An Extension to SQL92 for Biological Databases

Wenguo Liu, Daniel P. Miranker
{liuwg, miranker} @cs.utexas.edu

Abstract

MoBIoS is a project that aims at inventing a new generation database management
system (DBMS) for molecular biological data. This DBMS has a set of features including
storage of sequences, retrieval of sequences based on similarity metric, and a query
language (mSQL) embodying the semantics of Genomics and Proteomics and allowing
for concise expression of Bioinformatics studies.

This paper focuses on designing and implementing mSQL. mSQL is based on the
standard relational operators (6,7, join, union), with extensions in operators to enable
splitting sequences into fragments, merging overlapped fragments, grouping fragments
that can be merged, interior fragment select, searching, and joining optimized with metric
space index. Query optimization rules are given based on these operator extensions. The
concept of Sequence View is introduced, which has all the merits of standard database
View, and provides for the explicit fragmentation of a sequence into overlapping
substrings of a fixed length and the concurrent construction of a metric-space index on
the fragments in order to accelerate matching of those fragments. Three sample biological
queries (Whole Genome Join, Conserved Primer Pair Discovery, and Electronic PCR) are
expressed in mSQL, query plan trees based on mSQL biological operator extensions and
Sequence View are discussed. Biological applications show that mSQL is a suitable and
efficient declarative querying language for querying primary structure of biological data
sets with the potential to be extended for querying secondary structure.

Outline
1. Introduction
2. Related Work

3. mSQL

3.1 Predefined types extensions

3.2 Predefined biological related functions

3.3 Extensions to the standard relational operators (6,7, join, union)
3.3.1 CreateFragments(A)
3.3.2 Sequence View
3.3.3 Merge (V)
3.3.4 GroupFragments (Y)
3.3.5 Metric Match (1)

3.3.6 Metric Join (e0)

3.3.7 Interior Fragment Select (")
3.4 Properties of mSQL operators

3.4.1 Identity

3.4.2 High-dimensional operators

3.4.3 Equivalence rules
3.4.4 Cost model

4. mSQL Applications

4.1 Whole Genome Join
4.1.1 Problem Definition
4.1.2 Query Plan Tree

4.2 Conserved Primer Pair Discovery
4.2.1 Problem Definition
4.2.2 Query Plan Tree

4.3 Electronic PCR
4.3.1 Problem Definition
4.3.2 Query Plan Tree

5. Conclusions and Future Work

An Extension to SQL92 for Biological Databases

1. Introduction

It is well known that biological data sets are growing at exponential rate, some nucleotide
and protein sequences data sets are doubling about every 16 months [3, 18]. Therefore, it
is a very difficult task to manage and query this huge set of sequence data sets. Gene
sequence database is a potential method to tackle this problem. There are two logic
perspectives in gene sequence databases. One is the sequences-level perspective that
whole gene sequences are considered as fields of tuples for identification and storage, and
the other is the fragment-level perspective that index has to be built on fragments of part
of the sequences of tables. Although relational databases gain their successes in
commercial data management in the past several decades, when applied to biological data
sets management, relational database has obvious limits. Specifically, a traditional index
is built on one or more columns of a table thus cannot simultaneously represent these two
perspectives of the sequences efficiently.

An important part of a gene sequence database is a query language embodying the
semantics of Genomics and Proteomics and allowing for concise expression of
Bioinformatics studies. SQL92 might be a good choice for expressing sequence queries
with its powerful functionalities and mature query optimization techniques, however, all
of the operators of standard SQL92 (for example, group operator, select operator, etc.)
are based on exact match, i.e., equivalence or nonequivalence between different database
elements. In gene sequence databases, similarity search is the most important searches,
and indexing mechanism based on similarity between different objects is necessary for
accelerating matching of objects. Therefore, standard SQL92 is not suitable for the query
language of a gene sequence database.

Biological data is not random but exhibits interesting structure with respect to clustering
[1]. Actually, clustering is a primary method underlying bioinformatic discovery.
Therefore, it is very likely that biological data can be indexed using metric-space
indexing [19]. Researches in MoBloS group [1, 2] have verified this assumption, and
metric-space indexing has been developed as an efficient indexing mechanism for
accelerating the matching of gene sequences.

Definition 1: A Metric Space is a data object space with a total distance function d with
the following properties [15, 16]:

@1). d(Oy, Oy) =d(0Oy, O)) (symmetry)
(i1). 0<d(O4 Oy), O,? Oy, and d(O4, Oy =0 (non-negativity)
(ui). d(O,, Oy) =d(Oy O,) +d(O,, Oy) (triangle inequality)

MoBIoS [1, 2] is a project that aims at inventing a new generation database management
system (DBMS) for molecular biological data. This DBMS is developed over Mckoi
[23], an open source Java RDBMS, and has a set of features including storage of
sequences, retrieval of sequences based on similarity metric, and a query language
(mSQL) embodying the semantics of Genomics and Proteomics and allowing for concise
expression of Bioinformatics studies.

This paper focuses on designing and implementing mSQL. mSQL is based on the
standard relational operators (G,T, join, union), with extensions to enable splitting
sequences into fragments, merging overlapped fragments, grouping fragments that can be
merged, searching, and joining optimized with metric space index. mSQL with sequence
views concept (an extension to standard SQL view concept) provides a programmatic
way to capture two different logical perspectives (sequences-level and fragment-level) of
sequences.

