
SQL Extensions and Database Mechanisms for Managing Biosequences

Willard J Briggs, Wenguo Liu, Rui Mao, Weijia Xu, and Daniel P. Miranker

Department of Computer Sciences, the University of Texas at Austin

{willard, liuwg, rmao, xwj, miranker} @cs.utexas.edu

Abstract

Biologically effective retrieval and analysis of

sequences entails much more than finding matching
strings. While identification and storage of biological
sequences usually comprises long functional units (e.g.
genes, proteins and chromosomes), the analysis and
retrieval of those sequences is primarily concerned with
finding ordered sets of short matching subsequences (q-
grams). This characterization applies both to homology
search algorithms, i.e., BLAST searches, as well as a
growing toolkit of algorithms in comparative genomics
that are tantamount to executing joins on pairs of whole
genome sequences (whole genome joins).
 To support these two logical views of sequence data,
we introduce mSQL, a set of extensions to SQL92. We
have implemented mSQL as a component of MoBIoS, the
Molecular Biological Information System. We describe
the materialization of sets of q-grams as a metric-space
index. Such a physical structure provides an access path
for indexed-nested loop joins, enabling O(mlogn)
comparative genomic analysis. We detail the optimization
of paged MVP-trees to support a metric for the retrieval
of protein sequences. Empirical results demonstrate
O(logn) retrieval times for local alignments.

1. Introduction

Across life sciences, exploration of key data comprises

sequentially scanning all of the data that matches even the
most basic patterns. This includes genomic and proteomic
sequence data (BLAST searches), proteomic mass-spectra
and the combinatorial chemistry libraries critical to
rational drug design [3, 30, 35, 36]. We are seeking to
solve this in a universal way by developing a metric-space
database management system, MoBIoS (Molecular
Biological Information System) [33]. By analogy to
spatial databases which extend relational databases by
including special access paths for two and three

dimensional data types, we define a metric-space database
as an extension of a relational database that includes
access paths based in metric-space indexing [7, 8, 9, 11,
13].

MoBIoS contains built-in biological data types
entailing the semantics of biological dogma and includes
metric distance functions enabling O(log n) access-times.
Our claim is that the tight integration of biological search
predicates into the query engine will simplify the process
of bioinformatics discovery by enabling a single
programming model for both relational and biological
data. Common database application development
environments could be used directly without resorting to
the use of external pattern-matching utilities, i.e. BLAST
[12, 33, 43].
 In this paper we detail the components of MoBIoS that
are specific to managing biological sequences in a manner
that addresses the subtleties required to be biologically
effective. The literature on biological sequence analysis
speaks of two kinds of alignments, global and local
alignment, but only local alignment is of practical interest
to biologists. Global alignment is more commonly known
in computer science as weighted edit distance. As it
applies to biology, the weights between individual pairs of
character substitutions entails a model of sequence
evolution. Comparing sequences using simple
(unweighted) edit distance rarely yields biologically
interesting results [44].

A local alignment of two sequences S and T, comprises
finding an ordered set of substrings of S, si, and an
ordered set of substrings of T, tj, such that the sum of
pairwise global alignments over si, tj, is maximal, (or
minimal, if distances are used in lieu of similarity scores).

Analysis involving the convolution of two or more
complete genomes, (whole genome join), is a problem of
primary and increasing significance. Each time a new
organism is sequenced it must be mapped. This means

that the sequence is annotated with the location and, if
possible, the function of each gene as well as a number of
other important features. As the corpus increases this is
more commonly being accomplished by locally aligning
the entire new sequence with all previously mapped
sequences and deducing that similar substrings have
similar function [22]. This is just the tip of the iceberg.
With the availability of the data, new genomic analysis
protocols requiring whole genome joins are being
developed at an increasing rate [32, 37, 29, 41].

In each of these cases the unit of storage and
identification is a long sequence, e.g. a gene, protein or
chromosome, but the analysis and retrieval is based on
finding scored sets of matching substrings. To resolve the
dichotomy between these views, we introduce two new
operators: createfragments(), and its complement,
merge(). Createfragments() decomposes a sequence into
fixed length overlapping substrings, a form of q-grams
[20]. Merge() reconstitutes these q-grams into sequences.
Algebraically these are treated very similarly to the unnest
and nest operators of an extended-relational algebra [26].

To programmatically handle the two views and to
enable a persistent materialization of the q-grams as a
special access path to the full sequences we introduce
sequenceviews. See Section 3.

We have already used these language developments in
an application in comparative genomics. In Section 4, we
describe how we performed a search for conserved primer
pairs between two genomes, showing that it is possible to
express important genomic analysis problems in small
SQL programs [46]. We also demonstrate how MoBIoS
can be used to compute homology searches similar to
BLAST.

In Sections 5 and 6, we detail the characteristics of
biological workloads and argue that in this domain this
form of materialization is clearly the best. We present the
results of a performance where we evaluated an instance
from each of the three major classes of metric-space
indexing algorithms and show that, for our applications,
multi-vantage point (MVP) trees perform the best. We
detail the optimization of our implementation of an MVP-
tree, its execution speed and its accuracy on a yeast
homology benchmark suite developed at NCBI [39]. The
results reveal scalable execution speeds tending to O(log
n) and accuracy comparable to BLAST.

2. Related Work

The hyper-exponential growth and increasing

importance of biological sequence data to the conduct of
research motivates new approaches of biological sequence
management where sequence data is preprocessed off-line
and organized in data structures such that on-line queries
can be executed quickly.

There has been recent activity involving metric-space
indexing methods. The SST system reports 1 and 2 order
of magnitude speed improvements over BLAST [16].
SST comprises nearest-neighbor searches based on
Hamming distance using a vector space mapping of q-
grams and a TSQV tree. Results were reported only for
sequence assembly. Chen and Aberer proposed a system
composed of M-trees and a metric upper-bound on local
alignment scores. No performance figures have been
published. The most far-seeing work was a paper by
Wang and Shasha in 1990, which was one of the earliest
to propose algorithms to search metric spaces by
precomputing and storing selected distances [47]. They
further characterized the metric-join problem and
presented results on finding similar proteins for a set of
151 proteins made up of less than 21 amino acids. The
metric comprised a normalization of the PAM distance
made possible by first computing all pair-wise distances.

