
- 1 -

Metric-Space Search of Protein Sequence Databases
Weijia Xu1, Rui Mao1, Shu Wang2, Daniel P. Miranker1

1 Department of Computer Sciences
& Center of Computational Biology and Bioinformatics

2 Department of Electrical and Computer Engineering
University of Texas at Austin

Abstract

Motivation: Growing sequence databases are instigating sequence retrieval systems that construct k-mer
(hot-spot) indexes off-line to speed up the on-line query execution. For fixed k, the content of each index
bucket grows along with the database, diminishing the effectiveness of the index. Thus it is important to
establish effective methods beyond simply indexing BLAST hot-spots, where k equals 3 with
concomitant 8,000 index buckets.
Results: We investigate an evolutionary criterion to directly retrieve an evolutionary neighborhood of k-
mers. The method uses metric-space search and an overlapping k-mer representation of protein databases.
We prove a lemma that enables the comparison of two k-mers using weighted-Hamming distance in-lieu
of global alignment, yielding an O(k) speed-up. We evaluate the trade-offs between scalability, speed and
accuracy and assess several k-nearest neighbor search algorithms. The results extend k to 6 and over 60
million buckets, achieving better scalability and maintaining comparable search accuracy as BLAST.
Availability: http://www.cs.utexas.edu/mobios/
Contact: Miranker@cs.utexas.edu

- 2 -

1 Introduction
The increasing workload of sequence analysis has been the driving force of several efforts to

organize the k-mers of a sequence database in data structures, offline, to speed up the execution time of
on-line queries (Giladi et al., 2002; Kent 2002; Fondrat and Dessen, 1995; Tan et al., 2003; Williams and
Zobel, 2001; Halperin et al, 2003;). The general method to efficiently find homologous regions between
sequences consists of two steps. The first step is to identify evolutionarily close k-mers (substrings of
length k) between a query sequence and sequences in the database. The second step is to stitch these k-
mers together to approximate a local alignment between their parent sequences and the query. Wilbur and
Lipman first proposed such an algorithm. Their method finds similar sequences by identifying common k-
mers between a query sequence and database sequences through hashing (Wilbur and Lipman, 1983).
Similar approaches were then adopted by popular exhaustive sequence searching tools, such as FASTA
and BLAST, which require a linear scan of the entire database for each search (Pearson, 1988; Altschul
et.al. 1990, 1996).

A major goal of our approach is to quickly and directly retrieve matching k-mers within a
biologically meaningful neighborhood of each k-mer in the query sequence. The use of a metric-space
index to implement such retrievals was enabled by the recent development of a validated metric
substitution-weight matrix for amino acids, mPAM (Xu and Miranker, 2004, Sellers 1974). This is in
contrast to the generate-and-test method, pioneered by BLAST, which relies on conventional indexing or
exact matching methods. In BLAST, for each k-mer in the query, all k-mers within a predetermined
similarity threshold are generated. This entire set of k-mers is compared against the database for exact
matches (Altschul et. al., 1990). Accuracy entails a trade-off between k-mer length (hot-spot) and
similarity threshold. For protein searches BLAST performs best at its default, the length of 3 k-mers.
However, such a short k-mer length results in excessive duplicate entries as the volume of data grows,
which subsequently increases the workload of the algorithm performed after k-mer retrieval. Our results
show that directly retrieving an evolutionarily close neighborhood around a longer k-mer not only
achieves comparable accuracy but also better scalability and speed.

Metric-space indexing exploits the triangle inequality and the intrinsic clustering of a dataset to
prune a search space without regard to a mapping of the data to a coordinate system (Chavez et al., 2001).
We measure the distance between two k-mers using weighted Hamming distance parameterized by the
mPAM substitution matrix (Xu and Miranker 2004). Hence, for each k-mer in the query sequence, a set of
evolutionarily close k-mers can be retrieved with only one query. Due to the curse of dimensionality, such
methods are unstable and must be verified for each application (Yianilos, 1993; Chavez, et al., 2001; Mao,
et al., 2004). We exploit a tree-based metric-space index structure, the multiple vantage point tree
(MVPT). We constructively show that the mPAM distance between protein k-mers induces a clustering
effective for protein database retrieval. The MVPT has also been used for string proximity search where
the distance between two k-mers is measured by compression distance or character edit distance (Bozkaya
and Ozsoyoglu, 1999; Sahinalp, et. al., 2003).

 Our method is also different from other indexed search methods, which are often tailored to one
particular problem, and/or designed only for nucleotide acid retrieval. Due to alphabet size, etc., few have
claimed results for general protein sequence management and retrieval. The RAMdb is mainly used to
identify short subsequences (Fondrat and Dessen, 1995). The Ed-tree is designed for nucleotide sequences
(Tan et al., 2003). The Cafe system uses an inverted index to support a coarse search that produces a
small candidate set for detailed assessment (Williams and Zobel, 2001). Cafe is applicable to both amino
acids and protein sequences where complex scoring models are not used during coarse searching. The
approach of using a coarse search followed by a fine search is also used in MAP, where the coarse search
is sped up by indexing a frequency vector (Kahveci, et. al., 2004). BLAT is based on simple edit distance
supported by hashing to achieve O(m) scalability using O(n) memory, where m is the size of the query
and n is the size of the database (Kent, 2002). SST and BLAT approaches use Hamming distance and
simple edit distance, respectively. Initial success was achieved by targeting the sequence assembly
problem where evolutionary criteria are unimportant. Subsequently these systems are being effectively

- 3 -

applied to genomic analysis problems whose data is limited to sequences from evolutionarily close
organisms (Rouchka et al., 2002).

