
Consistency-preserving Neighbor Table Optimization for P2P Networks�

Huaiyu Liu and Simon S. Lam
Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712

fhuaiyu, lamg@cs.utexas.edu

Abstract

Constructing and maintaining consistent neighbor tables
and optimizing neighbor tables to improve routing locality
are two important issues in p2p networks. In this paper, we
address the problem of preserving consistency while opti-
mizing neighbor tables for p2p networks with node dynam-
ics. We present a general strategy: identify a consistent sub-
net as large as possible and only replace a neighbor with a
closer one if both of them belong to the subnet. We real-
ize the general strategy in the context of hypercube routing.
First, we present a join protocol that enables the identifi-
cation of a large consistent subnet with very low cost when
new nodes join. Next, we define an optimization rule to con-
strain neighbor replacements to preserve consistency, and
present a set of optimization heuristics to optimize neighbor
tables with low cost. The join protocol is then integrated
with a failure recovery protocol. By evaluating the pro-
tocols through simulation experiments, we found our pro-
tocols and optimization heuristics to be effective, efficient,
and scalable to a large number of network nodes.

Keywords: peer-to-peer network, consistency, neighbor ta-
ble, optimization, consistency-preserving optimization, hy-
percube routing, join protocol

1 Introduction

Structured peer-to-peer networks are being investigated as a
platform for building large-scale distributed systems [9, 10,
12, 13, 16]. The primary function of these networks is ob-
ject location, that is, mapping an object ID to a node in the
network. For efficient routing, each node maintains neigh-
bor pointers in a table, called itsneighbor table. The design
of protocols to construct and maintain “consistent” neigh-
bor tables for network nodes that may join, leave, and fail
concurrently and frequently is an important issue. (Consis-

�Research sponsored by NSF grant no. ANI-0319168 and Texas Ad-
vanced Research Program grant no. 003658-0439-2001. An abbreviated
version of this report to appear inProceedings The Tenth IEEE Interna-
tional Conference on Parallel and Distributed Systems, Newport Beach,
CA, July 2004.

tency ensures that a network is fully connected, i.e., there
exists a path from any node to any other node.) Another im-
portant issue is to optimize neighbor tables so that the av-
erage distance traveled for each hop (locality) is optimized.
Various ideas have been proposed to optimize neighbor ta-
bles for improving routing locality [1, 2, 3, 11].

An important problem that has not been addressed is
how to preserve consistency (and thus preserve established
reachability) while optimizing neighbor tables, when there
are nodes that join, leave, or fail concurrently and fre-
quently. We address the problem in this paper and present a
general strategy: identify a consistent subnet as large as pos-
sible, and only allow a neighbor to be replaced by a closer
one if both of them belong to the subnet. To implement
this strategy in a distributed p2p network, where there is no
global knowledge, the following problems need to be ad-
dressed: (1) how to identify nodes that belong to such a
consistent subnet with minimum cost, (2) how to expand
the subnet when new nodes join, and (3) how to maintain
consistency of the subnet when nodes leave or fail.

In this paper, we realize the general strategy in the con-
text of the hypercube routing scheme that is used in sev-
eral proposed systems [9, 12, 16] to achieve scalable rout-
ing. With additional distributed directory information, the
scheme tends to satisfy each object request with a nearby
copy. Givenconsistent[7] and optimal (that is, they store
nearest neighbors) neighbor tables, it is guaranteed to lo-
cate an object with asymptotically optimal cost if the object
exists [9].

In [7], we have proposed a join protocol for the hyper-
cube routing scheme. We proved that when an arbitrary
number of nodes join an initially consistent network us-
ing the join protocol, the network is consistent again after
all joins have terminated. The protocol is later extended
to constructK-consistent neighbor tables to improve sys-
tem robustness [4]. Correctness of the join protocol relies
on preserved reachability: once a node can reach another
node, it always can thereafter. In order not to break es-
tablished reachability when replacing neighbors, one ap-
proach is to apply optimization algorithms without inter-
fering with joins, that is, applying optimization algorithms

1

when joins have terminated and the network is already con-
sistent. However, in a distributed p2p network, where nodes
keep joining, it is difficult, if not impossible, to identify a
quiescent time period in which there is no node joining and
which is long enough for optimizations. Executing opti-
mization algorithms while nodes are joining, on the other
hand, may result in an inconsistent network, since replacing
neighbors arbitrarily may break established reachability of
some source-destination pairs, and thus affect the correct-
ness of the join protocol.

We observe that within a subnet that is already consis-
tent, replacing any neighbor with another, when both of
them belong to the subnet, does not break consistency con-
ditions and thus does not break established reachability.
(Consistency conditions require that for each table entry,
if there exist qualified nodes in the network for the entry,
then the entry is filled with at least one such node.) Follow-
ing the observation, we first extend our join protocol in [4]
so that at any time, the set of nodes whose join processes
have terminated (including the nodes in the initial network)
form a consistent subnet. The extended join protocol leads
to solutions to the first two problems mentioned before: (1)
identifying whether a neighbor is in the consistent subnet
or not can be easily achieved by recording the state of the
neighbor to indicate whether its join process has terminated
or not; (2) the consistent subnet is expanded whenever a
node’s join process terminates by including the node. Next,
we integrate the extended join protocol with our failure re-
covery protocol presented in [5]. (Node leave is treated as
a special case of failure.) The failure recovery protocol al-
ways tries to repair a hole left by a failed neighbor with a
qualified node that is in the consistent subnet, thus it natu-
rally follows the general strategy and provides a solution to
problem (3). Through extensive simulation experiments [5],
we have shown that the failure recovery protocol is able to
maintain 1-consistency and re-establishK-consistency in
every experiment with failures, forK � 2.

Contributions of this paper are the following:

� We present a general strategy to preserve consistency
while optimizing neighbor tables for p2p networks
with node dynamics.

� We extend the join protocol in [4] and prove that with
the extended protocol,at any timet, the set of initial
nodes plus the set of nodes whose joins have termi-
nated form aconsistent subnet. The extended protocol
enables easy identification of nodes in the consistent
subnet, and the costs of protocol extensions are shown
to be very low.

� We present an optimization rule. Optimization algo-
rithms should be applied within the constraint of this
rule to preserve consistency. To optimize neighbor
tables with low cost, we present a set of heuristics
that primarily use information carried by join protocol

messages.
� We integrate the extended join protocol with our fail-

ure recovery protocol and evaluate the protocols and
the optimization heuristics by simulation experiments.

� We show that the extended join protocol and the opti-
mization heuristics can also be used for initializing a
K-consistent and optimized network.

Among related work, both Pastry [12] and Tapestry [16]
make use of hypercube routing. Pastry’s approach for im-
proving system robustness is very different from ours. In
addition to a neighbor table for hypercube routing, each
Pastry node maintains a set of nearest nodes on the ID
ring, which is actively maintained and ensures success of
routing as well as object location. Pointers for hypercube
routing, on the other hand, are used as shortcuts and main-
tained lazily. Therefore, how to preserve established reach-
ability while optimizing neighbor tables is not addressed.
Tapestry’s join and failure recovery protocols are based
upon use of a lower-layer Acknowledged Multicast protocol
supported by all nodes [2], which also relies on established
reachability. An algorithm to locatek nearest neighbors for
each table entry,k � 1, is also presented [2]. However, how
to preserve established reachability when nearest neighbors
are located and old neighbors are replaced has not been ad-
dressed. Thus it is not clear how optimization operations
will interfere with the correctness of their join protocol.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review the hypercube routing scheme,K-
consistency, our original join protocol [4], and our theoreti-
cal foundation of protocol design and proofs. In Section 3,
we present our general strategy for consistency-preserving
optimization, extend the join protocol following the strat-
egy, and present an optimization rule and a set of optimiza-
tion heuristics. Correctness of the extended join protocol is
proved and scalability of the protocol is analyzed. In Sec-
tion 4, we evaluate the effectiveness of optimization heuris-
tics by conducting simulation experiments in which nodes
may join and fail concurrently and frequently. In Section 5,
we explain how to initialize aK-consistent and optimized
network. We conclude in Section 6.

2 Foundation
2.1 Hypercube routing scheme

In this section, we briefly review the hypercube routing
scheme used in PRR [9], Pastry [12], and Tapestry [16].
Consider a set of nodes. Each node has a unique ID, which
is a fixed-length random binary string. A node’s ID is rep-
resented byd digits of baseb, e.g., a 160-bit ID can be rep-
resented by 40 Hex digits (d = 40, b = 16). Hereafter, we
will usex:ID to denote the ID of nodex, x[i] theith digit in
x:ID , andx[i � 1]:::x[0] a suffix ofx:ID . We count digits
in an ID from right to left, with the 0th digit being theright-
mostdigit. See Table 1 for notation used throughout this

2

paper. Also, we will use “network” instead of “hypercube
routing network” for brevity.

Notation Definition
hV;N (V)i a hypercube network:V is the set of nodes in the

network,N (V) is the set of neighbor tables
[`] the setf0, ...,`� 1g, ` is a positive integer
d the number of digits in a node’s ID
b the base of each digit
x[i] theith digit in x:ID
x[i� 1]:::x[0] suffix of x:ID; denotes empty string ifi = 0
x:table the neighbor table of nodex
j � ! digit j concatenated with suffix!
Nx(i; j) the set of nodes in(i; j)-entry ofx:table, also

referred as the(i; j)-neighborsof nodex
Nx(i; j):prim the primary(i; j)-neighbor of nodex

Table 1. Notation

Given a message with destination node ID,z:ID, the ob-
jective of each step in hypercube routing is to forward the
message from its current node, sayx, to a next node, sayy,
such that the suffix match betweeny:ID andz:ID is at least
one digit longer than the match betweenx:ID andz:ID .1 If
such a path exists, the destination is reached inO(logb n)
steps on the average andd steps in the worst case, wheren
is the number of network nodes. Figure 1 shows an example
path for routing from source node 21233 to destination node
03231 (b = 4; d = 5). Note that the ID of each intermediate
node in the path matches 03231 by at least one more suffix
digit than its predecessor.

21233 0323133121 13331 30231

Figure 1. An example hypercube routing path

To implement hypercube routing, each node maintains a
neighbor tablethat hasd levels withb entries at each level.
Each table entry stores link information (IDs and IP ad-
dresses) to nodes whose IDs have the entry’s required suffix,
defined as follows. (Hereafter, we will use “neighbor” or
“node” instead of “node’s ID and IP address” whenever the
meaning is clear from context.) Consider the table in node
x. Therequired suffixfor entryj at leveli, j 2 [b], i 2 [d],
referred to as the (i; j)-entry ofx:table , is j �x[i� 1]:::x[0].
Any node whose ID has this required suffix is said to be a
qualified nodefor the (i; j)-entry ofx:table . Nodes stored
in the (i; j)-entry ofx:table are called the(i; j)-neighborsof
x, denoted byNx(i; j). Ideally, these neighbors are chosen
from qualified nodes for the entry according to some prox-
imity criterion [9], with the nearest one designated as the
primary(i; j)-neighbor. Furthermore, nodex is said to be a
reverse(i; j)-neighborof nodey if y is an (i; j)-neighbor of
x. Each node also keeps track of its reverse-neighbors.

1In this paper, we follow PRR [9] and use suffix matching, whereas
other systems use prefix matching. The choice is arbitrary and conceptu-
ally insignificant.

Note that nodex has the required suffix for each (i; x[i])-
entry, i 2 [d], of its own table. For routing efficiency, we
fill each node’s table such thatNx(i; x[i]):prim = x for all
x 2 V , i 2 [d]. Figure 2 shows an example neighbor table.
The string to the right of each entry is the required suffix for
that entry. An empty entry indicates that there does not exist
a node in the network whose ID has the entry’s required
suffix. For clarity, IP addresses are not shown in Figure 2.