A challenge in these approaches is that biologically
effective results must include a model of similarity based
on evolutionary or other biochemical properties. Most
often the model is captured as a set of weights in a
substitution matrix; most notable are the PAM and
BLOSUM matrices for amino acid substitution [14].
Even BLASTn uses a weight matrix to generate the scope
of the hot-spot neighborhoods around the query.

What is most vexing is that query results are very
sensitive to the weighting model. This should not be
surprising. Even though there is no explicit dimensionality
to this problem, the curse of dimensionality still applies
[5]. Thus, just slight distortions of the space due to an
inaccurate weighting model can lead to dramatically
different answers [1, 27]. This property also makes it
difficult for any system that leverages an upper bound on
distances to produce effective results.

Our work is predicated on our earlier results where we
developed the first biologically validated metric
substitution matrix, mPAM [44]. In that paper we
compared mPAM to other metrics, including simple edit
distance, and showed that simple edit distance does not
product biologically effective results for most
applications. This is one reason SST has not been
extended to a more general algorithm.

The database effort that is closest to our work in
structure is by Gravano et al. [18]. That effort comprised a
pure SQL system where auxiliary q-gram tables were
materialized at runtime and string-matching operations
could be conducted using standard queries. They further
developed an approximate string matching method that
concerned exploiting bounds concerning the density of
matching q-grams. Like SST, the lack of an evolutionary
model prevents this from being generally applicable to
biology. The decision by Gravano et al. to devise a q-
gramming method to work on top of already existing

databases does not allow for the use of complex weight
matrices without resorting to computationally
cumbersome User Defined Functions. Furthermore,
although mentioned as a possibility, metric-space indexing
was not pursued.

A number of efforts have introduced inverted indexes
on q-grams [10, 28, 34, 42, 48]. These systems are
proving to be very fast and useful when used as either a
coarse filtering mechanism or when applied to genomic
analysis problems on evolutionarily close sequences [37].
Another specialized index structure, the suffix-tree, has
also been tested with respect to both accuracy and
scalability on very large data sets [25, 30].

To support query optimization, any system that
promises to tie an SQL engine to physical access plans
must have an algebra. In that regard this work utilizes
elements of both an extended-relational algebra for
complex types and the PiQA algebra for querying protein
sequences [26, 43]. The relationship of our work to these
algebras will be spoken of in the paper.

3. mSQL

We have coined the term mSQL to describe our

keyword and operator additions to the SQL92
specification. We will use the explanation of a simple
query to find homologous regions in two genomes as a
running example to detail the merits of the system. The
schema for a simple database is defined in Figure 1.

In addition to the standard SQL data types, MoBIoS
includes built-in data types for DNA and Protein
sequences, as well as Spectra (to support Mass
Spectroscopy analysis). In the example, we assume for
simplicity that each chromosome sequence has been
assigned a unique id, often called its accession number.
We will also assume that DNA_Sequence is a string. Its
complete definition entails biological semantics beyond
the scope of this paper (e.g. equivalence of reverse-
complements). We will be looking for homologous
regions of length q between the Rice and Arabidopsis
genomes that differ by at most n nucleotides. For brevity,
the Rice ‘genome’ is illustrated as two functional units
(possibly representing chromosomes or genes) and is 11
nucleotides long. The Arabidopsis ‘genome’ is just 6
nucleotides long. Our database is populated as shown in
Table 1.

From the logical perspective, our primary contributions
are two new operators: createfragments(), its complement,
merge(). We also introduce a new type of view,
sequenceview.

Createfragments() decomposes sequences into
overlapping substrings, also known as q-grams.
Algebraically, createfragments() is the unnest operator
tailored to sequences in lieu of sets. If the substrings did
not overlap, the behavior would be identical to unnest
applied to a representation of sequences as a set of
substrings.

Merge() maps sets of gap-free q-grams back into larger
sequences. There are two forms of the merge() operator:
A one-dimensional case where merge() is applied to the q-
grams of a single attribute possibly filtered through a
select predicate, and a two-dimensional case where
merge() is applied to the results of a string matching join
between two attributes. Although the semantics may be
obvious, completeness of the algebra requires us to
include a groupfragments() operator which serves to
ensure that merge() is applied only to groups of q-grams
from the same sequence and therefore can be merged.

A sequenceview is a physical database construct
analogous to SQL’s view. Explicit in a sequenceview is
the materialization of createfragments() as a secondary
metric-space index.

3.1 Createfragments(): Unnesting Sequences

 Createfragments() takes two arguments: a table name
followed by the sequence attribute (in dot notation) and
the length of the substring. The specification of a
sequence attribute helps maintain generality in the case
where a table is defined with more than one sequence
attribute. The second parameter serves the purpose of
defining a sliding window on the sequences. For our
example, we will be looking for homologous regions of
length three, so we define the length of the q-gram to be
three. Thus the query in Figure 2 on the genomes table in
our example database would yield the result shown in
Table 2.

CREATE TABLE genomes(
Organism VARCHAR,
Acc_num INTEGER,
DNA_Sequence JAVA_OBJECT(DNA),
CONSTRAINT PK_genomes PRIMARY KEY (Acc_num));

Figure 1 Schema definition for example

SELECT *
FROM CREATEFRAGMENTS(genomes.DNA_Sequence, 3)
WHERE Organism = ‘rice’;

Figure 2 Createfragments() syntax

Table 1 Example database
genomes

Organism Acc_num DNA_Sequence

rice 1 AGAAC

rice 2 CCGGAT

arab 3 AACAAC

The details of the mapping mechanism are as follows.
Assume a set of sequences, S = {s1, s2, …, sn}, with
lengths l1, l2, …, ln. The fixed fragment length is q. Thus,
each sequence si can be split into mi= li – q + 1 fragments.
We can compute the total number of fragments m = ∑mi.
We number the fragments from 1 to m. Then, given the
number of a fragment, we can compute which sequence it
is from and its offset in the sequence. For example, we
have two sequences s1=”agaac” and s2=”ccggat” of
lengths 5 and 6 respectively. The fragment length is 3, and
we start a fragment for each character. Thus, s1 can be
split into 3 fragments and s2 can be split into 4 fragments.
The total number of fragments is 7. We number the
fragments 1, 2, …, 7. The 6th fragment is from s2 at offset
2, i.e., “gat”. This can be verified in the results from the
createfragments() operation shown in Table 2.