Exploitation of metric properties was first proposed by Sellers (Sellers 1974). Sellers showed that
if a substitution weight matrix forms a metric distance on a set of characters, then the global alignment of
sequences drawn from that character set also forms a metric. We have previously shown, using Smith-
Waterman local-alignments, that the mPAM matrix is the first metric substitution weight matrix to
produce biologically effective protein alignments (Xu and Miranker, 2004).

Since only global alignment and not local alignment forms a metric, our off-line index is based on
the weighted Hamming distance of overlapping protein k-mers. We prove a general result which defines
conditions where, by virtue of k-mer overlap, gaps (indels) can be ignored in the management of the
index and weighted Hamming distance produces the same results as global alignment. This yields an O(k)
improvement.

Using a curated benchmark of yeast protein sequence queries (Schaffer et al., 2001), we first
analyze the effect of both word length and the search range of each k-mer query on the trade-off between
the accuracy and speed of the system. To improve the search efficiency, we develop a heuristic k-nearest
neighbor search and then compare its results with exact nearest neighbor and radius-limited k-nearest
neighbor search. The results demonstrate accuracy comparable to BLAST. We further compare the search
performance of our system with BLAST using a set of short query sequence against a protein sequence
database downloaded from Swissprot. The results show that our current disk-based Java implementation
outperforms BLAST in some cases. Lastly, we show the scalability results of querying different size
databases. Thus, indexing sequence data in metric-space with relatively longer word length is a feasible
approach to achieve fast and scalable search performance for large-scale data with accuracy comparable
to BLAST.
2. Algorithms and Implementation

Given a set of sequences S and a query sequence w of length l, the goal of a homology search is to
find all sequences from S that are evolutionarily close to w. To efficiently solve this problem, we first
divide S into a set of overlapping k-mers of length k with step size 1 and manage them in an MVP tree, D.
During the online search, the query w is also divided into a set of overlapping k-mers of length k with step
size 1,

�
={ wi| i=0..l-q} . For each k-mer wi in

�
, we select a set of k-mers Ri from database D such that all

k-mers in Ri are similar to wi. Then a heuristic chaining algorithm is used to extend and chain all
fragments in R0 U R1 U…U RW-T to obtain the result of the homology search for query W. We implement
the chaining algorithm described by Gusfield with some modifications (Gusfield, 1997). Although the
chaining algorithm is an important issue and a major factor in determining the accuracy of the homology
search results, it is not detailed in this paper since the chaining phase only accounts for a small portion of
the computational cost in our approach. In this section, we detail our algorithms and the distance function
used to build and search the database.

2.1 Building index using MVP tree

 Figure 1 Vantage point tree structure

- 4 -

When indexing biological sequence data, we first determined that among three major classes of
metric-space search algorithms, multiple vantage point methods perform the best (Chavez et al., 2001;
Bozkaya and Ozsoyglu, 1999; Mao et. al., 2004). The structure of a node in multiple (two) -vantage-point
tree is shown in Figure 1. Starting with the root of the tree, the distance from each point in the space is
measured to two special points, the vantage points. As illustrated, bounding predicates of the form d(VP,
x) > r are used to partition the data into four equal-size disjoint subsets. The process is repeated
recursively. The triangle inequality, integral to metric-distance functions, is used to prune the search of
the resulting tree for data retrieval operations.

Our MVP tree is implemented in Java and also serves as the disk-mapped storage manager of
MoBIoS (the Molecular Biological Information System) (Miranker et al., 2004). MoBIoS is built on the
Mckoi open-source relational database engine which provides a generic IO management system to map
the data records to disk pages (http://www.mckoi.com/). Vantage-points were selected using the farthest-
first traversal algorithm (Hochbaum and Shmoys, 1985). Parameters related to the MVP-tree structure
have been evaluated in preliminary work. The number of vantage points and the termination of the
recursion to build the tree were chosen to optimize retrieval times for a disk-based implementation (Xu, et.
al., 2004).

2.2 Distance function
As a prerequisite to this work, and inspired by Sellers’ seminal paper on sequence matching, we

derived a metric version of the PAM250 substitution matrix, mPAM, and demonstrated that is has
comparable accuracy to the original PAM250 (Xu and Miranker, 2004, Sellers 1974). Using mPAM, it
follows from Seller’s theorem that global alignment distance among k-mers forms a metric.

We extend these results to show that when the k-mers are derived as overlapping substrings from
a much longer sequence, weighted Hamming distance can be substituted for global alignment distance in
the management of a database of protein k-mers. Although the use of an index structure substantially
reduces the total number of distance calculations, the distance calculation still dominates the
computational cost of retrieval. Replacing the global alignment distance function, O(k2), with a Hamming
distance function, O(k), results in a practical factor of k improvement in speed.

Definition 1 Substitution Cost Function The substitution cost function M(x,y), where x and y are
symbols from an alphabet

�
, returns a nonnegative real number modeling the cost of substituting

sequence element x with element y. Substitution weights are usually encoded in a substitution weight
matrix; If ‘_’ denotes a gap, M(x,_) or M(_, x) returns a gap penalty g.
Definition 2 Global Alignment Distance Function Given the substitution cost function M(x,y), two
sequences A: a1a2…an and B: b1b2…bn,, where x, y, ai and bi are drawn from an alphabet

�
, the global

alignment distance function G(A, B) is defined as (Gusfield, 1997)
 G(A,B)=Sn+1,n+1

 where S is a n+1 x n+1 matrix and
S0,i= g×i for i=0…n+1
Sj,0= g×j for j=0…n+1
Si,j = Min(Si-1,j-1+ M(ai, bi),

 Si-1,j + M(ai, _), Si,j-1+M(_, bi)) for i,j � 0

Definition 3 Weighted Hamming Distance Given substitution cost function M(x,y), two sequences A:
a1a2…an and B: b1b2…bn,, where x, y, ai and bi are drawn from an alphabet A, the weighted Hamming
distance function H(A, B) is defined as

 H(A,B)=
i=1
Σ
n

M(ai,bi)

Definition 4 Range Query Given a set of objects O and a distance function d(a,b), a range query Qd(q,r)
returns a set of objects { o∈O | d(o,q)� r} .

