each level.
Each table entry stores link information (IDs and IP ad-

isy, andu; 1 € Ny, (1, y[i]), i € [k].
If nodes may fail frequently in a network, a natural ap-

dresses) to nodes whose IDs have the entry’s required suffixProach to improve robustness is to store in each table entry

defined as follows. (Hereafter, we will use “neighbor” or
“node” instead of “node’s ID and IP address” whenever the

multiple qualified nodes. For this approach, we general-
ized the definition of consistency & -consistency as fol-

meaning is clear from context.) Consider the table in node lows [4]. A network, (V, V'(V)), is K-consistentif and

z. Therequired suffiXor entryj at levels, j € [b], 4 € [d],
referred to as the (j)-entry ofz.table, is j - z[i — 1]...z[0].

only if the following conditions hold: (i) For every table en-
try in V' (V), if there existH qualified nodes i, H > 0,

Any node whose ID has this required suffix is said to be a thenthe entry stores atleastn(K, H) qualified nodes. (ii)

qualified nodefor the @, j)-entry ofz.table. Nodes stored
inthe @, 7)-entry ofz.table are called théi, j)-neighborsof

z, denoted by, (i, 7). lIdeally, these neighbors are chosen
from qualified nodes for the entry according to some prox-

If there is no qualified node iiW for a particular table entry,
then that entry must be empty. Intuitively, irfk&consistent
network, a table entry stords neighbors whenever possi-
ble. ForK > 1, K-consistency implies consistency (in par-

imity criterion [9], with the nearest one designated as the ticular, 1-consistency is the same as consistency). Formal

primary(, j)-neighbor Furthermore, node is said to be a
reverse(, j)-neighborof nodey if y is an ¢, j)-neighbor of
z. Each node also keeps track of its reverse-neighbors.

1in this paper, we follow PRR [9] and use suffix matching, whereas

definitions for consistency arfd-consistency are presented
in [7] and [4], respectively.

2.3 Join protocol

other systems use prefix matching. The choice is arbitrary and conceptu-IN [4], we presented a join protocol for the hypercube rout-

ally insignificant.

ing scheme and proved that it constructs and maint&ins



consistent neighbor tables for an arbitrary number of con-

current ioins. Here we briefly review the protocol desian. CpRstMsgsent byz to request a copy of receiver's neighbor table.
J y P 9 CpRIyMsg¢.table), sent byz in response to £pRstMsg

In designing and proving the correctness of the proto- | joinwaitMsg sent byz to notify receiver of the existence afand

col for nodes to join a networkV, N'(V')), we made the request the receiver to stargwhenz. status is waiting.
following assumptions: (i} # 0 and (V,N(V)) isak- JoinWaitRIyMsgf, i, z.table), sent byz in response to doinWaitMsg
consistent network (ii) each joining node by some means whenz.status isin_systemr € {negative, positivk, i: an integer.

. NI JoinNotiMsg¢, z.table), sent byz to notify receiver of the existence|
knows a node iV initially, (iii) messages between nodes of &, whenz. status is notifying : an integer.

are delivered reliably, and (iv) there is no node leave or node| JoinNotiRlyMsg(, Q, z.table, f),
failure during the joins. Then, tasks of the join protocol are Seem{byx 'r;,reSpO”,St?;OSO'”NOF""fS,gt £ ¢ {true, felsd

. r negative, posiuyv, . asetorintegers rue, ralse.
to update nglghbor tables of nodes/irand t.O _ConStrUCt ta- SpeNotiMsgg, y), sent or forwarded by a node to inform receiver
bles for the joining nodes so that after the joins, the network of the existence o, wherez is the initial sender.

is K-consistent again. SpeNotiRlyMsg(, y), response to SpeNotiMsg
- - : ; InSysNotiMsgsent byx whenz.status changes tin_system

Each node m_ the ne_two_rk mal_ntams a state variable RvNghNotiMsgy, s), sent byz to notify y thatz is a reverse neighbqr
nar_n_edstatu_s _whlch b_eglns incopying then changes _to ofy, s € {T, S}.
waiting, notifying, andin_systemin that order. A node in RvNghNotiRlyMsgy), sent byz in response to 8/NghNotiMsg
statusin_systemis called anS-node otherwise, it is &l- s = §if ¢.status isin_systemotherwises = T
node Each node also stores, for each neighbor in its ta- _
ble, the neighbor’s state, which can Béndicating that the Figure 3. Protocol messages

neighbor is an S-node @r indicating that it is not yet.

In statuscopying a joining node, say, copies neighbor
information from other nodes to fill in most entries of its
table level by level. It copies level-0 neighbor information
from the node it knows iV, saygp, and finds a node;
among the level-0 neighbors g§ such thaty; shares the
rightmost digit withz. z then copies level-1 neighbors from
g1, and finds a node, that share the rightmost two digits
with it, and so on. When after coping levél1) neighbors,

z cannot find a node that shares the rightmadigits with

it, 7 > 1, z changes status teaiting. In this statusg tries

to “attach” itself to the network, i.e., to find an S-node, say
y, that shares at least the rightmaost 1 with z and stores

z as a neighbor. When is attached, its status becomes
notifying in which z seeks and notifies nodes that share a
certain suffix withz, a suffix also shared hyandy. Lastly,
when it finds no more node to notify, changes status to joining nodes are the same.

m-systerrand becomes an S-”Ode- . GivenV, W andK, the structure of the C-set tree is de-
Figure 3 presents the join protocol messages. In partic-iomined, which we call £-set tree templatéFor example,

ular, JoinWaitMsgis the message that a joining node sends supposeV = {30633,41633, 10533} (b = 8,d = 5) and

out to request for attachment. It is worth pointing out that V = {02700, 14263, 62332, 72413}. The corresponding C-

when a nodey, receives doinWaitMsgirom some joining et tree template is shown in Figure 4(a). Here we assume

node,y processes the message and replies immediately if ;- _ 1 45 simplify illustration. In this example, noti-set of

it is already an S-node; otherwisg saves the message t0 6 joining nodes is the set of nodeslinwith suffix 3, de-

be processed later when it becomes an S-node. That is, doted byl;. Observe that the joining nodes introduce new

joining node is always stored by an S-node first. suffixes to the network. For each new suffix, there is a cor-

responding C-set, and all C-sets form a tree according their

suffixes with sel/’; being the root of the tree.

When a set of noded3¥ join a K-consistent network The task of the join protocol is to construct and up-

(V,N(V)), by copying neighbor information from nodes in date neighbor tables such that paths are established between

V, a joining node can reach any nodelinsince the initial nodesgconceptuallynodes are filled into each C-set. For in-

network is consistent. However, how to establish neighbor stance, in the above example, when 14263 stores a node

pointers from nodes i to nodes iV and between nodes  with suffix 33, say node 30633, in it$,3)-entry, then con-

in W is a more complex task. C-set tree isanceptual tool ceptually 30633 is filled intd’s;. We call the C-set tree

that guides our protocol design to establish these pointergealized at the end of all joins@-set tree realizationFig-

and reasoning aboui -consistency [4, 7].

To introduce C-set trees, we first present the definition of
notification set ofr regardingV’, denoted by, Notifv [4].
Suppose node joins a network(V, NV'(V)). Intuitively,

V. Netify is the set of nodes il that need to update their
tables ifz were the only node that joind, N'(V)).

Intuitively, a C-set tree organizes nodeslinthat need
to update their tables as well as nodedininto a tree, if
the notification sets regardidg (noti-sets in short) of all
joining nodes are the same. Generally, the noti-sets of all
nodes inW may not be the same. Then, nodedihwith
the same noti-set belong to the same C-set tree and the C-
set trees for all nodes iW form a forest. Each C-set tree
in the forest can be treated separately in proving protocol
correctness. In the balance of this subsection, we focus on
a single C-set tree, i.e., we assume that the noti-sets of the

2.4 C-settree



ing established reachability when new nodes join a network,
one possible approach is to first construct and update neigh-
bor tables so that they a#€-consistent, and then optimize
neighbor tables after the joins. However, this approach is
not practical in a distributed p2p network, since nodes keep
] joining and none of them is aware of any quiescent time
(@) Template (b) Realization period in which there is no node joining and which is long
enough for optimization operations, if such a period exists.