On the surface, createfragments() may appear similar
to PiQA’s match operator, since both divide a sequence
into a set of subsequences. However, in PiQA scoring is
done at the match level, such that the match operator takes
a set of strings and a string or a regular expression and
returns a set of matches. The createfragments() operator is
much more general in that it is completely separated from
any scoring system, i.e., ‘matching’ is only performed
once the createfragments() operation has been completed.
This allows, for example, the possibility of a two-
dimensional merge join.

3.2 Sequenceview

By logically representing sequences as tables of q-

grams we can use built-in join operators to compare the
contents of the sequences to each other. This by itself is
not new. Gravano et.al. explicitly materialized q-grams in
an auxiliary table [20, 21, 38] such as the one shown in
Figure 4. However, materializing q-grams as auxiliary
tables at runtime is simply not feasible for strings
representing entire genomes. The lengths of the actual
Rice and Arabidopsis genomes are ~5x108 bp and
~1.5x108 bp respectively. With a q-gram size of 18, (the
size used in our search for conserved primer pairs), we
would be looking at generating ~6.5x108 rows of 18
characters each, or ~9.55x109 extra characters.

Furthermore, once a sequenceview is materialized, it
may be accessed multiple times—reducing the impact of
the cost of the metric-index build and giving O(log n)
access times. Figure 3 illustrates the creation of
sequenceviews for the example problem.

A sequenceview is comprised of two major elements:
1. Sequences that are to be included in this

sequenceview are derived in the standard method
involving a SQL query, including the explicit
decomposition of the sequences into q-grams using
createfragments() (lines 2-4).

2. A [metric] index is specified as the access-path for
the q-grams (line 5).

Part of the generality of metric-space indexes is that the
development of the index mechanism is independent of
the metric-distance function (metric). In addition to the
usual arguments to create a secondary index, the creation
of a metric-space index is parameterized by the choice of
metric.

Sequences are traditionally stored as long characters.
Once createfragments() splits the sequences into a set of
fragments based on the input parameter of fragment
length, a metric-space index tree can be built over these
fragments. This index tree can be used to accelerate
matching of fragments. The details of materializing
sequenceviews are described in Section 5.

3.3 Merge(): One-Dimensional Case

Given a set of q-grams, it is necessary to assemble

them back into longer sequences. The set of q-grams may
have been the argument to relational operators, and not all
of the q-grams of the original sequence may be present in
the computed result (e.g., q-grams may have been selected
on external annotations such as their location within a
chromosome). Informally, if two q-grams overlap or
merely adjoin with respect to the original sequence we
wish to merge them into a longer sequence. The one-
dimensional merge operation takes one argument: a table
name followed by the sequence name to merge on, in dot
notation.

Table 2 Createfragments() result
CREATEFRAGMENTS(genomes.DNA_Sequence, 3)

Organism Acc_num DNA_Sequence
rice 1 {0, AGA}
rice 1 {1, GAA}
rice 1 {2, AAC}
rice 2 {0, CCG}
rice 2 {1, CGA}
rice 2 {2, GAT}
rice 2 {3, ATT}

1.CREATE SEQUENCEVIEW rice_sview AS
2. SELECT *
3. FROM CREATEFRAGMENTS(genomes.DNA_Sequence, 3)
4. WHERE Organism = 'rice'
5.USING base_pair_mismatch;

6.CREATE SEQUENCEVIEW arab_sview AS
7. SELECT *
8. FROM CREATEFRAGMENTS(genomes.DNA_Sequence, 3)
9. WHERE Organism = 'arab'
10. USING base_pair_mismatch;

Figure 3 Creation of sequenceviews

Definition 1 One-dimensional merge: A q-gram with
parameters k and m is a substring of a sequence of the
form sk, sk+1, sk+2, ..., sm. Two q-grams q1 (with parameters
k1 and m1) and q2 (with parameters k2 and m2) are
mergeable and can be merged into one longer q-gram q3
(with parameters k3 and m3) iff

 q1 and q2 have the same parent sequence,
 (k1 ≥ k2 and k1 ≤ m2) or (k2 ≥ k1 and k2 ≤ m1),
 k3 = min(k1, k2),
 m3 = max(m1, m2).

The merge of two q-grams q1 and q2 can be expressed as
q3 = merge(q1, q2).

It is easy to see that the one-dimensional merge() is the
inverse of the createfragments() operation. Thus,
merge(createfragments(s))=s, where s is any set of
sequences. In SQL terms, the query:

SELECT MERGE(cf.DNA_Sequence)
FROM CREATEFRAGMENTS(genomes.DNA_Sequence, 3) AS cf;

returns the contents of the original ‘genomes’ table.

3.4 Merge(): Two-Dimensional Case

A metric-space join is similar in concept to a spatial

join. The goal is to determine pairs of objects that fulfill a
certain distance predicate. In Figure 4, we illustrate the
final SQL program for identifying q-grams from our two
genomes that differ by at most one nucleotide.

Analogous to spatial extensions of SQL, mSQL allows
distance predicates for selects and joins. The syntax has
been expanded to allow the specification of a metric. In
addition to built-in metrics, users may extend MoBIoS
with their own definitions of new metrics.

In the final result, we are interested in pairs of highly
similar regions, not collections of q-grams. Overlapping
q-grams can only be merged if they exhibit like overlap in
both genomes. Thus, we have a two-dimensional merge()
operation. If we want to merge the results from some join
operation, the merge() operation actually happens in each
separate sequence, but needs to take into account the
offset difference.

The two-dimensional merge() operator has two forms,
each taking either two or four arguments. The first two
arguments are always the attribute names for the fragment
columns to be merged, the third argument is an (optional)
gap function for similarity computation between two
fragments, and the fourth argument is the (optional)
threshold used to filter the merged fragments within
similarity specified by a numerical value. See Figure 5.

Definition 2 Two-dimensional merge(): Two pairs of q-
grams (q1, q2) and (q3, q4) are mergeable and can be
merged into one longer q-gram pair (q5, q6) iff (assume q-
gram qi has parameters ki and mi)

 q1 and q2 are of the same length, and q3 and q4 are
of the same length,
 q1 and q3 are mergeable,
 q2 and q4 are mergeable,
 k3 - k1 = k4 - k2,
 q5 = merge(q1, q3),
 q6 = merge(q2, q4),
 if a gap function g and threshold d are specified,

then g(q5, q6) < d,
 q5 and q6 are of the same length.

Only when the offset differences are the same can the
fragments be merged. In Figure 7, for the first row and
second row of the join results, the offset difference for the
fragments of sequence 1 is 1, and the offset difference for
the fragments of sequence 2 is also 1. Thus the first two
fragments can be merged into one fragment for sequence 1
and sequence 2, respectively.