The paper is organized as follows: In section 2, we describe related techniques and
languages for querying gene sequences. In Sections 3, we study the MoBloS query
language (mSQL), the central part of MoBloS system in detail. Several biological
applications of mSQL are discussed in Section 4. Section 5 concludes this paper and
points to directions for future work.

2. Related Work

Metric-space index is an important technique for improving the performance of searching
on gene sequences. The key difference between answering a range query in Metric Space
and in a traditional data type space is that there exists no total linear order of data objects
in Metric Space that preserves the relative similarity [20]. Through the use of the triangle
property of the distance function, expensive distance calculations in Metric Space can be
partly saved [15]. It is a key point for a gene sequence database to have metric space
indexing mechanism and have an optimization engine that can utilize underlying metric
space indexes.

Hammer and Schneider [4, 5] suggest developing a specific algebra for querying
biological data sets, however, this algebra is still under construction. PiIQA [3] is a
protein query algebra, which provides a set of algebraic operations on both the primary
and secondary structure proteins. In PiQA a match operator applies regular expressions to
a long sequence, each accept state is recorded as a row in table, match extension
operators are used to merge rows in the query result table. However, PIQA does not
provide high-dimensional operators (join, group based on multiple columns, etc.). This is
understandable since PiQA aims at competing the express capability of BLAST [22],
which does not provide join operations.

Ordered database can be applied in many fields, querying ordered data arises naturally in
applications of finance, molecular biology, and network management. Actually, gene
sequences have obvious order properties. Seshadri et al. [6, 7, 8] proposes techniques for
querying sequence databases. However, the focus of these techniques is on aggregate-
based analysis of sequences. Approximate matching operators are not provided, which
are necessary for querying biological sequences. Lerner and Shasha [9] introduce a query
language and algebra, called AQuery, that supports order by considering columns as
vectors and introducing ordered query operators. AQuery with its optimization
techniques, can achieve better performance in querying speed compared with SQL99
implementations. However, similar to Seshadri's sequence data model, AQuery cannot be
directly applied to biological database.

Biological database spends a large amount of time in string manipulation. Grahne and
Hakli [10, 11, 12, 13] have done a lot of research in string database. A declarative
database query language for manipulating character strings is provided. The declarative
expression are evaluated by first performing a compilation transforming them to

nondeterministic finite automata and then by simulating these automata using a depth-
first search engine. It should be noted that these string manipulation techniques can only
be applied to primary sequence matching without approximations. Also, the scalability of
the performance of string databases using string matching techniques has not been
proved, the size of the automata states could be uncontrollable.

3. mSQL

MoBIloS SQL (mSQL) exploits standard SQL object-relational syntax for querying
biological datatypes. The syntax to embody the metric-space extensions is largely
covered by borrowing standard spatial database extensions to SQL [14]. For example,
mSQL has a similar function distance to compute the similarity between different
objects, however, this function is always related to a metric, i.e., in mSQL, distance
between objects is defined only in a metric space, it is just like in spatial database, the
distance is defined only in a spatial space.

In the following sections, first we will describe the predefined biological data types, then
we will describe biological related functions defined on the biological data types, new
operator extensions to standard relational operations (0,7, join, union) are given in the
last part of this section.

3.1 Predefined types extensions

In addition to the standard SQL92 type (Numeric, Characters, etc.), some biological data
types are necessary to represent the basic biological data. These types are: Metric,
Sequence, and SubSequence.

Strictly speaking, Metric is not necessarily a biological term. However, it is a feasible
way to relate Metric to the similarities between biological objects. In mSQL, in addition
to built-in metrics to support sequence homology and protein identification, users may
add their own metrics.

Basically, there are two important types of similarity queries in Metric Space, i.e., range
query and k-nearest neighbor query.

Definition 2: Range query range(Q,r): find all data objects O such that d(Q, O) =r; k-
Nearest Neighbor query NN (Q): find k data objects such that they are the k closest
ones to Q [15,16].

It should be noted that k-nearest neighbor query can be expressed with range query.
Sequence is a biological data type to represent the basic biological data, which consists of
a series of characters that embody biological properties. For example, DNA data and
protein data can be represented by Sequence.

SubSequence is a biological data type included in mSQL to represent a fragment of the
Sequence. In SubSequence, three members (offset, length, and parent sequence pointer)
with their obvious meanings are used to uniquely identify a fragment of a Sequence.
SubSequence is also called Fragment.

3.2 Predefined biological related functions

mSQL needs some functions to operate on predefined biological data types. These
functions fall into two groups: the first group is used to compute the similarity between
different data objects, and the second group is used for the operations on the
SubSequence, and connecting a SubSequence with its parent Sequence.

distance 1s a function used to compute the similarity between different data objects. The
syntax of distance is double distance(String metric_name, Sequence s;, Sequence s,),
where metric_name is used to uniquely specify a Metric for this distance computation on
two data objects s; and s,.

The second group of functions include FRAGACCID, FRAGOFFSET, FRAGLENGTH,
FRAGCONTENT. FRAGACCID is used to get the parent sequence identifier for a
SubSequence, thus linking a SubSequence with its parent. FRAGOFFSET returns the
offset of a SubSequence in its parent sequence. FRAGLENGTH gets the length of a
SubSequence. FRAGCONTENT is used to return the string content of a SubSequence.