Figure 4. C-set tree example
) o 3.1 Our strategy
ure 4(b) shows one possible realization of the template in
Figure 4(a). At the end of joins, we check whether some We observe that for the hypercube routing scheme, within
correctness conditions [4] are satisfied by the C-set tree re2 Subnet that is already consistent, replacing any neighbor
alization. If they are, then neighbor tables of nodegigiy ~ With any other neighbor does not break consistency con-

are guaranteed to bé-consistent. ditions if both neighbors belong to the consistent subnet.
(Basically, consistency conditions require that for each ta-
3 Consistency-preserving Optimization ble entry, if there exists qualified nodes in the subnet, then

the entry is filled with at least such a node.) If the conditions

To date, correctness of proposed join protocols for the hy-are not broken, then it is ensured that after the replacement,
percube routing scheme [2, 4, 7] depends on preservethodes that are previously reachable via the old neighbor can
reachability, i.e., once a node can reach another node, ithow be reached via the new neighbor. This observation is
always can thereafter. Therefore, if optimization opera- also applicable to other structured p2p networks, such as the
tions are to be performed, they should preserve reachabilsystem proposed in [8].
|ty There is a common Operation in all Optimization algo- When new nodes are joining a network, if we can iden-
rithms: replacing an old neighbor with a new one that is tify a “core” of the network such that if we only consider
measured to be closer. However, if there is no constraintthe nodes in this core, their neighbor tables are consistent
on such a replacement, it may break reachability of someand they can reach each other, then we know that replac-
source-destination pairs, affect correctness of the join pro-ing a neighbor with a closer neighbor, both of which are in
tocol, and result in amconsistenhetwork after node joins.  the core, is a safe operation and will not break established

For example, suppose nodes 41633 énd 30633 ¥) reachability. Note that before the joins start, the initial net-
join a network concurrently with some other nodes. Let work is consistent and thus is the “core” of the network.
t2 be the time that neighbor pointers along the path from However, if we optimize neighbor tables by only consider-
z to y are completely established. Thercannot reacly ing nodes in the initial network, the extent of optimization
before timet,. If at some timet;, t; < t¢2, some node  would be greatly limited. It is desired that after a node has
that has storeg, say node 14263u, findsz to be closer  joined the network, it becomes part of the core so that it can

and replaceg with z, then after the replacement,can-  also be considered for optimization. It is also desired that
not reachy until time 5, as illustrated by Figure 5. In this  when nodes fail, consistency of the core is maintained.
case, reachability of paiu(y) is not preserved by the op- We present a general strategy for consistency-preserving

timization operation even if both join processeszoéind  neighbor table optimization in presence of node dynamics.
y have terminated by time,, since some nodes along the |n this paper, we discuss and implement the strategy within
path fromz to y may be still joining and neighbor pointers  the context of the hypercube routing scheme. Nevertheless,
are still being established. Then, during the periqd], the strategy is generally applicable to other schemes .
joining nodes that are supposed to find guhroughu will A general strategy for consistency-preserving opti-

fail to do so and thus cannot construct their neighbor tablesyization: Identify a consistent subnet as large as possible;
correctly. Even worse, the period may be arbitrarily long, if only allow a neighbor to be replaced by a closer one if both
messages are delayed arbitrarily long in the network, or if of them belong to the subnet; expand the consistent subnet
reachability of some source-destination pair along the pathafter new nodes join; and maintain consistency of the subnet

fromwu to y is also broken. when nodes fail.
Y y The join protocol in [4] guarantees that when a set of
before (14263 J—=—( 30633 ] nodes join an initiallyK -consistent network, the network is
after (14263 J—— (1633 )--- ( )--- (30833 ) K-consistent (and thus consistent) again after all join pro-

cesses terminate. To implement the above strategy, we need
a stronger propertywhen each join process terminates, the
To construct and optimize neighbor tables without break- subnet consisting of all nodes whose join processes have

Figure 5. Paths before and after neighbor replacement



terminated plus the initial nodes i&-consisten? With difficult: we require that if a neighbor is still a T-node, it

this property, identifying nodes or neighbors that belong to cannot be replaced even if another node is found to be closer

the consistent subnet becomes easy: if the join process othan it. To ensure properties 1 and 2, goal (1) stated above

a node has terminated, then it belongs to the subnet; otherneeds to be achieved and neighbor replacement should be

wise, it is not. The property also ensures that the consis-constrained to neighbors that are S-nodes.

tent subnet keeps growing when more join processes termi- We extend the join protocol to achieve goal (1) as fol-

nate. To maintain consistency of the subnet when nodedows. In short, a new statussetwaiting, is inserted be-

fail, a failure recovery protocol is needed to recovér tweennotifyingandin_systemWhen a joining node has fin-

consistency. The failure recovery protocol should always ished its tasks and exited statustifying, it will not change

try to recover a hole left by a failed neighbor with a quali- to statusn_systenmand become an S-node immediately. In-

fied node that is in the subnet. stead, the node waits in statosetwaiting for some nodes
Recall that in our protocol design, when a node’s join that are joining concurrently and are likely to be in the same

process terminates, it becomes an S-node. (Nodes in the€-set with it (conceptually). When it is confirmed that all

initial network are also S-nodes.) Hence, more specifically, these nodes have exited stanagifying, it changes status to

our goals are to (1) design a join protocol so that at any time, in_system (Pseudo-code of the extensions is presented in

the set of S-nodes form E-consistent subnet, and (2) de- Appendix A.)

sign a failure recovery protocol that recové&fsconsistency

of the subnet by repairing holes left by failed neighbors with

qualified S-nodes. The failure recovery protocol presented

in [5] naturally fits into the general strategy with minor ex- ) ) i

tensions. Basically, it works in the following way. Whena  ® When a node, say, receives aloinNotiMsgor a

neighbor failure is detected by a node, a recovery process ~ J0INNotiRlyMsg the message includes a copy of the

is initiated. The process always tries to repair a hole left sender's table. Ifz is in statusnotifying when it

¢ Anew joining statusgsetwaiting, is added after status
notifying Moreover, two more join protocol messages,
CsetWaitMsgndCsetWaitRlyMsgare introduced.

by the failed neighbor with a qualified S-node, by searching receives the message, and if from the copy of the
in the node’s own neighbor table and querying the node’s ~ Senderstables finds a T-node, say, that shares with
neighbors. Only when it fails to find a qualified S-node will z asuffix of lengthk, k > . att _level, z savey in set
it repair the hole with a T-node. The failure recovery proto- Qesetwait- (z-att_level is the attach-level of in the
col has been shown to maintain consistency and re-establish ~ "€twork [4], which is the lowest levelis stored in the
K-consistency for networks with' > 2. Therefore, in this table of the first S-node that storeq
section, we focus on how to extend the join protocol in [4] ¢ When a node in statusotifyingfinds that it is not ex-
to meet goal (1). pecting any mordoinNotiRlyMsgor SpeNotiRlyMsg

it changes status tosetwaiting. It then send<set-
3.2 Extended join protocol WaitMsgto the nodes in sef) set_wait @nd waits for

To extend the join protocol, we first consider the basis of their replies. [t also sendssetWaiiRlyMsgo nodes in

the proofs of protocol correctness. Proofs in [4] rely on the SelQesct.reco (S€€ d|scu§3|on below).. o
following properties of a network. e When anode, say, receives &setWaitMsgif it is al-
) ready in statuin_systemit sends a reply immediately.
1. Once an S-node can reach another S-node, it always  |; .. isin statuscsetwaiting, it sends a reply immedi-

can thereafter. _ ately and removes the sender fr@ses wait- Other-
2. Once a T-node can reach an S-node, it always can wise, z saves the sender iN@,s.; e, to reply later

thereafter. whenz changes status fromotifying to csetwaiting
3. After a T-node, say, is stored by another node, say (whenz changes status tosetwaiting, x removes a
while z is still a T-node, it remains in the table gf node fromQse¢:wqi¢ if that node is already recorded
If there is no table optimization involved during the joins, N Qcset.reco, DEFOre sending out anysetWaitMsy
i.e., no neighbor in any entry would be replaced, the above ® When a node is in statussetwaiting and finds that
properties hold trivially: once a path is established, the Qcset_wait 1S EMPLY, it changes statusitosystem

neighbor pointers from one hop to another along the path  the ahove extensions add extra delay into each join pro-
are always there and remain the same. When there are opzass  With the extra delay, a joining node will not be-
timization operations that happen concurrently with joins, come an S-node until it believes that nodes currently in the
the above three properties must be preserved to ensure thg; e c_set with it have all entered statsetwaiting or
correctness of the join protocol. To ensure property 3 is ”Otin_system Since only after a node becomes an S-node can

2K _consistency provides redundancy in neighbor tables to ensure thatit Store ?-nOther joining node that has sent MWaitMsg
a dynamically changing network is always fully connected. requesting for attachment, the above extensions ensures that




only after a set of nodes in a parent C-set have all finished3.3 Correctness and scalability of join protocol
their joining tasks, will new joining nodes be attached to

these nodes and filled into children C-sets. In the correct-
ness proof (see Appendix B), we show that when a new
node is filled into a child C-set, neighbor pointers among

the nodes that are currently in ancestor C-sets have bee
established and these nodes already can reach each other.

We first present two theorems. Theorem 2 states that when
a set of new nodes join a network, at any time, all S-nodes
at that time belong to a consistent subnet. This property
uarantees that replacing a neighbor with another one is
Igafe if both of them are S-nodes. Theorem 3 states that
the extended join protocol generaf€sconsistent neighbor

In shorlt, conceptually, the C;jset treefilﬁ rc(jaghzed IN an IN- taples when an arbitrary number of nodes join an initially
cremental way. Once some nodes are filled into a C-set, N0z cictont network.

new node will be filled into the decedent C-sets until these

nodes have become part of the consistent subnet. Theorem 1 Suppose a set of nodé¥, ={xy,... .}, m >
For instance, consider the example mentioned in Sec-!i0in @ K-consistent networky/, V'(V)). Then, each node

tion 2.4, where a set of nod&& = {30633, 41633,10533} & « € W, eventually becomes an S-node.

join a K-consistent network (V,N'(V)), V =

{02700, 14263, 62332, 72413} The C-set tree tem-

plate associated with', W and K (assumingK = 1) is

shown in Figure 4(a). With the extended join protocol,

the C-set tree is realized in the following way: only after

C-set(s3 is filled and nodes in it have all entered status

csetwaiting or in_system will new nodes in the children  Theorem 3 Suppose a set of nodd¥, ={z,...x,,, }, m >

Theorem 2 Suppose a set of nodeB/ = {z1,...zm},
m > 1, join a K-consistent networkV, N'(V')) using the
extended join protocol. Then at any timeany node in set
S(t) can reach any other node i$i(¢), whereS(t) is the set
of S-nodes at time

C-sets (633 andCs33, be filled in, and so on. 1, join a K-consistent networkV, N'(V)). Then, at time
,,,,,,,,,,,,,,,,, i te, (VUW,N(VUW))is a K-consistent network.
| 02700, 14263, 62332, | | 02700, 14263, 62332, | | 02700, 14263, 62332, .
| T [T mamaemaes | T | RS SRS Proofs of the theorems are based on the assumptions
"""""""""""""""""""""""""""" stated in Section 2.3. Proof details are presented in Ap-
pendex B.