Through merge() operations, the query result size can
be reduced without a loss of information.

3.5 Groupfragments()

A groupfragments() operator is included to ensure that
merge() is applied only to q-grams derived from the same
sequence and can therefore be merged. The
groupfragments() operator is used to group sets of
fragments, where each group can be merged into exactly
one larger piece of fragment.
Definition 3 Fragment group: A set S of q-grams {q1,
q2, ..., qm} is in the same fragment group iff

 S is of size 1, or
 ∀qi∈S, ∃qk∈S (i ≠k), qi and qk are mergeable.

SELECT MERGE(R.fragment, A.fragment)
 FROM rice_sview as R, arab_sview as A

WHERE distance('base_pair_mismatch', R.fragment,
A.fragment) <= 1.0

GROUP BY R .fragment, A.fragment;

Figure 4 Metric Join

Figure 5 Results of merge() operation

Join Results (after GROUP BY)

Org.
Acc_
num

DNA_
Sequence

Org.
Acc_
num

DNA_
Sequence

rice 1 {0, AGA} arab 3 {1, ACA}

rice 1 {1, GAA} arab 3 {2, CAA}

rice 1 {2, AAC} arab 3 {3, AAT}

rice 1 {2, AAC} arab 3 {0, AAC}

rice 2 {2, GAT} arab 3 {3, AAT}

 MERGE(R1.DNA_Sequence, R2.DNA_Sequence)

Org.
Acc_
num

DNA_
Sequence

Org.
Acc_
num

DNA_
Sequence

rice 1 {0, AGAAC} arab 3 {1, ACAAT}

rice 1 {2, AAC} arab 3 {0, AAC}

rice 2 {2, GAT} arab 3 {3, AAT}

The SQL92 GROUP BY keyword is overloaded to
represent the groupfragments() operator as illustrated in
Figure 4.

The groupfragments() operator is quite different from
the traditional SQL group operator. The traditional group
operator is based on equality, i.e., only equal objects
should be in the same group. groupfragments is based on
the mergeable property of different objects as defined in
the prior section.

Merge() and groupfragments() also have an analog in
the PiQA algebra, where they are implemented as a single
match extension operator [43]. However, as in the case
with the match operator, the PiQA match extension
operator does not consider querying in high-dimensional
cases—joins, for example.

4. Application Examples

Two application examples (conserved primer pair

discovery and homology search) are given in the
following sections to justify the functionality of
sequenceview and the operators defined above.

4.1 Conserved Primer Pair Discovery

The query involves joining the genomes of Rice and
Arabidopsis in search for shared substrings that fulfill a
number of experimental properties. (In biological terms,
we are seeking universally conserved PCR primer pairs
spanning a quickly evolving region.) The pattern-based
description of the goal is to find shared substrings
between genomes, such that a substring 400-3000
nucleotides long is bounded by a pair of substrings at least
18 nucleotides long. The pair of short bounding
substrings must have a minimal number of mismatches
between the two species, specified in the query. The long
middle stretch does not need to match between the
genomes or be the same length. The schema is the same as
outlined for our sample database in Figure 1. The
specification of the problem and the mSQL query are
shown in Figures 6 and 7.

Note that the mSQL query for this problem is only
slightly more complex than that for our simple example.
Problems of this kind are increasingly frequent and
researchers continually implement ad-hoc computer

programs to solve it [32, 46]. We solve the problem in
four steps, using the MoBIoS platform to conduct the
analysis:

 Create sequenceviews rice_sview and arab_sview
on the rice and arab genomes, respectively. This is
the same as for our sample in Figure 5, except the
fragment length is set to 18 instead of 3.

 Utilize the metric-space index to metric join
rice_sview and arab_sview, allowing at most a one
nucleotide mismatch in primer regions (lines 4 and
5).

 Ensure the conserved regions are 400-3000
nucleotides apart (lines 6 through 9).

 Merge the resulting q-grams into long sequences
(line 1).

Optimization can be done at the metric join step with
the help of a metric-space index defined on two
sequenceviews rice_sview and arab_sview. Our current
implementation comprises indexed nested-loops. The
problem was solved in less than 2 days using four
concurrent processes on a Sun 6800, and we anticipate a
join-operator inspired by merge-join to solve this problem
in a few hours on a single processor. The results are
currently being validated in a wet lab.

4.2 Homology Search

Homologous sequence search is a basic task performed

in bioinformatics where homologous means high
similarity between sequences. The similarity score for two
genomic sequences is calculated on pair-wise alignment,
where local alignment is commonly used. For a genomic
sequence database, homologous search can be viewed as a
range query.
Definition 4 Homology search problem: Given a
sequence q and a collection of sequences S, the homology

Figure 6 Finding conserved primer pairs

1.SELECT merge(R1.DNA_Sequence, A1.DNA_Sequence)
2.FROM rice_sview as R1, rice_sview as R2, arab_sview as A1,

arab_sview as A2
3.WHERE
4. distance('base_pair_mismatch', R1.DNA_Sequence.fragment,
A1.DNA_Sequence.fragment) <= 1.0 AND
5. distance('base_pair_mismatch', R2.DNA_Sequence.fragment,

A2.DNA_Sequence.fragment) <= 1.0 AND
6. R2.DNA_Sequence.offset - R1.DNA_Sequence.offset >= 400

AND
7. R2.DNA_Sequence.offset - R1.DNA_Sequence.offset <= 3000

AND
8. A2.DNA_Sequence.offset - A1.DNA_Sequence.offset >= 400

AND
9. A2.DNA_Sequence.offset - A1.DNA_Sequence.offset <= 3000
10.GROUP BY R1.DNA_Sequence, A1.DNA_Sequence;

Figure 7 mSQL query for conserved primer pair
discovery

search problem, HS(S, q, d), is to identify all sequences s ∈
S where LocalSimilarity(s, q)<d.

Note that there is an intrinsic exponential in the size of
a local alignment problem in which any ordered subset of
the elements of S should be considered.

The general framework for computing local-alignments
by matching q-grams was first proposed and analyzed by
Myers, contemporaneously with the development of
BLAST [49, 34]. The basic algorithm consists of building
a sequence database S offline, (i.e., creating a
sequenceview S_sview), and then performing the online
search query. The search query will be converted into a
set of range queries, based on q-grams of the query
sequence, whose results will be merged together to form
the final answer. Given sequenceviews S_sview and
q_sview, for a collection of sequences S and query
sequence q, respectively, the mSQL query to solve the
homology search problem is illustrated in Figure 8.