- 5 -

Lemma 1 Given a substitution cost function M, a set of k-mers O, a radius r, and a gap penalty g, for all
queries q∈O, if r � 2g-1 then QH(q,r)=QG(q,r), where g is the gap penalty used in both H and G.

Proof:
This lemma is proved by contradiction. From the definition of the global alignment problem, it is

trivial to show that the following two properties hold:
P1. G(x,y) � H(x,y) for any x, y, and
P2. G(x,y) = H(x,y), if there is no gap in the optimal global alignment.

a) Assume there is a k-mer m ∈ O, such that m∈ QH(q,r) and m∉QG(q,r) when r � 2g-1
By the range query definition, H(m, q) � r. P1 implies that G(m,q) � H(m, q) � r. So m must be in

QG(q,r), which contradicts the assumption that m∉QG(q,r). Hence such m does not exist.
b) Assume there is a k-mer p ∈ O, such that p∈ QG(q,r) and p∉QH(q,r) when r � 2g-1

The assumption indicates that QH(q,r) > r > 2g-1
�

 QG(q,r). Since 2g-1
�

 QG(q,r), there must be
no space inserted into either p or q to form the optimal global alignment. Otherwise G(p,q)

�
 2g. From P2,

it follows that G(p,q) = H(p,q) and p ∈ QH(q,r), which contradicts the assumption p∉QH(q,r). Hence, if
p∈QG(q,r), then p∈QH(q,r) i.e. QG(q,r)⊆ QH(q,r) when r� 2g-1.
Therefore, from a) and b), QH(q,r)=QG(q,r) when r� 2g-1. �� ��

 Gap penalty is usually larger than mismatch score (Gusfield, 1997). In the course of our
experiments, when it became clear that there was no need to perform any queries with radius bigger than
2g-1, we moved to weighted Hamming distance and witnessed precisely a factor of k improvement in
execution times.

2.3 Search algorithms
We consider standard and heuristic search methods to attain accurate, scalable results. Although

there may be any number of k-mer matches in a given evolutionary distance, more conserved k-mers
contribute more to determine homology. Consider, as the database grows, the number of k-mers within a
fixed distance of a query k-mer grows. This by itself can prevent scalability (sublinear execution time). In
addition, due to the characteristics of peptides, a single distance value can hardly define the optimal
boundary between similarity and dissimilarity for all k-mers. The distribution of amino acids is non-
uniform, and the distance distribution among k-mers is also non-uniform. For example, k-mers from a
highly conserved protein motif occur more frequently than random, and k-mers containing highly mutable
amino acids have more similar k-mers within any reasonable distance. Therefore, biasing the search
toward the conserved k-mers is vital if there are many k-mers to be retrieved by a range search. Justified
by similar practical aspects of other applications, Yianilos proposed radius-limited nearest neighbor
search (Yianilos, 2000). The basic idea is to return the nearest neighbor provided that it is within a
maximum distance. Yianilos conducted an analytic study of this approach based on the Euclidean
hypercube with uniform distributions. To our knowledge, our radius-limited k-nearest neighbor search
methods are the first to be applied to practice.

Definition 5 Radius-limited nearest neighbor (RNN) search Given a set of objects D, a distance
function d(a,b), and a radius r, the RNN query returns the set of objects from D that (1) are nearest to
query object q and (2) have a corresponding distance no greater than r as measured by the distance
function d. If more than one object qualifies, all qualified objects will be returned.

Nearest neighbor search algorithms normally utilize a priority queue to store the nodes to be
searched (Uhlmann, 1991). The priority queue orders the nodes that may contain the nearest match to the
query based on certain sorting criteria. This algorithm is guaranteed to find the best match within a
limiting radius. At first, it may sound like a good alternative to range search. However, using nearest
neighbor search alone is inadequate to achieve the desired accuracy. Consider the case where two
homologous sequences share few common k-mers. The homologous sequence in the database consists of
k-mers that are very close to those in the query but not identical. The nearest neighbor search can ignore
those k-mers and return the exact match randomly occurring in an unrelated sequence. In such a case,

- 6 -

additional k-mers need to be retrieved instead of just the nearest ones. Thus radius-limited k-nearest
neighbor search is a better solution.

Definition 6 Radius-limited k-nearest neighbor (RKNN) search Given a set of objects D, a query q, a
number k, and a distance function d(a,b), the search Q(q, k, r) returns up to k closet objects whose
distance to the query object q is no greater than r: S={ s| s∈D; d(s, q)<r; d(s,q) � d(t,q) t∈D, t∉S} .

The radius-limited k-nearest neighbor search Q(q,k,r) has the following property: If the number
of k-mers within distance r to q is less than k, all of the qualified k-mers will be returned. If the number of
k-mers within distance r to q is more than k, the k-nearest qualified k-mers will be returned. Intuitively,
the k best results for k-mers with high mutability will be within a smaller radius than those for k-mers
with low mutability. The worst case is that the total candidates within the given distance bound are less
than k. The computational cost for the worst case is equivalent to the cost of a range search plus some
overhead.

In addition to the one priority queue used in the NN search, the radius-limited k-nearest neighbor
search algorithm requires a second priority queue. The priority queue node_list stores the internal nodes
which may contain qualified k-mers and need to be searched. The additional priority queue
cached_result_list stores the k-mers that are within the limiting radius but are not yet returned. The
objects in both priority queues are sorted in the ascending order of their distance to the query k-mer. The
pseudocode of the algorithm is presented in Figure 2.