3.3 Extensions to the standard relational operators (6,7, join, union)

3.3.1 CreateFragments (A)
A: String X Set<Sequence> X Integer X Integer - Set<Fragment>

CreateFragments (A) is an operator used to break sequences into a set of fixed length
fragments, also known as g-grams.

Definition 3: A g-gram with parameters k and m is a substring of a sequence s of the
form Sks Sk+1s Sk+2s eees Sme

CreateFragments operator is defined with parameters: sequences accession id, sequences,
fragment length, and fragment shift size. The result of this operation is a set of fragments,
each consisting of the parent sequence accession id, the position of this fragment in its
parent sequence, and the length of this fragment. A sample CreateFragments operation is
given in Figure 1.

After CreateFragments
Sequence Storage (fragment length = 3,shift size = 1)
Genomes id | Offset | Logical Fragment
id Sequence R, 0 ACA
R, | ACAACA g S S CAA
R, | ATCAAA R, 2 AAC
R; \ R, 3 ACA
R, 0 |ATC
R, 1 TCA
R, 2 CAA
R, 3 AAA

Figure 1: CreateFragments operation

We can see from Figure 1 that after CreateFragments operation with fragment length 3
and shift size 1, the sequence "ACAACA" is broken into 4 fragments, "ACA", "CAA",
"AAC", and "ACA". A metric space index can be built on these fragments with a
definition of sequence view, which will be introduced in the next section.

3.3.2 Sequence View
Sequence view is of course not a query operator, however, we explain the concept in this
section to make it easier for the explanation of operators in the following sections.
A sequence view is a standard view definition in database except that a metric space
index is built when the view is created. Sequence View has all the merits of standard
database View (for example, operations on a part of a whole table is allowed with View),
and also provides for the explicit fragmentation of a sequence into overlapping substrings
of a fixed length and the concurrent construction of a metric-space index on the
fragments in order to accelerate matching of those fragments. Figure 2 is a sample
sequence view definition in mSQL.
CREATE SEQUENCEVIEW rice_sview(fragment) AS
SELECT CREATEFRAGMENTS(Accid, DNA_Sequence, 3, 1)
FROM genomes
WHERE Organism = 'rice'
USING metric_name;
Figure 2: Definition of a sequence view in mSQL
A sequence view is built in three major steps:
1. Select sequences that are to be included in this sequence view through standard
SELECT operation of SQL.
2. CreateFragments for those sequences selected in the first step.
3. Build metric space index for the fragments created from step 2.
The mechanism of sequence view is illustrated in Figure 3.

Metric Space

Index Tree
After CreateFragments d(AAAI2
Sequence Storage (fragment length = 3,shift size = 1)
Gonomes id | Offset | Logical Fragment / + \

- R, 0 ACA d(ACAXI | d(CAA)O0 | d(ATO)<1
id Sequence R I CAR
R, | ACAACA !
R, | ATCAAA R, 2 AAC -
R, R, 3 ACA \\\\\E

R, 0 |ATC

R, 1 TCA WM& |l

R, 2 CAA a7

R, 3 AAA

Figure 3: Sequence view mechanism

We can see from Figure 3 that a metric space index tree is built after the
CreateFragments step. This index tree can accelerate matching of fragments. Please refer
to [1, 2] for detailed information on metric space index creation, and how metric space
index works.

3.3.3 Merge (V)
V': Set<Fragment> - Fragment
V?: Set<Fragment> x Set<Fragment> — Set<Fragment> X Set<Fragment>
Merge operator is used to merge a set of fragments into larger pieces of fragment if the
fragments are mergeable. The definition of mergeable is given in definition 4.
Definition 4: A g-gram with parameters k and m is a substring of a sequence of the form
Sks Skils Ski2s «+e» Sme TWO g-grams q; (with parameters k; and my) and g, (with parameters
k, and myp) are mergeable and can be merged into one longer g-gram q; (with parameters
k; and my) iff

® (; and q, have the same parent sequence,
(k] > k2 and kl < m2) or (k2 > kl and k2 < ml),
k3 = min(kl, k2),

® m3= max(my, ny).
The merge of two mergeable g-grams q; and q, can be expressed as q; = merge(qi, q2)-
A sample use of merge operator in mSQL is

SELECT merge(R.fragment)
FROM rice_sview R

Figure 4: mSQL using one-dimensional merge operator

In the above sample, merge operator combines together overlapped fragments into larger
pieces of fragments. If there is only one sequence in the definition of rice_sview sequence
view, the exectution of the above mSQL command will result in the original sequence
before CreateFragments. The merge operation is illustrated step by step in Figure 5.

rice_sview
id | Offset Fragment id | Offset Fragment
R, 0 ACA R, 0 ACAA
R, 1 CAA step 1 R, 2 AAC
R, 2 AAC R, 3 ACA
R, 3 ACA [™ R, 0 ATCA step 2
R, 0 ATC R, 2 CAA —
R, 1 TCA R, 3 AAA
R, 2 CAA
R, 3 AAA
merge operation results

id | Offset Fragment id | Offset Fragment
El g ACAAACCA o 3 R, 0 |ACAACA

! step R 0 |ATCAAA
R, 0 |ATCAA ["
R, 3 AAA

Figure 5: One-dimensional merge operation step by step

Merge operations is also applicable in two-dimensional case, although a little bit more
complicated.
Definition 5: Two pair of g-grams (q;, qz) and (g3, q4) are mergeable and can be merged
into one longer g-gram pair (qs, qe) iff (assume g-gram q; has parameters k; and m,)

e (; and q; are of same length, q; and q4 are of same length,

® (; and g3 are mergeable,

® (,and g4 are mergeable,

* k3-ki=ks-k,

* 5= merge(q, q3),

® (g = merge(qs, q4),

® (s and g are of same length.
A sample use of two-dimensional merge in mSQL is

SELECT merge(R.fragment, A.fragment)
FROM rice_sview R, arab_sview A
distance('base_pair_mismatch', R.fragment, A.fragment) <= 0.0