Next, we demonstrate the scalability of the extended join
protocol by analyzing communication costs of protocol ex-
tensions through simulation experiments. We implemented
the extended join protocol in an event-driven simulator, and
used the GTITM package [14] to generate network topolo-
Figure 6. Evolution of the consistent subnet gies. For a generated topology with a set of routers, overlay

Suppose during the joins, 30633 and 41633 are storegnodes (end hosts) were attached randomly to the routers.
by nodes inV; as neighbors with suffix 33. Then con- For the simulations reported in this paper, two topologies
ceptually, 30633 and 41633 are filled inf§;, as shown  Wwere used: a topology with 1056 routers to which 1000
in Figure 4(b). 3 Since the initial network is consistent, ©Overlay nodes were attached, and a topology with 2112
it is guaranteed that 30633 and 41633 will find out each routers to which 4000 overlay nodes were attached. We
other and construct their neighbor tables accordingly. After Simulated the sending of a message and the reception of
both of them have exited statastifyingand inform each @ message as events, but abstracted away queueing delays.
other about this, they can already reach each other as welllhe end-to-end delay of a message from its source to desti-
as nodes ifV. Then new nodes can be allowed to be filled Nation was modeled as a random variable with mean value
into Cg33 andCys3. In this example, 10533 is now allowed Proportional to the shortest path length in the underlying
to be filled intoC553. Similarly, before accepting new nodes Nnetwork. For the 1056-router topology, end-to-end delays
into children C-sets, 10533 will wait for nodes in the same are in the range of 0 to 329 ms, with the average being 113
C-set that join with it concurrently, if it finds any such nodes ms; for the 2112-router topology, end-to-end delays are in
by exchanging messages with 30633 and 41633. The evothe range of 0 to 596 ms, with the average being 163ms. In
lution of the consistent subnet is shown in the upper part of €ach experiment, we let nodes join an initial network of
Figure 6, while the lower part of Figure 6 shows the corre- n Nodesm > n. We set parametetsandd to be 16 and 8,

sponding partial realizations of the C-set tree. respectively!

We first study the extra delay caused by the new status,
3A node is a neighbor of itself and is stored in each entry whose re- csetwaiting_ We define thqoin duration of a node to be

quired suffix is a suffix of its node ID. Therefore, after a node is filled

into a C-set, it is automatically filled into descendant C-sets. For instance,  “In Tapestry,b = 16 andd = 40. In Pastry,b = 16 andd = 32.

when 41633 is filled intaCs3, it is automatically filled intoCe33, C1633, We found that the value af is insignificant wherb? > n, wheren is the

andCy41633. number of nodes in a network.




the duration from the time the node starts joining to the time
it changes status to_systemFigure 7(a) plots the average
join durations for 990 nodes joining an initial network of 10
nodes, as a function df (K -consistent), where the original
join protocol was used. Error-bars show the minimum and
maximum join durations from the simulations. The under-
lying topology was the 1056-router topology. Figure 7(b)

try and thus each C-set tends to contain more nodes. By
comparing the two curves in each diagram, we observe that
in the simulations where massive joins did not start at ex-
actly the same time, average number€eétWaitMsgvere
greatly reduced. Moreover, comparing Figure 9(a) and Fig-
ure 9(b), we see that with other parameters being the same,
the average number @setWaitMsgemained almost the

plots the join durations for the same simulation setup, wheresame when the number of concurrent joins was increased
the extended join protocol was used. In each experiment,from 990 to 1990.

all joins started at exactly the same time. As shown in the

We conclude that the communication costs of the proto-

figures, the average join durations in Figure 7(b) are only col extensions are very low and the extended join protocol

slightly longer than their correspondences in Figure 7(a),

which indicates that the extra delay caused by waiting in
statuscsetwaiting is small. The same conclusion can be
drawn from Figure 8, where 1990 nodes joined an initial
network of 10 nodes, based on the 2112-router topology.
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(a) Original join protocol (b) Extended join protocol

Figure 7. Join durations with/without protocol exten-
sions, n = 10, m = 990
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Figure 8. Join durations with/without protocol exten-
sions, n = 10, m = 1990

Next, we study communication costs of the extended join

is scalable to a large number of network nodes.
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Figure 9. Average number of CsetWaitMsg
3.4 Optimization rule and heuristics

We now have an extended join protocol that expands the
consistent subnet while nodes join a network, and a failure
recovery protocol [5] that maintain consistency of the con-
sistent subnet when nodes fail. To implement the general
strategy (Section 3.1), we also need the following rule.

Optimization Rule When a nodez, intends to replace
a neighbory, with a closer onez, the replacement is only
allowed when botly andz are S-nodes.

Recall that for each neighbor, a node stores the state of
the neighbor. Stat8indicates that the neighbor is in status
in_system while stateT indicates it is not yet. To imple-
ment the above rule, when intends to replacg with z,
it only does so when the states associated with haihd
z areS. With the extended join protocol and the optimiza-
tion rule, the three properties stated in Section 3.2 will be
preserved even when optimization operations happen con-
currently with joins (see Appendix B).

protocol in terms of numbers of messages sent by a joining To optimize neighbor tables, an algorithm is needed to

node. In [4], we have analyzed numbers of protocol mes-

search for qualified nodes that are closer than current neigh-

sages sent by a joining node, for all message types exceplbors. We next present a set of heuristics to optimize neigh-

the two introduced in this paper. We showed that the com-

bor tables when new nodes are joining a network and new

munication costs are scalable to a large number of networktables are constructed. To search for closer neighbors with
nodes. Hence, in this paper we only need to study numberdow cost, the heuristics are designed by primarily utilizing

of CsetWaitMs@ndCsetWaitRlyMsgwhich are one-to-one
related.

Figure 9 presents average number€eétWaitMsgent
by joining nodes as a function &f. The numbers are small
in general, and increase whé&hincreases. This is because

information carried in join protocol messages. Notice that
whenever a closer neighbor is found for a table entry, it can
be used to replace an old neighlwoy if the replacement
is allowed by the optimization rule.

Heuristic 1. Copy neighbor information from nearby

when K increases, more neighbors are stored in each ennodes.Recall that in thecopyingstatus, a joining node,



constructs most part of its neighbor table by copying neigh- distance. If for every table entry in a network, p-ratio is 1,
bor information from other nodes (S-nodes). Supppse then the neighbor tables are optimal.

the node that starts joining with. Instead of directly copy-

ing level-0 neighbors frony, = chooses the closest node 4.1 Optimization during joins

from y’s neighbors, sayy, and copies level-0 neighbors

from go. If the level-0 neighbors of, are close tay,, and In each experiment where optimization happen concur-
go andz are close to each other, then it is highly likely that rently with joins, we letn nodes joined an initial network
these level-0 neighbors are also close fd]. To populate of n nodesm > n. Neighbor tables were then constructed,
level-1 table entries; chooses a level-0 neighbor gf that ~ Updated, and optimized according to the extended join pro-
shares suffix:[0] with it, say z, if such a node exists, and tocol and the optimization heuristics. In the protocol im-
requests for its level-1 neighbors (whose IDs all have suf- Plementation, an old neighbor is only replaced by a new
fix z[0]). Again, z chooses the closest node among these neighbor if the distance of the new one is measured to be

neighbors to copy level-1 neighbors from. Similatycan 10% shorter than the old one (plus that the replacement is
populate its table entries at higher levels. allowed by the optimization rule). This is to prevent os-

Heuristic 2: Utilize protocol messages that include Cillation, since each end-to-end delay is modeled as a ran-
copies of neighbor tablesDuring statuswaiting and no- dom number with a mean value proportional to the shortest
tifying, a joining nodeg, sends out message®m{nWaitMsg path length in thg underlying network. When all.join pro-
andJoinNotiMsg to some nodes to notify them aboutitself. Cesses had terminated, we checked whef@onsistency
Replies to these messages all include copies of the neighbofVas maintained and calculated p-ratio for every table entry.
tables of the senders. From a reply messageay find a
node that is not stored in its table and is closer than some

w
8

8 withu:]r: opt ﬁ ° withu:]r: opt ﬁ
current neighbor for a table entry. 3; o ® o
Moreover, whenz is in statusnotifying a notification s o ?
message sent by includes a copy ofr.table. The re- :i §”
ceiver of such a message can also search for closer nodes,| +._ e
in z.table to replace old neighbors, given that the replace- T 5 ° T .
0

ments are allowed by the optimization rule.