In Figure 2, lines 1 and 2 create a priority queue node_list for storing internal nodes to be

searched and then start the search process. Lines 3-6 maintain cached_result_list, the priority queue of
returned results. The current_target_radius is the expected nearest distance and is initialized as zero. If a
new result is found, lines 4 and 5 check if there are already k results. If not, the current_target_radius is
updated by line 6. Lines 7-10 search an internal node. Line 9 computes node c’s md, which is the lower
distance-bound between query q and the k-mers stored in the subtree rooted at node c. If the md is smaller
than the limiting radius, then node c will be put into node_list which is sorted based on md. Lines 11-13
search a leaf node. If a qualified result is found, it is put into the cached_result_list sorted by its distance
to q.

However, in the case of searching k-mers with high mutability, the length of the two priority
queues can increase dramatically causing the overhead of the queue operations to offset the advantages of
best-first search. Therefore we propose a more aggressive heuristic search strategy, the radius-limited
extended k-nearest neighbor search (EKNN).

Definition 7 Radius-limited extended k-nearest neighbor search (EKNN) Given a set of objects D and
a distance function d(a,b), the EKNN query Qd(q, k, r) will return up to k objects from D as set N, which
contains all of the nearest neighbors to query q and the object whose distance to q is smaller than r.

Radius-limited-k-nearest-neighbor-search (q, k, r)
1. Add root_node into the node_list
2. While the node_list is not empty, get node n from the head of the node_list.
3. if the minimum possible distance, md, between q and objects in subtree rooted at n is greater than current_target_radius
4. move all previously found k-mers that are within current_target_radius to query q from the cached_result_ list into the

final_result_list.
5. If the final_result_list contains k results whose distance to q is no greater than the current_target_radius, then stop the

search and return these results.
6. Otherwise update the current_target_radius as md.
7. if n is an internal node with c1…ck children
8. For each child node ci
9. get md as the lower distance-bound for k-mers in the subtree rooted at ci to q
10. if md is smaller than radius r, add ci in the node_list and ordered by md.
11. if n is a leaf node with r1…rm data objects
12. For each data object r i , compute d as the distance between r i to q
13. If d is smaller than radius r put ri in the cached_result_list ordered by d.
14. Return final_result_list

Figure 2 Pseudocode for retrieving up to k-nearest neighbors that are within distance bound r to a given
query object q.

- 7 -

The EKNN algorithm relaxes the requirement of non-best results to be returned. Specifically, the
EKNN algorithm replaces lines 4 and 5 of RKNN as presented in Figure 2 as following:

4. Move the cached_result_ list into the final_result_list.
5. If the final_result_list has k results and contains results whose distance to q is no greater than the

current_target_radius, then stop the search and return these results.

In the RKNN algorithm, at any given time there is no k-mer that is closer to the query than the k-mers in
the final_result_list. The EKNN algorithm does not have such properties. After finding the nearest
neighbor, the EKNN will continue searching for the next nearest neighbors until either a total of k results
within the limiting radius are found or all of the nodes are searched. In the case where the total number of
k-mers within limiting radius is no more than k, both RKNN and EKNN will return the same results. In
the case where the total number of k-mers within limiting radius is far more than k, the non-nearest results
returned by EKNN can vary greatly from those of RKNN. However, in the latter case, EKNN will run
much faster than RKNN. In fact, as we will show in the results section, with our test settings EKNN
achieved very similar accuracy results to RKNN with much fewer distance calculations.
3. Experimental Results

The primary results demonstrate that the MVP-tree provides accurate and scalable performance
for identifying homologous peptides with a metric distance function parameterized using mPAM. We will
first focus on the trade-off between accuracy and speed caused by choice of fragment length and search
radius. We then present the results of using nearest neighbor search algorithms, which show better
scalability and trade-off between accuracy and speed than using fixed radius search.

3.1 Choice of fragment length and search radius
To study the trade-off between selectivity (the ability to reduce false positive results) and sensitivity

(the ability to identify true positive results), we first determine a search radius for each fragment length
that ensures biologically meaningful answers. The length of k-mer and the search radius are the two most
important parameters since, independent of data structure, they determine the size of the set of k-mers
returned by the search. The performance of the subsequent chaining algorithm is a function of the size of
the result of the k-mer search.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

90.00% 92.00% 94.00% 96.00% 98.00% 100.00%
average percentage of true postivie results returned per query sequence

(sensitivity)

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 k

-m
er

s
re

tu
rn

ed
 p

er
 k

-m
er

 s
ea

rc
h

 (
se

le
ct

iv
ity

)

3 4 5 6 7 8 9 10

For this purpose, we used a curated benchmark suite furnished by NCBI

(ftp.ncbi.nlm.nih.gov/pub/impala/blastest). The benchmark includes 6433 yeast protein sequences (about

Figure 3 The trade off between selectivity and sensitivity for different search radius and
fragment length combinations Range searches with various radii were run on databases of total
true positive hits built from the benchmark with various k-mer lengths. The sensitivity, or
average percentage of true positive hits returned per query sequence, is plotted against the
selectivity, or average percentage of k-mers returned per k-mer search, for different radius and k-
mer length combinations.

- 8 -

2,892,155 residues) and a query set of 103 sequences whose true positive hits have been identified by
human experts (Schaffer et al., 2001). The initial goal was to determine the value of the search radius that
is necessary to identify all of the true positive hits for various k-mer lengths. For a sensitivity study, we
only need to consider k-mers from the query sequences and their corresponding true positive hits. To
reduce the computational cost of the study, only the k-mers from the true positive hits set, about 16% of
the entire sequence set, were used to build databases. This reduction does not impact the qualitative study
of selectivity. Every query in the benchmark was searched against those databases with various radii.

Figure 3 plots selected points whose average percentage of true positive hits returned per query
sequence were higher than 90%. Table 1 details selected points whose average percentage of true positive
hits returned per query sequence were higher than 95%. The average percentage of true positive hits
returned per query is considered as a measure of sensitivity. The average percentage of the total k-mers in
the database returned per k-mer is also computed as a reference of selectivity. Ideally, we are looking for
the combination of fragment length and search radius that minimizes the size of each query results and
still contains at least one k-mer from every expected answer sequence.