0

1

2

3

033

133

233

333

03

13

23

33

01100

33121

12232

21233

22303

13113

00123

21233

31033

21233

0233

1233

2233

3233

10233

21233

03233

01233

11233

31233

21233

11233

21233

level 4 level 3 level 2 level 1 level 0

03133

Neighbor table of node 21233 (b=4, d=5)

Figure 2. An example neighbor table

2.2 K-consistent networks

Constructing and maintaining consistent neighbor tables
is an important design objective for structured peer-to-
peer networks. Consider a hypercube routing network,
hV;N (V)i, whereV denotes a set of nodes andN (V) the
set of neighbor tables in nodes. We defined consistency as
follows [7]: A network, hV;N (V)i, is consistent if and
only if the following conditions hold: (i) For every table en-
try in N (V), if there exists at least one qualified node in
V , then the entry stores at least one qualified node. (ii) If
there is no qualified node inV for a particular table entry,
then that entry must be empty. In a consistent network, any
nodex can reach any other nodey using hypercube routing
in k steps,k � d; more precisely, there exists a neighbor
sequence (path), (u0; :::; uk), k � d, such thatu0 is x, uk
is y, andui+1 2 Nui(i; y[i]), i 2 [k].

If nodes may fail frequently in a network, a natural ap-
proach to improve robustness is to store in each table entry
multiple qualified nodes. For this approach, we general-
ized the definition of consistency toK-consistency as fol-
lows [4]. A network,hV;N (V)i, is K-consistent if and
only if the following conditions hold: (i) For every table en-
try in N (V), if there existH qualified nodes inV , H � 0,
then the entry stores at leastmin(K;H) qualified nodes. (ii)
If there is no qualified node inV for a particular table entry,
then that entry must be empty. Intuitively, in aK-consistent
network, a table entry storesK neighbors whenever possi-
ble. ForK � 1,K-consistency implies consistency (in par-
ticular, 1-consistency is the same as consistency). Formal
definitions for consistency andK-consistency are presented
in [7] and [4], respectively.

2.3 Join protocol

In [4], we presented a join protocol for the hypercube rout-
ing scheme and proved that it constructs and maintainsK-

3

consistent neighbor tables for an arbitrary number of con-
current joins. Here we briefly review the protocol design.

In designing and proving the correctness of the proto-
col for nodes to join a networkhV;N (V)i, we made the
following assumptions: (i)V 6= ; andhV;N (V)i is aK-
consistent network, (ii) each joining node, by some means,
knows a node inV initially, (iii) messages between nodes
are delivered reliably, and (iv) there is no node leave or node
failure during the joins. Then, tasks of the join protocol are
to update neighbor tables of nodes inV and to construct ta-
bles for the joining nodes so that after the joins, the network
isK-consistent again.

Each node in the network maintains a state variable
namedstatus, which begins incopying, then changes to
waiting, notifying, and in systemin that order. A node in
statusin systemis called anS-node; otherwise, it is aT-
node. Each node also stores, for each neighbor in its ta-
ble, the neighbor’s state, which can beS indicating that the
neighbor is an S-node orT indicating that it is not yet.

In statuscopying, a joining node, sayx, copies neighbor
information from other nodes to fill in most entries of its
table level by level. It copies level-0 neighbor information
from the node it knows inV , sayg0, and finds a nodeg1
among the level-0 neighbors ofg0 such thatg1 shares the
rightmost digit withx. x then copies level-1 neighbors from
g1, and finds a nodeg2 that share the rightmost two digits
with it, and so on. When after coping level-(i�1) neighbors,
x cannot find a node that shares the rightmosti digits with
it, i � 1, x changes status towaiting. In this status,x tries
to “attach” itself to the network, i.e., to find an S-node, say
y, that shares at least the rightmosti � 1 with x and stores
x as a neighbor. Whenx is attached, its status becomes
notifying, in whichx seeks and notifies nodes that share a
certain suffix withx, a suffix also shared byx andy. Lastly,
when it finds no more node to notify,x changes status to
in systemand becomes an S-node.

Figure 3 presents the join protocol messages. In partic-
ular, JoinWaitMsgis the message that a joining node sends
out to request for attachment. It is worth pointing out that
when a node,y, receives aJoinWaitMsgfrom some joining
node,y processes the message and replies immediately if
it is already an S-node; otherwise,y saves the message to
be processed later when it becomes an S-node. That is, a
joining node is always stored by an S-node first.

2.4 C-set tree

When a set of nodesW join a K-consistent network
hV;N (V)i, by copying neighbor information from nodes in
V , a joining node can reach any node inV since the initial
network is consistent. However, how to establish neighbor
pointers from nodes inV to nodes inW and between nodes
in W is a more complex task. C-set tree is aconceptual tool
that guides our protocol design to establish these pointers

CpRstMsg, sent byx to request a copy of receiver’s neighbor table.
CpRlyMsg(x:table), sent byx in response to aCpRstMsg.
JoinWaitMsg, sent byx to notify receiver of the existence ofx and

request the receiver to storex, whenx:status is waiting.
JoinWaitRlyMsg(r; i; x:table), sent byx in response to aJoinWaitMsg,

whenx:status is in system. r 2 fnegative, positiveg, i: an integer.
JoinNotiMsg(i; x:table), sent byx to notify receiver of the existence

of x, whenx:status is notifying. i: an integer.
JoinNotiRlyMsg(r; Q; x:table; f),

sent byx in response to aJoinNotiMsg.
r 2 fnegative, positiveg, Q: a set of integers,f 2 ftrue, falseg.

SpeNotiMsg(x; y), sent or forwarded by a node to inform receiver
of the existence ofy, wherex is the initial sender.

SpeNotiRlyMsg(x; y), response to aSpeNotiMsg.
InSysNotiMsg, sent byx whenx:status changes toin system.
RvNghNotiMsg(y; s), sent byx to notify y thatx is a reverse neighbor

of y, s 2 fT;Sg.
RvNghNotiRlyMsg(s), sent byx in response to aRvNghNotiMsg,
s = S if x:status is in system; otherwises = T .

Figure 3. Protocol messages

and reasoning aboutK-consistency [4, 7].
To introduce C-set trees, we first present the definition of

notification set ofx regardingV , denoted byV Notify
x [4].

Suppose nodex joins a networkhV;N (V)i. Intuitively,
V Notify
x is the set of nodes inV that need to update their

tables ifx were the only node that joinshV;N (V)i.
Intuitively, a C-set tree organizes nodes inV that need

to update their tables as well as nodes inW into a tree, if
the notification sets regardingV (noti-sets, in short) of all
joining nodes are the same. Generally, the noti-sets of all
nodes inW may not be the same. Then, nodes inW with
the same noti-set belong to the same C-set tree and the C-
set trees for all nodes inW form a forest. Each C-set tree
in the forest can be treated separately in proving protocol
correctness. In the balance of this subsection, we focus on
a single C-set tree, i.e., we assume that the noti-sets of the
joining nodes are the same.

GivenV , W andK, the structure of the C-set tree is de-
termined, which we call aC-set tree template. For example,
supposeW = f30633; 41633; 10533g (b = 8; d = 5) and
V = f02700; 14263; 62332; 72413g. The corresponding C-
set tree template is shown in Figure 4(a). Here we assume
K = 1 to simplify illustration. In this example, noti-set of
the joining nodes is the set of nodes inV with suffix 3, de-
noted byV3. Observe that the joining nodes introduce new
suffixes to the network. For each new suffix, there is a cor-
responding C-set, and all C-sets form a tree according their
suffixes with setV3 being the root of the tree.

The task of the join protocol is to construct and up-
date neighbor tables such that paths are established between
nodes;conceptuallynodes are filled into each C-set. For in-
stance, in the above example, when 14263 stores a node
with suffix 33, say node 30633, in its (1; 3)-entry, then con-
ceptually 30633 is filled intoC33. We call the C-set tree
realized at the end of all joins aC-set tree realization. Fig-

4

C33

C633

C41633 C30633

0633CC1633

C33

C1633 0633C

C30633C41633

V

V3

V

V3

41633 30633

41633

41633

30633

30633

C633C

C

C

533

0533

10533

14263 72413 14263 72413

10533

10533

10533

C

C

C

533

0533

10533

41633 30633

(a) Template (b) Realization

Figure 4. C-set tree example

ure 4(b) shows one possible realization of the template in
Figure 4(a). At the end of joins, we check whether some
correctness conditions [4] are satisfied by the C-set tree re-
alization. If they are, then neighbor tables of nodes inV [W
are guaranteed to beK-consistent.

3 Consistency-preserving Optimization

To date, correctness of proposed join protocols for the hy-
percube routing scheme [2, 4, 7] depends on preserved
reachability, i.e., once a node can reach another node, it
always can thereafter. Therefore, if optimization opera-
tions are to be performed, they should preserve reachabil-
ity. There is a common operation in all optimization algo-
rithms: replacing an old neighbor with a new one that is
measured to be closer. However, if there is no constraint
on such a replacement, it may break reachability of some
source-destination pairs, affect correctness of the join pro-
tocol, and result in aninconsistentnetwork after node joins.

For example, suppose nodes 41633 (x) and 30633 (y)
join a network concurrently with some other nodes. Let
t2 be the time that neighbor pointers along the path from
x to y are completely established. Thenx cannot reachy
before timet2. If at some timet1, t1 < t2, some node
that has storedy, say node 14263 (u), findsx to be closer
and replacesy with x, then after the replacement,u can-
not reachy until time t2, as illustrated by Figure 5. In this
case, reachability of pair (u; y) is not preserved by the op-
timization operation even if both join processes ofx and
y have terminated by timet1, since some nodes along the
path fromx to y may be still joining and neighbor pointers
are still being established. Then, during the period [t1; t2],
joining nodes that are supposed to find outy throughu will
fail to do so and thus cannot construct their neighbor tables
correctly. Even worse, the period may be arbitrarily long, if
messages are delayed arbitrarily long in the network, or if
reachability of some source-destination pair along the path
from u to y is also broken.

30633
y

before

after

u

u

14263 30633

14263

y

41633
x

Figure 5. Paths before and after neighbor replacement

To construct and optimize neighbor tables without break-

ing established reachability when new nodes join a network,
one possible approach is to first construct and update neigh-
bor tables so that they areK-consistent, and then optimize
neighbor tables after the joins. However, this approach is
not practical in a distributed p2p network, since nodes keep
joining and none of them is aware of any quiescent time
period in which there is no node joining and which is long
enough for optimization operations, if such a period exists.

3.1 Our strategy

We observe that for the hypercube routing scheme, within
a subnet that is already consistent, replacing any neighbor
with any other neighbor does not break consistency con-
ditions if both neighbors belong to the consistent subnet.
(Basically, consistency conditions require that for each ta-
ble entry, if there exists qualified nodes in the subnet, then
the entry is filled with at least such a node.) If the conditions
are not broken, then it is ensured that after the replacement,
nodes that are previously reachable via the old neighbor can
now be reached via the new neighbor. This observation is
also applicable to other structured p2p networks, such as the
system proposed in [8].

When new nodes are joining a network, if we can iden-
tify a “core” of the network such that if we only consider
the nodes in this core, their neighbor tables are consistent
and they can reach each other, then we know that replac-
ing a neighbor with a closer neighbor, both of which are in
the core, is a safe operation and will not break established
reachability. Note that before the joins start, the initial net-
work is consistent and thus is the “core” of the network.
However, if we optimize neighbor tables by only consider-
ing nodes in the initial network, the extent of optimization
would be greatly limited. It is desired that after a node has
joined the network, it becomes part of the core so that it can
also be considered for optimization. It is also desired that
when nodes fail, consistency of the core is maintained.

We present a general strategy for consistency-preserving
neighbor table optimization in presence of node dynamics.
In this paper, we discuss and implement the strategy within
the context of the hypercube routing scheme. Nevertheless,
the strategy is generally applicable to other schemes .

