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Abstract 

 
Biologically effective retrieval and analysis of 

sequences entails much more than finding matching 
strings.  While identification and storage of biological 
sequences usually comprises long functional units (e.g. 
genes, proteins and chromosomes), the analysis and 
retrieval of those sequences is primarily concerned with 
finding ordered sets of short matching subsequences (q-
grams).  This characterization applies both to homology 
search algorithms, i.e., BLAST searches, as well as a 
growing toolkit of algorithms in comparative genomics 
that are tantamount to executing joins on pairs of whole 
genome sequences (whole genome joins). 
 To support these two logical views of sequence data, 
we introduce mSQL, a set of extensions to SQL92.  We 
have implemented mSQL as a component of MoBIoS, the 
Molecular Biological Information System.  We describe 
the materialization of sets of q-grams as a metric-space 
index. Such a physical structure provides an access path 
for indexed-nested loop joins, enabling O(mlogn) 
comparative genomic analysis. We detail the optimization 
of paged MVP-trees to support a metric for the retrieval 
of protein sequences.  Empirical results demonstrate 
O(logn) retrieval times for local alignments. 
 
1. Introduction 

 
Across life sciences, exploration of key data comprises 

sequentially scanning all of the data that matches even the 
most basic patterns.  This includes genomic and proteomic 
sequence data (BLAST searches), proteomic mass-spectra 
and the combinatorial chemistry libraries critical to 
rational drug design [3, 30, 35, 36]. We are seeking to 
solve this in a universal way by developing a metric-space 
database management system, MoBIoS (Molecular 
Biological Information System) [33].  By analogy to 
spatial databases which extend relational databases by 
including special access paths for two and three 

dimensional data types, we define a metric-space database 
as an extension of a relational database that includes 
access paths based in metric-space indexing [7, 8, 9, 11, 
13].  

MoBIoS contains built-in biological data types 
entailing the semantics of biological dogma and includes 
metric distance functions enabling O(log n) access-times.  
Our claim is that the tight integration of biological search 
predicates into the query engine will simplify the process 
of bioinformatics discovery by enabling a single 
programming model for both relational and biological 
data.  Common database application development 
environments could be used directly without resorting to 
the use of external pattern-matching utilities, i.e. BLAST 
[12, 33, 43]. 
 In this paper we detail the components of MoBIoS that 
are specific to managing biological sequences in a manner 
that addresses the subtleties required to be biologically 
effective.  The literature on biological sequence analysis 
speaks of two kinds of alignments, global and local 
alignment, but only local alignment is of practical interest 
to biologists.  Global alignment is more commonly known 
in computer science as weighted edit distance. As it 
applies to biology, the weights between individual pairs of 
character substitutions entails a model of sequence 
evolution. Comparing sequences using simple 
(unweighted) edit distance rarely yields biologically 
interesting results [44].   

A local alignment of two sequences S and T, comprises 
finding an ordered set of substrings of S, si, and an 
ordered set of substrings of T, tj, such that the sum of 
pairwise global alignments over si, tj, is maximal, (or 
minimal, if distances are used in lieu of similarity scores). 

Analysis involving the convolution of two or more 
complete genomes, (whole genome join), is a problem of 
primary and increasing significance. Each time a new 
organism is sequenced it must be mapped.  This means



that the sequence is annotated with the location and, if 
possible, the function of each gene as well as a number of 
other important features.  As the corpus increases this is 
more commonly being accomplished by locally aligning 
the entire new sequence with all previously mapped 
sequences and deducing that similar substrings have 
similar function [22].  This is just the tip of the iceberg.  
With the availability of the data, new genomic analysis 
protocols requiring whole genome joins are being 
developed at an increasing rate [32, 37, 29, 41].   

In each of these cases the unit of storage and 
identification is a long sequence, e.g. a gene, protein or 
chromosome, but the analysis and retrieval is based on 
finding scored sets of matching substrings.  To resolve the 
dichotomy between these views, we introduce two new 
operators: createfragments(), and its complement, 
merge(). Createfragments() decomposes a sequence into 
fixed length overlapping substrings, a form of q-grams 
[20]. Merge() reconstitutes these q-grams into sequences. 
Algebraically these are treated very similarly to the unnest 
and nest operators of an extended-relational algebra [26]. 

To programmatically handle the two views and to 
enable a persistent materialization of the q-grams as a 
special access path to the full sequences we introduce 
sequenceviews. See Section 3. 

We have already used these language developments in 
an application in comparative genomics. In Section 4, we 
describe how we performed a search for conserved primer 
pairs between two genomes, showing that it is possible to 
express important genomic analysis problems in small 
SQL programs [46]. We also demonstrate how MoBIoS 
can be used to compute homology searches similar to 
BLAST.  

In Sections 5 and 6, we detail the characteristics of 
biological workloads and argue that in this domain this 
form of materialization is clearly the best.  We present the 
results of a performance where we evaluated an instance 
from each of the three major classes of metric-space 
indexing algorithms and show that, for our applications, 
multi-vantage point (MVP) trees perform the best.  We 
detail the optimization of our implementation of an MVP-
tree, its execution speed and its accuracy on a yeast 
homology benchmark suite developed at NCBI [39].  The 
results reveal scalable execution speeds tending to O(log 
n) and accuracy comparable to BLAST.   
 