WHERE

Figure 6: mSQL using two -dimensional merge operator

For example, if we want to merge the results from some join operation, the merge
operation actually happens in each separate sequence, but needs to take into account the
offset difference. Only when the offset differences are the same can the fragments be
merged. In Figure 7, for the first row and second row of the join results, the offset
difference for the fragments of sequence 1 is 2, the offset difference for the fragments of
sequence 2 is also 2, thus the first two fragments can be merged into one fragment for
sequence 1 and sequence 2, respectively.

Join results
Offset; Fragment, Offset, Fragment,
0 ACA 0 ACA
2 AAC 2 AAC
3 ACA |3 ACA
Step 1
Offset, Fragment, Offset, Fragment,
0 ACA AC 0 ACA AC
3 ACA |3 ACA
Step 2
Offset, Fragment, Offset, Fragment,
0 ACAACA |0 ACA ACA

Figure 7: Two-dimensional merge step by steps

It is obvious that through merge operations, the query result size can be reduced without
the loss of information. In Figure 7, the join result table changes from 3 rows into 1 row.
In some sense, merge operator is a compression operator.

3.3.4 GroupFragments (y)
v Set<Fragment> - Set<Set<Fragment>>
v Set<Fragment> X Set<Fragment> — Set<Set<Fragment> X Set<Fragment>>

GroupFragments operator is used to group a set of fragments into groups, each group can
be merged into exactly one larger piece of fragment. From the description of merge
operator in the above section, we know that if a group of fragments can be merged into
exactly one larger piece of fragment, these fragments must satisfy:

e All the fragments are from the same parent sequence.

e For any fragment in this group, there exists at least one fragment (other than this

fragment) that is overlapped with this fragment.

Defintion 6: A set S of g-grams {qy, qy, ..., qm} is 2 Fragments Group iff

e Sisofsize 1, or

e VqeS, dqe S (i #k), q; and g are mergeable.

A sample use of two-dimensional merge in mSQL is

SELECT merge(R.fragment)
FROM rice_sview R
WHERE distance(metric_name, 'ACA’, R.fragment) <= 0.0

GROUP BY R.fragment

Figure 8: mSQL using one-dimensional GroupFragments operator

SQL92 GROUP BY keyword is used instead of inventing a new keyword. The query
optimizer is responsible for recognizing whether it is a standard GROUP operation, or
GroupFragments operation, based on the data type of the name after GROUP BY.

Figure 9 illustrates a one-dimensional group operation.

Query results

id | Offset Fragment

R, 0 ACA

R, 1 CAA

R, > AAC Group 1
R, 3 ACA

R, 10 CAA Group 2
R, 11 AAC

R, 0 ATC

R, 1 TCA

R, 5 CAA Group 3
R, 3 AAA

Figure 9: One-dimensional GroupFragments operation

It is convenient to extend this one-dimensional group operator into two-dimensional or
higher-dimensional operator. For example, for two-dimensional group operator, there is
one requirement in addition to the requirements for one-dimensional group operator.

e The fragments offset differences must be the same for the fragments from

different sequences.

This requirement is not strange at all because that is necessary for fragments to be
merged. Higher dimensional group operators also need to enforce this requirement on the
fragments in a group.
GroupFragments operator is closely related to merge operator, and they are often used
together.

3.3.5 Metric Match (1)
T: Set<Fragment> X (Fragment | String) X Metric X Double -
Set<Fragment>

The Metric Match operator searches the set of fragments to find fragments that
approximately match the query object (which can be a fragment or a constant string
object) based on the distance function specified by a Metric. The result of this operation
is a set of fragments that match the query object. Metric match is often used to search the
primary structures of DNA or protein sequences.

A sample use of Metric Match operator in mSQL is given in Figure 10.

SELECT R.fragment
FROM rice_sview R
WHERE distance('base_pair_mismatch', ' ACA', R.fragment) <= 0.0

Figure 10: mSQL using metric match operator

The query optimizer will recognize the “distance” operator to be a form of metric match,
thus can use the underlying metric space index to accelerate the searching speed if such
an index exists, otherwise, an exhaustive search is executed.

Figure 11 gives an example of metric match on a predefined sequence view rice_sview.

rice_sview
id | Offset Fragment
R, 0 ACA metric match Metric match results
R, 1 CAA using mSQL id | Offset Fragment
R, 2 AAC in Figure 10 R, 0 |ACA
R, 3 ACA R, 3 ACA
R, 0 ATC
R, 1 TCA
R, 2 CAA
R, 3 AAA

Figure 11: Metric match operation

A radius of 0.0 is specified in mSQL of Figure 10, therefore, only exact match will
appear in the result of the metric match.