A general strategy for consistency-preserving opti-
mization: Identify a consistent subnet as large as possible;
only allow a neighbor to be replaced by a closer one if both
of them belong to the subnet; expand the consistent subnet
after new nodes join; and maintain consistency of the subnet
when nodes fail.

The join protocol in [4] guarantees that when a set of
nodes join an initiallyK-consistent network, the network is
K-consistent (and thus consistent) again after all join pro-
cesses terminate. To implement the above strategy, we need
a stronger property:when each join process terminates, the
subnet consisting of all nodes whose join processes have

5

terminated plus the initial nodes isK-consistent.2 With
this property, identifying nodes or neighbors that belong to
the consistent subnet becomes easy: if the join process of
a node has terminated, then it belongs to the subnet; other-
wise, it is not. The property also ensures that the consis-
tent subnet keeps growing when more join processes termi-
nate. To maintain consistency of the subnet when nodes
fail, a failure recovery protocol is needed to recoverK-
consistency. The failure recovery protocol should always
try to recover a hole left by a failed neighbor with a quali-
fied node that is in the subnet.

Recall that in our protocol design, when a node’s join
process terminates, it becomes an S-node. (Nodes in the
initial network are also S-nodes.) Hence, more specifically,
our goals are to (1) design a join protocol so that at any time,
the set of S-nodes form aK-consistent subnet, and (2) de-
sign a failure recovery protocol that recoversK-consistency
of the subnet by repairing holes left by failed neighbors with
qualified S-nodes. The failure recovery protocol presented
in [5] naturally fits into the general strategy with minor ex-
tensions. Basically, it works in the following way. When a
neighbor failure is detected by a node, a recovery process
is initiated. The process always tries to repair a hole left
by the failed neighbor with a qualified S-node, by searching
in the node’s own neighbor table and querying the node’s
neighbors. Only when it fails to find a qualified S-node will
it repair the hole with a T-node. The failure recovery proto-
col has been shown to maintain consistency and re-establish
K-consistency for networks withK � 2. Therefore, in this
section, we focus on how to extend the join protocol in [4]
to meet goal (1).

3.2 Extended join protocol

To extend the join protocol, we first consider the basis of
the proofs of protocol correctness. Proofs in [4] rely on the
following properties of a network.

1. Once an S-node can reach another S-node, it always
can thereafter.

2. Once a T-node can reach an S-node, it always can
thereafter.

3. After a T-node, sayx, is stored by another node, sayy,
while x is still a T-node, it remains in the table ofy.

If there is no table optimization involved during the joins,
i.e., no neighbor in any entry would be replaced, the above
properties hold trivially: once a path is established, the
neighbor pointers from one hop to another along the path
are always there and remain the same. When there are op-
timization operations that happen concurrently with joins,
the above three properties must be preserved to ensure the
correctness of the join protocol. To ensure property 3 is not

2K-consistency provides redundancy in neighbor tables to ensure that
a dynamically changing network is always fully connected.

difficult: we require that if a neighbor is still a T-node, it
cannot be replaced even if another node is found to be closer
than it. To ensure properties 1 and 2, goal (1) stated above
needs to be achieved and neighbor replacement should be
constrained to neighbors that are S-nodes.

We extend the join protocol to achieve goal (1) as fol-
lows. In short, a new status,csetwaiting, is inserted be-
tweennotifyingandin system. When a joining node has fin-
ished its tasks and exited statusnotifying, it will not change
to statusin systemand become an S-node immediately. In-
stead, the node waits in statuscsetwaiting for some nodes
that are joining concurrently and are likely to be in the same
C-set with it (conceptually). When it is confirmed that all
these nodes have exited statusnotifying, it changes status to
in system. (Pseudo-code of the extensions is presented in
Appendix A.)

� A new joining status,csetwaiting, is added after status
notifying. Moreover, two more join protocol messages,
CsetWaitMsgandCsetWaitRlyMsg, are introduced.

� When a node, sayx, receives aJoinNotiMsg or a
JoinNotiRlyMsg, the message includes a copy of the
sender’s table. Ifx is in statusnotifying when it
receives the message, and if from the copy of the
sender’s table,x finds a T-node, sayy, that shares with
x a suffix of lengthk, k � x:att level , x savesy in set
Qcset wait. (x:att level is the attach-level ofx in the
network [4], which is the lowest levelx is stored in the
table of the first S-node that storedx.)

� When a node in statusnotifyingfinds that it is not ex-
pecting any moreJoinNotiRlyMsgor SpeNotiRlyMsg,
it changes status tocsetwaiting. It then sendsCset-
WaitMsgto the nodes in setQcset wait and waits for
their replies. It also sendsCsetWaitRlyMsgto nodes in
setQcset recv (see discussion below).

� When a node, sayx, receives aCsetWaitMsg, if it is al-
ready in statusin system, it sends a reply immediately.
If x is in statuscsetwaiting, it sends a reply immedi-
ately and removes the sender fromQcset wait. Other-
wise,x saves the sender intoQcset recv to reply later
whenx changes status fromnotifying to csetwaiting
(whenx changes status tocsetwaiting, x removes a
node fromQcset wait if that node is already recorded
in Qcset recv, before sending out anyCsetWaitMsg).

� When a node is in statuscsetwaiting and finds that
Qcset wait is empty, it changes status toin system.

The above extensions add extra delay into each join pro-
cess. With the extra delay, a joining node will not be-
come an S-node until it believes that nodes currently in the
same C-set with it have all entered statuscsetwaiting or
in system. Since only after a node becomes an S-node can
it store another joining node that has sent it aJoinWaitMsg
requesting for attachment, the above extensions ensures that

6

only after a set of nodes in a parent C-set have all finished
their joining tasks, will new joining nodes be attached to
these nodes and filled into children C-sets. In the correct-
ness proof (see Appendix B), we show that when a new
node is filled into a child C-set, neighbor pointers among
the nodes that are currently in ancestor C-sets have been
established and these nodes already can reach each other.

In short, conceptually, the C-set tree is realized in an in-
cremental way. Once some nodes are filled into a C-set, no
new node will be filled into the decedent C-sets until these
nodes have become part of the consistent subnet.

For instance, consider the example mentioned in Sec-
tion 2.4, where a set of nodesW = f30633; 41633; 10533g
join a K-consistent network hV;N (V)i, V =
f02700; 14263; 62332; 72413g. The C-set tree tem-
plate associated withV , W andK (assumingK = 1) is
shown in Figure 4(a). With the extended join protocol,
the C-set tree is realized in the following way: only after
C-setC33 is filled and nodes in it have all entered status
csetwaiting or in system, will new nodes in the children
C-sets,C633 andC533, be filled in, and so on.

V

V314263 72413

V

V314263 72413

C33

C1633 0633C

C30633C41633

V

V314263 72413

C33

C1633 0633C

C30633C41633

02700, 14263, 62332,
72413

02700, 14263, 62332,
72413, 30633, 41633

02700, 14263, 62332,
72413, 30633, 41633,
10533

41633 30633

41633

41633

30633

30633

C633
10533

10533

10533

(b)(a) (c)

C

C

C

533

0533

10533

41633 30633

41633

41633

30633

30633

C633

41633 3063341633 30633

Figure 6. Evolution of the consistent subnet

Suppose during the joins, 30633 and 41633 are stored
by nodes inV3 as neighbors with suffix 33. Then con-
ceptually, 30633 and 41633 are filled intoC33, as shown
in Figure 4(b). 3 Since the initial network is consistent,
it is guaranteed that 30633 and 41633 will find out each
other and construct their neighbor tables accordingly. After
both of them have exited statusnotifying and inform each
other about this, they can already reach each other as well
as nodes inV . Then new nodes can be allowed to be filled
intoC633 andC533. In this example, 10533 is now allowed
to be filled intoC533. Similarly, before accepting new nodes
into children C-sets, 10533 will wait for nodes in the same
C-set that join with it concurrently, if it finds any such nodes
by exchanging messages with 30633 and 41633. The evo-
lution of the consistent subnet is shown in the upper part of
Figure 6, while the lower part of Figure 6 shows the corre-
sponding partial realizations of the C-set tree.

3A node is a neighbor of itself and is stored in each entry whose re-
quired suffix is a suffix of its node ID. Therefore, after a node is filled
into a C-set, it is automatically filled into descendant C-sets. For instance,
when 41633 is filled intoC33, it is automatically filled intoC633 , C1633 ,
andC41633 .

3.3 Correctness and scalability of join protocol

We first present two theorems. Theorem 2 states that when
a set of new nodes join a network, at any time, all S-nodes
at that time belong to a consistent subnet. This property
guarantees that replacing a neighbor with another one is
safe if both of them are S-nodes. Theorem 3 states that
the extended join protocol generatesK-consistent neighbor
tables when an arbitrary number of nodes join an initially
K-consistent network.

Theorem 1 Suppose a set of nodes,W =fx1,...,xmg,m �
1, join aK-consistent networkhV;N (V)i. Then, each node
x, x 2 W , eventually becomes an S-node.

Theorem 2 Suppose a set of nodes,W = fx1; :::xmg,
m � 1, join a K-consistent networkhV;N (V)i using the
extended join protocol. Then at any timet, any node in set
S(t) can reach any other node inS(t), whereS(t) is the set
of S-nodes at timet.

Theorem 3 Suppose a set of nodes,W =fx1,...,xmg,m �
1, join a K-consistent networkhV;N (V)i. Then, at time
te, hV [W;N (V [W)i is aK-consistent network.

Proofs of the theorems are based on the assumptions
stated in Section 2.3. Proof details are presented in Ap-
pendex B.

Next, we demonstrate the scalability of the extended join
protocol by analyzing communication costs of protocol ex-
tensions through simulation experiments. We implemented
the extended join protocol in an event-driven simulator, and
used the GTITM package [14] to generate network topolo-
gies. For a generated topology with a set of routers, overlay
nodes (end hosts) were attached randomly to the routers.
For the simulations reported in this paper, two topologies
were used: a topology with 1056 routers to which 1000
overlay nodes were attached, and a topology with 2112
routers to which 4000 overlay nodes were attached. We
simulated the sending of a message and the reception of
a message as events, but abstracted away queueing delays.
The end-to-end delay of a message from its source to desti-
nation was modeled as a random variable with mean value
proportional to the shortest path length in the underlying
network. For the 1056-router topology, end-to-end delays
are in the range of 0 to 329 ms, with the average being 113
ms; for the 2112-router topology, end-to-end delays are in
the range of 0 to 596 ms, with the average being 163ms. In
each experiment, we letm nodes join an initial network of
n nodes,m� n. We set parametersb andd to be 16 and 8,
respectively.4

We first study the extra delay caused by the new status,
csetwaiting. We define thejoin duration of a node to be

4In Tapestry,b = 16 andd = 40. In Pastry,b = 16 andd = 32.
We found that the value ofd is insignificant whenbd � n, wheren is the
number of nodes in a network.

7

the duration from the time the node starts joining to the time
it changes status toin system. Figure 7(a) plots the average
join durations for 990 nodes joining an initial network of 10
nodes, as a function ofK (K-consistent), where the original
join protocol was used. Error-bars show the minimum and
maximum join durations from the simulations. The under-
lying topology was the 1056-router topology. Figure 7(b)
plots the join durations for the same simulation setup, where
the extended join protocol was used. In each experiment,
all joins started at exactly the same time. As shown in the
figures, the average join durations in Figure 7(b) are only
slightly longer than their correspondences in Figure 7(a),
which indicates that the extra delay caused by waiting in
statuscsetwaiting is small. The same conclusion can be
drawn from Figure 8, where 1990 nodes joined an initial
network of 10 nodes, based on the 2112-router topology.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

J
o
i
n

d
u
r
a
t
i
o
n
s

(
s
e
c
)

K

Average join duration

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

J
o
i
n

d
u
r
a
t
i
o
n
s

(
s
e
c
)

K

Average join duration

(a) Original join protocol (b) Extended join protocol

Figure 7. Join durations with/without protocol exten-

sions, n = 10, m = 990

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5

J
o
i
n

d
u
r
a
t
i
o
n
s

(
s
e
c
)

K

Average join duration

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5

J
o
i
n

d
u
r
a
t
i
o
n
s

(
s
e
c
)

K

Average join duration

(a) Original join protocol (b) Extended join protocol

Figure 8. Join durations with/without protocol exten-

sions, n = 10, m = 1990

Next, we study communication costs of the extended join
protocol in terms of numbers of messages sent by a joining
node. In [4], we have analyzed numbers of protocol mes-
sages sent by a joining node, for all message types except
the two introduced in this paper. We showed that the com-
munication costs are scalable to a large number of network
nodes. Hence, in this paper we only need to study numbers
of CsetWaitMsgandCsetWaitRlyMsg, which are one-to-one
related.