The results in column 5 of Table 1 show the TF-ratio, or the ratio of the average percentage of
returned true positive hits to the average percentage of returned k-mers per k-mer. The combination of
fragment length 6 and search radius 4 has the highest TF-ratio of 71.4. Next are fragment length 5 with
radius 3 (TF-ratio 46.5) and fragment length 7 with radius 6 (TF-ratio 45.2).

Fragment
length

Search
Radius

Average % true
Positive Hits

Returned per query
search

Average % k-mers
returned per k-mer search

TF-ratio
Ratio of column 3 to column 4

� � ����������� �	��
����
�����������������
��

�
 ������������� ������
�� ����������
���
������

 � �����������
	������� �	�	��
������������	�

 � ������������� ����������� �	����
������������	�

� � �	�	���	
�� ������
�� �������	
���
��������

�
 �������	��� ����
�
��
��	��������
���
����

� � �����������
	������� �	
	�������������	���

� � ����������� �	������� ��������
�
����������

� � �������	��� ��������� ���	����
��	�������
� ��� ����������� �������	
�� ��������������
	��

Table 1 Comparison of selected results for various fragment lengths and search radii In general,
using longer fragments requires a larger search radius to achieve the same true positive return rates as
those obtained using shorter fragments.

average num ber of k-m ers within various radii
per k-m er

0.00

1,000.00

2,000.00

3,000.00

4,000.00

5,000.00

6,000.00

0 2 4 6

radius

f rgamrnt leng th 5

f ragment leng th 6

a v e ra g e p e rc e n ta g e k -m e rs w it h in ra d iu s f o r e a c h
k -m e r

0 .0 0 0 0 0 %

0 .0 10 0 0 %

0 .0 2 0 0 0 %

0 .0 3 0 0 0 %

0 .0 4 0 0 0 %

0 .0 50 0 0 %

0 .0 6 0 0 0 %

0 .0 70 0 0 %

0 .0 8 0 0 0 %

0 2 4 6

ra d iu s

f r ag ment leng t h o f 5

f rag ment leng t h o f 6

Figure 4 the average neighborhood size for various radii (a) On the left, the average number of k-
mers within a given radius. (b) On the right, the average percentage of k-mers within a given radius.

- 9 -

For longer k-mer lengths, increasing the search radius used per k-mer range search can improve
the sensitivity but also increases the total number of k-mers returned. This phenomenon is known as “ the
curse of dimensionality” (Bellman 1961). To illustrate this problem for k-mers of lengths 5 and 6, we
exhaustively computed the numbers of fragments within various radii (the neighborhood size) for all k-
mers of lengths 5 and 6 (Figure 4). For both lengths 5 and 6, the size of the neighborhood increases
dramatically after radius 3. The average neighborhood size of radius 5 is about three times the average
size of radius 4. Since increasing the length of k-mer from 5 to 6 also increases the entire search space
from about 3M to 60M, the average number of 6-mers within the distance increases dramatically
when the distance is greater than 5.

3.2 Comparison of search strategies
In this section, we evaluate the biological effectiveness of our approach using various algorithms

for each k-mer search. Both the fixed radius range search and the radius-limited k-nearest neighbor search
can achieve results with comparable accuracy to other homology search algorithms. One of the challenges
in our approach is to determine if there is a way to produce biologically effective results without
encroaching too far beyond the knee of the curse (which would swamp the computation time for chaining)
during the k-mer search. The results in this section show that algorithms based on radius-limited k-nearest
neighbor searches are the most preferable.

To evaluate the biological effectiveness of our approach, we use the complete yeast data set
included in the benchmark as mentioned in the previous section (Schaffer et al., 2001). All 6433 yeast
protein sequences are used to build an MVP-tree with 2 vantage points per node, 2 partitions per vantage
points and a maximum of 150 k-mers per leaf node. The tests were conducted using Java 1.4 for Linux
(SUSE 8.0; dual AMDXP 1800+ processors with 2GB memory). Each query sequence of length n was
divided into a set of k-mers referred to as the query fragment set { f i| i=1,…n-q+1} . The length of the
query sequence varies from 39 to 885. On average, 174 k-mer searches are needed for each query
sequence. Each k-mer from the query fragment set f is sequentially searched against the database. The
results are collected and used in a chaining algorithm to produce the final answers.

We use receiver-operating characteristic (ROC) scores to measure the accuracy of the search result
(Gribskov and Robinson, 1996). For each query, the ROC50 value is computed as follows:

 ROCn =
1

nT
i=1
Σ
n

ti

where ti is the number of true positive hits ranked ahead of the ith false positive, and T is the total
number of true positives.

We first used 5-mers for both indexed sequences and query sequences. For each 5-mer from each
query sequence, a set of k-mers is retrieved using fixed radius range search. The average ROC50 score for
all queries is 0.45 and 0.53 by using radius 3 and 4 range search for each k-mer, respectively.

The results of using radius 4 range query against the 5-mer database show accuracy comparable
to the results of using BLASTp (Xu and Miranker, 2004). However, as indicated in Figure 4b, radius 4 is
a relatively large value for 5-mers. Due to the curse of dimensionality, each k-mer from the query
sequence requires on average over 160k distance calculations for range 4 search against a database with 3
million k-mers. Due to the non-uniform distribution of the amino acids, the number of k-mers in a
neighborhood of radius 4 varies greatly. For k-mers that contain more common amino acids, more
matches will be found within the same radius than k-mers with less common amino acids. Hence, range 4
is not a fair measure for all k-mers. On the other hand, there are about 3 million unique peptides of length
5. As the database size grows larger, more duplicate entries will reduce the selectivity of the search and
increase the workload of the successive chaining algorithm. Hence, a longer k-mer and a smaller radius
are desired for better selectivity and speed. Therefore we think using a best-first search strategy on longer
k-mers is the best trade off among speed, selectivity and accuracy.