3.3.6 Metric Join (<)
oo} Set<Fragment> X Set<Fragment> X Metric X Double
Set<Fragment> x Set<Fragment>

-

Metric join is a sort of join based on the distance function specified by a Metric. Metric
join is similar to the extension of relational joins to spatial joins developed for spatial
databases [14]. Metric-join operators modeled after a relation merge-join will tend to
O(n) execution time, where 7 is the length of the sequence.

A sample use of Metric Join operator in mSQL is given in Figure 12.

SELECT
FROM
WHERE

R.fragment, A.fragment
rice_sview R, arab_sview A
distance('base_pair_mismatch', R.fragment, A.fragment) <= 0.0

Figure 12: mSQL metric join operator

The query optimizer will recognize the “distance” operator to be a form of metric join,
thus can use the underlying metric space index to accelerate the searching speed if such
an index exists, otherwise, an exhaustive join is executed.

Figure 13 gives an example of metric join on two predefined sequence view rice_sview
and arab_sview.

rice_sview arab_sview
id | Offset Fragment id | Offset Fragment
R, 0 ACA > R 0 ACA
R, 1 CAA R; 1 CAT
R, 2 AAC + R; 2 ATC
R, 3 ACA T R; 3 TCA
R, 0 ATC R, 0 ACA
R, 1 TCA R, 1 CAT
R, 2 CAA R, 2 ATA
R, 3 AAA R, 3 TAA

rice fragments

l

arab fragments

id | Offset Fragment id | Offset Fragment
R, 0 ACA R3 0 ACA

R, 0 ACA Ry 0 ACA

R, 3 ACA || R; 0 ACA

R, 3 ACA || Ry 0 ACA

R, 0 ATC R; 2 ATC
R, 1 TCA R3 3 TCA

Figure 13: Metric join operation

A radius of 0.0 is specified in mSQL of Figure 12, therefore, only exact matched
fragments appear in the result of the metric join.

3.3.7 Interior Fragment Select b))

ot Relationx C — Relation

where the input relation is an relation contains fragment attribute, C represents select
conditions containing fragment offset properties, and the result relation is not necessarily
a subset of the input relation's tuples, which is different from standard ¢ operator,
because ¢ operator always produces a new relation with a subset of input relation's
tuples. 6" operator enables the select inside a fragment, i.e., a fragment is considered as a
list of characters, thus position information of these characters is exposed. mSQL query
optimizer is responsible for detecting whether 6" or ¢ operator should be used. For
example, a mSQL query in Figure 14 will result in a query tree containing G' operation
following a range query and a merge operations.

SELECT merge(R.fragment)
FROM rice_sview R
WHERE distance('base_pair_mismatch', 'AAC', R.fragment) <= 0.0 AND

FRAGOFFSET(R.fragment) <= 100
GROUP BY R.fragment

Figure 14: mSQL using interior fragment select operator

Figure 15 illustrates the interior fragment select operation.

Merged range query results .) Select results
_ G operation on 1 OFF F
id Offset Fragment FRAGOFFSET >= 1 AND 1 set ragment
R, | 0 |ACAACA FRAGOFFSET <=2 R | 1 CAAC
R, 8 ATC |t —

Figure 15: Interior fragment select operation

In figure 15, ¢ operation can search into the first tuple to find out the fragments satisfy

the offset constraints. ¢ operator is able to find the fragment length and fragment shift
size information before the merge operation.

3.4 Properties of mSQL operators

3.4.1 Identity
There is an identity property with mSQL operators CreateFragments and Merge, i.e.,
V'(A(s)) = s, where s is a set of sequences.

3.4.2 High-dimensional operators
Several operators can be extended to high-dimension cases. For example, Merge and
GroupFragments operators both have biological meanings. Metric join operator is

actually a two-dimensional case for Metric match operator, however, it is not clear
whether higher-dimensional Metric join operators have corresponding biological
meanings, and whether they are deserved to be introduced into mSQL.

3.4.3 Equivalence rules

An equivalence rule says that expressions of two forms are equivalent. Query optimizer
can use the equivalence rules to replace an expression of the first form by an expression
of the second form, or vice versa, thus in hope of achieving logically equivalent
expressions, while at the same time reducing the querying cost.

For standard relational algebra, the equivalence rules include commutative selection rule,
commutative theta-join rule, associative natural-join rule, etc [24, 25]. For example,
commutative selection rule can be expressed as Gg1(Ggx(7)) = Gg2(Ce1(7)), where T is a
table, ©; and 0, are selection criteria.

The extension to relational algebra as described in the prior sections introduces new
equivalence rules that can benefit the query optimizer.

Rule 1: Metric join operator () can be expressed using Cartesian products (x) and
selections ().

Tl 0 a,b, M,r T2 =Gdistanre(Mname, a,b)y<r (Tl X Tz),
where a is an attribute in table 77, b is an attribute in table 75, r is the metric join radius,
and Mname is the metric name for Metric M.

Rule 2: Metric join operator () is commutative.
TyooupmrTo=Tro0p gp, T,

where a is an attribute in table 77, b is an attribute in table 75, r is the metric join radius,
and M is the specified Metric. Strictly speaking, the left-hand side and right-hand side are
not equivalent because of the order of attributes. However, projection operations can
always be used to reorder the attributes. The functionalities of both sides are actually the
same. This rule is valuable if nested loop based algorithms are used to solve metric join
problem, because we can always place the table with fewer tuples on the outer loop.