Figure 9 presents average numbers ofCsetWaitMsgsent
by joining nodes as a function ofK. The numbers are small
in general, and increase whenK increases. This is because
whenK increases, more neighbors are stored in each en-

try and thus each C-set tends to contain more nodes. By
comparing the two curves in each diagram, we observe that
in the simulations where massive joins did not start at ex-
actly the same time, average numbers ofCsetWaitMsgwere
greatly reduced. Moreover, comparing Figure 9(a) and Fig-
ure 9(b), we see that with other parameters being the same,
the average number ofCsetWaitMsgremained almost the
same when the number of concurrent joins was increased
from 990 to 1990.

We conclude that the communication costs of the proto-
col extensions are very low and the extended join protocol
is scalable to a large number of network nodes.

0

1

2

3

4

5

6

0 1 2 3 4 5

A
v
e
r
a
g
e

n
u
m
b
e
r

o
f

m
e
s
s
a
g
e
s

K

joins start at same time
joins start within 1 minute

0

1

2

3

4

5

6

0 1 2 3 4 5

A
v
e
r
a
g
e

n
u
m
b
e
r

o
f

m
e
s
s
a
g
e
s

K

joins start at same time
joins start within 1 minute

(a)n = 10;m = 990 (b) n = 10;m = 1990

Figure 9. Average number of CsetWaitMsg

3.4 Optimization rule and heuristics

We now have an extended join protocol that expands the
consistent subnet while nodes join a network, and a failure
recovery protocol [5] that maintain consistency of the con-
sistent subnet when nodes fail. To implement the general
strategy (Section 3.1), we also need the following rule.

Optimization Rule When a node,x, intends to replace
a neighbor,y, with a closer one,z, the replacement is only
allowed when bothy andz are S-nodes.

Recall that for each neighbor, a node stores the state of
the neighbor. StateS indicates that the neighbor is in status
in system, while stateT indicates it is not yet. To imple-
ment the above rule, whenx intends to replacey with z,
it only does so when the states associated with bothy and
z areS. With the extended join protocol and the optimiza-
tion rule, the three properties stated in Section 3.2 will be
preserved even when optimization operations happen con-
currently with joins (see Appendix B).

To optimize neighbor tables, an algorithm is needed to
search for qualified nodes that are closer than current neigh-
bors. We next present a set of heuristics to optimize neigh-
bor tables when new nodes are joining a network and new
tables are constructed. To search for closer neighbors with
low cost, the heuristics are designed by primarily utilizing
information carried in join protocol messages. Notice that
whenever a closer neighbor is found for a table entry, it can
be used to replace an old neighboronly if the replacement
is allowed by the optimization rule.

Heuristic 1: Copy neighbor information from nearby
nodes.Recall that in thecopyingstatus, a joining node,x,

8

constructs most part of its neighbor table by copying neigh-
bor information from other nodes (S-nodes). Supposey is
the node thatx starts joining with. Instead of directly copy-
ing level-0 neighbors fromy, x chooses the closest node
from y’s neighbors, sayg0, and copies level-0 neighbors
from g0. If the level-0 neighbors ofg0 are close tog0, and
g0 andx are close to each other, then it is highly likely that
these level-0 neighbors are also close tox [1]. To populate
level-1 table entries,x chooses a level-0 neighbor ofg0 that
shares suffixx[0] with it, sayz, if such a node exists, and
requests for its level-1 neighbors (whose IDs all have suf-
fix x[0]). Again, x chooses the closest node among these
neighbors to copy level-1 neighbors from. Similarly,x can
populate its table entries at higher levels.

Heuristic 2: Utilize protocol messages that include
copies of neighbor tables.During statuswaiting andno-
tifying, a joining node,x, sends out messages (JoinWaitMsg
andJoinNotiMsg) to some nodes to notify them about itself.
Replies to these messages all include copies of the neighbor
tables of the senders. From a reply message,x may find a
node that is not stored in its table and is closer than some
current neighbor for a table entry.

Moreover, whenx is in statusnotifying, a notification
message sent byx includes a copy ofx:table. The re-
ceiver of such a message can also search for closer nodes
in x:table to replace old neighbors, given that the replace-
ments are allowed by the optimization rule.

Heuristic 3: Optimize when a node’s join process termi-
nates.When a joining node,x, changes status toin system,
it informs its reverse-neighbors (nodes that have storedx

as a neighbor) as well as its neighbors that it becomes an
S-node. These nodes then update the state ofx to beS in
their tables and can then try to optimize their table entries
for which x is a qualified node. In addition to informing
neighbors,x can exchange neighbor tables with its neigh-
bors (not including reverse-neighbors) so that bothx and its
neighbors can optimize their tables at this time.

4 Experimental Results

We have integrated the extended join protocol with our fail-
ure recovery protocol and the optimization heuristics, under
the constraint of the optimization rule. In this section, we
validate our strategy for consistency-preserving optimiza-
tion and evaluate the effectiveness of the heuristics through
simulation experiments. To evaluate the effectiveness of
the heuristics, we use a metric called p-ratio, defined be-
low. Recall that the closest neighbor in an entry is called
the primary-neighbor of that entry. For a table entry of a
node, sayx, suppose the primary-neighbor of the entry isy,
and the closest node among all qualified nodes of the entry
is z, then we definep-ratio of the entry to be the ratio of
the communication delay fromx to y to the delay fromx
to z. A p-ratio of 1 indicates thaty andz are of the same

distance. If for every table entry in a network, p-ratio is 1,
then the neighbor tables are optimal.

4.1 Optimization during joins

In each experiment where optimization happen concur-
rently with joins, we letm nodes joined an initial network
of n nodes,m� n. Neighbor tables were then constructed,
updated, and optimized according to the extended join pro-
tocol and the optimization heuristics. In the protocol im-
plementation, an old neighbor is only replaced by a new
neighbor if the distance of the new one is measured to be
10% shorter than the old one (plus that the replacement is
allowed by the optimization rule). This is to prevent os-
cillation, since each end-to-end delay is modeled as a ran-
dom number with a mean value proportional to the shortest
path length in the underlying network. When all join pro-
cesses had terminated, we checked whetherK-consistency
was maintained and calculated p-ratio for every table entry.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

A
v
e
r
a
g
e

p
-
r
a
t
i
o

K

without opt
with opt

0

5

10

15

20

25

30

0 1 2 3 4 5

9
5
t
h

p
e
r
c
e
n
t
i
l
e

p
-
r
a
t
i
o

K

without opt
with opt

(a) Avg. p-ratio (b) 95th percentile p-ratio

Figure 10. Effectiveness of optimization heuristics, n =
10, m = 990

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

A
v
e
r
a
g
e

p
-
r
a
t
i
o

K

without opt
with opt

0

5

10

15

20

25

30

0 1 2 3 4 5

9
5
t
h

p
e
r
c
e
n
t
i
l
e

p
-
r
a
t
i
o

K

without opt
with opt

(a) Avg. p-ratio (b) 95th percentile p-ratio

Figure 11. Effectiveness of optimization heuristics, n =
10, m = 1990

Figures 10 and 11 present results from experiments with
n = 10 andm = 990, and from experiments withn = 10
andm = 1990, respectively. In each experiment, starting
times of the joins were drawn randomly from range [0s, 60s]
(i.e., all nodes joined within 1 minute). The results show
that by primarily using information carried in join proto-
col messages, table entries can be greatly optimized. For
instance, in Figure 10, without any optimization, the aver-
age p-ratio forK = 1 is more than 6.82, and the 95th per-
centile of p-ratio forK = 1 is 26.67 (i.e., 95% of p-ratios

9

are no greater than 26.67); with the optimization heuris-
tics, the values drop to 2.21 and 7.51, respectively. We also
found that in every experiment,K-consistency was main-
tained after all joins terminated, which demonstrates that
our strategy preserves consistency and ensures correctness
of the join protocol.

Results in Figures 10 and 11 also show that whenK

is increased, the average p-ratio decreases. The reason is
that whenK becomes larger, more neighbors are stored in
a table entry, thus more neighbor information is carried in
protocol messages. Clearly, there is a tradeoff between the
benefits and maintenance costs ofK-consistency.5

4.2 Optimization with concurrent joins and failures

In [5], we presented an integration of the original join pro-
tocol with our failure recovery protocol, which requires ex-
tensions to both protocols. Extensive simulations had been
conducted to evaluate the integrated protocols for concur-
rent joins and failures [5], which showed that forK � 2,
the integrated protocols maintained consistent neighbor ta-
bles and re-establishedK-consistency after concurrent joins
and failures in every experiment.

The extensions to the join protocol presented in this pa-
per do not affect failure recovery actions, thus integrating
the extended join protocol with the failure recovery protocol
should not affect success of failure recoveries. On the other
hand, since a substitute for a failed neighbor is searched
locally (see Section 3.1), if neighbor tables have been opti-
mized, the substitute node would not be too far away. Hence
the average p-ratio would not be affected too much after a
recovery action. Therefore, integration of the extended join
protocol, the failure recovery protocol, and the optimization
heuristics should be effective and stable in both consistency
maintenance and neighbor table optimization. To demon-
strate this, we conducted experiments with concurrent joins
and failures as well as churn experiments.

Massive joins and failures We first conducted simula-
tions in which massive number of joins and failures happen
concurrently. Each experiment began with aK-consistent
network,hV;N (V)i, which was constructed and optimized
by the extended join protocol and optimization heuristics
presented in Section 3. Then, a setW of nodes joined and
a setF of randomly chosen nodes failed. Join and failure
events were generated according to a Poisson process at the
rate of 10 events every second.

From the experiments, we found thatK-consistency was
maintained when all join and failure recovery processes had
terminated, in every experiment withK � 2, which indi-
cates that our protocols are effective in consistency main-
tenance. Figure 12 presents results of average p-ratios at
the end of the simulations. The lower curve presents re-
sults from simulations where 494 joins and 506 failures

5In [5], we had investigated the tradeoff in detail.

happened in a network that initially had 1000 nodes; the up-
per curve presents results from simulations where 968 joins
and 1032 failures happened in a network that initially had
2000 nodes. Even with massive joins and failures, the ta-
ble entries were still optimized greatly. For instance, the
lower curve in Figure 12 is similar to the lower curve in
Figure 10(a), where both groups of simulations had about
1000 nodes when the network became stable.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Av
er

ag
e

p-
ra

ti
o

K

2000 nodes initially, 968 joins, 1032 failures
1000 nodes initially, 494 joins, 506 failures

Figure 12. Optimization with massive joins and failures

Churn experiments We also investigated the impact
of continuous node dynamics on protocol performance. To
simulate node dynamics, Poisson processes with rates�join
and�fail were used to generate join and failure events, re-
spectively. For each join event, a new node (T-node) was
given a randomly chosen S-node to begin its join process.
For each failure event, an S-node or a T-node was randomly
chosen to fail and stay silent. We set�join = �fail = �,
which is said to be thechurn rate. Periodically in each ex-
periment, we took snapshots of the neighbor tables of all
S-nodes, the “core” of the network. For each snapshot, we
calculated the average p-ratio as an indicator of how well ta-
ble entries were optimized at the moment. We also checked
whether consistency was maintained at each snapshot. In
any network with churn, it is obvious thatK-consistency is
most likely not satisfied by the neighbor tables in a snap-
shot at timet, because some failures might have occurred
just prior to t and failure recovery takes time. Protocols
designed to achieveK-consistency,K � 2, provide re-
dundancy in neighbor tables to ensure that a dynamically
changing network is alwaysfully connected. Thus, we are
more concerned with whether consistency (1-consistency)
is maintained at each snapshot and whether the network
converges toK-consistency at the end of a simulation.