Heuristic 3: Optimize when a node’s join process termi-
nates.When a joining nodeg, changes status fo_system
it informs its reverse-neighbors (nodes that have stared
as a neighbor) as well as its neighbors that it becomes an 10, m = 990
S-node. These nodes then update the statetofbeSin

o
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K K

(a) Avg. p-ratio (b) 95th percentile p-ratio

Figure 10. Effectiveness of optimization heuristics, n =

their tables and can then try to optimize their table entries
for which z is a qualified node. In addition to informing
neighborsx can exchange neighbor tables with its neigh-

without opt —5—
S\S\@EX

bors (notincluding reverse-neighbors) so that ho#nd its
neighbors can optimize their tables at this time.
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We have integrated the extended join protocol with our fail-
ure recovery protocol and the optimization heuristics, under
the constraint of the optimization rule. In this section, we
validate our strategy for consistency-preserving optimiza-

(a) Avg. p-ratio

10, m = 1990

1 2

Figure 11. Effectiveness of optimization heuristics,

3 4 5

K
(b) 95th percentile p-ratio

n =

tion and evaluate the effectiveness of the heuristics through Figures 10 and 11 present results from experiments with
simulation experiments. To evaluate the effectiveness ofn = 10 andm = 990, and from experiments with = 10

the heuristics, we use a metric called p-ratio, defined be-andm = 1990, respectively. In each experiment, starting

low. Recall that the closest neighbor in an entry is called times of the joins were drawn randomly from range [0s, 60s]
the primary-neighbor of that entry. For a table entry of a (i.e., all nodes joined within 1 minute). The results show

node, say:, suppose the primary-neighbor of the entry is

that by primarily using information carried in join proto-

and the closest node among all qualified nodes of the entrycol messages, table entries can be greatly optimized. For

is z, then we defing-ratio of the entry to be the ratio of
the communication delay from to y to the delay frome
to z. A p-ratio of 1 indicates thay andz are of the same

instance, in Figure 10, without any optimization, the aver-
age p-ratio forK = 1 is more than 6.82, and the 95th per-
centile of p-ratio forK = 1 is 26.67 (i.e., 95% of p-ratios



are no greater than 26.67); with the optimization heuris- happened in a network that initially had 1000 nodes; the up-
tics, the values drop to 2.21 and 7.51, respectively. We alsoper curve presents results from simulations where 968 joins
found that in every experimeni -consistency was main- and 1032 failures happened in a network that initially had
tained after all joins terminated, which demonstrates that2000 nodes. Even with massive joins and failures, the ta-
our strategy preserves consistency and ensures correctnedde entries were still optimized greatly. For instance, the
of the join protocol. lower curve in Figure 12 is similar to the lower curve in
Results in Figures 10 and 11 also show that wik&n  Figure 10(a), where both groups of simulations had about
is increased, the average p-ratio decreases. The reason 00 nodes when the network became stable.
that whenK becomes larger, more neighbors are stored in
a table entry, thus more neighbor information is carried in
protocol messages. Clearly, there is a tradeoff between the
benefits and maintenance costgdfconsistency.

2000 nodes initially, 968 joins, 1032 failures ——
L 1000 nodes initially, 494 joins, 506 failures - D B

4.2 Optimization with concurrent joins and failures

Average p-ratio
o [ N w » (&) o ~ ©

In [5], we presented an integration of the original join pro-
tocol with our failure recovery protocol, which requires ex-
tensions to both protocols. Extensive simulations had been 0 1 2 3 4 5
conducted to evaluate the integrated protocols for concur-
rent joins and failures [5], which showed that far > 2, Figure 12. Optimization with massive joins and failures
the integrated protocols maintained consistent neighbor ta-
bles and re-establishéd-consistency after concurrentjoins
and failures in every experiment.

The extensions to the join protocol presented in this pa-
per do not affect failure recovery actions, thus integrating

Churn experiments We also investigated the impact
of continuous node dynamics on protocol performance. To
simulate node dynamics, Poisson processes with hgigs
and\z; were used to generate join and failure events, re-

th tended ioi tocol with the fail t0Col spectively. For each join event, a new node (T-node) was
€ extencied join profocolwith the fariure recovery protoco rgiven a randomly chosen S-node to begin its join process.
should not affect success of failure recoveries. On the othe

. . ) : . or each failure event, an S-node or a T-node was random|
hand, since a substitute for a failed neighbor is searchedF y

. . . -"chosen to fail and stay silent. We S&t;, = Afaa = A,
locally (see Section 3.1), if neighbor tables have been 0ptl'which is said to be thehurn rate Periodically in each ex-

tmhlzed, the subsu:gte no?s WOtUt|)d nc;'fc bet t(()jotfar awa;r/]. |_:cf’nceperiment, we took snapshots of the neighbor tables of all
; € e:/virag(etip—nra%?] V\rlo]? N n?nt eratierc1 ef thoo r)?tuﬁd ad ?ri:S—nodes, the “core” of the network. For each snapshot, we
ecovery action. Theretore, integration of In€ extenced JoI 5, ated the average p-ratio as an indicator of how well ta-

protqcc_;l, the failure recovery protocol, an.d the optimigation ble entries were optimized at the moment. We also checked
hegnstlcs should be gffectwe and stat_JIe_ N pOth con&stencywhether consistency was maintained at each snapshot. In
maintenance and neighbor table optimization. To demon-

trate thi ducted . ts with tioi any network with churn, it is obvious thaf-consistency is
strate this, we conducted experiments with CONCUrreént Joins ., likely not satisfied by the neighbor tables in a snhap-
and failures as well as churn experiments.

A ; ! . shot at timet, because some failures might have occurred
Massive joins and failures We first conducted simula- ¢

i i which . ber of ioi d fail h just prior tot and failure recovery takes time. Protocols
I0NS I Which MAssive NUMDET 0T joins and farures nappen designed to achievé&-consistency,K > 2, provide re-
concurrently. Each experiment began witti{aconsistent

) e dundancy in neighbor tables to ensure that a dynamically
network,(V,N(V)_),_whlch was construr_:te_d ar_1d opt|m|_ze_d changing network is alwaysllly connected Thus, we are
by the extended join protocol and optimization heuristics

- : o more concerned with whether consistency (1-consistenc
presented in Section 3. Then, a $étof nodes joined and v ( Y)

. ; . is maintained at each snapshot and whether the network
a setF' of randomly chosen nodes failed. Join and failure P

vents wer nerated rding to a Poisson br tthconvergestd(-consistency at the end of a simulation.
events were generated according to a Folsson process attne Figure 13 presents results from an experiment with

rate of 10 events every second. A
i . 1, i.e., join events were generated at a rate of 1 per second
From the experiments, we found thidtconsistency was ; . .
and so were the failure events. The initlélconsistent net-

maintained when all join and failure recovery processes had _ -
terminated, in every experiment wili > 2, which indi- work of 2000 nodesk = 3, was constructed and optimized

o . . by letting 1990 nodes join a network of 10 nodes. In the ex-
cates that our protocols are effective in consistency main-

tenance. Fiaure 12 presents results of average p-ratios eriment, join and failure events were generated from the
- rlgure 12 pr ge p ,000th second to the 4,000 second (simulated time). After
the end of the simulations. The lower curve presents re-

sults from simulations where 494 joins and 506 failures that, no more join or failure events was generated and the
J experiment continued until all join, failure recovery, and
5In [5], we had investigated the tradeoff in detalil. optimization processes terminated. Snapshots were taken

10



every 50 seconds. The lower curve in Figure 13(a) plots that neighbor pointers remain unmodified once they are es-
the average p-ratios for each snapshot. Although there werdablished so that new nodes are ensured to construct neigh-
continuous joins and failures, neighbor tables remained op-bor tables correctly following the pointers. On the other
timized to a certain degree: the average p-ratio increased ahand, to improve routing locality, it is desired that once
first, when joins and failures started to happen; it then re- closer neighbors are found, old neighbors that are father
mained below 2.3. (For comparison, the upper curve showsaway are replaced.

the average p-ratios from an experiment with the same sim-  In this paper, we showed that the “divergence” between
ulation setup, in which no optimization heuristics were ap- the two issues can be resolved by a general strategy: to re-
plied.) We also found that consistency was maintained atplace a neighbor with a closer one only when they both be-
every snapshot, and 3-consistency was recovered at the enlibng to a consistent subnet. We realized the strategy in the
of the simulation. Figure 13(b) plots the number of nodes in context of hypercube routing. We first extended our join
the network (T-nodes and S-nodes) versus the number of Sprotocol in [4] so that the following property holds in a net-
nodes for each snapshot. Note that the two curves are veryvork: at any time, the set of S-nodes form a consistent sub-
close to each other, which demonstrates that at the givemet. This property enables both easy identification of a con-
churn rate, the size of the subnet formed by S-nodes (a consistent subnet and expansion of the consistent subset when-
sistent subnet) is consistently close to that of the entire net-ever a join process terminates. Nevertheless, utilization of
work. It also demonstrates that with the given churn rate this property is not limited to consistency-preserving opti-
and the network size, our protocols can sustain a large stamization.

ble “core” over the long terrf. The extended join protocol was then integrated with our
failure recovery protocol and a set of optimization heuris-
tics. The integrated protocols were evaluated through simu-
lation experiments. We showed that our protocols are effec-
tive and efficient in maintainingl -consistency and scalable

to a large number of network nodes. We showed that by pri-
marily using information carried in join protocol messages,
neighbor tables can be greatly optimized. For p2p networks
that have higher demand for optimality of neighbor tables,
algorithms presented in [1, 2, 15] can be further applied
with extra costs. No matter which algorithm is applied, it
should be applied within the constraint of the optimization
rule to preserve consistency.
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Figure 13. Churn experiment, A =1

5 Network Initialization

To initialize a K-consistent and optimized network ef
nodes, we can put any one of the nodes, sayn V', and
constructz.table as follows. (Letz.state(y) denote the
state of neighboy stored in the table af.)

o N, (i, z[i]).prim = z, z.state(z) = S, i € [d].
o NoGirj) = 0.i € [d),j € [b] andj # il
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State variables of a joining node

z.status € {copying waiting, notifying csetwaiting, in_system,
initially copying

Nz (i, 7): the set of {, 5)-neighbors ofz, initially empty

z.state(y) € {T, S}, the state of neighbay stored inz.table.