Rule 3: Metric join operator () is associative.

(Tyoou b, m, 71 T2) b, e, 1,2 T3 =T1 900, 1,11 (T2 20 ¢, 1,12 T3),
where r; and r, are metric join radii, a, b, and c are attributes in table 7y, T,, and T3,
respectively, and M is the specified Metric. This rule can be used to select the order of
multiple metric join operations.

Rule 4: Metric match operator (1) is commutative.

Ta 0,M 1 (To, 02,m,2 (1)) =Th 02,m02 (Ta 01,m, 71 (1)),
where ry and r, are metric match radii, Q; and Q, are query objects, a and b are attributes
in table 7, and M is the specified Metric. This rule is useful in selecting the order of
multiple metric match operations.

Rule 5: Metric match operator (1) distributes over metric join operator (o).
(1) If attribute a occurs in T but not in T,

Ta oM (T1op e T)=Ta omr (T1)®pcme T

(2) If attribute a occurs in 7, but not in 7

Ta, oM r1 (Troop e m 2 T2) = Tio0p e m,r2 T, 0.m,11 (T2)
(3) If attribute a occurs in both T; and T,
Taomr (Tvop cmnT)= Toomr (TD)op cpmmTa omr (T2)
Through pushing down metric select operations, query optimizer can use rule 5 to reduce
the temporary table sizes, which are parameters into the expensive metric join operation.

Rule 6: Interior fragment select operator (%) is select-transformed from select
operator (G).
Definition 7: 64(7) can be select-transformed into 6" o(7) iff

e Table T contains fragment attribute,

e Select condition 0 contains fragment offset constraints.

It is obvious that rule 6 is not an equivalence rule since only one direction (from G to ")
holds. Rule 6 enables the query processing to deal with a larger fragment instead of many
small fragments in it.

Rule 7: Merge (V) and groupfragments (y) operators are commutative with Interior
fragment select operator (¢ 5.
V'Y (67o(1) =6 (Ve o (1)
Via Y an(6"6(1) = 6" o(Vu sV 0 (1)

where 0 is the select condition that contains fragment offset constraints, a, b are fragment
attributes in table 7. Rule 7 enables the query optimizer to select the order of
merge/groupfragments operation and interior fragment select operation. It should be
noted that for high-dimensional merge and groupfragments operators, such commutative
property still exists.

3.4.4 Cost Model

Besides optimization rules, the query optimizer also reeds to know the cost associated
with new operators, thus can decide the most economic query plans. The cost model is
listed in table 1, where m represents the number of input fragments, n represents the
length of input sequences.

Operator Cost Description
createfragments (A) O(n) A linear scan

1-D Merge (Vl) O(m) A linear scan

2-D Merge (V?) O(m) A linear scan
1-D groupfragments (Y') O(mlogm) Sort operation followed by linear scan
2-D groupfragments (y’) O(mlogm) Sort operation followed by linear scan

Metric match (T) O(logm) Very small coefficient before logm

Metric join (co) O(m) Modeled after a relation merge-join
Interior fragment select | O(m*Avg(frag | The average of fragment length in the table is

(c") ment length)) | a factor in the cost model

Table 1: Operators cost model

It is noteworthy that when creating a sequence view, a metric space index is also built.
We currently construct the indices in O(m log m) [2]. We anticipate O(m) execution time
of building indices operation with the help of stream-based clustering algorithms.

4. mSQL Applications
4.1 Whole Genome Join

4.1.1 Problem Definition
Given two genomes G, and G,, find mappings of substrings of the entire first genome to
the substrings of the second genome.

4.1.2 Query Plan Tree
Whole genome join problem can be solved in two steps:
e C(Create sequence views G _sview and G, sview on sequences G, and Gy,
respectively.
e Metric Join G,_sview and G, sview.
Thus, a whole genome join can be expressed in mSQL as figure 16.

SELECT R.fragment, A.fragment
FROM G,_sview R, G, sview A

WHERE distance(metric_name, R.fragment, A.fragment) <= r

Figure 16: mSQL whole genome join application

where r is the join radius. The logical query plan tree for this SQL is illustrated in Figure
17, where M is used to specify the Metric corresponds to the metric name metric_name.

Tchragment, A.fragment

R R fragment, A.fragment, M, r

/N

G,_sview R G,_sview A
Figure 17: Query plan tree for whole genome join

Major optimization is done at metric join step with the help of metric space index defined
on two sequence views G_sview and G,_sview.

4.2 Conserved Primer Pair Discovery
4.2.1 Problem Definition

The problem of finding conserved primer pair can be quite clearly expressed in Figure
18.

Primer Pair Candidate

G = == NG eap 400-3000 Tong =
""" G, gap 400-3000 long
G, _ﬂ_ - _ﬂ_ -

>18 Matching Nucleotides >18 Matching Nucleotides

Figure 18: Find Conserved Primer Pair

For two sequences G, and G, this problem is to find the exact matched fragment pairs of
these two sequences within the offset range 400 and 3000.