5. Materializing Sequenceviews

Views may be materialized at query time or
materialized and maintained as additional database tables
or database indexes [6]. The advantages of each method
are measured as trade-offs in time and space relative to a
workload. In the application of sequenceview to
biological databases the workload strongly suggests that a
sequenceview be materialized and maintained as an index.

The data in biological sequence databases is almost
always write-once and monotonically increasing. Such
databases embody a growing knowledge of biological
molecules. Once identified, they become a permanent
part of the corpus. If mistakes are found, they are usually
corrected through versioning. The culture of biology does
not permit erasing entries in laboratory notebooks, and
these databases are their modern electronic equivalent.

Under this workload it is safe to exclude the cost of
maintaining a view in the face of updates and deletes to
the base relations. Under some simple models of q-gram
similarity it may work out that q-grams could be
materialized and compared at query time. The push in
genomic databases today is to remove the linear scan that
that would entail. These facts together allow us to move
straight to an assessment of the materialization of a
sequenceview as an index.

5.1 Approaches to Metric Spaces

There are three categories of index algorithms for
metric-space index trees: radius-based trees (RBTs),
generalized-hyperplane trees (GHTs), and vantage point
trees (VPTs). See Chavez et al. for an excellent survey
[11].
Radius-based methods were inspired by R-trees [23]. In a
radius-based method, a data point c is chosen as a center
and a radius r determines a bounding sphere. All points p,
such that d(c,p)<r are contained in the sphere. Ciaccia et
al.’s M-trees are radius-based. Ciaccia et.al.’s effort
stands out as the single investigation of an external metric-
space index structure with all of the properties expected of
a database index [10, 11]. It is ??? paged mapped and
capable of supporting a dynamic series database side
effects.
In anticipation of integrating M-trees into MoBIoS, we
evaluated M-trees for the indexing of protein q-grams.
We were not satisfied with the results and made some
improvements [31]. The challenges we noted in M-trees
are that bounding spheres may overlap, diminishing the
pruning behavior of the search. The performance of the
M-tree is sensitive to the initial clustering of the data. We
optimized the internal node structure and search
mechanism from an RB-tree (RBT) and developed an
improved bulk-loading scheme [19, 20].
In a generalized-hyperplane tree, data points are selected
to be centers, but radii are not computed. The tree uses the
hyperplane between clusters as the pruning criterion for
search. Given centers c1 and c2, query object q, and range
query radius r, the cluster defined by c1 is entered if d(q,
c1) – r < d(q,c2) + r. The difference between an RBT and
a GHT is that a GHT has no radius and its clusters do not
overlap. Brin describes GNAT trees, which comprise a
GHT structure and distance ranges from each center to
each cluster [9].
A multi-vantage point tree, (MVP-tree), is built by first
selecting a given number of points as the vantage points.
The distance range from each vantage point is broken into
intervals. The Cartesian product of the intervals forms a
set of data partitions. Each data element is allocated to a
partition by calculating its distance to each vantage point
[3, 4, 8, 50]. The construction is applied recursively to
form an index tree. See Bozkaya and Ozsoyoglu for
details [3, 4].

5.2 Empirical Comparison of RBT, GHT and
MVPT
To obtain better performance, we continue to compare
RBTs, GHTs and VPTs. Our implementations of a GHT
and VPT are slightly different from the original structures.
Originally, both GHTs and VPTs reside in main memory,
which makes them unscalable for large datasets. In our
implementations, both trees are paged so that their index
nodes can be fit in disk pages. Thus, the number of index

SELECT merge(R.fragment, A.fragment, g, d)
FROM S_sview as R, q_sview as A
WHERE distance(metric_name, R.fragment, A.fragment)<=

radius

Figure 8 Homology search

nodes visited can be a measurement of the amount of I/O,
and our goal is to minimize the number of index nodes
visited. Moreover, our implementation actually combines
a GHT and an RBT together. Specifically, the radii are
stored, and both the RBT search rules and hyperplane
search rules are used.

In our implementation of a multiple vantage point tree
(MVPT), the number of vantage points and the split
number of each vantage point are decided by the disk
page size. Furthermore, we use a farthest-first-traversal
(FFT) [24] algorithm to select vantage points, and the
dataset is evenly divided. FFT is a k-center algorithm,
which is guaranteed to generate a clustering in which the
maximum cluster radius is within a factor of 2 of optimal
[24].

The three index structures were tested by running range
queries on Yeast protein datasets, which were indexed for
global alignment of 5-grams using the mPAM weight
matrix. The experiment results are presented in Figure 9.
In this figure, for each index tree, we show the
relationships between the range search radius and the
number of distance calculations and the amount of I/O.
From Figure 9 we can see that the RBT has the largest
number of distance calculation and the MVPT has the
largest number of I/O for large radii. However, the MVPT
yields the best performance for small proximity search
radii.

5.3 Paged MVP-tree for Materializing
Sequenceviews

In our applications, biologically effective results are

gained at small search radii. Thus we select MVP-trees as
the index structure for protein sequences. We use a
fragment size of 5. The size of the alphabet of peptides is
20 (There are 20 different amino acids). Thus, there are
205 = 320,000,000 different fragments. For large datasets

(millions of amino acids), multiple fragments will have the
same contents. Therefore, a search computes many
unnecessary distance calculations.

To solve this problem, we bucket the fragments in
index leaves. For each leaf index node, fragments with the
same content are put into one bucket. Only one distance to
each vantage point is stored for all of the fragments in one
bucket. When a query is executed, if a bucket cannot be
pruned, the query must only compute distance with one
fragment in the bucket to decide whether or not all of the
fragments in the bucket are valid results. The index
structure of the MVPT with bucketing is shown in Figure
10.

6. Empirical Results

Although several variations of metric-space indexing

have been successfully applied to nucleotide sequences,
none of them has shown general applicability to peptides
due to a larger alphabet size and the complex relationships
among amino acids. However, sequence searches on
peptides occur 10% more than on nucleotides, according
to a survey conducted by Goble et. al. [17].