R (i,7): the set of reversé(j)-neighbors ofe, initially empty

z.att level: an integer, initially 0.

Q. a set of nodes from whicl waits for replies, initiallyempty

Qnr: aset of nodes has sent notifications to, initiallgmpty

Q;: aset of nodes that have sena JoinWaitMsg initially empty

Qsr, Qsn: aset of nodes, initiallempty

Q cset_wait - @ Set of nodes found by that may be in the same c-set]
with z, initially empty

Q cset_recv: @ Set of nodes from which has receivedameCsetMsg
beforez enters statussetwaiting, initially empty

Q cset_sent, @ Set of nodes, initiallgmpty

Figure 14. State variables

SameCsetMsg], sent byz whenz is in statuscsetwaiting, or in
response to 8ameCsetMsfjom another node.
s = S if z.status is in_systemotherwises = T'.

Figure 15. New protocol message




Action ofz on joining (V, N/ (V')}, given nodeyo, go € V:
¢: initially 0. p, g: a node, initiallygo. s € {T", S}, initially S.

x.status = copying
for(i = 0;i < d; i++) {Nz (¢, z[3]).first = x; z.state(x) =T}
while (g # null ands == S) { // copy levels neighbors ofy
h=—-1,k=|csuf(x.ID,g.ID)|;
while ¢ < k A h==-1){
for (j =0;5 < b; j++)
for (eachw, v € Ny(¢, 7))
for (I =14,1 < k, 1+ +) { SetNeighbor(, v[{], v, g.state(v)); }
if ((foreacht, i <1<k, Ng(l,z[l]).size < K) A h==—1)
{p=g;g=nulbh =14}
i++;

if (h===1){ p=g; 9= Np(k,z[k]).first; s =p.state(g);}

z.status = waiting;
if (g == null) {
SendJoinWaitMsgto p;Qn = Qn U {p};Qr = Qr U {p};

else{
SendJoinWaitMsgto g; Qn = Qn U {g}; Qr =Q» U {g};
}

Action ofy on receiving JoinNotiMsg( x.table) from x:
Q: a set of integers, initially empty

k=l|csuf(x.ID,y.ID)|; f =false

for (j =4; 7 < k, j++){ SetNeighborf, z[j],z,T);}

for (j =i; 5 < k, j++) {if (& € Ny (4, 2[3])) {Q =Q U {}:}}
if (y & Naz(k,y[k]) A y.status == in_systen) f = true;

if (Q # 0) SendJoinNotiRlyMsg(positiveQ, y.table, f) to z;
elseSendJoinNotiRlyMsg(negative]), y.table, f) to z;
CheckNgh.Table.table);

Action ofz on receiving JoinNotiRIyMsg( Q, y.table, f) fromy:

if (r==positivg {for (eachi in Q) Ry (¢, z[i]) = Rz (3, z[i]) U {y};}
Qr=Qr — {y}; k=|csuf(z.ID,y.ID)|;
if (f==trueAk > z.attlevel Ny & Ng(k,y[k]) Ny & Qsn){
SendSpeNotiMsg¢,y) to N (k, y[k]). first;
Qsn =Qsn U {y}, Qsr =Qsr U {y};}
CheckNgh_Tablefy.table);
if (Qr == ¢ A Qsr == @) Switch. To_CsetWait();

Figure 18. Action on receiving JoinNotiMsg and JoinNotiRlyMsg

Figure 16. Action in status copying

Action ofy on receiving JoinWaitMsg frorm:

k=|csuf (z.ID,y.ID)|;h=-1,5=0;
if (y.status == in_system{
while (j <k Ah==-1){
if (for eachl, j <1 <k, Ny(l,z[l]).size < K) {
h=j;for (I = j; 1 < k; I++) { SetNeighbor{, z[l],z,T); }
telsej++;

if (h == —1) SendJoinWaitRlyMsg(negatives, y.table) to z;
elseSendJoinWaitRlyMsg(positiveh, y.table) to x;
YelseQ; = Q; U {z};

Action ofz on receiving JoinWaitRlyMsg( ¢, y.table) fromy:

Qr=Qr — {y}; k=|esuf(z.ID,y.ID)|; z.state(y) = S;
if (r == positive {

z.status = notifying z.att_level =1,

for (j =4, j < k; j++) { Ra (4, 2[5]) = Ra (4, 2[5]) U {y}: }
}else{ // a negative reply, needs to send anotl@nWaitMsg

v = Ny (k, z[k]). first;

SendJoinWaitMsgto v; Qn = Qn U{v}; Qr = Qr U {v};

}

CheckNgh_Tablefy.table);

if (z.status == notifying A Q» == ¢ A Qsr == @)
Switch. To_CsetWait();

Action ofu on receiving SpeNotiMsg(y) from v:

k=|csuf(y.ID,u.ID)|; SetNeighborg, y[k],y, S);
if (y € Nu(k,y[k])) SendSpeNotiMsgt, y) to Ny (k, y[k]).first;
elseSendSpeNotiRlyMsgf, y) to x;

Action ofz on receiving SpeNotiRlyMsg(y) from u:

Qsr = Qsr— {y},
if (Qr==¢ andQs,==¢) Switch. To_CsetWait();

Figure 19. Action on receiving SpeNotiMsg and SpeNotiRlyMsg

Action ofz on receiving a SameCsetMsyfromy

if (z.status ==in_system\ s ==T)
SendSameCsetMsg(%) y;
else if (z.status == csetwaiting) {
chet.wait = chet_wait - {y},
|f (y € chet-sent N §== T){
SendsameCSGtMSg(TO) Y, chet_sent = chet_sent U {y},
}
if (chet_wait == 0 A QT‘ == 0 A er == 0)
Switch. To_S_Nodes();
}else
chet_recv = chet_recv U {y},

Figure 20. Action on receiving a SameCsetMsg

Figure 17. Action on receiving JoinWaitMsg and JoinWaitRlyMsg

Action ofy on receiving a InSysNotiMsg from

y.state(z) = S;

Figure 21. Action on receiving InSysNotiMsg




CheckNgh. Tableg.table) at z:

for (eachu, u € Ny (4,5) ANu# z,i € [d],j € [b]) {
k=|csuf(z.ID,u.ID)|; s = y.state(u);
for (h =14; h < k; h++) { SetNeighborg, u[h],u, s); }
if (z.status == notifying A k > z.att_level A u & Qn) {
SendJoinNotiMsgg.att_level, z.table) to u;

Qn=QnU{u}; Qr=Qr U {u};

/[ following is part of protocol extensions
if (z.status == notifying A k > z.att_level A y.state(u) ==T)
chet-wait = chet.wait U {U},

}
SetNeighborg, j, u, s) at z:

if (u# 2 A Nz(i,7).5t2e < K ANu & Ng(1,7))
{ Nz (3,j) = Nz (i,7) U {u}; z.state(u) = s;}

Switch To_.CsetWait() atz:

/I this subroutine if part of protocol extensions
z.status = csetwaiting;
for (EaChvy NS chet.recv U chet.wait){
} SendSameCSGtMSg(TQ) v; Qeset_sent = Qcset_sent U {y},
for (eachu, u € Qcset_recv)
if (U € chet.wait) chet-wait = chet.wait - {U},
if (chet_wait == 0 A QT‘ == 0 A QS’I“ == 0)
Switch. To_S_Nodes();

Switch To.S Node() atz:

z.status = in_systemz.state(z) = S;
for (eachv of z's reverse neighbors) SehaSysNotiMsgto v;
for (each node:, u € Q;) {
k=|csuf(z.ID,u.ID)|;h=—1;7=0;
while (j < k A h==—-1){
if (for eachl, j <1 <k, No(l,u[l]).size < K){
h =y, for (I = h; 1 < k; I++) { SetNeighbor(, u[l],u, T); }
Jelsej++;

}
if (h # —1) SendJoinWaitRlyMsg(positivel, z.table) to u;
elseSendJoinWaitRlyMsg(negativey, z.table) to u;

}

Figure 22. Subroutines

Protocol Message | Abbreviation
CpRstMsg CP
CpRIlyMsg CPRIly
JoinWaitMsg Jw
JoinWaitRlyMsg JWRly
JoinNotiMsg JIN
JoinNotiRlyMsg JNRIy
SpeNotiMsg SN
SpeNotiRlyMsg SNRIly
RvNghNotiMsg RN
RvNghNotiRlyMsg| RNRIy
SameCsetMsg SC

Table 2. Abbreviations for protocol messages
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B Proof

In this section, we present proofs for Theorems 1 and 2.
Proof of Theorem 3 follows proofs of Theorem 2 in [7].
Recall that we made the following assumptions in designing
the join protocol: (i) The initial network is & -consistent
network, (ii) each joining node, by some means, knows a
node in the initial network initially, (iii) messages between
nodes are delivered reliably, and (iv) there is no node dele-
tion (leave or failure) during the joins. We also assume that
the actions specified by Figures 16 to 21 are atomic.
Suppose a set of nodeB/ = {z1,...,zm}, m > 1,
join a K-consistent networkKV, A'(V')). Table 2 shows
the abbreviations we will use for protocol messages in the
proofs, and Table 3 presents the notation used in the fol-
lowing proofs. Unless explicitly stated, in what follows,
when we mention time, we mean a time that is ift®, t¢],
i.e., t’ <t < te. Moreover, by % waits for y,” we mean
thaty is included in the qUEU@ st wqi¢ at Noder by the
time z enters statussetwaiting, thus, whene is in status
csetwaiting, z will send anSCto y and wait for arSCback
fromy.