2. Related Work 
 
The hyper-exponential growth and increasing 

importance of biological sequence data to the conduct of 
research motivates new approaches of biological sequence 
management where sequence data is preprocessed off-line 
and organized in data structures such that on-line queries 
can be executed quickly. 

There has been recent activity involving metric-space 
indexing methods.  The SST system reports 1 and 2 order 
of magnitude speed improvements over BLAST [16].  
SST comprises nearest-neighbor searches based on 
Hamming distance using a vector space mapping of q-
grams and a TSQV tree.  Results were reported only for 
sequence assembly.  Chen and Aberer proposed a system 
composed of M-trees and a metric upper-bound on local 
alignment scores.  No performance figures have been 
published.  The most far-seeing work was a paper by 
Wang and Shasha in 1990, which was one of the earliest 
to propose algorithms to search metric spaces by 
precomputing and storing selected distances [47].  They 
further characterized the metric-join problem and 
presented results on finding similar proteins for a set of 
151 proteins made up of less than 21 amino acids. The 
metric comprised a normalization of the PAM distance 
made possible by first computing all pair-wise distances.   

A challenge in these approaches is that biologically 
effective results must include a model of similarity based 
on evolutionary or other biochemical properties.  Most 
often the model is captured as a set of weights in a 
substitution matrix; most notable are the PAM and 
BLOSUM matrices for amino acid substitution [14].  
Even BLASTn uses a weight matrix to generate the scope 
of the hot-spot neighborhoods around the query. 

What is most vexing is that query results are very 
sensitive to the weighting model. This should not be 
surprising. Even though there is no explicit dimensionality 
to this problem, the curse of dimensionality still applies 
[5].  Thus, just slight distortions of the space due to an 
inaccurate weighting model can lead to dramatically 
different answers [1, 27].  This property also makes it 
difficult for any system that leverages an upper bound on 
distances to produce effective results. 

Our work is predicated on our earlier results where we 
developed the first biologically validated metric 
substitution matrix, mPAM [44].  In that paper we 
compared mPAM to other metrics, including simple edit 
distance, and showed that simple edit distance does not 
product biologically effective results for most 
applications.  This is one reason SST has not been 
extended to a more general algorithm. 

The database effort that is closest to our work in 
structure is by Gravano et al. [18]. That effort comprised a 
pure SQL system where auxiliary q-gram tables were 
materialized at runtime and string-matching operations 
could be conducted using standard queries. They further 
developed an approximate string matching method that 
concerned exploiting bounds concerning the density of 
matching q-grams.  Like SST, the lack of an evolutionary 
model prevents this from being generally applicable to 
biology.  The decision by Gravano et al. to devise a q-
gramming method to work on top of already existing 



databases does not allow for the use of complex weight 
matrices without resorting to computationally 
cumbersome User Defined Functions. Furthermore, 
although mentioned as a possibility, metric-space indexing 
was not pursued. 

A number of efforts have introduced inverted indexes 
on q-grams [10, 28, 34, 42, 48].  These systems are 
proving to be very fast and useful when used as either a 
coarse filtering mechanism or when applied to genomic 
analysis problems on evolutionarily close sequences [37].  
Another specialized index structure, the suffix-tree, has 
also been tested with respect to both accuracy and 
scalability on very large data sets [25, 30]. 

To support query optimization, any system that 
promises to tie an SQL engine to physical access plans 
must have an algebra. In that regard this work utilizes 
elements of both an extended-relational algebra for 
complex types and the PiQA algebra for querying protein 
sequences [26, 43]. The relationship of our work to these 
algebras will be spoken of in the paper. 

 

3. mSQL  
 
We have coined the term mSQL to describe our 

keyword and operator additions to the SQL92 
specification. We will use the explanation of a simple 
query to find homologous regions in two genomes  as a 
running example to detail the merits of the system. The 
schema for a simple database is defined in Figure 1. 

In addition to the standard SQL data types, MoBIoS 
includes built-in data types for DNA and Protein 
sequences, as well as Spectra (to support Mass 
Spectroscopy analysis).  In the example, we assume for 
simplicity that each chromosome sequence has been 
assigned a unique id, often called its accession number.  
We will also assume that DNA_Sequence is a string.  Its 
complete definition entails biological semantics beyond 
the scope of this paper (e.g. equivalence of reverse-
complements). We will be looking for homologous 
regions of length q between the Rice and Arabidopsis 
genomes that differ by at most n nucleotides. For brevity, 
the Rice ‘genome’ is illustrated as two functional units 
(possibly representing chromosomes or genes) and is 11 
nucleotides long. The Arabidopsis ‘genome’ is just 6 
nucleotides long. Our database is populated as shown in 
Table 1. 

From the logical perspective, our primary contributions 
are two new operators: createfragments(), its complement, 
merge(). We also introduce a new type of view, 
sequenceview. 