- 10 -

To avoid excessive duplicate short strings, we build a database of 6-mers. In the previous section,
we described three best-first search algorithms: RKNN, RNN, and EKNN. For those algorithms, the trade
off between speed and accuracy is controlled by the value of k and, if applicable, the limiting radius.

0.20

0.30

0.40

0.50

0.60

0 100 200 300 400 500 600

K

R
O

C
50

RKNN
EKNN
RNN

1000.00

10000.00

100000.00

1000000.00

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
ROC50

av
er

ag
e

nu
m

be
r

of
 d

is
ta

nc
e

ca
lc

ul
at

io
n

pe
r

qu
er

y
(l

og
 s

ca
le

)

RKNN
EKNN
RNN

Figure 5(a) illustrates the average ROC50 values for RKNN and EKNN algorithms with various k

values and the RNN algorithm of which the k value is fixed by definition. Figure 5(b) plots the average
number of distance calculations (as a measure of CPU time during the database search) needed per query
to achieve various ROC50 levels. For both EKNN and RKNN algorithms, a large k value results in better
accuracy. The improvement of accuracy gets smaller once the k value reaches 300, and the average
ROC50 score seems capped at 0.51. Although the RNN search has the least computational cost, the
accuracy of the search results is much lower than other methods. The EKNN search significantly
increases accuracy compared with the RNN search and achieves similar accuracy as the RKNN algorithm.
However, the RKNN search is about one order of magnitude slower than EKNN. Therefore, we believe
the EKNN is a good approximation for RKNN search that yields much better performance.

3.3 Comparison of search speed
 Although our approach is implemented in Java and integrated into a full database system, the
EKNN algorithm still performs reasonable fast. In this section, we present some timing results of our
approach using the EKNN algorithm with various parameters against another benchmark. The yeast
benchmark used in the accuracy study is a small dataset of about 3 million amino acids. The lengths of the
query sequences vary from 39 to 885 amino acids with an average number of 174. For further speed tests,
we adopted another benchmark with a larger data set and short query sequences. The short query set
minimizes the effect caused by the difference of chaining algorithms. This benchmark was used for the
OASIS analysis and consists of the SWISS-PROT database and a hundred queries that were randomly
selected from the ProClass motif database (Meek et.al., 2003). The SWISS-PROT data set was
downloaded in Oct. 2004 and contains 163496 peptides with about 52M amino acids. The queries range
in length from 6 to 56 amino acids with an average length of 16.
 Since the accuracy of the EKNN algorithm is affected by the value of k and the limiting distance r,
we conducted the speed comparison with several different configurations. The results were compared to
the BLASTp program running on the same machine, a Linux computer with a 2.6GHZ P4 CPU and 4G of
memory.

Figure 6 shows the average search time per query over the 100 queries. The BLAST search was
conducted with an e-value of 20,000. The EKNN algorithm is parameterized with various k values and
limiting radii. With a limiting radius of 5, the algorithm outperformed BLAST when k is no bigger than
500. The algorithm also outperformed standard BLAST with limiting distance of 6 even for k value of

Figure 5 (a) on the left, the average ROC50 score per query sequence with various algorithms and k
values; (b) on the right, the average number of distance calculations needed for various average ROC50

scores per query sequence.

- 11 -

1000. Note that the k is the number of k-mers returned per k-mer search and is not the number of final
results per query sequence.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

k=100 k=200 k=300 k=400 k=500 k=1000

S
ec

o
n

d
s

EKNN r=5

EKNN r=6

BLASTp

3.4 Scalability of best first search
This section demonstrates the scalability of our approach. The test data sets are sequentially

extracted from a large protein sequence data file (ftp://ftp.ncbi.nih.gov/genbank/genpept.fsa.z,
downloaded from NCBI in July 2003) so that their size varies. The same short query set used for speed
comparison was searched against those newly generated databases.

Figure 7 shows the scalability of the RNN search. During nearest neighbor search, the algorithm

always first looks for the node that may contain the nearest neighbor, starting with the expectation of
exact matches. However, when the data size is relatively small, the chance that the node does not contain
the nearest neighbor is greater. As the database size grows, such chances diminish. Hence, the search

A verag e NN search t ime p er seq uence q uery

0

0 .2

0 .4

0 .6

0 .8

1

1.2

1.4

1.6

0 50 10 0 150 2 0 0
M .A .A .

S
ec

on
ds

N N Search: A verag e numb er o f d istance calculat io n
p er q -g ram q uery

0

10 0 0

2 0 0 0

3 0 0 0

4 0 0 0

50 0 0

6 0 0 0

70 0 0

8 0 0 0

9 0 0 0

10 0 0 0

0 50 10 0 150 2 0 0
M .A .A

N N search: A verag e numb er o f leaf no d es visit ed
p er q -g ram q uery

0

50

10 0

150

2 0 0

2 50

3 0 0

3 50

4 0 0

0 50 10 0 150 2 0 0
M .A .A .

NN Search: Average number of matching k-mers
per k-mer query

0

10

20

30

40

50

60

0 50 100 150 200 M.A.A.

Figure 6 Comparison of average running time per query between using Blast for homology
search and using indexed search with various k values. The Blast time, shown by a solid line, is
the average wall clock time per query using an e-value of 20000. The average indexed search
time includes both k-mer searching time and subsequent chaining time per query. The striped bar
and solid bars show the results of using limiting radius 5 and 6, respectively.

Figure 7 The scalability study of nearest neighbor search.