4.2.2 Query Plan Tree
Conserved primer pair discovery problem can be solved in four steps:
e C(Create sequence views Gj_sview and G, sview on sequences G; and Gy,
respectively, with fragment length 18 and shift size 1.
¢ Utilize the metric space index to metric join G,_sview and G,_sview.
e To reduce the result size of metric join, a merge operation is performed on the
metric join result.
e A filtering operation is used to get the fragment pairs within the offset range 300
and 4000.
Thus, a conserved primer pair discovery problem can be expressed in mSQL as figure 19.

SELECT *

FROM
G _sview RI, G_sview R2, G,_sview Al, G,_sview A2

WHERE
(FRAGOFFSET(R2.fragment)-FRAGOFFSET(RI.fragment)) >= 400 AND
(FRAGOFFSET(R2.fragment)-FRAGOFFSET(RI.fragment)) <= 3000 AND
(FRAGOFFSET(A2.fragment)-FRAGOFFSET(Al.fragment)) >= 400 AND
(FRAGOFFSET(A2.fragment)-FRAGOFFSET(Al fragment)) <= 3000 AND
distance('base_pair_mismatch’, R1.fragment, Al .fragment) <= 0.0 AND
distance('base_pair_mismatch', R2.fragment, A2.fragment) <= 0.0

Figure 19: mSQL conserved primer pair discovery

The logical query plan tree for this SQL is illustrated in Figure 20, where M is used to
specify the Metric corresponding to the metric name base_pair_mismatch.

F
G offset distance in 400 and 3000

L
/N

V2 v
RI1 fragment, Al.fragment RI1 fragment, Al.fragment
(R1 fragment Al fragmem) ('YZRI fragment Al fragmem)
©° R1 fragment, Al fragment, M, 0.0 © R2. fragment A2.fragment, M, 0.0

SN N

G,_sview Rl G,_sview Al G,_sview R2 G,_sview A2
Figure 20: Query plan tree for conserved primer pair discovery

Major optimization is done at metric join step with the help of metric space index defined
on two sequence views G;_sview and G, sview. The query optimizer is able to find
common subexpressions, thus recognize that two metric join in the logical query plan tree
is actually doing the same thing, one metric join can be saved. Merge and groupfragments
operations are used to reduce the temporary table size of the metric join results. A theta
join is used to enforce the offset gap between 400 and 3000.

4.3 Electronic PCR

4.3.1 Problem Definition

Electronic PCR looks for sequence-tagged sites (STSs) in DNA sequences by searching
for subsequences that closely match the PCR primers and have the correct order,
orientation, and spacing that they could plausibly prime the amplification of a PCR
product of the correct molecular weight [17].

4.3.2 Query Plan Tree
Electronic PCR problem can be solved in three steps:
¢ Create Electronic PCR primers table.
e Create sequence view G_sview on a DNA sequence G.
e Utilize the metric space index to accelerate the search of PCR primers in DNA
sequence G.
Thus, an Electronic PCR problem can be expressed in mSQL as Figure 21 and Figure 22.
CREATE TABLE EPCRpair (
start JAVA_OBJECT(edu.utexas.mobios.type.Sequence),
end JAVA_OBJECT(edu.utexas.mobios.type.Sequence)
{éigure 21: Create Electronic PCR primers table

SELECT P.start, P.end

FROM EPCRpair P, G_sview R1, G_sview R2

WHERE

distance('base_pair_mismatch', P.start, Rl fragment) <= 0.0 AND
distance('base_pair_mismatch', P.end, R2.fragment) <= 0.0 AND
(FRAGOFFSET(R2.fragment)-FRAGOFFSET(R1.fragment)) BETWEEN 0 AND 1000

Figure 22: Find PCR primers exist in a DNA sequence within the offset range 0 and 1000

The logical query plan tree for this SQL is illustrated in Figure 23, where M is used to
specify the Metric corresponding to the metric name base_pair_mismatch.

nP.start, P.end

F
O offset distance in 0 and 1000

i

R P.end, R2.fragment, M, 0.0

— T

o0 P start, R1.fragment, M, 0.0 G_SViBW R2

/ N\

EPCRPair P G_sview R1

Figure 23: Query plan tree for Electronic PCR
Major optimization is done at metric join step with the help of metric space index defined
on the sequence view G_sview. Also, the selection next to the top of this plan tree can be
pushed down to the leaf of this tree, thus can further save the running time of metric join.

5. Conclusions and Future Work
mSQL is based on the standard relational operators (G,T, join, union), with extensions

in operators to enable splitting sequences into fragments (A), merging overlapped
fragments (V), grouping fragments that can be merged (y), interior fragment select ("),
searching (t), and joining () optimized with metric space index. The sequence views
concept (an extension to standard SQL view) provides aprogrammatic way to capture
two different logical perspectives (sequences-level and fragment-level) of sequences.
Biological applications (Whole Genome Join, Conserved Primary Pair Discovery,
Electronic PCR) verify that mSQL has the necessary express capabilities for sequence
identification and manipulation, thus is suitable for concise expression of Bioinformatics
studies.

Currently sequence view works by splitting sequences into fixed length fragments, and
then building metric space index on these fragments. The length of the fragments is a
parameter specified by the user. Merge operations could change the length of fragments,
thus the metric space index based on fixed length fragments cannot be used any more.
Therefore, it would be beneficial if mSQL could be improved by introducing a new

mechanism that can build indexes based on sequences, not on fixed length fragments, or
at least such indexes can still be useful when the fragment length changes.