Createfragments() decomposes sequences into 
overlapping substrings, also known as q-grams.  
Algebraically, createfragments() is the unnest operator 
tailored to sequences in lieu of sets.  If the substrings did 
not overlap, the behavior would be identical to unnest 
applied to a representation of sequences as a set of 
substrings. 

Merge() maps sets of gap-free q-grams back into larger 
sequences. There are two forms of the merge() operator: 
A one-dimensional case where merge() is applied to the q-
grams of a single attribute possibly filtered through a 
select predicate, and a two-dimensional case where 
merge() is applied to the results of a string matching join 
between two attributes.  Although the semantics may be 
obvious, completeness of the algebra requires us to 
include a groupfragments() operator which serves to 
ensure that merge() is applied only to groups of q-grams 
from the same sequence and therefore can be merged. 

A sequenceview is a physical database construct 
analogous to SQL’s view.  Explicit in a sequenceview is 
the materialization of createfragments() as a secondary 
metric-space index.  
 
3.1 Createfragments(): Unnesting Sequences 

 Createfragments() takes two arguments: a table name 
followed by the sequence attribute (in dot notation) and 
the length of the substring.  The specification of a 
sequence attribute helps maintain generality in the case 
where a table is defined with more than one sequence 
attribute. The second parameter serves the purpose of 
defining a sliding window on the sequences. For our 
example, we will be looking for homologous regions of 
length three, so we define the length of the q-gram to be 
three. Thus the query in Figure 2 on the genomes table in 
our example database would yield the result shown in 
Table 2. 

CREATE TABLE genomes( 
Organism VARCHAR, 
Acc_num INTEGER, 
DNA_Sequence JAVA_OBJECT(DNA), 
CONSTRAINT PK_genomes PRIMARY KEY (Acc_num)); 

Figure 1  Schema definition for example 

SELECT *  
FROM CREATEFRAGMENTS(genomes.DNA_Sequence, 3)  
WHERE Organism = ‘rice’; 

Figure 2  Createfragments() syntax 

Table 1 Example database 
genomes 

Organism Acc_num DNA_Sequence 

rice 1 AGAAC 

rice 2 CCGGAT 

arab 3 AACAAC 

 



The details of the mapping mechanism are as follows. 
Assume a set of sequences, S = {s1, s2, …, sn}, with 
lengths l1, l2, …, ln. The fixed fragment length is q. Thus, 
each sequence si can be split into mi= li – q + 1 fragments. 
We can compute the total number of fragments m = ∑mi. 
We number the fragments from 1 to m. Then, given the 
number of a fragment, we can compute which sequence it 
is from and its offset in the sequence. For example, we 
have two sequences s1=”agaac” and s2=”ccggat” of 
lengths 5 and 6 respectively. The fragment length is 3, and 
we start a fragment for each character. Thus, s1 can be 
split into 3 fragments and s2 can be split into 4 fragments. 
The total number of fragments is 7. We number the 
fragments 1, 2, …, 7. The 6th fragment is from s2 at offset 
2, i.e., “gat”. This can be verified in the results from the 
createfragments() operation shown in Table 2. 

On the surface, createfragments() may appear similar 
to PiQA’s match operator, since both divide a sequence 
into a set of subsequences. However, in PiQA scoring is 
done at the match level, such that the match operator takes 
a set of strings and a string or a regular expression and 
returns a set of matches. The createfragments() operator is 
much more general in that it is completely separated from 
any scoring system, i.e., ‘matching’ is only performed 
once the createfragments() operation has been completed. 
This allows, for example, the possibility of a two-
dimensional merge join. 

 
3.2 Sequenceview  

 
By logically representing sequences as tables of q-

grams we can use built-in join operators to compare the 
contents of the sequences to each other. This by itself is 
not new.  Gravano et.al. explicitly materialized q-grams in 
an auxiliary table [20, 21, 38] such as the one shown in 
Figure 4. However, materializing q-grams as auxiliary 
tables at runtime is simply not feasible for strings 
representing entire genomes. The lengths of the actual 
Rice and Arabidopsis genomes are ~5x108 bp and  
~1.5x108 bp respectively. With a q-gram size of 18, (the 
size used in our search for conserved primer pairs), we 
would be looking at generating ~6.5x108 rows of 18 
characters each, or ~9.55x109 extra characters.  

Furthermore, once a sequenceview is materialized, it 
may be accessed multiple times—reducing the impact of 
the cost of the metric-index build and giving O(log n) 
access times. Figure 3 illustrates the creation of 
sequenceviews for the example problem. 

A sequenceview is comprised of two major elements:  
1. Sequences that are to be included in this 

sequenceview are derived in the standard method 
involving a SQL query, including the explicit 
decomposition of the sequences into q-grams using 
createfragments() (lines 2-4). 

2. A [metric] index is specified as the access-path for 
the q-grams (line 5). 

Part of the generality of metric-space indexes is that the 
development of the index mechanism is independent of 
the metric-distance function (metric). In addition to the 
usual arguments to create a secondary index, the creation 
of a metric-space index is parameterized by the choice of 
metric.   

Sequences are traditionally stored as long characters. 
Once createfragments() splits the sequences into a set of 
fragments based on the input parameter of fragment 
length, a metric-space index tree can be built over these 
fragments. This index tree can be used to accelerate 
matching of fragments. The details of materializing 
sequenceviews are described in Section 5.  