The primary challenge of indexing peptides in metric
space is to properly define the distance between amino
acids. Sellers first proposed this problem in 1974 [40]. In
our previous work, we derived an amino acid substitution
matrix, mPAM, which satisfies the metric distance
properties [44]. Using a metric distance function defined
by mPAM for sequence fragments with fixed length, we
built an index structure for protein sequences based on the
MVP-tree. Unlike other similar work where only exact or
near exact matching fragments can be searched, our
method searches fragments within a given radius based on
global alignment. The trade-off between speed, accuracy
and selectivity has been studied and reported in [45].

In this section, we focused on our experimental results
conducted on a protein sequence domain using our
implementation. The results show that our implementation
has scalable, sensitive search performance on biological
sequences.

#dist. cal.: RBT VS. GHT VS. MVPT

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2 4 6 8 10radius

#
d
i
s
t

c
a
l
.

RBT

GHT

MVPT

#I/O, RBT VS. GHT. VS MVPT

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10radius

#
I
O

RBT

GHT

MVPT

Figure 9 Comparison of metric-space index
structures: RBT, GHT, and VPT

Figure 10 MVPT with bucketing index
structure

6.1 Methods and dataset

We used two datasets in our studies. To assess
sensitivity, we used an accuracy benchmark suite curated
and furnished by NCBI. The dataset contains 6433 yeast
protein sequences (about 2,892,155 residues). The query
set contains 103 sequences whose true positive hits have
been identified by human experts and whose curation is
continually refined [39]. The benchmark suite was
downloaded in August 2002
(ftp.ncbi.nlm.nih.gov/pub/impala/blastest).

For each query sequence s of length k, s is divided into
a set of q-grams, {fi| i=1..k-q+1}, referred to as query
fragments. We collect all the results from the range query
QSD(fi,r) for all i and a greedy chaining algorithm is used
to compute the final answers. The accuracy is measured
using receiver-operating characteristic (ROC) scores, a
popular measure used in biology [18]. A similar method
was also used for measuring the accuracy of PSI-Blast
[39]. For each query, the ROC50 value is computed by
comparing the result list with the list of true positive hits.
The ROC50 value has been computed as follows:

ROCn =
1

nT
i=1
Σ
n

ti (1)

where ti is the number of true positive hits ranked ahead of
the ith false positive, and T is the total number of true
positives.
The data used for the scalability study was downloaded
from Genbank in July 2003
(ftp://ftp.ncbi.nih.gov/genbank/genpept.fsa.z). The dataset
contains FASTA formatted amino acid translations
extracted from GenBank/EMBL/DDBJ records that are
annotated with one or more CDS features. A set of
databases was built with different subsets of the data that
were taken sequentially from the full dataset. The same set
of queries from the yeast benchmark was used for all of
the databases.

6.2 MVP Tree Parameter selection

There are three parameters associated with our MVP
tree implementation: the number of vantage points in each
node, the number of children of each vantage point and
the maximum number of data points in each node. Figures
11 and 12 show the experimental results for various
parameter combinations. There is always a trade-off
between the number of leaves visited and the number of
distance calculations needed. The more data points a node
has, the less leaf nodes need to be visited. However, a tree
with bigger nodes requires more distance calculations on
each search. Based on this data, we decided to use two
vantage points per node, two children per vantage point
and a maximum number of 100 data points per leaf node.

6.3 Quality of Search Result

Table 3 compares the average ROC50 score for each
query from our algorithm and the results using other
searching algorithms with the same benchmark. In the
AutoRadiusSearch, the search radii are automatically
adjusted based on the prediction of the number of
matching q-grams. We show that, using metric space
indexing, protein sequence homology search could yield
accuracy comparable to BLASTp on the same benchmark.
Note that the accuracy of results is actually affected by
many factors, such as the value of the substitution
matrices, searching strategies and chaining strategies, etc
[2, 39].

Figure 11 Average number of distance
calculations per query for various tree

structures

0

5 0 0 0 0

10 0 0 0 0

15 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

0 1 2 3 4ra d iu s

A
ve

ra
ge

 n
u

m
be

r
of

 D
is

ta
nc

e
C

al
cu

la
tio

n
pe

r
se

ar
ch

rb t v p _ 5 0 _ 4 _ 4 v p _ 2 0 0 _ 3 _ 3

v p _ 2 0 0 _ 2 _ 2 v p _ 10 0 _ 2 _ 2 v p _ 10 0 _ 3 _ 2

Figure 12 Average number of leaf nodes
visited per query for various tree structures

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1 2 3 4
radius

A
ve

ra
ge

 n
um

be
r

of
 le

af
-n

od
es

 v
is

ite
d

pe
r

se
ar

ch

rbt vp_50_4_4 v p_200_3_3

vp_200_2_2 vp_100_2_2 v p_100_3_2

Table 3 Comparison of average of ROC50 value for
various searches

Search
Method Matrix Average ROC50

mPAM 0.48

PAM250 0.59
Sequential Search with Smith-

Waterman local alignment
algorithm PAM70 0.5

Radius 3 0.45

Radius 4 0.53
Indexed
Search

AutoRadiusSearch

mPAM

0.5

PAM250 0.53
BLASTP

PAM70 0.42

6.4 Scalability

To evaluate the scalability of our algorithm, we use the

same query set as used in the accuracy benchmark against
various sizes of databases using AutoRadiusSearch. The

average number of distance calculations and the average
number of leaf nodes visited are plotted in Figure 13.
Both figures reveal scalability with the size of the
database. It’s also interesting to note that both numbers
slightly decreased for a larger dataset.

We have reason to believe that as the database grows
the logical locality of the clusters starts to correspond
better to the physical clustering on pages [31]. The affect
is that entire contents of sub-trees could be found and
returned in their entirety without further distance
calculations, thus reducing the number of distance
calculations. Similarly, entire sub-trees can be pruned
reducing search cost.

6.5 Bucketing Duplicated Entries

 Based on the experimental results, we decided to use q-
grams of length 5 for peptide indexing [45]. Since the
alphabet size of a peptide sequence is 20, the complete
space of q-grams will quickly be covered as the number of
q-grams increases. Furthermore, some q-grams have a
significantly higher repetition rate than others because of
the non-uniform distribution of amino acids.