Figure 13 presents results from an experiment with� =
1, i.e., join events were generated at a rate of 1 per second
and so were the failure events. The initialK-consistent net-
work of 2000 nodes,K = 3, was constructed and optimized
by letting 1990 nodes join a network of 10 nodes. In the ex-
periment, join and failure events were generated from the
1,000th second to the 4,000 second (simulated time). After
that, no more join or failure events was generated and the
experiment continued until all join, failure recovery, and
optimization processes terminated. Snapshots were taken

10

every 50 seconds. The lower curve in Figure 13(a) plots
the average p-ratios for each snapshot. Although there were
continuous joins and failures, neighbor tables remained op-
timized to a certain degree: the average p-ratio increased at
first, when joins and failures started to happen; it then re-
mained below 2.3. (For comparison, the upper curve shows
the average p-ratios from an experiment with the same sim-
ulation setup, in which no optimization heuristics were ap-
plied.) We also found that consistency was maintained at
every snapshot, and 3-consistency was recovered at the end
of the simulation. Figure 13(b) plots the number of nodes in
the network (T-nodes and S-nodes) versus the number of S-
nodes for each snapshot. Note that the two curves are very
close to each other, which demonstrates that at the given
churn rate, the size of the subnet formed by S-nodes (a con-
sistent subnet) is consistently close to that of the entire net-
work. It also demonstrates that with the given churn rate
and the network size, our protocols can sustain a large sta-
ble “core” over the long term.6

0

1

2

3

4

5

6

7

8

1000 1500 2000 2500 3000 3500 4000

A
v
e
r
a
g
e

p
-
r
a
t
i
o

Time (sec)

without opt
with opt

1800

1850

1900

1950

2000

2050

2100

1000 1500 2000 2500 3000 3500 4000

N
u
m
b
e
r

o
f

n
o
d
e
s

Time (sec)

Number of nodes in network
Number of S-nodes

(a) Average p-ratio (b) Number of nodes and S-nodes

Figure 13. Churn experiment, � = 1

5 Network Initialization

To initialize aK-consistent and optimized network ofn
nodes, we can put any one of the nodes, sayx, in V , and
constructx:table as follows. (Letx:state(y) denote the
state of neighbory stored in the table ofx.)

� Nx(i; x[i]):prim = x, x:state(x) = S, i 2 [d].
� Nx(i; j) = ;, i 2 [d], j 2 [b] andj 6= x[i].

Next, let the othern�1 nodes join the network concurrently.
Each node is givenx to start with and executes the extended
join protocol with the optimization heuristics implemented.
At the end of joins, aK-consistent network is constructed
and table entries are optimized.

6 Conclusions

Constructing and maintaining consistent neighbor tables
and optimizing neighbor tables to improve routing locality
are two important issues in p2p networks. To construct and
maintain consistent neighbor tables in presence of node dy-
namics, especially when new nodes are joining, it is desired

6In [5], we have studied “sustainable churn rates” in detail.

that neighbor pointers remain unmodified once they are es-
tablished so that new nodes are ensured to construct neigh-
bor tables correctly following the pointers. On the other
hand, to improve routing locality, it is desired that once
closer neighbors are found, old neighbors that are father
away are replaced.

In this paper, we showed that the “divergence” between
the two issues can be resolved by a general strategy: to re-
place a neighbor with a closer one only when they both be-
long to a consistent subnet. We realized the strategy in the
context of hypercube routing. We first extended our join
protocol in [4] so that the following property holds in a net-
work: at any time, the set of S-nodes form a consistent sub-
net. This property enables both easy identification of a con-
sistent subnet and expansion of the consistent subset when-
ever a join process terminates. Nevertheless, utilization of
this property is not limited to consistency-preserving opti-
mization.

The extended join protocol was then integrated with our
failure recovery protocol and a set of optimization heuris-
tics. The integrated protocols were evaluated through simu-
lation experiments. We showed that our protocols are effec-
tive and efficient in maintainingK-consistency and scalable
to a large number of network nodes. We showed that by pri-
marily using information carried in join protocol messages,
neighbor tables can be greatly optimized. For p2p networks
that have higher demand for optimality of neighbor tables,
algorithms presented in [1, 2, 15] can be further applied
with extra costs. No matter which algorithm is applied, it
should be applied within the constraint of the optimization
rule to preserve consistency.

References

[1] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron.
Exploiting network proximity in peer-to-peer overlay
networks. InProc. of International Workshop on Fu-
ture Directions in Distributed Computing, June 2002.

[2] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y.
Zhao. Distributed object location in a dynamic net-
work. In Proc. of ACM Symposium on Parallel Algo-
rithms and Architectures, August 2002.

[3] D. R. Karger and M. Ruhl. Finding nearest neighbors
in growth-restricted metrics. InProc. of ACM Sympo-
sium on Theory of Computing, May 2002.

[4] S. S. Lam and H. Liu. Silk: a resilient routing fabric
for peer-to-peer networks. Technical Report TR-03-
13, Dept. of CS, Univ. of Texas at Austin, May 2003.

[5] S. S. Lam and H. Liu. Failure recovery for structured
p2p networks: Protocol design and performance eval-
uation. InProc. of ACM SIGMETRICS, June 2004.

11

[6] H. Liu and S. S. Lam. Neighbor table construction
and update in a dynamic peer-to-peer network. Tech-
nical Report TR-02-46, Dept. of CS, Univ. of Texas at
Austin, September 2002.

[7] H. Liu and S. S. Lam. Neighbor table construction and
update in a dynamic peer-to-peer network. InProc. of
IEEE International Conference on Distributed Com-
puting Systems (ICDCS), May 2003.

[8] P. Maymounkov and D. Mazieres. Kademlia: A peer-
to-peer information system based on the xor metric. In
Proc. of International Workshop on Peer-to-Peer Sys-
tems, March 2002.

[9] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Ac-
cessing nearby copies of replicated objects in a dis-
tributed environment. InProc. of ACM Symposium on
Parallel Algorithms and Architectures, June 1997.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
Scott Shenker. A scalable content-addressable net-
work. In Proc. of ACM SIGCOMM, August 2001.

[11] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server
selection. InProc. of IEEE INFOCOM, June 2002.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. InProc. of IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms,
November 2001.

[13] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. InProc. of
ACM SIGCOMM, August 2001.

[14] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How
to model an internetwork. InProc. of IEEE Infocom,
March 1996.

[15] H. Zhang, A. Goel, and R. Govindan. Incremen-
tally improving lookup latency in distributed hash ta-
ble systems. InProc. of SIGMETRICS, June 2003.

[16] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A re-
silient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications,
Vol.22(No.1), January 2004.

A Pseudocode for Join Protocol in Section 3.2
In this section, we present the pseudocode for the extended
join protocol described in Section 3.2, for nodes to join
a initially K-consistent networkhV;N (V)i. Figure 14
presents the state variables of a joining node. Variables in
the first part are also used by nodes inV , where initially
for each nodeu, u 2 V , u:status = in system, u:table
is populated with nodes inV in a way that satisfiesK-
consistency conditions (Section 2.2), andu:state(v) = S

for every neighborv that is stored inu:table. Figure 15
presents the new protocol message,SameCsetMsg. The
other protocol messages are the same as presented in Fig-
ure 3. Figures 16 to 21 present the pseudo-code of the pro-
tocol, in whichx, y, u andv denote nodes, andi, j andk
denote integers. The pseudocode is similar to that in [4].
The differences are mainly in Figures 20 and 22. Moreover,
in Figures 17 and 18, function fallSwitchTo S Node()is re-
placed bySwitchTo CsetWait() (see the bottom of the two
figures).

Not that when any node,x, stores a neighbor,
say y, into Nx(i; j), y 6= x, x needs to sends a
RvNghNotiMsg(y; x:state(y)) to y, andy should reply to
x if x:state(y) is not consistent withy:status. For clar-
ity of presentation, we have omitted the sending and recep-
tion of these messages in the pseudocode. We also omit the
sending of aCpRstMsgfrom x to g, and the reception of a
CpRlyMsgfrom g to x, in Figure 16.

State variables of a joining nodex:

x:status 2 fcopying, waiting, notifying, csetwaiting, in systemg,
initially copying.

Nx(i; j): the set of (i; j)-neighbors ofx, initially empty.
x:state(y) 2 fT;Sg, the state of neighbory stored inx:table.
Rx(i; j): the set of reverse(i; j)-neighbors ofx, initially empty.

x:att level: an integer, initially 0.
Qr: a set of nodes from whichx waits for replies, initiallyempty.
Qn: a set of nodesx has sent notifications to, initiallyempty.
Qj : a set of nodes that have sentx aJoinWaitMsg, initially empty.
Qsr, Qsn: a set of nodes, initiallyempty.
Qcset wait : a set of nodes found byx that may be in the same c-set

with x, initially empty.
Qcset recv : a set of nodes from whichx has receivedSameCsetMsg

beforex enters statuscsetwaiting, initially empty.
Qcset sent , a set of nodes, initiallyempty.

Figure 14. State variables

SameCsetMsg(s), sent byx whenx is in statuscsetwaiting, or in
response to aSameCsetMsgfrom another node.
s = S if x:status is in system; otherwises = T .

Figure 15. New protocol message

12

Action ofx on joininghV;N (V)i, given nodeg0, g0 2 V :

i: initially 0. p, g: a node, initiallyg0. s 2 fT , Sg, initially S.

x:status = copying;
for (i = 0; i < d; i++) fNx(i; x[i]):first = x; x:state(x) = T ;g
while (g 6= null ands == S) f // copy level-i neighbors ofg
h =�1; k = jcsuf(x:ID; g:ID)j;
while (i � k ^ h ==�1)f
for (j = 0; j < b; j++)
for (eachv, v 2 Ng(i; j))
for (l = i, l � k, l++) f Set Neighbor(l; v[l]; v; g:state(v)); g

if ((for eachl, i � l � k,Ng(l; x[l]):size < K) ^ h ==�1)
f p = g; g = null; h = i; g
i++;
g
if (h ==�1)f p = g; g = Np(k; x[k]):first; s = p:state(g);g

g
x:status = waiting;
if (g == null) f

SendJoinWaitMsgto p;Qn = Qn [fpg;Qr = Qr [fpg;
g
elsef

SendJoinWaitMsgto g; Qn = Qn [fgg; Qr = Qr [fgg;
g

Figure 16. Action in status copying

Action ofy on receiving JoinWaitMsg fromx:

k = jcsuf (x:ID; y:ID)j; h =�1; j = 0;
if (y:status == in system) f

while (j � k ^ h ==�1) f
if (for eachl, j � l � k, Ny(l; x[l]):size < K) f
h = j; for (l = j; l � k; l++) f Set Neighbor(l; x[l]; x; T); g
gelsej++;
g
if (h ==�1) SendJoinWaitRlyMsg(negative,h, y:table) to x;
elseSendJoinWaitRlyMsg(positive,h, y:table) to x;

gelseQj = Qj [fxg;

Action ofx on receiving JoinWaitRlyMsg(r; i; y:table) fromy:

Qr = Qr � fyg; k = jcsuf(x:ID;y:ID)j; x:state(y) = S;
if (r == positive) f
x:status = notifying; x:att level = i;
for (j = i; j � k; j++) f Rx(j; x[j]) = Rx(j; x[j]) [fyg; g

gelsef // a negative reply, needs to send anotherJoinWaitMsg
v = Ny(k; x[k]):first;
SendJoinWaitMsgto v; Qn = Qn [fvg; Qr = Qr [fvg;

g
CheckNgh Table(y:table);
if (x:status == notifying^ Qr == � ^Qsr == �)