Regular expression is a powerful tool for expressing complex queries, especially in
querying secondary structures of protein data [3, 4]. Mckoi [23] provides the
functionality of regular expression query. However, regular expression based queries can
only consider sequences in sequences-level perspective instead of in fragment-level
perspective. How to combine these two perspectives in regular expression based queries
is an interesting research problem. In the future, we will incorporate regular expression
query into the searching on biological sequence data, and at the same time, utilize the
underlying metric space indexes.

Chaining is an important biological problem. The definition for one-dimensional chaining
is given in definition 8.

Definition 8 [21]: Consider a set of r (possibly) overlapping intervals drawn on the line
R, where each interval j has some associated value v(j). Chaining is to select a subset of
nonoverlapping intervals whose values sum to as large a number as possible.

Chaining is intrinsically an optimization problem. It might seem not proper to include one
or several operators into SQL to solve such optimization problem because SQL is aiming
at querying. However, if we can introduce efficient manipulation method of complex data
types (like tree and graph) into mSQL, chaining can be trivially expressed as a shortest-
path or longest-path problem of a graph.

Some gene sequences (for example, proteins), have four levels of structural
organizations: primary, secondary, tertiary, and quaternary structures [3]. Currently,
mSQL can only express queries on primary structure of gene sequences. However, this is
sometimes not sufficient, because secondary structure can also provide important insights
into the function of a gene sequence. The long-term goal of mSQL is to incorporate the
capability to express complex queries on both primary and secondary structures of gene
sequences.

References

1. Mao, R., Miranker, D. P., Sarvela, J N. and Xu, W.. Clustering Sequences in a
Metric Space-the MoBIoS project. Poster of the 10" International Conference on
Intelligent Systems for Molecular Biology, August 3-7, 2002, Edmonton, Canada.

2. Mao, R., Xu, W,, Singh, N and Miranker, D. P.. An Assessment of a Metric
Space Database Index to Support Sequence Homology. In the proceeding of the
3rd IEEE Symposium on Bioinformatics and Bioengineering, March 10-12, 2003,
Washington D.C

3. Sandeep Tata, Jignesh M. Patel. PiQA: an Algebra for Querying Protein Data
Sets.

4. J. Hammel, M. Schneider. Genomics Algebra: A New, Integrating Data Model,
Language, and Tool for Processing and Querying Genomic Information.
CIDR'02, Asilomar, California, USA, 2002, 176-187.

5. L. Hammel, J. M. Patel. Searching on the Secondary Structure of Protein
Sequences. VLDB'02, Hong Kong, China, 2002, 634-645.

6. P. Seshadri, M. Livny, and R. Ramakrishnan. Sequence Query Processing.
SIGMOD'94, Minneapolis, Minnesota, USA, 1994, 430-441.

7.

8.

9.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23,
. A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts, 4h

24

25.

P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A Model for Sequence
Databases. ICDE'95, Taipei, Taiwan, 1995, 232-239.

P. Seshadri. Management of Sequence Data. PhD Thesis, University of Wisconsin
- Madison, 1996.

Alberto Lerner, Dennis Shasha. Aquery: Query Language for Ordered Data,
Optimization Techniques, and Experiments.

Gosta Grahne, Raul Hakli, Matti Nykanen, Esko Ukkonen. AQL: an Alignment
Based Language for Querying String Databases.

Gosta Grahne, Raul Hakli, Matti Nykinen, Hellis Tamm and Esko Ukkonen:
"Design and Implementation of a String Database Query Language". To appear as
Information Systems 28(4), pages 311-337, 2003. (Special issue on bioinformatics
and biological data management.)

Raul Hakli, Matti Nykidnen and Hellis Tamm: "Adding String Processing
Capabilities to Data Management Systems". Proceedings of the Seventh
International Symposium on String Processing and Information Retrieval (SPIRE
2000), pages 122-131, 2000.

R. Hakli, M. Nykanen, H. Tamm, and E. Ukkonen. Implementing a Declarative
String Query Language with String Restructuring. PADL'99, San Antonio, Texas,
USA, 1999.

OGIS(1999). Open GIS consortium: Open GIS simple features specification for SQL
(Revision 1.1). In URL: htt://www.opengis.org/techno/specs.htm.

B. Chazelle. Computational geometry: a retrospective. In Proc. ACM STOC'94,
pages 75--94, 1994.

Ciaccia, P., Patella, M. and Zezula, P. 1997. Mtree: an efficient access method
for similarity search in metric spaces. Proc. 23rd Int. Conf. Very Large Databases
(VLDB).

Schuler GD. Sequence mapping by electronic PCR. Genome Res. 1997 May,
7(5): 541-550.

Growth of GenBank. http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html:
NCBI (National Center for Biotechnology Information), Feb 2002.

Brin, S. 1995. Near Neighbor Search in Large Metric Spaces. In Proc. 21st. Int.
Conf. Very Large Data Bases (VLDB), pp. 574-584.

V. Gaede and O. Gunther. Multidimensional Access Methods. ACM Computing
Surveys, 1997.

. D. Gusfield. Algorithms on strings, trees, and sequences: computer science and

computational biology. Cambridge University Press, 1997.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic Local
Alignment Search Tool. Journal of Molecular Biology, 215(3), 403-410, 1990.
www.mckoi.com

edition. Published by McGraw-Hill, 2002.
S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Published by
Addison-Wesley, 1995.