 
3.3 Merge(): One-Dimensional Case  

 
Given a set of q-grams, it is necessary to assemble 

them back into longer sequences.  The set of q-grams may 
have been the argument to relational operators, and not all 
of the q-grams of the original sequence may be present in 
the computed result (e.g., q-grams may have been selected 
on external annotations such as their location within a 
chromosome).  Informally, if two q-grams overlap or 
merely adjoin with respect to the original sequence we 
wish to merge them into a longer sequence.  The one-
dimensional merge operation takes one argument: a table 
name followed by the sequence name to merge on, in dot 
notation. 

Table 2  Createfragments() result 
CREATEFRAGMENTS(genomes.DNA_Sequence, 3) 

Organism Acc_num DNA_Sequence 
rice 1 {0, AGA} 
rice 1 {1,    GAA} 
rice 1 {2,       AAC} 
rice 2 {0, CCG} 
rice 2 {1,    CGA} 
rice 2 {2,       GAT} 
rice 2 {3,          ATT} 

1.CREATE SEQUENCEVIEW rice_sview AS 
2. SELECT *  
3. FROM CREATEFRAGMENTS(genomes.DNA_Sequence, 3) 
4. WHERE Organism = 'rice' 
5.USING base_pair_mismatch; 
 
6.CREATE SEQUENCEVIEW arab_sview AS 
7. SELECT *  
8. FROM CREATEFRAGMENTS(genomes.DNA_Sequence, 3) 
9. WHERE Organism = 'arab' 
10. USING base_pair_mismatch;  

Figure 3  Creation of sequenceviews 



Definition 1 One-dimensional merge: A q-gram with 
parameters k and m is a substring of a sequence of the 
form sk, sk+1, sk+2, ..., sm.  Two q-grams q1 (with parameters 
k1 and m1) and q2 (with parameters k2 and m2) are 
mergeable and can be merged into one longer q-gram q3 
(with parameters k3 and m3) iff 

 q1 and q2 have the same parent sequence,  
 (k1 ≥ k2 and k1 ≤ m2) or (k2 ≥ k1 and k2 ≤ m1),  
 k3 = min(k1, k2),  
 m3 = max(m1, m2).  

The merge of two q-grams q1 and q2 can be expressed as 
q3 = merge(q1, q2).  

It is easy to see that the one-dimensional merge() is the 
inverse of the createfragments() operation.  Thus, 
merge(createfragments(s))=s, where s is any set of 
sequences. In SQL terms, the query: 

SELECT MERGE(cf.DNA_Sequence) 
FROM CREATEFRAGMENTS(genomes.DNA_Sequence, 3) AS cf; 

returns the contents of the original ‘genomes’ table. 
 
3.4 Merge(): Two-Dimensional Case 

 
A metric-space join is similar in concept to a spatial 

join. The goal is to determine pairs of objects that fulfill a 
certain distance predicate. In Figure 4, we illustrate the 
final SQL program for identifying q-grams from our two 
genomes that differ by at most one nucleotide. 

Analogous to spatial extensions of SQL, mSQL allows 
distance predicates for selects and joins. The syntax has 
been expanded to allow the specification of a metric. In 
addition to built-in metrics, users may extend MoBIoS 
with their own definitions of new metrics. 

In the final result, we are interested in pairs of highly 
similar regions, not collections of q-grams. Overlapping 
q-grams can only be merged if they exhibit like overlap in 
both genomes.  Thus, we have a two-dimensional merge() 
operation.  If we want to merge the results from some join 
operation, the merge() operation actually happens in each 
separate sequence, but needs to take into account the 
offset difference.  

The two-dimensional merge() operator has two forms, 
each taking either two or four arguments. The first two 
arguments are always the attribute names for the fragment 
columns to be merged, the third argument is an (optional) 
gap function for similarity computation between two 
fragments, and the fourth argument is the (optional) 
threshold used to filter the merged fragments within 
similarity specified by a numerical value. See Figure 5. 

Definition 2 Two-dimensional merge(): Two pairs of q-
grams (q1, q2) and (q3, q4) are mergeable and can be 
merged into one longer q-gram pair (q5, q6) iff (assume q-
gram qi has parameters ki and mi) 

 q1 and q2 are of the same length, and q3 and q4 are 
of the same length,  
 q1 and q3 are mergeable,  
 q2 and q4 are mergeable, 
 k3 - k1 = k4 - k2,  
 q5 = merge(q1, q3), 
 q6 = merge(q2, q4), 
 if a gap function g and threshold d are specified, 

then g(q5, q6) < d, 
 q5 and q6 are of the same length.  

Only when the offset differences are the same can the 
fragments be merged. In Figure 7, for the first row and 
second row of the join results, the offset difference for the 
fragments of sequence 1 is 1, and the offset difference for 
the fragments of sequence 2 is also 1. Thus the first two 
fragments can be merged into one fragment for sequence 1 
and sequence 2, respectively. 

Through merge() operations, the query result size can 
be reduced without a loss of information.  
 