- 12 -

backtracks less when the database size is larger. The results show that although the average number of
matching k-mers increases linearly as the database size increase, both the average number of distance
calculations and the average number of leaf nodes visited decreases dramatically.

We expect the EKNN algorithm to have similar behavior when database size increases. Figure 8
shows the average search time per query sequence, the average number of distance calculations and the
number of leaves visited per k-mer search using the EKNN algorithm with a k of 300 and a limiting-
radius of 5 or 6. The results show the same decreasing behavior as the RNN searches.
4. Discussion

The homology search problem is an important practical problem that is often solved by a general
strategy consisting of several heuristic algorithms. The quality of the results depends on many factors,
such as the scoring model, the alignment algorithms, the similar fragment retrieval algorithm and the
chaining algorithm. In this paper, we focus on the algorithms used to efficiently retrieve similar fragments.

Our homology search algorithm modifies a general framework for computing local-alignments by
matching k-mers that was first proposed and analyzed contemporaneously with the development of
BLAST (Wu et al., 1990). The primary change is that, by virtue of the metric-space index, we are able to
look up, on-line, all matching k-mers in the database for each query fragment. In other words, we replace
the generate-and-test method with a more powerful index that directly finds matching fragments based on
evolutionary criteria.

Important to the effectiveness of the index structure is to maximize the number of indexable
buckets by increasing the length of the k-mers. To maintain query sensitivity, as k increases, so must the
evolutionary distance. As detailed by Myers’ the useful neighborhood grows polynomial of k (Myers,
1994). Thus, there is a computational need for generate-and-test methods to keep k small. The
optimization of trade-off for BLAST resulted in hot-spots determined by 3-mers. The number of unique
3-mer peptides is just 8000. For the yeast proteome of roughly three-million amino acids this results in an
average occupancy of nearly 400 k-mers per bucket. Thus, indexing methods for protein sequence
management are more often based on identifying commonly conserved motifs and/or similarity models
that are effective only between more closely related organisms. Using a metric-space indexing method we
have shown that there is a sweet-spot in the trade-offs at k=6. There are over 60 million unique 6-mer
peptides enabling an effective protein index based on evolutionary criteria.

We have demonstrated that the use of radius-limited k-nearest neighbor search algorithms
provides a resolution to this trade-off. Furthermore, the database is queried on a per k-mer basis. So the
longer the homology region is, the less chance that a “good” answer will be missed. Our most aggressive
heuristic algorithm (EKNN) enables speed and scalability without appreciable loss in accuracy. Although
we confirm empirically that the curse of dimensionality affects biological sequence data, radius-limited k-
nearest neighbor search may be a way to achieve good accuracy without encroaching fatally into the
unstable region.
 The number of nearest neighbors to be retrieved is an important factor in determining the quality
of the final results. Our choice is based on the empirical results. How to determine the number of nearest
neighbors to be retrieved, especially when the database is growing? This question has been studied but in

Average search time per quer sequence

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 50 100 150 200M.A.A.

se
co

nd
s

EKNN: radius 6;
k=300
EKNN: radius 5;
k=300

Average number of distance calculation
per k-mer

100

1000

10000

100000

0 50 100 150 200M.A.A.

(lo
g

sc
al

e)

EKNN: radius 6; k=300

EKNN: radius 5; k=300

Figure 8 Scalability study of the EKNN algorithm with k =300, and a limiting radius of 5 and 6.

Average number of leaf node visited per
k-mer

1

10

100

1000

10000

0 100 200M .A.A.

(lo
g

sc
al

e)

EKNN: radius 6; k=300
EKNN: radius 5; k=300

- 13 -

a different form. Key elements of BLAST include filtering-out low complexity regions and computing a
probabilistic significance score (e-value) for each output sequence output (Altschul and Gish, 1996;
Promponas et al., 2000; Wootton and Federhen 1993). These elements taken together suggest that the
ultimate algorithm for scalable sequence retrieval will comprise a depth-first search strategy where the
scope of the search is parameterized by the anticipated significance of the next matching fragments. We
leave this as an open issue for further pursuing.

Our implementation is not a standalone application or index structure, but rather a part of an
extension to object-relational databases intended as general-purpose support of biological data. The
approach follows the approach of spatial databases that extend object-relational database to support
geographic data (Shekhar and Chawla, 2002). In that regard, we have shown that starting from the
underpinnings presented in this paper, solutions to many bioinformatics problems can be solved concisely
and quickly using simple SQL queries (Miranker, et. al., 2004). Our concentration has been on managing
large-scale biological data across biological disciplines and enabling databases management systems to
serve biologists as well as they serve businesses. In that regard this paper serves as a demonstration of the
feasibility of integrating protein sequences as a fundamental data type of database systems and the use of
general-purpose SQL query engines to integrate biological sequence analysis with other data analysis at a
fine-grain level (i.e. directly, not by hiding the details of using BLAST as an external utility). Despite the
overhead of the generality of our implementation, disk I/O and Java, on large-scale problems we can
outperform BLASTp, a highly optimized main-memory system developed in C. Therefore, we are very
pleased with the raw speed of our approach. If speed rather than a database programming model is the
preferred goal, then these algorithms may be implemented in C.

Acknowledgement

We acknowledge Willard Saint Willard, students in the laboratory who have participated in
MoBIoS project. This research was supported in part by grants from DBI-0241180 and IIS-0325116.