Switch To CsetWait();

Figure 17. Action on receiving JoinWaitMsg and JoinWaitRlyMsg

Action ofy on receiving JoinNotiMsg(i; x:table) fromx:

Q: a set of integers, initially empty

k = jcsuf(x:ID;y:ID)j; f = false;
for (j = i; j � k, j++)f SetNeighbor(j; x[j]; x; T);g
for (j = i; j � k, j++) fif (x 2 Ny(j; x[j])) fQ = Q [fjg;gg
if (y 62 Nx(k; y[k]) ^ y:status == in system) f = true;
if (Q 6= ;) SendJoinNotiRlyMsg(positive,Q, y:table, f) to x;
elseSendJoinNotiRlyMsg(negative,;, y:table, f) to x;
CheckNgh Table(x:table);

Action ofx on receiving JoinNotiRlyMsg(r; Q; y:table; f) fromy:

if (r==positive) ffor (eachi in Q) Rx(i; x[i]) = Rx(i; x[i]) [fyg;g
Qr = Qr � fyg; k = jcsuf(x:ID;y:ID)j;
if (f == true^ k > x:att level ^ y 62 Nx(k; y[k]) ^ y 62 Qsn)f

SendSpeNotiMsg(x,y) toNx(k; y[k]):first;
Qsn = Qsn [fyg; Qsr = Qsr [fyg;g

CheckNgh Table(y:table);
if (Qr == � ^ Qsr == �) Switch To CsetWait();

Figure 18. Action on receiving JoinNotiMsg and JoinNotiRlyMsg

Action ofu on receiving SpeNotiMsg(x; y) fromv:

k = jcsuf(y:ID;u:ID)j; SetNeighbor(k; y[k]; y; S);
if (y 62 Nu(k; y[k])) SendSpeNotiMsg(x; y) toNu(k; y[k]):�rst;
elseSendSpeNotiRlyMsg(x, y) to x;

Action ofx on receiving SpeNotiRlyMsg(x, y) fromu:

Qsr = Qsr� fyg;
if (Qr==� andQsr==�) Switch To CsetWait();

Figure 19. Action on receiving SpeNotiMsg and SpeNotiRlyMsg

Action ofx on receiving a SameCsetMsg(s) fromy

if (x:status == in system̂ s == T)
SendSameCsetMsg(S)to y;

else if(x:status == csetwaiting) f
Qcset wait = Qcset wait � fyg;
if (y 62 Qcset sent ^ s == T)f
SendSameCsetMsg(T)to y; Qcset sent = Qcset sent [fyg;
g
if (Qcset wait == ; ^ Qr == ; ^ Qsr == ;)
Switch To S Nodes();

gelse
Qcset recv = Qcset recv [fyg;

Figure 20. Action on receiving a SameCsetMsg

Action ofy on receiving a InSysNotiMsg fromx:

y:state(x) = S;

Figure 21. Action on receiving InSysNotiMsg

13

CheckNgh Table(y:table) at x:

for (eachu, u 2 Ny(i; j) ^ u 6= x, i 2 [d], j 2 [b]) f
k = jcsuf(x:ID;u:ID)j; s = y:state(u);
for (h = i; h � k; h++) f Set Neighbor(h; u[h]; u; s); g
if (x:status == notifying^ k � x:att level ^ u 62 Qn) f
SendJoinNotiMsg(x:att level; x:table) to u;
Qn = Qn [fug; Qr = Qr [fug;

g
// following is part of protocol extensions

if (x:status == notifying^ k � x:att level ^ y:state(u) == T)
Qcset wait = Qcset wait [fug;

g

SetNeighbor(i; j; u; s) at x:

if (u 6= x ^ Nx(i; j):size < K ^ u 62 Nx(i; j))
f Nx(i; j) = Nx(i; j) [fug; x:state(u) = s;g

SwitchTo CsetWait() atx:

// this subroutine if part of protocol extensions
x:status = csetwaiting;
for (eachv, v 2 Qcset recv [Qcset wait) f

SendSameCsetMsg(T)to v; Qcset sent = Qcset sent [fyg;
g
for (eachu, u 2 Qcset recv)

if (u 2 Qcset wait) Qcset wait = Qcset wait � fug;
if (Qcset wait == ; ^ Qr == ; ^ Qsr == ;)

Switch To S Nodes();

SwitchTo S Node() atx:

x:status = in system; x:state(x) = S;
for (eachv of x’s reverse neighbors) SendInSysNotiMsgto v;
for (each nodeu, u 2 Qj) f
k = jcsuf(x:ID;u:ID)j; h =�1; j = 0;
while (j � k ^ h ==�1)f
if (for eachl, j � l � k, Nx(l; u[l]):size < K)f
h = j; for (l = h; l � k; l++) f Set Neighbor(l; u[l]; u; T); g

gelsej++;
g
if (h 6= �1) SendJoinWaitRlyMsg(positive,h, x:table) to u;
elseSendJoinWaitRlyMsg(negative,h, x:table) to u;
g

Figure 22. Subroutines

Protocol Message Abbreviation
CpRstMsg CP
CpRlyMsg CPRly
JoinWaitMsg JW
JoinWaitRlyMsg JWRly
JoinNotiMsg JN
JoinNotiRlyMsg JNRly
SpeNotiMsg SN
SpeNotiRlyMsg SNRly
RvNghNotiMsg RN
RvNghNotiRlyMsg RNRly
SameCsetMsg SC

Table 2. Abbreviations for protocol messages

B Proof

In this section, we present proofs for Theorems 1 and 2.
Proof of Theorem 3 follows proofs of Theorem 2 in [7].
Recall that we made the following assumptions in designing
the join protocol: (i) The initial network is aK-consistent
network, (ii) each joining node, by some means, knows a
node in the initial network initially, (iii) messages between
nodes are delivered reliably, and (iv) there is no node dele-
tion (leave or failure) during the joins. We also assume that
the actions specified by Figures 16 to 21 are atomic.

Suppose a set of nodes,W = fx1; :::; xmg, m � 1,
join a K-consistent networkhV;N (V)i. Table 2 shows
the abbreviations we will use for protocol messages in the
proofs, and Table 3 presents the notation used in the fol-
lowing proofs. Unless explicitly stated, in what follows,
when we mention timet, we mean a time that is in[tb; te],
i.e., tb � t � te. Moreover, by “x waits for y,” we mean
thaty is included in the queueQcset wait at nodex by the
time x enters statuscsetwaiting, thus, whenx is in status
csetwaiting, x will send anSCto y and wait for anSCback
from y.

Notation Definition
d(x; y) d� jcsuf(x:ID;y:ID)j
hx! yik x can reachy within k hops

x
j
! y the action thatx sends aJN or aJW to y

x
jn
! y the action thatx sends aJN to y

x
jw
! y the action thatx sends aJW to y

x
c
! y the action thatx sends aCP to y

A(x) theattaching-nodeof x, which is the node that
sends a positiveJWRlyto x

tbx the time at whichx starts joining the network
tcx the timex changes status tocsetwaiting
tex the timex changes status toin system, i.e., the end

of x’s join process,
tb min(tbx1 ; :::; t

b
xm

)

te max(tex1 ; :::; t
e
xm

)

Table 3. Notation in proofs

Proof of Theorem 1: In [7], we have shown that a
joining node eventually exits statusnotifying to enter sta-
tus in systemand become an S-node. In the extended
join protocol, a new status,csetwaiting, is inserted be-
tweennotifyingandin system, and a new message,SameC-
setMsg, is introduced. However, a node’s actions in sta-
tus csetwaiting and its actions on sending and receiving
SameCsetMsgdo not affect its own actions in any sta-
tus precedingcsetwaiting. Moreover, its actions in status
csetwaitingand on sending and receivingSameCsetMsgdo
not affect any other joining node. Therefore, the same ar-
guments in [7] apply and we conclude that a joining node
eventually exits statusnotifying.

We need to show that once a joining node is in status
csetwaiting, it eventually leaves this status and becomes

14

an S-node. Let the timex enters statuscsetwaiting be t1.
To exits statuscsetwaiting, x needs to receives aSameC-
setMsgfrom each node that is included inQcset wait at t1.

By the protocol, for each node included inQcset wait

at time t1, x sends aSameCsetMsg(T). Consider nodey,
y 2 Qcset wait . Also, let the timey receives theSameC-
setMsg(T)from x bet2.

� If y is also included inQcset recv at time t1, theny
must have sent aSameCsetMsgto x before.

� If y is not included inQcset recv at timet1, andy is al-
ready an S-node at timet2, theny sends back aSameC-
setMsgto x immediately. (It is not possible thaty has
sent aSameCsetMsgto x before. Otherwise,y would
be waiting for aSameCsetMsgfrom x andy could not
become an S-node beforet2.)

� If y is not included inQcset recv at timet1, andy is in
statuscsetwaiting at timet2, it sends aSameCsetMsg
to x immediately if it has not send such a message to
x before.

� If y is not included inQcset recv at time t1, andy is
in statuswaiting or notifying (y could not be in status
copyingat this time, sincey would not be stored by any
other node before it enters statuswaiting), theny saves
x inQcset recv to reply later wheny exitsnotifyingand
enterscsetwaiting. As we have shown,y eventually
will enter csetwaiting. Therefore,y eventually will
send aSameCsetMsgto x.

Therefore,x eventually receives a message ofSameC-
setMsgfrom each node that is included inQcset wait at t1.
x then changes status toin systemand becomes an S-node.

To prove Theorems 2, we first present and prove a few
lemmas. We also need to utilize some lemmas and propo-
sitions proved in [4]. Note that when we usedtex in [4],
we meant the time at which nodex exits statusnotifying
(and entersin system), which corresponds totcx in this re-
port. Moreover, we usehx ! yid(x;y) to denote thatx
can reachy within d(x; y) hops, whered(x; y) = d �
jcsuf(x:ID; y:ID)j. For example, ifx:ID is 41633 and
y:ID is 30633. Thend(x; y) = 2. To send a message to
y, x first forwards the message to a node with suffix 1633,
which then forwards the message to 41633. (It could also be
possible that 30633 is stored in the neighbor table of 41633
and thus it only takes one hop for 41633 to send a message
to 30633. If a network is consistent, then for any pairx and
y, hx! yid(x;y) is true.

Our proofs are based on C-set trees. To prove that any
node inS(t) can reach any other node inS(t), we consider
the C-set tree realized at timet, defined as follows.

Definition B.1 Suppose a set of nodes,W = fx1; :::; xmg,
m � 1, join a K-consistent networkhV;N (V)i, and for
any nodex, x 2 W , V Notify

x = V!, j!j = k. Then the

C-set tree realized at timet, denoted ascset(V;W;K; t),
is defined as follows:

� V! is the root of the tree.
� Let Cl1�! = fx; x 2 (V [W)l1�! ^ (9u; u 2 V!^

(x 2 Nu(k; l1) at timet))g, wherel1 2 [b]. ThenCl1�!

is a child ofV!, if Cl1�! 6= ; andWl1�! 6= ;.
� LetClj :::l1�! = fx; x 2 (V [W)lj :::l1�! ^ (9u; u 2
Clj�1:::l1�! ^ (x 2 Nu(k+j�1; lj) at timet))g, where
2 � j � d � k and l1,...,lj 2 [b]. ThenClj :::l1�! is a
child ofClj�1 :::l1�!, if Clj :::l1�! 6= ; andWlj :::l1�! 6=
;.

Fact B.1 If u = A(x), where u and x are two
nodes, thenx 2 Nu(h; x[h]) by time tex, where h =
jcset(x:ID; u:ID)j.