3.5 Groupfragments() 
 

A groupfragments() operator is included to ensure that 
merge() is applied only to q-grams derived from the same 
sequence and can therefore be merged. The 
groupfragments() operator is used to group sets of 
fragments, where each group can be  merged into exactly 
one larger piece of fragment.  
Definition 3 Fragment group:  A set S of q-grams {q1, 
q2, ..., qm} is in the same fragment group iff 

 S is of size 1, or 
 ∀qi∈S, ∃qk∈S (i ≠k), qi and qk are mergeable. 

SELECT MERGE(R.fragment, A.fragment)  
 FROM rice_sview as R, arab_sview as A 

WHERE distance('base_pair_mismatch', R.fragment, 
A.fragment) <= 1.0 

GROUP BY R .fragment, A.fragment; 

Figure 4 Metric Join 

Figure 5 Results of merge() operation  

Join Results (after GROUP BY) 

Org. 
Acc_ 
num 

DNA_ 
Sequence 

Org. 
Acc_ 
num 

DNA_ 
Sequence 

rice 1 {0, AGA} arab 3 {1, ACA} 

rice 1 {1,     GAA} arab 3 {2,     CAA} 

rice 1 {2,        AAC} arab 3 {3,        AAT} 

rice 1 {2, AAC} arab 3 {0, AAC} 

rice 2 {2, GAT} arab 3 {3, AAT} 

  
           MERGE(R1.DNA_Sequence, R2.DNA_Sequence) 

Org. 
Acc_ 
num 

DNA_ 
Sequence 

Org. 
Acc_ 
num 

DNA_ 
Sequence 

rice 1 {0, AGAAC} arab 3 {1, ACAAT} 

rice 1 {2, AAC} arab 3 {0, AAC} 

rice 2 {2, GAT} arab 3 {3, AAT} 



The SQL92 GROUP BY keyword is overloaded to 
represent the groupfragments() operator as illustrated in 
Figure 4. 

The groupfragments() operator is quite different from 
the traditional SQL group operator. The traditional group 
operator is based on equality, i.e., only equal objects 
should be in the same group. groupfragments is based on 
the mergeable property of different objects as defined in 
the prior section. 

Merge() and groupfragments() also have an analog in 
the PiQA algebra, where they are implemented as a single 
match extension operator [43]. However, as in the case 
with the match operator, the PiQA match extension 
operator does not consider querying in high-dimensional 
cases—joins, for example. 
 

4. Application Examples 
 
Two application examples (conserved primer pair 

discovery and homology search) are given in the 
following sections to justify the functionality of 
sequenceview and the operators defined above. 

 
4.1 Conserved Primer Pair Discovery 

The query involves joining the genomes of Rice and 
Arabidopsis in search for shared substrings that fulfill a 
number of experimental properties. (In biological terms, 
we are seeking universally conserved PCR primer pairs 
spanning a quickly evolving region.) The pattern-based 
description of the goal is to find shared substrings 
between genomes, such that a substring 400-3000 
nucleotides long is bounded by a pair of substrings at least 
18 nucleotides long.  The pair of short bounding 
substrings must have a minimal number of mismatches 
between the two species, specified in the query.  The long 
middle stretch does not need to match between the 
genomes or be the same length. The schema is the same as 
outlined for our sample database in Figure 1. The 
specification of the problem and the mSQL query are 
shown in Figures 6 and 7. 

Note that the mSQL query for this problem is only 
slightly more complex than that for our simple example. 
Problems of this kind are increasingly frequent and 
researchers continually implement ad-hoc computer 

programs to solve it [32, 46]. We solve the problem in 
four steps, using the MoBIoS platform to conduct the 
analysis:  

 Create sequenceviews rice_sview and arab_sview 
on the rice and arab genomes, respectively. This is 
the same as for our sample in Figure 5, except the 
fragment length is set to 18 instead of 3. 

 Utilize the metric-space index to metric join 
rice_sview and arab_sview, allowing at most a one 
nucleotide mismatch in primer regions (lines 4 and 
5). 

 Ensure the conserved regions are 400-3000 
nucleotides apart (lines 6 through 9). 

 Merge the resulting q-grams into long sequences 
(line 1). 

Optimization can be done at the metric join step with 
the help of a metric-space index defined on two 
sequenceviews rice_sview and arab_sview.  Our current 
implementation comprises indexed nested-loops.  The 
problem was solved in less than 2 days using four 
concurrent processes on a Sun 6800, and we anticipate a 
join-operator inspired by merge-join to solve this problem 
in a few hours on a single processor. The results are 
currently being validated in a wet lab. 