Notation Definition

d(z,y) d — |esuf(xz.ID,y.ID)|

(x — y)r, | @ canreachy within k hops

z 2 y the action thatr sends a@lNor aJWtoy

z 5 y the action that: sends aNto y

sy the action that: sends aWto y

xSy the action that sends &CPto y

A(z) theattaching-nodeof z, which is the node that
sends a positivdWRIyto z

) the time at whiche starts joining the network

tS, the timez changes status tsetwaiting

ts the timez changes status fo_systemi.e., the end
of z’s join process,

b min(t} ...t )

t© max(tg, , - t5, )

Table 3. Notation in proofs

Proof of Theorem 1: In [7], we have shown that a
joining node eventually exits statutifying to enter sta-
tus in_systemand become an S-node. In the extended
join protocol, a new status;setwaiting, is inserted be-
tweennotifyingandin_systemand a new messaggéameC-
setMsgq is introduced. However, a node’s actions in sta-
tus csetwaiting and its actions on sending and receiving
SameCsetMsglo not affect its own actions in any sta-
tus precedingsetwaiting. Moreover, its actions in status
csetwaitingand on sending and receiviSgmeCsetMsdo
not affect any other joining node. Therefore, the same ar-
guments in [7] apply and we conclude that a joining node
eventually exits statusotifying

We need to show that once a joining node is in status
csetwaiting, it eventually leaves this status and becomes



an S-node. Let the time enters statussetwaiting bet;.
To exits statuxsetwaiting, z needs to receives @ameC-
setMsgfrom each node that is included @.set ot atts.

By the protocol, for each node included @ et wait
at timet;, ¢ sends aSameCsetMsg(Tonsider nodey,
Yy € Qesetwait- AlSO, let the timey receives the&SameC-
setMsg(Tfrom z bets.

e If y is also included inQ csetrecy at timety, theny
must have sent 8ameCsetMstp z before.

e If yis notincluded ing .set_recy attimet;, andy is al-
ready an S-node at timg, theny sends back 8ameC-
setMsgto x immediately. (It is not possible thgthas
sent aSameCsetMstp = before. Otherwisey would
be waiting for aSameCsetMsfyjom z andy could not
become an S-node befarg)

o If yis notincluded inQ .ses_recy at timet;, andy is in
statuscsetwaiting at timet,, it sends ésameCsetMsg

C-set tree realized at timet, denoted agset(V, W, K, t),
is defined as follows:

e V,, is the root of the tree.

e LetC.py ={z,z € VUW)j,w A Qu,u € V,A
(z € Ny(k, 1) attimet))}, wherel; € [b]. ThenCy, ..,
is a child ofV,,, if Cy,.., # 0 andW, ., # 0.

e Let Clj...ll'u) ={z,z € (VU W)lj...ll-u) A Qu,u €
Cii_yoyvw N (@ € Ny(k+5—1,1;) attimet)) }, where
2<j<d-kandly,..]; € [b]. ThenC, 4. isa
child of Cy; .0, if Cry 0.0 # 0 @nd Wy, 1,0 #
0.

FactB.1If u = A(z), where v and z are two
nodes, therw € N,(h,z[h]) by timetS, whereh =
|eset(z.ID,u.ID)].

Fact B.2 For any two nodes: and y, if at timet, y €
N, (h,y[h]), whereh = |cset(z.ID,y.ID)|, then{z —

to z immediately if it has not send such a message to Y)d(z,y) ALLIMeL.

x before.
e If y is not included INQ cset_recy @t timety, andy is
in statuswaiting or notifying (y could not be in status

copyingat this time, sincg would not be stored by any

other node before it enters statumaiting), theny saves
Z iN Q cset_recv 10 reply later whery exitsnotifyingand
enterscsetwaiting. As we have showny eventually
will enter csetwaiting. Therefore,y eventually will
send é&SameCsetMstp .

Therefore,x eventually receives a messageSd#meC-
setMsgfrom each node that is included @5t _wai: atts.

x then changes status ite systenand becomes an S-node.

Lemma B.1 For nodese, y, andz, if y € N, (h,y[h]) and
(Y = 2)d(y,z)» Whereh = |csuf(z.ID,y.ID), then(z —

z>d(z,z)-

Proof:  Given(y — z)4(y,.), we know that there exists
a path(ug, w41, ..., Ui+1), Wherel = |csuf(y.ID, z.1D)
andl < k <d—I,suchthaty =y, u1; = Ny, (I +
i,2[l +1i]) forl <4 < k— 1, andu;4, = 2. Hence,
(z,ug, Upg1, - ugrk) is @ path frome to z, sinceu; =y
andy € N, (h,y[h]). |

Lemma B.2 For each C-set(C, € cset(V,W,K,t), if
|C,| > 2, then for any pair of node andy, z € C,, and

To prove Theorems 2, we first present and prove a fewy ¢ C,,, one of the followings is true by timeax(t¢, t).

lemmas. We also need to utilize some lemmas and propo-

sitions proved in [4]. Note that when we usédin [4],
we meant the time at which nodeexits statusotifying
(and entersn_systen), which corresponds t¢ in this re-
port. Moreover, we uséx — ¥)4(,,y) to denote thate
can reachy within d(z,y) hops, whered(z,y) = d —
|csuf(z.ID,y.ID)|. For example, ifz.ID is 41633 and

y.ID is 30633. Theni(z,y) = 2. To send a message to

)y

oz 2 y has happened and whansends theJN to y,
z.state(y) = S (i.e.,y is already an S-node).

oz % y has happened, andwaits fory.

oy ™ ¢ has happened and whensends thelN to z,
y.state(z) = S (z is already an S-node).

oy % & has happened, anglwaits forz.

y, z first forwards the message to a node with suffix 1633, Moreover, by timemax(t;,t;), (z — y)4(z.,y) and(y —
which then forwards the message to 41633. (It could also bez) (.., both hold.

possible that 30633 is stored in the neighbor table of 41633

and thus it only takes one hop for 41633 to send a messagé’roof: By Proposition B.9 in [4], by the time bothandy

to 30633. If a network is consistent, then for any paamd
Yy (T = Y)d(a,y) IS true.

have exited statusotifying, i.e., by imemax(t5, t7), (z —
Y d(z.y) ANA(Y — T) 40z, bOth hold?

Our proofs are based on C-set trees. To prove that any  Also by Proposition B.9 in [4], either n yory m .

node inS(t) can reach any other node §{t), we consider
the C-set tree realized at timedefined as follows.

Definition B.1 Suppose a set of nodé¥, = {z1, ..., s },
m > 1, join a K-consistent networkV, N'(V)), and for
any noder, z € W, VNotfy =V, |w| = k. Then the
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has happened by timaax(t¢,t¢). Supposer n y hap-

)y

pens. Ther: sends @Nto y because findsy from a copy

t¢ in [4] denotes the time node exits statusnotifying and enters
in_system which is denoted by¢ in this report. Recall thats in this
report denotes the time a node exigetwaiting and entersn_system



of the neighbor table some node, saylf in the copy, the
state ofy is recorded a$, thenz does not need to wait for
y sincey is already an S-node. If the statefs recorded
asT, thenz putsy into Q ¢cset_waie @nd waits fory. Wheny
receives the&sCfrom z at a time later thatf), it sends back
aSCto z immediately if it hasn’t done so beforeyfis still

in statusnotifying, it savese to reply later when it changes
status tacsetwaiting. |

Lemma B.3 Suppose a set of noddd] = {z1,...,Zm },
m > 1, join a K-consistent networkV, A/ (V)). For any

two nodesz andy, z € W andy e VUW, ifz 5 y
happens, then by timg, (y — z)4(s,,), and by timets,
any node in the path from to x is either in statuscset-
waiting or in in_system

Proof: By Proposition B.2 in [4], ifz % y happens,
then by timet;, (y — z)4(,,). Moreover, consider the
nodesz contacts after it sends thiBV (or JN) message to
y, hodey,ys, ..., y;, Which are the nodes in theontact-
chain,y).® Then, if the message #N, only wheny; be-
comes an S-node will; reply toz. If the message i3N, and
for somey;, its state recorded in the table gf ; is T (i.e
yi—1.state(y;) = T), thenz will wait for y; beforez be-
comes an S-node (see Figure 18). Hence, whbacomes
an S-node, all nodes from to y; are in statugset-waiting
orin_system ]

Corollary B.1 If i y happens, thett, > 7, i.e., when
x becomes an S-nodg,is already in status irsystem or
csetwaiting.