Fact B.2 For any two nodesx and y, if at time t, y 2
Nx(h; y[h]), whereh = jcset(x:ID; y:ID)j, thenhx !
yid(x;y) at timet.

Lemma B.1 For nodesx, y, andz, if y 2 Nx(h; y[h]) and
hy ! zid(y;z), whereh = jcsuf(x:ID; y:ID), thenhx !
zid(x;z).

Proof: Given hy ! zid(y;z), we know that there exists
a path(ul; ul+1; :::; ul+k), wherel = jcsuf(y:ID; z:ID)
and1 � k � d � l, such thatul = y, ul+i = Nul+i�1(l +
i; z[l + i]) for 1 � i � k � 1, andul+k = z. Hence,
(x; ul; ul+1; :::; ul+k) is a path fromx to z, sinceu1 = y

andy 2 Nx(h; y[h]).

Lemma B.2 For each C-set,C! 2 cset(V;W;K; t), if
jC!j � 2, then for any pair of nodex andy, x 2 C! and
y 2 C!, one of the followings is true by timemax(tcx; t

c
y).

� x
jn
! y has happened and whenx sends theJN to y,

x:state(y) = S (i.e.,y is already an S-node).

� x
jn
! y has happened, andx waits fory.

� y
jn
! x has happened and wheny sends theJN to x,

y:state(x) = S (x is already an S-node).

� y
jn
! x has happened, andy waits forx.

Moreover, by timemax(tcx; t
c
y), hx ! yid(x;y) and hy !

xid(x;y) both hold.

Proof: By Proposition B.9 in [4], by the time bothx andy
have exited statusnotifying, i.e., by timemax(tcx; t

c
y), hx!

yid(x;y) andhy ! xid(x;y) both hold.7

Also by Proposition B.9 in [4], eitherx
jn
! y or y

jn
! x

has happened by timemax(tcx; t
c
y). Supposex

jn
! y hap-

pens. Thenx sends aJN to y becausex findsy from a copy

7tex in [4] denotes the time nodex exits statusnotifying and enters
in system, which is denoted bytcx in this report. Recall thattex in this
report denotes the time a node exitscsetwaiting and entersin system.

15

of the neighbor table some node, sayu. If in the copy, the
state ofy is recorded asS, thenx does not need to wait for
y sincey is already an S-node. If the state ofy is recorded
asT , thenx putsy intoQcset wait and waits fory. Wheny
receives theSCfrom x at a time later thantcy, it sends back
aSCtox immediately if it hasn’t done so before; ify is still
in statusnotifying, it savesx to reply later when it changes
status tocsetwaiting.

Lemma B.3 Suppose a set of nodes,W = fx1; :::; xmg,
m � 1, join a K-consistent networkhV;N (V)i. For any

two nodesx and y, x 2 W and y 2 V [W , if x
j
! y

happens, then by timetcx, hy ! xid(x;y), and by timetex,
any node in the path fromy to x is either in statuscset-
waitingor in in system.

Proof: By Proposition B.2 in [4], ifx
j
! y happens,

then by timetcx, hy ! xid(x;y). Moreover, consider the
nodesx contacts after it sends theJW (or JN) message to
y, nodey1; y2; :::; yl, which are the nodes in thecontact-
chain(x,y).8 Then, if the message isJW, only whenyi be-
comes an S-node willyi reply tox. If the message isJN, and
for someyi, its state recorded in the table ofyi�1 is T (i.e
yi�1:state(yi) = T), thenx will wait for yi beforex be-
comes an S-node (see Figure 18). Hence, whenx becomes
an S-node, all nodes fromy1 to yl are in statuscset-waiting
or in system.

Corollary B.1 If x
jn
! y happens, thentex > tcy, i.e., when

x becomes an S-node,y is already in status insystem or
csetwaiting.

We next prove a lemma that shows that if all joining
nodes belong to the same C-set tree (i.e., all joining nodes
have the same noti-set), then the statement in Theorem 2 is
true. Based on the lemma, we can prove Theorem 2.

Lemma B.4 Suppose a set of nodes,W = fx1; :::xmg,
m � 1, join a K-consistent networkhV;N (V)i using
the extended join protocol. Moreover, suppose for eachx,
x 2 W , V Notify

x = V! , where! is a suffix shared by all
nodes inW . Then at any timet, any node in setS(t) can
reach any other node inS(t), whereS(t) is the set of S-
nodes at timet.

Proof: We need to prove that for each pair of nodesx and
y, x 2 S(t) andy 2 S(t), hx! yid(x;y) at timet. If x and

8The definition ofcontact-chain(x,y) in aK-consistent network is pre-
sented in the proof of Proposition A.3 in [6]. Intuitively, it is the set of
nodesy1; y2; :::; yl, collected as follows. First,y1 = y. For eachyi,
1 � i < l, whenyi receives the message fromx, its (hi; x[hi])-entry
is already filled withK neighbors, wherehi = jcsuf (x:ID; yi:ID)j.
Thus it sends a negativeJWRly(or JNRly) to x andx sends anotherJW(or
JN) to yi+1, whereyi+1 = Nyi(hi; x[hi]):prim . Eventually, whenyl
receives theJW(or JN) from x, it storesx into (hl; x[hl])-entry.

y are both inV , then the theorem holds trivially. Hence, in
the following proof, we focus on the case in which at least
one ofx andy belongs toW . Without loss of generality,
supposex 2 W . We prove by induction upon C-set tree.
Moreover, we prove the theorem by showing that any two
nodesx and y in S(t), x and y can reach each other by
the time both of them have become S-nodes (i.e., by time
max(tex; t

e
y).

We first define setSj(t) as follows: Sj(t) =
([1�i�j[li2[b]Cli:::l1�!)[V . That is,Sj(t) includes nodes
in V and nodes inCli:::l1�! for eachCli:::l1�! that is in the
Cset tree realized at timet, given1 � i � j.

Base step. In the base case, we consider any pair of
nodes,x andy from setS1(t), that is, any pair of nodes
from setV [Cl1�!, for all l1 2 [b]. As assumed above,
x 2 W , thusx 2 Cl1�!, wherel1 � ! is a suffix ofx:ID.
(Thus by Definition B.1,A(x) 2 V!, whereA(x) is the S-
node that sends a positiveJWRlyto x and the first S-node
that storesx as a neighbor is inV! .)

Case 1. Supposey 2 V and! is a suffix ofy:ID. By
havingx copy neighbors from nodes inV , it is easy to show
thathx ! yid(x;y) by tex. We need to showhy ! xid(x;y)
next.

If y = A(x), then by timetex, x 2 Ny(h; x[h]),
h = jcsuf(x:ID; y:ID)j, hencehy ! xid(x;y) holds by
Fact B.2.

If y 6= A(x), let z = A(x) andt1 be the timez stores
x and sends a positive reply tox. Then z 2 V! since
x 2 Cl1�!. Thushz ! yid(z;y) at timet1 since the initial

network is consistent, andx
jn
! y eventually will happen

(by Proposition B.1 in [4]). Therefore,hy ! xid(x;y) holds
by timetex. (by Lemma B.1).

Case 2. Supposey 2 V and! is not a suffix ofy:ID.
Then consider nodez, z = A(x). Similar to Case 2 above,
we havehy ! xid(x;y) holds by timetex.

Case 3. Supposey 2 Cl1�!. By Lemma B.2, by time
max(tex; t

e
y), hy ! xid andhx! yid.

We conclude that the theorem holds in the base case.
Inductive step. Assume the theorem holds for nodes in

Sj(t), 1 � j � d � k, we next prove that it also holds for
nodes inSj+1(t). Consider any two nodesx andy, where
x 2 Sj+1(t) andy 2 Sj+1(t). If bothx andy also belong to
Sj(t), then by the induction assumption, the theorem holds
trivially. Without loss of generality, we next assumex 2
Clj+1:::l1�! andx 62 Clj :::l1�!, that is,Clj+1:::l1�! is thefirst
C-setx belongs to[4]. We next prove the theorem holds
for the following cases:x 2 Clj+1:::l1�! andy 2 V ; and
x 2 Clj+1:::l1�! andy 2 W . We consider the former case
first.

Case 1:x 2 Clj+1:::l1�! andy 2 V . It follows triv-
ially that hx ! yid(x;y) holds by timetex (by the fact that
x copies neighbors from nodes inV in copyingstatus.) We
next show thathy ! xid(x;y) is also true. Letu = A(x).

16

Thenu 2 Clj :::l1�! (by Proposition B.6 in [4]). By the in-
duction assumption, by timemax(teux ; t

e
y), hy ! uxid(ux;y)

holds. Moreover, sinceu = A(x), x 2 Nux(h; x[h]) by
time tex), whereh = jcsuf(x:ID; y:ID)j. Hencehy !
xid(x;y) by timemax(tex; t

e
y) (notice thattex > teux).

In what follows, we consider the case wherex 2
Clj+1:::l1�! andy 2 W , which includes the following sub-
cases, Case 2 to Case 6.

Case 2:x 2 Clj+1:::l1�! andy 2 Clj+1:::l1�!. In this
case, bothx andy belong to the same C-set. By Lemma B.2,
hy ! xid(x;y) andhx! yid(x;y) hold by timemax(tex; t

e
y).

Case 3:x 2 Clj+1:::l1�! andy 62 Clj+1:::l1�!, however,
y 2 Cl�lj :::l1�!, wherel 6= lj+1, andy 62 Clj :::l1�! That
is, the first C-setsx andy belong to have the same parent
C-set, as shown in Figure 23(a).

uyux

V

l1jl

l1x y

....C

C Cl.....l lj l1 lj+1 j x

y

uy

xu

(a)

t

t

tt

tt

1

2

3

4

JWRly

JWRly JN

JNRly

(b)

Figure 23. Nodes and C-sets for Case 3

Let ux = A(x) anduy = A(y), then bothux anduy
belong toCli:::l1�!, as shown in Figure 23(a). Moreover, let
t1 be the time thatux sends its positiveJWRlytox, andt2 be
the time thatuy sends its positiveJWRlyto y. Without loss
of generality, supposet1 < t2. Then by timet2, bothux and
uy are already S-nodes, by the assumption for the inductive

step,hux ! uyid(ux;uy) by time t2. Therefore,y
jn
! ux

eventually happens (by Proposition B.1 in [4]). Lett3 be
the timeux receives theJN from y, thent3 > t2 > t1, as
shown in Figure 23(b). Hence, fromux’s reply,y findsx in

the copy ofux:table andy
jn
! x will happen (see subroutine

CheckNgh Tablein Figure 21). Then, bytey, hx! yid(x;y)
holds (by Lemma B.3).

To prove hy ! xid(x;y), we noticeux and uy both
belong toSj(t). By induction assumption, by timeteux ,

hux ! uyid(ux;uy), thusx
jn
! uy will happen before time

tex (by Proposition B.1 in [4]). Then by Proposition B.7
in [4], hy ! xid(x;y) by timemax(tex; t

e
y).

Case 4:x 2 Clj+1:::l1�! andy 2 Clj :::l1�!. That is,y
belongs to a C-set that is the parent C-set of the first C-set
x belongs to. Letux = A(x), thenux 2 Clj :::l1�! andu
andy belong to the same C-set, as shown in Figure 24(a).
Moreover, let the timeux sends its positiveJWRlyto x be
t1.