Figure 14 shows the comparison between actual and
predicted results based on a uniform distribution of the
average number of q-grams per query for varying radii. To
avoid repetitive computation and redundant storage, we
used a bucket-like data structure to store a list of different
locations where the q-gram occurred more than once.
Figure 15 shows that the bucketing structure can decrease
the average number of distance calculations even for the
benchmark dataset, which barely covers the space of q-
grams with length 5. Such a data structure will be more
effective and assure scalable search performance for a
larger dataset.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

radius

A
ve

ra
ge

 (
A

ve
ra

ge
 n

um
be

r
of

 q
-g

ra
m

s)
 r

et
ur

ne
d

pe
r

qu
er

y

max

min

average

average pred

min pred

max pred

Figure 14 Duplicated entries in the benchmark
dataset.

5 - g r a m r a d i u s 3 s e a r c h

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

1 0 0 0 0 0

0 5 E+ 0 7 1 E+ 0 8 2 E+ 0 8 2 E+ 0 8 3 E+ 0 8 3 E+ 0 8

Da t a b a s e Si z e (b a s e s)

av
er

ag
e

nu
m

be
r

of
 d

is
ta

nc
e

ca
lc

ul
at

io
n

pe
r

q-
gr

am
 q

ue
ry

Figure 13a Average number of distance
calculations per q-gram search for different

size datasets

5- gr am r adi us 3 s eac h

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0

Dat abas e s i z e (bas es)

av
er

ag
e

nu
m

be
r

of
 n

od
es

 v
is

ite
d

pe
r

q-
gr

am
 s

ea
rc

h

Figure 13b Average number of leaf nodes
visited per q-gram search for different size

datasets

7. Conclusion and Future Research

We have spoken specifically of language and physical

structures that will enable database management systems
to directly support biological sequence analysis. The
approach facilitates both homology searches and
comparative genomic analysis. We have shown the
scalability of MVP-trees on protein q-grams. However,
many open problems remain. Our current implementation
of a metric-space join is composed of indexed nested
loops. When n is in the range of 107-1010, even O(n log n)
algorithms become computationally challenging. Given a
tree-structured access path one can anticipate merge-join
like algorithms that would tend toward O(n) execution
time, (assuming output size is small). In the case of a self-
join a simple recursive descent of the index will work for
most, if not all, tree-based methods of metric-space
indexing. We anticipate that comparative genomics
problems similar to the one we computed in 8 processor
days will take a few hours to complete, including building
the indexes. Solutions to the more general problem are
much more difficult and cannot be diverged from the
indexing method.

Also in question is the broader applicability of the
language and physical structures. Q-gram approaches are
endemic to information retrieval [48]. Q-gram methods
first derived for speech recognition are now being
extended toward the retrieval of music files by humming
[15]. It is plausible that sequenceviews and their
supporting structures could facilitate these and more
traditional sequence applications.

8. References

[1] Alex C.W. May. Towards more meaningful hierarchical
classification of amino acid scoring matrices. Protein
Engieering, 12(9): 707-712, 1999.

[2] Altschul, S.F., and Gish, W. Local alignment statistics.
Methods Enzymol.266: 460-480, 1996.

[3] Altschul, S.F., Gish, W., Miller, W., Myers, E. W., and
Lipman, D. J. Basic local alignment search tool. J. Mol.
Biol. 215: 403-410, 1990.

[4] Altschul, S.F., Bundschuh, R., Olsen, R., and Hwa, T. The
estimation of statistical parameters for local alignment
score distributions. Nucleic Acids Res., 29: 351-361, 2001.

[5] Bellman, R. Adaptive Control Processes: A Guided Tour.
Princeton University Press. U.S. 1961.

[6] Blakeley J. A., Larson P. A., and Tompa F. W. Efficiently
Updating Materialized Views. In Proc. ACM SIGMOD,
61-71, Washington D.C., June 1986.

[7] Bozkaya T., and Ozsoyoglu M. Distance-based indexing
for high-dimensional metric spaces. In Proc. ACM
SIGMOD International Conference on Management of
Data (1997) 357-368, 1997.

[8] Bozkaya, T., and Ozsoyoglu, M. Indexing Large Metric
Spaces for Similarity Search Queries. Association for
Computing Machinery Transactions on Database System,
11-34, 1999.

[9] Brin, S. Near neighbor search in large metric spaces. In
Proc. 21st Conference on Very Large Database (VLDB’95),
574-584, 1995.

[10] Califano, A., and Rigoutsos. I. FLASH: A fast look-up
algorithm for string homology. In International Conference
on Intelligent Systems for Molecular Biology, 56-64, 1993.

[11] Chavez, E., Navarro, G., Baeza-Yates, R., and Marroquin,
J.L. Searching in metric spaces. ACM Computing Surveys.
33(3): 273-321, 2001

[12] Chen, W., and Aberer, K. Efficient Querying on Genomic
Databases. In Proc. of 8th Int. Work on Database and
Expert System Applications, 1997.

[13] Ciaccia, P., Patella, M., and Zezula, P. M-Tree: An
Efficient Access Method for Similarity Search in Metric
Spaces. Proc. VLDB, 1997.

[14] Dayhoff M.O., Schwartz R., and Orcutt B.C. Atlas of
Protein Sequence and Structure. Vol. 5. Suppl. 3: 345-358,
1978

[15] Ghias, A., J. Logan, D. Chamberlin, and B. C. Smith.
Query by humming - musical information retrieval in an
audio database. In ACM Multimedia 95, 1995.

[16] Giladi, E., Walker, G. M., Wang, J.Z., and Volkmuth, W.
SST: an algorithm for finding near-exact sequence matches
in time proportional to the logarithm of the database size.
Bioinformatics. 18(6): 873-879, 2002.

[17] Goble, R.S.C., Baker, P., and Brass, A. A classification of
tasks in bioinformatics. Bioinformatics, 17: 180-188, 2001.

[18] Gribskov, M., and Robinson, N. L. Use of receiver
operating characteristic (ROC) analysis to evaluate
sequence matching. Computers and Chemistry. 20(1): 25-
33, 1996.

[19] Grossman, D. A., and Frieder, O. Information Retrieval.
Kluwer Academic Publishers, 1998.

[20] Gravano, L., Panagiotis Ipeirotis, P.G., Jagadish, H.V.,
Koudas, H. ,Muthukrishnan, S., and Srivastava, D.