 
4.2 Homology Search 

 
Homologous sequence search is a basic task performed 

in bioinformatics where homologous means high 
similarity between sequences. The similarity score for two 
genomic sequences is calculated on pair-wise alignment, 
where local alignment is commonly used. For a genomic 
sequence database, homologous search can be viewed as a 
range query.  
Definition 4 Homology search problem: Given a 
sequence q and a collection of sequences S, the homology 

Figure 6 Finding conserved primer pairs 

1.SELECT merge(R1.DNA_Sequence, A1.DNA_Sequence)   
2.FROM rice_sview as R1, rice_sview as R2, arab_sview as A1, 

arab_sview as A2 
3.WHERE 
4. distance('base_pair_mismatch', R1.DNA_Sequence.fragment,  
A1.DNA_Sequence.fragment) <= 1.0 AND  
5. distance('base_pair_mismatch', R2.DNA_Sequence.fragment,  

A2.DNA_Sequence.fragment) <= 1.0 AND  
6. R2.DNA_Sequence.offset - R1.DNA_Sequence.offset >= 400  

AND  
7. R2.DNA_Sequence.offset - R1.DNA_Sequence.offset <= 3000 

AND  
8. A2.DNA_Sequence.offset - A1.DNA_Sequence.offset >= 400 

AND  
9.  A2.DNA_Sequence.offset - A1.DNA_Sequence.offset <= 3000  
10.GROUP BY R1.DNA_Sequence, A1.DNA_Sequence; 

Figure 7 mSQL query for conserved primer pair 
discovery 



search problem, HS(S, q, d), is to identify all sequences s ∈ 
S where LocalSimilarity(s, q)<d. 

Note that there is an intrinsic exponential in the size of 
a local alignment problem in which any ordered subset of 
the elements of S should be considered. 

The general framework for computing local-alignments 
by matching q-grams was first proposed and analyzed by 
Myers, contemporaneously with the development of 
BLAST [49, 34]. The basic algorithm consists of building 
a sequence database S offline, (i.e., creating a 
sequenceview S_sview), and then performing the online 
search query. The search query will be converted into a 
set of range queries, based on q-grams of the query 
sequence, whose results will be merged together to form 
the final answer. Given sequenceviews S_sview and 
q_sview, for a collection of sequences S and query 
sequence q, respectively, the mSQL query to solve the 
homology search problem is illustrated in Figure 8. 

5. Materializing Sequenceviews 
 

Views may be materialized at query time or 
materialized and maintained as additional database tables 
or database indexes [6].  The advantages of each method 
are measured as trade-offs in time and space relative to a 
workload.  In the application of sequenceview to 
biological databases the workload strongly suggests that a 
sequenceview be materialized and maintained as an index. 

The data in biological sequence databases is almost 
always write-once and monotonically increasing.  Such 
databases embody a growing knowledge of biological 
molecules.  Once identified, they become a permanent 
part of the corpus.  If mistakes are found, they are usually 
corrected through versioning.  The culture of biology does 
not permit erasing entries in laboratory notebooks, and 
these databases are their modern electronic equivalent. 

Under this workload it is safe to exclude the cost of 
maintaining a view in the face of updates and deletes to 
the base relations.  Under some simple models of q-gram 
similarity it may work out that q-grams could be 
materialized and compared at query time.  The push in 
genomic databases today is to remove the linear scan that 
that would entail.  These facts together allow us to move 
straight to an assessment of the materialization of a 
sequenceview as an index. 
 
5.1 Approaches to Metric Spaces 

 

There are three categories of index algorithms for 
metric-space index trees: radius-based trees (RBTs), 
generalized-hyperplane trees (GHTs), and vantage point 
trees (VPTs). See Chavez et al. for an excellent survey 
[11]. 
Radius-based methods were inspired by R-trees [23].  In a 
radius-based method, a data point c is chosen as a center 
and a radius r determines a bounding sphere.  All points p, 
such that d(c,p)<r are contained in the sphere.  Ciaccia et 
al.’s M-trees are radius-based.  Ciaccia et.al.’s effort 
stands out as the single investigation of an external metric-
space index structure with all of the properties expected of 
a database index [10, 11]. It is ??? paged mapped and 
capable of supporting a dynamic series database side 
effects. 
In anticipation of integrating M-trees into MoBIoS, we 
evaluated M-trees for the indexing of protein q-grams.  
We were not satisfied with the results and made some 
improvements [31]. The challenges we noted in M-trees 
are that bounding spheres may overlap, diminishing the 
pruning behavior of the search.  The performance of the 
M-tree is sensitive to the initial clustering of the data. We 
optimized the internal node structure and search 
mechanism from an RB-tree (RBT) and developed an 
improved bulk-loading scheme [19, 20]. 
In a generalized-hyperplane tree, data points are selected 
to be centers, but radii are not computed. The tree uses the 
hyperplane between clusters as the pruning criterion for 
search. Given centers c1 and c2, query object q, and range 
query radius r, the cluster defined by c1 is entered if d(q, 
c1) – r < d(q,c2) + r. The difference between an RBT and 
a GHT is that a GHT has no radius and its clusters do not 
overlap. Brin describes GNAT trees, which comprise a 
GHT structure and distance ranges from each center to 
each cluster [9]. 
A multi-vantage point tree, (MVP-tree), is built by first 
selecting a given number of points as the vantage points. 
The distance range from each vantage point is broken into 
intervals. The Cartesian product of the intervals forms a 
set of data partitions. Each data element is allocated to a 
partition by calculating its distance to each vantage point 
[3, 4, 8, 50]. The construction is applied recursively to 
form an index tree. See Bozkaya and Ozsoyoglu for 
details [3, 4]. 
 