First, supposet1 > tcy, then by the induction assump-
tion, hux ! yid(ux;y) by timemax(teux ; t

e
y). After receiv-

ing theJWRlyfrom ux, x copies neighbors inNux(h; y[h])
into Nx(h; y[h]), where h = jcsuf(x:ID; y:ID)j =
jcsuf(x:ID; ux:ID)j. Thus,hx ! yid(x;y) holds by time

tex. On the other hand, sincehux ! yid(ux;y) holds byt1,

x
jn
! y eventually happens (by Proposition B.1 in [4]), and

hy ! xid(x;y) holds by timetex.
Second, supposet1 < tcy (including the case thaty has

not start joining by timet1, if such a case ever exists). Ac-
cording to the induction assumption, by timemax(teux ; t

e
y),

eitherux
jn
! y or y

jn
! ux has happened. Sinceteux < t1, it

follows teux < tcy. Therefore,ux
jn
! y cannot happen: If it

happens, then whenux findsy and send aJN to y, the state
recorded fory (from the copy of the tableux findsy) is still
T , andux will wait for y, which results in that by timeteux ,
y is already in statuscsetwaiting or in system. Hence, by

timemax(teux ; t
e
y), y

jn
! ux must have happened. Let the

timeux receives theJN from y bet2. We consider the fol-
lowing cases: (1)t1 < t2; (2) t1 > t2 andy 2 Nux(h; y[h])
at timet1; and (3)t1 > t2 andy 62 Nux(h; y[h]) at timet1.
Moreover, let the timey receives theJNRlyfrom ux be t3.
(See Figure 24(b) and (c).)

(1) If t1 < t2, then upon receivingux’s reply (JN-
RLy) at time t3, y finds x and sends aJN to x. Thus,
hx ! yid(x;y) by time tey (by Lemma B.3). On the other
hand, if at timet3, y copiesx into Ny(h; x[h]), where
h = jcsuf(x:ID; y:ID)j, thenhy ! xid(x;y) holds triv-
ially by time tey. If y does not copyx into Ny(h; x[h])
at time t3, then it must be thatNy(h; x[h]):size = K

is true before timet3. Let x0 be a node inNy(h; x[h])
at time t3, then x0 belongs to the same C-setx resides
in (see Figure 24(a)), according to Definition B.1. Since
jcsuf(x0:ID; y:ID)j = h and y:att level < h, y must
have sent aJN to x0 by timetey. By Corollary B.1,tey > tcx0 ,
hencemax(tex; t

e
y) > tcx0 . Moreover, by Lemma B.2,

by time max(tcx; t
c
x0), hx

0 ! xid. Thus hy ! xid by
max(tex; t

e
y).

(2) If t1 > t2, andy 2 Nux(h; y[h]) by time t1, thenx
copiesy from ux andy 2 Nx(h; y[h]), thushx ! yid(x;y)

holds by timetex. Also,x
jn
! y will happen (x findsy from

ux’s JWRly) and it follows thathy ! xid(x;y) holds by time
tex (by Lemma B.3).

(3) If t1 > t2, andy 62 Nux(h; y[h]) at time t1, then
it must be thatNux(h; y[h]):size = K is true before time
t2 (otherwise,ux would have storedy). Let z be a node
in Nux(h; y[h]). Thenz 2 Nux(h; y[h]) is true by time
t2. By Definition B.1,z 2 Cl�lj :::l1�!, i.e., z andy belong
to the same C-set. Thenx copiesz into Nx(h; y[h]) after

receiving theJWRlyfromux. Moreover,x
jn
! z will happen

(x findsz fromux’s JWRly). On the other hand,y
jn
! z will

happen sincey findsz from ux’s JNRly(recall thatt2 is the
timeux receives aJN from y).

We first show thathx ! yid(x;y). Sincex
jn
! z eventu-

ally happens, we knowtex > tcz. Therefore,max(tey; t
e
x) >

max(tcy; t
c
z). By Lemma B.3, by timemax(tcy ; t

c
z), hz !

17

ux

V

l1

l1

t 2

t 1t 1
t 2

tt y
c tt y

c

(a)

y

....C

C Cl..... l1 l
ylj

lj+1ii j
x

y

xu

JWRly

(c)

x

y

xu

(b)

JWRlyx x’

JN JNJNRly JNRly

t t3 3

Figure 24. Nodes and C-sets for Case 4

yid(z;y). Hence, by timemax(tex; t
e
y), hz ! yid(z;y). Given

thatz 2 Nux(h; y[h]), it follows thathx ! yid(x;y) holds
by timemax(tex; t

e
y) (by Lemma B.1).

Next, we show thathy ! xid(x;y). We know that
both x and y sendJN to z. Supposecontact-chain(y; z)
= fv0; v1; :::; vf ; vf+1g [4], where v0 = z, vf+1 = y

andv0 to vf�1 send negativeJNRly to y, while vf sends
a positiveJNRly to y. By Proposition B.3 in [4], either

that x
jn
! y happens before timetex, or y has copiedK

nodes intoNy(h; x[h]) aftery receives aJNRlyfrom vf . If

x
jn
! y eventually happens, thenhy ! xid by time tex (by

Lemma B.3).

If x
jn
! y does not happen, theny must have copiedK

nodes intoNy(h; x[h]) aftery receives theJNRlyfrom vf .

Let x0 be a node inNy(h; x[h]). Theny
jn
! x0 will happen

beforetey (by Fact B.5 in [4]). Moreover,x0 2 Clj+1:::l1�!

by Definition B.1, that is, bothx andx0 belong to the same
C-set. Similarly to the argument in the above case where we
assumet1 < t2 (case (1)), we can show thathy ! xid(x;y)
by timetex.

Case 5:x 2 Clj+1:::l1�!g and y 2 Cli:::l1�!g, where
1 � i � j � 1 andli:::l1 � ! is a suffix oflj+1:::l1 � !. That
is, y belongs to a C-set that is an ancestor C-set of the first
C-setx belongs to.

Let zx be a node inCli:::l1�!g and zx 2 contain-
chain(x; g), whereg 2 V andg is the nodex is given to
start its joining. Then, for any node in the chain,x sends ei-
ther aCP or aJW to it. Note that for any nodev in contain-
chain(x; g), we havetev < tex, because whenx receives a
reply (either aCPRly or a JWRly) from v, v must be an
S-node already. Moreover,hv ! xid(v;x) by the timex re-
ceives the positiveJWRlyfrom the last node in the chain (a
path fromv to x is through the nodes afterv in the chain).
Thus,tezx < tex andhzx ! xid(zx;x) by tex.

By the induction assumption, by timemax(tezx ; t
e
y),

hzx ! yid(zx;y) already holds. Sincetezx < tex,
max(tezx ; t

e
y) � max(tex; t

e
y). According to the join pro-

tocol,x copies neighbors inNzx(h; y[h]) into Nx(h; y[h]),
h = jcsuf(x:ID; y:ID)j, after it receives the reply from
zx. Sincez can reachy via neighbors inNzx(h; y[h]), so
doesx. Therefore,hx! yid(x;y) by timemax(tex; t

e
y).

Next, we showhy ! xid(x;y). Consider nodeux, such
thatux = A(x). Thus,ux 2 Clj :::l1�!. By the induction
assumption,hy ! uxid(ux;y) by time max(teux ; t

e
y). Let

h = jcsuf(ux:ID; y:ID) andh0 = jcsuf(x:ID; y:ID).

Suppose by timemax(teux ; t
e
y), a path fromy to ux is

as follows: fvh; vh+1; :::; vh
0g, wherevh = y, vh+1 2

Nvh(h; ux[h]), ..., andvh0 2 Nvh0�1
(h0 � 1; ux[h

0 � 1]).
Moreover, each node in the path is either in statusin system
or csetwaiting. (1) If there exists such a path fromy to ux
such thatux = vh0 , then afterux storesx in Nux(h

0; x[h0])
(on receiving theJWfromx), fvh; vh+1; :::; vh0 ; xg is a path
from y to x. Hence,hy ! xid(x;y). (2) If there does not
exist such a path fromy to ux such thatux = vh0 , then con-
sider nodesvh0 andux. Let v = vh0 . By Definition B.1,
v 2 Clj :::l1�!. Hence by timemax(teux ; t

e
y), y can reach

ux throughv. By induction assumption,v is a node either
in statusin systemor csetwaiting by time max(teux ; t

e
y).

That is, max(teux ; t
e
y) � tcv . If max(teux ; t

e
y) = teux ,

then teux � tcv . Hence, hux ! vid by time teux (by

Lemma B.2), thereforex
jn
! v will happen beforetex and

hv ! xid(x;v) by time tex. Combining this result with
the fact thatfvh; vh+1; :::; vh0g is a path fromy to v, we
know thathy ! xid(x;y) holds. Ifmax(teux ; t

e
y) = tey, then

tey � tcv . Sincejcsuf(y:ID; v:ID)j � y:att level, y
jn
! v

must have happened andy has waited forv. By Case 4,
hv ! xid(x;v). Therefore,hy ! xid(x;y) holds.

Case 6.x andy do not belong to the same C-set, and
y is not in a ancestor C-set ofx. Let C!0 be the highest
level C-set that is an ancestor of bothx andy, zx be a node
in C!0 as well as incontact-chain(x; gx), andzy be a node
in C!0 as well as incontact-chain(y; gy). We first show

thatx
jn
! y by consideringzx andy. By Case 5, by time

max(tezx ; t
e
y), hzx ! yid. Since whenx receives a reply

(either aCPRlyor a JWRly) from zx, zx is already an S-
node,max(tezx ; t

e
y) � max(tex; t

e
y). Hence, bymax(tex; t

e
y),

hx ! yid holds, sincex copies neighbors inNzx(h; y[h])
intoNx(h; y[h]), h = jcsuf(x:ID; y:ID)j, and thusx can
reachy through these neighbors. Similarly, we can show
that bymax(tex; t

e
y), hy ! xid by consideringzy andx.

Proof of Theorem 2: First, we separate nodes inW \S(t)
into groups, where nodes in the same group have the same
noti-set and thus belong to the same C-set tree.

Next, consider any two nodes,x andy, in setS(t). If
x 2 V and y 2 V , then the theorem holds trivially. If
x 2 V andy 2 W , x 2 W andy 2 V , or x 2 W and
y 2 W and bothx andy belong to the same C-set tree, then
by Lemma B.4, the theorem also holds.

Lastly, we consider the case in whichx 2 W andy 2

18

W but x and y belong to different C-set trees. Suppose
V Notify
x = V!1 andV Notify

y = V!2 , !1 6= !2. Let! be the
longest suffix that is both a suffix of!1 and!2 (it is possible
that! is the empty string). We can combine the two C-set
trees thatx andy belong to into a single tree as follows.

� Let V! be the root of the tree.
� If V!1 = V! (i.e.,!1 = !), then go the the next step.

Otherwise, add setVl1�!, wherel1 � ! is a suffix of!1,
to the tree and make it be a child ofV!. Similarly, we
addVli::l1�! as a child ofVli�1::l1�! for eachi � 2,
until Vli::l1�! = V!1 . So far, we have connected the
original C-set tree that rooted atV!1 to the new tree.

� If V!2 = V! , then the original C-set tree that rooted at
V!2 is already part of the tree. Otherwise, similarly as
the second step, we can connect the C-set tree rooted
atV!2 to the new tree.

Then bothx andy now belong in the new tree that is
rooted atV!, wherex andy do not belong to the same set
in the tree, and neither of them is in an ancestor set of the
other (recall that bothx andy are nodes inW , thusx 62 V!
andy 62 V!). Following the same arguments as those in
Case 6 in the proof of Lemma B.4, we conclude that by
timemax(tex; t

e
y), hx! yid(x;y) andhy ! xid(x;y) hold.

Lastly, we need to show that given Theorem 2 and the
optimization rule, neighbor replacement will preserve the
three properties stated in Section 3.2. The optimization rule
automatically ensures that property 3 is preserved. We only
need the show properties 1 and 2 are also preserved.

Property 1 requires that once two S-nodes can reach each
other, they always can. Theorem 2 shows that when two
nodes, sayx andy, both become S-nodes, they can reach
each other, and the nodes along a path fromx to y are S-
nodes or T-nodes that are already in statuscsetwaiting. If a
node along the path, sayu, is replaced by another node, say
v, then by the optimization rule, bothu andv are S-nodes.
By Theorem 2,hv ! yid(x;y) by this time, therefore,x still
can reachy throughv. Similarly, we can show that after a
T-node can reach an S-node, it always can thereafter.

19