References

Altschul, S.F. & Gish, W. (1996) Local alignment statistics. Methods Enzymo.,266, 460-480
Altschul, S.F. Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) Basic local alignment search tool. J. Mol.
Biol., 215, 403-410
Bellman, R. (1961), Adaptive Control Processes: A Guided Tour, Princeton University Press. New Jersey, U.S.
Bozkaya, T. & Ozsoyoglu, M. (1999) Indexing Large Metric Spaces for Similarity Search Queries. ACM
Transactions on Database System, 24(3):361-404
Chavez, E., Navarro, G., Baeza-Yates, R. & Marroquin, J.L. (2001) Searching in metric spaces. ACM Computing
Surveys, 33(3):273-321
Halperin, E., Buhler, J., Karp, R., Krauthgamer, R. and Westover, B. (2003) Detecting Protein Sequences Via Metric
Embeddings In Proceedings of the 11th International Conference on Intelligent Systems for Molecular Biology 122-
199, Brisbane, Australia, Jun. 29-Jul. 03, 2003
Fondrat, C. and Dessen, P. (1995) A rapid access motif database (RAMdb) with a search algorithm for the retrieval
patterns in nucleic acids or protein data banks. Computer Applications in the Biosciences, 11(3):273-279
Giladi, E., Walker, G. M., Wang, J.Z. & Volkmuth, W. (2002) SST: an algorithm for finding near-exact sequence
matches in time proportional to the logarithm of the database size. Bioinformatics. 18(6):873-879
Gribskov, M. & Robinson, N. L. (1996) Use of receiver operating characteristic (ROC) analysis to evaluate
sequence matching. Computers and Chemistry. 20(1):25-33
Gusfield, D. (1997) Algorithms on Strings, Trees and Sequences Computer Science and Computational Biology.
449-454 Press Syndicate of the University of Cambridge, USA
Hochbaum, D. S. & Shmoys, D. B. (1985) A best possible heuristic for the k-center problem. Mathematics of
Operational Research, 10(2):180-184
Kahveci, T., Ljosa, V., & Singh, A.K. (2004) Speeding up whole-genome alignment by indexing frequency vectors,
Bioinformatics 20(13) 2122-2134
Kent, W. J. (2002) BLAT-The BLAST like alignment tool. Genome Res. 12:656-664
Mao, R., Lei, V.I., Ramakrishnan, S., Xu, W., Miranker, D.P. (2004) On Metric-Space Indexing and Real
Workloads, Technical Report, Department of Computer Sciences, University of Texas at Austin, 2004

- 14 -

Meek, C., Patel, J.M., and Kasetty, S. (2003) OASIS:An Online Accurate Technique for Local-alignment Searches
on Biological Sequences in Proceedings of the 29th VLDB Conference, 910-921, Berlin, Germany, Sep. 9-12, 2003
Miranker, D.P., Briggs, W.J., Mao, R., Ni, S., and Xu, W. (2004) Biosequence Use Cases in MoBIoS SQL, Data
Engineering Bulletin, 27 (3): 3-11
Myers, E.W. (1994) A sublinear algorithm for approximate keyword searching. Algorithmica. 12(4/5):345-374
Pearson, W. R. & Lipman, D. J. (1988) Improved tools for biological sequence comparison. Proc. Natl Acad. Sci.
USA, 85:2444-2448
Promponas, V. J., Enright, A. J., Tsoka, S., Kreil, D. P., Leroy, C., Hamodrakas, S. J., Sander, C. and Ouzounis, C.
A. (2000) CAST: an iterative algorithm for the complexity analysis of sequence tracts Bioinformatics 16(10):915-
922
Rouchka, E. C. Gish, W. & States D. J. (2002) Comparison of whole genome assemblies of the human genome.
Nucleic Acids Res., 30(22):5004-5014
Sahinalp, S.C., Tasan, M., Macker, J., Ozsoyoglu, Z.M., (2003) Distance Based Indexing for String Proximity
Search, in proceedings of IEEE Data Engineering Conference, 125-137 Banglore, India, March 03-05, 2003
Schaffer, A. A. Aravin, L. Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I., Koonin, E. V. & Altschul, S.F.
(2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other
refinements. Nucleic Acids Res., 29(14):2994-3005
Sellers, P.H. (1974) On the theory and computation of evolutionary distances. J. Appl. Math. (SIAM). 26:787-793
Shekhar, S. & Chawla, S. (2002) Spatial Databases: A Tour, Prentice Hall, USA
Tan, Z., Cao, X., Ooi, B.C. & Tung, A.K.H. (2003) The ed-tree: an index for large DNA sequence databases In Proc.
15th International Conference on Scientific and Statistical Database Management 151-160 Jul. 9-11, 2003
Cambridge, MA
Uhlmann, J. (1991) Satisfying general proximity/similarity queries with metric trees Information Processing Letters
40:175-179
Wilbur, W.J. and Lipman D.J. (1983) Rapid similarity searches of nucleic acid and protein data banks. Proceedings
of the National academy of Science, 80:726-730
Williams, H.E. and Zobel, J. (2002) Indexing and Retrieval for Genomic Databases IEEE Transactions on
Knowledge and Data Engineering, 14(1): 63-78,
Wootton. J.C. and Federhen S. (1993) Statistics of local complexity in amino acid sequences and sequence databases
Comput. Chem. 17:149-163.
Wu, S. Manber, U. Myers, G. and Miller, W. (1990) An O(NP) Sequence Comparison Algorithm. Information
Processing Letters 35(6): 317-323
Xu, W. & Miranker, D.P. (2004) A metric model for amino acid substitution Bioinformatics 20(8):1214-21
Xu, W., Miranker, D.P., Mao, R., & Wang, S. (2003) Indexing Protein Sequences in Metric Space, Technical Report
TR-04-06 University of Texas at Austin, Department of Computer Sciences. Dec, 2003
Yianilos, P. (1993) Data structures and algorithms for nearest neighbor search in general metric spaces. In Proc. 4th
ACM-SIAM Symposium on Discrete Algorithms, 311-321, Austin, TX. Jan. 25-27, 1993
Yianilos, P. (2000) Locally Lifting the Curse of Dimensionality for Nearest Neighbor Search, In Proc. ACM-SIAM
Symposium on Discrete Algorithms, Jan. 9-11, 2000, San Francisco, California