We next prove a lemma that shows that if all joining

nodes belong to the same C-set tree (i.e., all joining nodes

y are both inV, then the theorem holds trivially. Hence, in
the following proof, we focus on the case in which at least
one ofz andy belongs toW. Without loss of generality,
supposer € W. We prove by induction upon C-set tree.
Moreover, we prove the theorem by showing that any two
nodesz andy in S(t), z andy can reach each other by
the time both of them have become S-nodes (i.e., by time
max(t;, t5).

We first define setS;(t) as follows: S;(t)
(Ur<i<jUiem Cri..p-0) UV . Thatis,S;(t) includes nodes
in V and nodes irC;, _;,., for eachC;, ;,., thatis in the
Cset tree realized at timegivenl <i < j.

Base step. In the base case, we consider any pair of
nodes,z andy from setS;(t), that is, any pair of nodes
from setV U Cy, ., for all I; € [b]. As assumed above,
z € W, thusz € C,.,, wherel; - w is a suffix ofz.ID.
(Thus by Definition B.1A(z) € V,,, whereA(z) is the S-
node that sends a positi@VRIyto z and the first S-node
that stores: as a neighbor is i,,.)

Case 1. Supposg € V andw is a suffix ofy.ID. By
havingz copy neighbors from nodes 1, it is easy to show
that(z — y)q(a,y) Y t5. We need to showy — )4,y
next.

If y A(z), then by timets, « € Ny(h,z[h]),

h = |csuf(z.ID,y.ID)|, hencely — z)4(,,,) holds by
Fact B.2.

If y # A(z), letz = A(z) andt; be the timez stores
x and sends a positive reply ta  Thenz € V,, since
r € Cp, .. Thus(z = y)q4(.,) attimet; since the initial

network is consistent, and 23 y eventually will happen
(by Proposition B.1 in [4]). Therefordy — x)4(,,,) holds
by timet¢. (by Lemma B.1).

Case 2. Supposg € V andw is not a suffix ofy.ID.

have the same noti-set), then the statement in Theorem 2 ig N€N consider node, » = A(z). Similar to Case 2 above,

true. Based on the lemma, we can prove Theorem 2.

Lemma B.4 Suppose a set of noded] = {zi,...z},
m > 1, join a K-consistent networKV, N'(V')) using
the extended join protocol. Moreover, suppose for each
r € W, VNetify — v, wherew is a suffix shared by all
nodes inW. Then at any time, any node in sef(¢) can
reach any other node i§(t), whereS(t) is the set of S-
nodes at time.

Proof: We need to prove that for each pair of nodesnd
y,z € S(t) andy € S(t), (r — Y)a(s,y) attimet. If z and

8The definition ofcontact-chaing,y) in a K -consistent network is pre-

sented in the proof of Proposition A.3 in [6]. Intuitively, it is the set of
nodesyi, y2, ..., y;, collected as follows. Firsty; = y. For eachy;,

1 < i < [, wheny; receives the message fram its (h;, z[h;])-entry

is already filled withK neighbors, wheré; = |csuf(z.ID,y;.ID)|.
Thus it sends a negativVRIy(or INRIY) to z andz sends anothelW (or
IN) to y; 41, wherey; 11 = Ny, (hi,z[h;]).prim. Eventually, wheny,
receives thedW (or JN) from z, it storese into (h;, z[h])-entry.
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we have(y — z)4(,,) holds by timet;.

Case 3. Supposg € (},.,. By Lemma B.2, by time
maz(ts,ty), (y = z)a and(z — y)a.

We conclude that the theorem holds in the base case.

Inductive step. Assume the theorem holds for nodes in
S;(t), 1 < j < d—k, we next prove that it also holds for
nodes inS;41(t). Consider any two nodesandy, where
z € Sj11(t) andy € S;41(t). If bothz andy also belong to
S;(t), then by the induction assumption, the theorem holds
trivially. Without loss of generality, we next assunaec
Ciyr..iwandz & Cp, g0, thatis,Cy, 4, . IS thefirst
C-setz belongs to[4]. We next prove the theorem holds
for the following casesz € C,,,..;,.. andy € V; and
z € Cp.,, 1, andy € W. We consider the former case
first.

Case 1.z € (y,,..1,.o andy € V. It follows triv-
ially that (z — y)q(a,y) holds by timetg, (by the fact that
x copies neighbors from nodes¥in copyingstatus.) We
next show thaly — z)4(,,y) iS also true. Letw = A(x).

i+l



Thenu € C;..4,.» (by Proposition B.6 in [4]). By the in-
duction assumption, by timaax(t;, ,t;), (¥ = Uz)d(u, ,y)
holds. Moreover, since = A(z), z € N, (h,z[h]) by
time ¢¢), whereh = |csuf(z.ID,y.ID)|. Hence(y —
T)(a,y) DY imemax(tg, ty) (notice thattg > t5, ).

In what follows, we consider the case whete €
Ci;y1..1.0 andy € W, which includes the following sub-
cases, Case 2 to Case 6.

Case 2:z € C;,,..1,.w andy € (i, . .1,.0. Inthis
case, botlkx andy belong to the same C-set. By LemmaB.2,
(Y = T)d(e,y) ANA(T — Y)4(c,y) hOld by timemaz(t5,t;).

Case 3z € (y,,,..1,.» andy € Ci,,,..1,.w, however,

y € Cri;..0,-0, Wherel # [;11, andy ¢ Cy;..4,.» That
is, the first C-setg andy belong to have the same parent
C-set, as shown in Figure 23(a).
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Figure 23. Nodes and C-sets for Case 3

Letu, = A(z) andu, = A(y), then bothu, andu,
belong toCy, . 1, ., @s shown in Figure 23(a). Moreover, let
t; be the time that, sends its positivéWRIyto z, andts be
the time that.,, sends its positivdWRIyto y. Without loss
of generality, suppose < t,. Then by time,, bothu, and

t;. On the other hand, sind@&. — ¥)q(u,,y) holds by,

z % y eventually happens (by Proposition B.1 in [4]), and
(y = T)a(a,y) holds by timets.

Second, supposg < t; (including the case that has
not start joining by time, if such a case ever exists). Ac-
cording to the induction assumption, by timex (¢ _, t¢),

Uz ? 7Y
eitheru, 2+ y ory 23 u, has happened. Sin¢g < ¢y, it

follows ¢7, < tj. Thereforeu, % y cannot happen: If it
happens, then when, findsy and send dNto y, the state
recorded foy (from the copy of the table,, findsy) is still
T, andu, will wait for y, which results in that by time, ,
y is already in statussetwaiting or in_system Hence, by

time mazx(t;,_,t5), y % u, must have happened. Let the
time u, receives thedN from y bet,. We consider the fol-
lowing cases: (1); < t2; (2)t1 > t2 andy € N,,_ (h,y[h])
attimet,; and (3)t; > ¢» andy € N, (h,y[h]) attimet;.
Moreover, let the timg receives theNRIlyfrom u, bets.
(See Figure 24(b) and (c).)

(1) If t1 < to, then upon receivingi,’'s reply (IN-
RLy) at timets, y finds z and sends &N to z. Thus,
(T = Y)a(e.y) by timet; (by Lemma B.3). On the other
hand, if at timets, y copiesz into Ny (h,z[h]), where
h = lesuf(z.ID,y.ID)|, then{y — )4, holds triv-
ially by time ¢;. If y does not copyr into Ny (h, z[h])
at time ¢, then it must be thaiV, (h, z[h]).size K
is true before times. Let 2’ be a node inN, (h, z[h])
at time t3, thenz’ belongs to the same C-setresides

u, are already S-nodes, by the assumption for the inductivein (see Figure 24(a)), according to Definition B.1. Since

step, (us — Uy)a(u.,u,) DY timets. Thereforey 25 u,
eventually happens (by Proposition B.1 in [4]). Letbe
the timeu, receives the)N from y, thents > t2 > t1, as
shown in Figure 23(b). Hence, from,’s reply,y findsz in

the copy ofu,.table andy 2 z will happen (see subroutine
CheckNgh Tablein Figure 21). Then, by, , (z — )4
holds (by Lemma B.3).

To prove(y — )4(,y), We noticeu, andu, both
belong toS;(t). By induction assumption, by timg ,

z,y)

(g = Uy)d(u, u,) thusz 23 u, will happen before time
t¢ (by Proposition B.1 in [4]). Then by Proposition B.7
in[4], (y — m}d(m}) by timemaz (¢S, t;)

Case 4:x € Cy;,,...,.o. andy € Cj;. 4. Thatis,y

belongs to a C-set that is the parent C-set of the first C-set,

= belongs to. Let, = A(z), thenu, € Cy;. 4., andu
andy belong to the same C-set, as shown in Figure 24(a).
Moreover, let the time:, sends its positivdWRIyto z be

t1.

First, supposeé; > t7, then by the induction assump-

tion, (uz — Y)a(u,y) DY imemaz(t;,_,t;). After receiv-

ing theJWRIyfrom u,, = copies neighbors itV,,, (h, y[h])
into N, (h,y[h]), where h lesuf(z.ID,y.ID)]
lesuf(z.I1D,u,.ID)|. Thus,(z — )4,y holds by time
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lesuf(z'.ID,y.ID)| = h andy.attlevel < h, y must
have sentdNto z' by timet;. By Corollary B.1,t; > tg,,

hencemax(t;,t;) > t;,. Moreover, by Lemma B.2,
by time max(t¢,t¢,), (' — z)q4.

e, t Thus(y — z)q by
max(t, ty).