- 5 0 0 0 0

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

0 1 2 3 4 5

r a d i u s

av
er

g
e

n
u

m
b

er
 o

f
d

is
ta

n
ce

ca
lc

u
la

ti
o

n

mv p wi t h
buc k e t
mv p w/ o bu c k e t

Figure 15 Average number of distance calculations
using a bucketing structure with MVP-trees

Approximate String Joins in a Database (Almost) for Free.
VLDB 491-500, 2001

[21] Gravano, L., Panagiotis Ipeirotis, P.G., Jagadish, H.V.,
Koudas, N., Muthukrishnan, S. , Pouri, L, and Srivastava,
D. Using q-grams in a DBMS for Approximate String
Processing. IEEE Data Engineering Bulletin 24(4): 28-34,
2001.

[22] Gusfield, D. Algorithms on Strings, Trees and Sequences
Computer Science and Computational Biology. Press
Syndicate of the University of Cambridge, USA, 449-454,
1997.

[23] Guttman. A. R-trees: A Dynamic Index Structure for
Spatial Searching. Proc. of SIGMOD, 1984.

[24] Hochbaum, D. S., and Shmoys, D. B. A best possible
heuristic for the k-center problem. Mathematics of
Operational Research, 10(2):180-184, 1985.

[25] Hunt, E., Atkinson, M.P., and Irving. R.W. A database
index to large biological sequences. In VLDB, 139-148,
Roma, Italy, September 2001.

[26] Jaeschke, G., Schek, H. J. Remarks on the algebra of non
first normal form relations. Proceedings of the 1st ACM
SIGACT-SIGMOD symposium on Principles of database
systems, March 29-31, 1982, Los Angeles, California.

[27] Johnson, M. S., and John, P. Overington A Structural
Basis for Sequence Comparisons: An Evaluation of
Scoring Methodologies. J. Mol. Biol. 233: 716-738, 1993.

[28] Kent, W. J. BLAT-The BLAST like alignment tool, 2002.
[29] Lenhard, B., Sandelin A., Mendoza1 L., PEngstrm1,

Jareborg N., and Wasserman W. W. Identification of
conserved regulatory elements by comparative genome
analysis. Journal of Biology 2(13), 2003.

[30] Meek, C., Patel, J.M., and Shruti Kasetty, S. OASIS: An
Online and Accurate Technique for Local-alignment
Searches on Biological Sequences. VLDB 2003: 910-
921Genome Res. 12: 656-664, 2003.

[31] Mao, R., Xu, W., Singh, N. & Miranker, D. P. An
Assessment of a Metric Space Database Index to Support
Sequence Homology. In the proceeding of the 3rd IEEE
Symposium on Bioinformatics and Bioengineering, March
10-12, 2003, Washington D.C

[32] Marcotte, E.M., and Date, S.V. Exploiting Big Biology:
Integrating Large-scale Biological Data for Function
Inference. Briefings in Bioinformatics 2(4): 363-374, 2001.

[33] Miranker, D. P. Xu, W. & Mao, R. Architecture and
Application of MoBIoS, a Metric-Space DBMS to Support
Biological Discovery. 15th International Conference on
Scientific and Statistical Database Management.
(SSDBM03) 241-244, 2003.

[34] Myers, E.W. A sublinear algorithm for approximate
keyword searching. Algorithmica. 12(4/5): 345-374, 1994.

[35] Pearson, W. R., and Lipman, D. J. Improved tools for
biological sequence comparison. Proc. Natl Acad. Sci.
USA, 85: 2444-2448, 1988.

[36] Pevzner P.A., Mulyukov Z, Dancik V, and Tang CL.
Efficiency of database search for identification of mutated
and modified proteins via mass spectrometry. Genome Res.
11(2): 290-9, 2001.

[37] Rouchka, E. C. Gish, W., and States D. J. Comparison of
whole genome assemblies of the human genome. Nucleic
Acids Res., 30(22): 5004 – 5014, 2002.

[38] Sahinalp, C., Macker, S.J., Tasan, M., and Ozsovoglu, M.
Distance Based Indexing for String Proximity Search, to
appear ICDE 2003.

[39] Schaffer, A. A. Aravin, L. Madden, T. L., Shavirin, S.,
Spouge, J. L., Wolf, Y. I., Koonin, E. V., and Altschul, S.F.
Improving the accuracy of PSI-BLAST protein database
searches with composition-based statistics and other
refinements. Nucleic Acids Res., 29(14): 2994-3005, 2001.

[40] Sellers, P.H. On the theory and computation of
evolutionary distances. J. Appl. Math. (SIAM). 26: 787-
793, 1974.

[41] Stuart J. M., Segal E., Koller D., and Kim S. K. A Gene
Coexpression Network for Global Discovery of Conserved
Genetic Modules. Science 302: 249-55, 2003.

[42] Tan, Z., Cao, X., Ooi, B.C., and Tung, A.K.H. The ed-tree:
an index for large DNA sequence databases In Proc. 15th
International Conference on Scientific and Statistical
Database Management (SSDBM 2003) 151-160, 2003.

[43] Tata, S., and Patel, J. PiQA: An Algebra for Querying
Protein Data Sets 15th International Conference on
Scientific and Statistical Database Management.
(SSDBM03) 141-151, 2003.

[44] Xu, W., and Miranker, D.P. A metric model for amino acid
substitution, Bioinformatics, 2004.
(http://www.cs.utexas.edu/users/mobios/)

[45] Xu, W., Miranker, D. P., Mao, R., and Wang, S. Indexing
Protein Sequences in Metric Space. TR.
(http://www.cs.utexas.edu/users/mobios)

[46] Xu, W., Briggs, W. J, Padolina, J., Liu, W., Linder, C. R.,
and Miranker, D. P. Using MoBIoS' Scalable Genome
Joins to Find Conserved Primer Pair Candidates Between
Two Genomes. in press ISMB, 2004.

[47] Wang, T.L., and Shasha, D. Query processing for distance
metrics. In D. McLeod, R. Sacks-Davis, and H. Schek,
editors, Proceedings of the 16th International Conference
on Very Large Databases, 602-613, Brisbane, Australia,
August 1990.

[48] Williams, H. E., and Zobel,.J. Indexing and Retrieval for
Genomic Databases. In IEEE Transactions on Knowledge
and Data Engineering, 14(1): 63-78, 2002.

[49] Wu, S., Manber, U., Myers, G., and Miller, W. An O(NP)
Sequence Comparison Algorithm. Information Processing
Letters, 35(6): 317-323, 1990.

[50] Yianilos, P. Data structures and algorithms for nearest
neighbor search in general metric spaces. In Proc. 4th
ACM-SIAM. Symposium on Discrete Algorithms
(SODA'93) 3s11-321, 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