5.2 Empirical Comparison of RBT, GHT and 
MVPT 
To obtain better performance, we continue to compare 
RBTs, GHTs and VPTs. Our implementations of a GHT 
and VPT are slightly different from the original structures. 
Originally, both GHTs and VPTs reside in main memory, 
which makes them unscalable for large datasets. In our 
implementations, both trees are paged so that their index 
nodes can be fit in disk pages. Thus, the number of index 

SELECT merge(R.fragment, A.fragment, g, d)  
FROM S_sview as R, q_sview as A 
WHERE distance(metric_name, R.fragment, A.fragment)<= 

radius 

Figure 8 Homology search 



nodes visited can be a measurement of the amount of I/O, 
and our goal is to minimize the number of index nodes 
visited. Moreover, our implementation actually combines 
a GHT and an RBT together. Specifically, the radii are 
stored, and both the RBT search rules and hyperplane 
search rules are used. 

In our implementation of a multiple vantage point tree 
(MVPT), the number of vantage points and the split 
number of each vantage point are decided by the disk 
page size. Furthermore, we use a farthest-first-traversal 
(FFT) [24] algorithm to select vantage points, and the 
dataset is evenly divided. FFT is a k-center algorithm, 
which is guaranteed to generate a clustering in which the 
maximum cluster radius is within a factor of 2 of optimal 
[24]. 

The three index structures were tested by running range 
queries on Yeast protein datasets, which were indexed for 
global alignment of 5-grams using the mPAM weight 
matrix. The experiment results are presented in Figure 9. 
In this figure, for each index tree, we show the 
relationships between the range search radius and the 
number of distance calculations and the amount of I/O. 
From Figure 9 we can see that the RBT has the largest 
number of distance calculation and the MVPT has the 
largest number of I/O for large radii. However, the MVPT 
yields the best performance for small proximity search 
radii. 

5.3 Paged MVP-tree for Materializing 
Sequenceviews 

 
In our applications, biologically effective results are 

gained at small search radii. Thus we select MVP-trees as 
the index structure for protein sequences. We use a 
fragment size of 5. The size of the alphabet of peptides is 
20 (There are 20 different amino acids). Thus, there are 
205 = 320,000,000 different fragments. For large datasets 

(millions of amino acids), multiple fragments will have the 
same contents. Therefore, a search computes many 
unnecessary distance calculations.  

To solve this problem, we bucket the fragments in 
index leaves. For each leaf index node, fragments with the 
same content are put into one bucket. Only one distance to 
each vantage point is stored for all of the fragments in one 
bucket. When a query is executed, if a bucket cannot be 
pruned, the query must only compute distance with one 
fragment in the bucket to decide whether or not all of the 
fragments in the bucket are valid results. The index 
structure of the MVPT with bucketing is shown in Figure 
10. 

6. Empirical Results 
 
Although several variations of metric-space indexing 

have been successfully applied to nucleotide sequences, 
none of them has shown general applicability to peptides 
due to a larger alphabet size and the complex relationships 
among amino acids. However, sequence searches on 
peptides occur 10% more than on nucleotides, according 
to a survey conducted by Goble et. al. [17]. 

The primary challenge of indexing peptides in metric 
space is to properly define the distance between amino 
acids. Sellers first proposed this problem in 1974 [40]. In 
our previous work, we derived an amino acid substitution 
matrix, mPAM, which satisfies the metric distance 
properties [44]. Using a metric distance function defined 
by mPAM for sequence fragments with fixed length, we 
built an index structure for protein sequences based on the 
MVP-tree. Unlike other similar work where only exact or 
near exact matching fragments can be searched, our 
method searches fragments within a given radius based on 
global alignment. The trade-off between speed, accuracy 
and selectivity has been studied and reported in [45].  

In this section, we focused on our experimental results 
conducted on a protein sequence domain using our 
implementation. The results show that our implementation 
has scalable, sensitive search performance on biological 
sequences. 
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6.1 Methods and dataset 
 

We used two datasets in our studies. To assess 
sensitivity, we used an accuracy benchmark suite curated 
and furnished by NCBI. The dataset contains 6433 yeast 
protein sequences (about 2,892,155 residues). The query 
set contains 103 sequences whose true positive hits have 
been identified by human experts and whose curation is 
continually refined [39]. The benchmark suite was 
downloaded in August 2002 
(ftp.ncbi.nlm.nih.gov/pub/impala/blastest).  

For each query sequence s of length k, s is divided into 
a set of q-grams, {fi| i=1..k-q+1}, referred to as query 
fragments. We collect all the results from the range query 
QSD(fi,r) for all i and a greedy chaining algorithm is used 
to compute the final answers. The accuracy is measured 
using receiver-operating characteristic (ROC) scores, a 
popular measure used in biology [18]. A similar method 
was also used for measuring the accuracy of PSI-Blast 
[39]. For each query, the ROC50 value is computed by 
comparing the result list with the list of true positive hits. 
The ROC50 value has been computed as follows: 

ROCn = 
1

nT 
i=1
Σ
n

ti                                                    (1) 

where ti is the number of true positive hits ranked ahead of 
the ith false positive, and T is the total number of true 
positives. 
The data used for the scalability study was downloaded 
from Genbank in July 2003 
(ftp://ftp.ncbi.nih.gov/genbank/genpept.fsa.z). The dataset 
contains FASTA formatted amino acid translations 
extracted from GenBank/EMBL/DDBJ records that are 
annotated with one or more CDS features.  A set of 
databases was built with different subsets of the data that 
were taken sequentially from the full dataset. The same set 
of queries from the yeast benchmark was used for all of 
the databases. 
 