(2) If t; > to, andy € N, (h,y[h]) by timet;, thenz
copiesy fromu, andy € N (h,y[h]), thus(z — y)4(s,y)

holds by timett. Also, z 2% y will happen ¢ findsy from
u,'s JWRIY and it follows thatly — ) 4(,,,,) holds by time
t¢ (by Lemma B.3).

(3) If t1 > to, andy & N, (h,y[h]) at timet,, then
it must be thatV,,_ (h,y[h]).size = K is true before time
to (otherwise,u, would have stored). Let z be a node
in Ny, (h,y[h]). Thenz € N,_(h,y[R]) is true by time
2. By Definition B.1,z € Cj.4;..4,.4, 1.€.,2 @andy belong
to the same C-set. Thencopiesz into N, (h,y[h]) after

receiving theJWRIyfromu,.. Moreoverz 7 will happen

(z findsz fromu,’s JIWRIY. On the other hand, 7 will
happen sincg findsz fromu,’s INRIy(recall thatt; is the
time u, receives aN from y).

We first show thatz — y)4(s,y). Sincez % - eventu-

ally happens, we knowf, > ¢;. Thereforemax(ty, t;) >
max(ty,t;). By Lemma B.3, by timemax(ty, t7), (2 —
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Figure 24. Nodes and C-sets for Case 4

Y)d(=,y)- HENCE, by timenax(t3,ty), (2 — Y)a(z,y)- Given
thatz € N, (h,y[h]), it follows that(z — y)4(,,,) holds
by timemax(t;, t;) (by Lemma B.1).

Next, we show thaty — z)4(,,). We know that
both z andy sendJN to z. Supposecontact-chaing, z)
= {UO,Ul,...,Uf,Uf+1} [4], wherevy = z, Vfy1r = Y
anduvy to vy_; send negativdNRIyto y, while vy sends
a positiveJNRIyto y. By Proposition B.3 in [4], either
thatz 2% y happens before timé,, or y has copiedk
nodes intaV, (k, z[h]) aftery receives aNRlyfrom vy. If

z % y eventually happens, thep — z), by time i (by
Lemma B.3).

If z 2% y does not happen, thenmust have copied
nodes intaN, (h, z[h]) aftery receives thedNRIyfrom vy.
Let z' be a node inV,, (h, z[h]). Theny 2% ' will happen
beforet; (by Fact B.5 in [4]). Moreovery’ € Ci;,, .10
by Definition B.1, that is, botlkr andz’ belong to the same

Suppose by timemax(t;, ,t;), a path fromy to u, is
as follows: {vp,vp41,...,0h'}, Wherev, = y, vp41 €
Ny, (h,ug[h]), ..., andvp € Ny, (b — 1,u.[h" — 1]).
Moreover, each node in the path is either in stausystem
or csetwaiting. (1) If there exists such a path frogno w,
such thatu,, = vy, then aften,, storese in N,,, (h', z[h'])
(onreceiving thdWfrom z), {vn, vh41, ..., Unr, 2} IS @ path
fromy to z. Hence,(y — z)4(,y)- (2) If there does not
exist such a path fromto u, such that,, = vy, then con-
sider nodes,, andu,. Letv = vy. By Definition B.1,
v € C;..1,». Hence by timanax(t;im,t;), y can reach
uz throughv. By induction assumptiony is a node either
in statusin_systemor csetwaiting by time max(t;, ,t;).
That is, max(t;, ,t;) > t5. If max(t; ,t;) =t ,
thent{ > t5. Hence,(u, — v)q by timet (by
Lemma B.2), therefore 2% v will happen beforet and
(v = Z)4(s,v) by timet;. Combining this result with
the fact that{vy, vpt1, ..., vp } is @ path fromy to v, we

C-set. Similarly to the argumentin the above case where weknow that(y — )4(,,,) holds. Ifmax(t;_,t;) = ¢7, then

assume; < t (case (1)), we can show that — z)4(,,,)
by timet¢.

Case 5:z € Cj,,,..1,.wy andy € (i, ., }, Where
1<i<j—1landl..l; - wisasuffix oflj11...0; - w. That

is, y belongs to a C-set that is an ancestor C-set of the first

C-setz belongs to.

Let z, be a node inCj, ;,..,} and z, € contain-
chain(z, g), whereg € V andg is the noder is given to
start its joining. Then, for any node in the chairsends ei-
ther aCP or aJWto it. Note that for any node in contain-
chaing, g), we havet! < t¢, because whem receives a
reply (either aCPRIly or a JWRIY from v, v must be an
S-node already. Moreovely — )4y, by the timez re-
ceives the positivdWRIlyfrom the last node in the chain (a
path fromv to z is through the nodes afterin the chain).
Thus,tg <t and(z; — )4(z, ) DY 25

By the induction assumption, by timmax(t;_,t;),
(22 = Y)a(z.,y) already holds. Since; < {3,
max(t; ,t;) < max(t,t;). According to the join pro-
tocol, z copies neighbors itV (h, y[h]) into N, (h, y[h]),
h = lesuf(z.ID,y.ID)|, after it receives the reply from
zz. Sincez can reachy via neighbors inV,_ (h, y[h]), SO
doesz. Therefore{z — y)q(s,y) by imemax(tg, t;).

Next, we show(y — z)4(,,,). Consider node:,, such
thatu, = A(z). Thus,u, € Cj,.4,..,. By the induction
assumption{y — ua)q(u,,y) Dy time max(t;,_,t;). Let

uzd ly

h = |esuf(uy,.ID,y.ID) andh' = |csuf(z.ID,y.ID).
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ty > ty. Sincelesuf(y.ID,v.ID)| > y.att level, y )
must have happened agdhas waited forn. By Case 4,
(v = T)4(z,0)- Therefore{y — x)q(,,,) holds.

Case 6.z andy do not belong to the same C-set, and
y is not in a ancestor C-set af Let C, be the highest
level C-set that is an ancestor of battandy, z, be a node
in C,,r as well as incontact-chaing, g,), andz, be a node
in C,r as well as incontact-chaing, g,). We first show

thatz 2% y by considering:, andy. By Case 5, by time
max(t;_,t;), (zz — y)a. Since whene receives a reply
(either aCPRIlyor a JWRIy from z,, z, is already an S-
nodemax(t;_,t;) > max(t3, ty). Hence, bymax(tg, t;),
(z — y)q holds, sincex copies neighbors itV,_ (h, y[h])
into Ny (h,y[h]), h = |esuf(z.ID,y.ID)|, and thuse can
reachy through these neighbors. Similarly, we can show

that bymax(t;, ty), (y — z)a by considering, andz. H

Proof of Theorem 2: First, we separate nodeslitin S(t)

into groups, where nodes in the same group have the same

noti-set and thus belong to the same C-set tree.

Next, consider any two nodes,andy, in setS(t). If
z € V andy € V, then the theorem holds trivially. If
x € Vandy € W,z € Wandy € V,orz € W and
y € W and bothz andy belong to the same C-set tree, then
by Lemma B.4, the theorem also holds.

Lastly, we consider the case in whieche W andy €



W but z andy belong to different C-set trees. Suppose
V.Netify =, andVyN"“fy = Vi, w1 # wo. Letw be the
longest suffix that is both a suffix af, andws (it is possible
thatw is the empty string). We can combine the two C-set
trees thatr andy belong to into a single tree as follows.

e LetV,, be the root of the tree.

o If V,,, =V, (i.e.,,w1 = w), then go the the next step.
Otherwise, add sét;, .,,, wherel; - w is a suffix ofwy,
to the tree and make it be a child gf. Similarly, we
addV;, ;,., as a child ofV;,_, 4., for eachi > 2,
until Vi, 4,.. = V,,. So far, we have connected the
original C-set tree that rooted &}, to the new tree.

o If V,,, =V, then the original C-set tree that rooted at
V.., is already part of the tree. Otherwise, similarly as

the second step, we can connect the C-set tree rooted

atV,, to the new tree.

Then bothz andy now belong in the new tree that is
rooted atV,,, wherez andy do not belong to the same set

Lastly, we need to show that given Theorem 2 and the
optimization rule, neighbor replacement will preserve the
three properties stated in Section 3.2. The optimization rule
automatically ensures that property 3 is preserved. We only
need the show properties 1 and 2 are also preserved.

Property 1 requires that once two S-nodes can reach each
other, they always can. Theorem 2 shows that when two
nodes, say: andy, both become S-nodes, they can reach
each other, and the nodes along a path froto y are S-
nodes or T-nodes that are already in stagetwaiting. If a
node along the path, say is replaced by another node, say
v, then by the optimization rule, bothandv are S-nodes.

By Theorem 2{v — y) (.., bY this time, thereforey still
can reacly throughv. Similarly, we can show that after a
T-node can reach an S-node, it always can thereafter.

in the tree, and neither of them is in an ancestor set of the

other (recall that botlr andy are nodes i, thusz ¢ V,,
andy € V,). Following the same arguments as those in

Case 6 in the proof of Lemma B.4, we conclude that by

timemax(t5,t;), (z = Y)d(z,y) ANA(Y = T)d(a,y) hold. W
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