 
6.2 MVP Tree Parameter selection 

There are three parameters associated with our MVP 
tree implementation: the number of vantage points in each 
node, the number of children of each vantage point and 
the maximum number of data points in each node. Figures 
11 and 12 show the experimental results for various 
parameter combinations. There is always a trade-off 
between the number of leaves visited and the number of 
distance calculations needed. The more data points a node 
has, the less leaf nodes need to be visited. However, a tree 
with bigger nodes requires more distance calculations on 
each search. Based on this data, we decided to use two 
vantage points per node, two children per vantage point 
and a maximum number of 100 data points per leaf node. 

 

 

6.3 Quality of Search Result 
 

Table 3 compares the average ROC50 score for each 
query from our algorithm and the results using other 
searching algorithms with the same benchmark. In the 
AutoRadiusSearch, the search radii are automatically 
adjusted based on the prediction of the number of 
matching q-grams. We show that, using metric space 
indexing, protein sequence homology search could yield 
accuracy comparable to BLASTp on the same benchmark. 
Note that the accuracy of results is actually affected by 
many factors, such as the value of the substitution 
matrices, searching strategies and chaining strategies, etc 
[2, 39]. 

Figure 11 Average number of distance 
calculations per query for various tree 

structures 
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Table 3 Comparison of average of ROC50 value for 
various searches 

Search 
Method Matrix  Average ROC50 

mPAM 0.48 

PAM250 0.59 
Sequential Search with Smith-

Waterman local alignment 
algorithm  PAM70 0.5 

Radius 3 0.45 

Radius 4 0.53 
Indexed 
Search 

AutoRadiusSearch 

mPAM 

0.5 

PAM250 0.53 
BLASTP 

PAM70 0.42 

 
6.4 Scalability 

 
To evaluate the scalability of our algorithm, we use the 

same query set as used in the accuracy benchmark against 
various sizes of databases using AutoRadiusSearch. The 

average number of distance calculations and the average 
number of leaf nodes visited are plotted in Figure 13. 
Both figures reveal scalability with the size of the 
database. It’s also interesting to note that both numbers 
slightly decreased for a larger dataset.  

We have reason to believe that as the database grows 
the logical locality of the clusters starts to correspond 
better to the physical clustering on pages [31]. The affect 
is that entire contents of sub-trees could be found and 
returned in their entirety without further distance 
calculations, thus reducing the number of distance 
calculations.  Similarly, entire sub-trees can be pruned 
reducing search cost. 

 
6.5 Bucketing Duplicated Entries 

 Based on the experimental results, we decided to use q-
grams of length 5 for peptide indexing [45]. Since the 
alphabet size of a peptide sequence is 20, the complete 
space of q-grams will quickly be covered as the number of 
q-grams increases. Furthermore, some q-grams have a 
significantly higher repetition rate than others because of 
the non-uniform distribution of amino acids.  

Figure 14 shows the comparison between actual and 
predicted results based on a uniform distribution of the 
average number of q-grams per query for varying radii. To 
avoid repetitive computation and redundant storage, we 
used a bucket-like data structure to store a list of different 
locations where the q-gram occurred more than once. 
Figure 15 shows that the bucketing structure can decrease 
the average number of distance calculations even for the 
benchmark dataset, which barely covers the space of q-
grams with length 5. Such a data structure will be more 
effective and assure scalable search performance for a 
larger dataset. 
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7. Conclusion and Future Research 
 

We have spoken specifically of language and physical 

structures that will enable database management systems 
to directly support biological sequence analysis.  The 
approach facilitates both homology searches and 
comparative genomic analysis.  We have shown the 
scalability of MVP-trees on protein q-grams.  However, 
many open problems remain.  Our current implementation 
of a metric-space join is composed of indexed nested 
loops.  When n is in the range of 107-1010, even O(n log n) 
algorithms become computationally challenging. Given a 
tree-structured access path one can anticipate merge-join 
like algorithms that would tend toward O(n) execution 
time, (assuming output size is small).  In the case of a self-
join a simple recursive descent of the index will work for 
most, if not all, tree-based methods of metric-space 
indexing.  We anticipate that comparative genomics 
problems similar to the one we computed in 8 processor 
days will take a few hours to complete, including building 
the indexes. Solutions to the more general problem are 
much more difficult and cannot be diverged from the 
indexing method. 

Also in question is the broader applicability of the 
language and physical structures.  Q-gram approaches are 
endemic to information retrieval [48]. Q-gram methods 
first derived for speech recognition are now being 
extended toward the retrieval of music files by humming 
[15].  It is plausible that sequenceviews and their 
supporting structures could facilitate these and more 
traditional sequence applications. 
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