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1 Introduction

The consensus problem can be described in terms
of the actions taken by three classes of agents:
proposers, who propose values, acceptors, who to-
gether are responsible for choosing a single pro-
posed value, and learners, who must learn the
chosen value [10]. A single processor can act as
more than one kind of agent. Consensus can be
specified using the following three safety proper-
ties and two liveness properties:

CS1 Only a value that has been proposed may be
chosen.

CS2 Only a single value may be chosen.

CS3 Only a chosen value may be learned by a cor-
rect learner.

CL1 Some proposed value is eventually chosen.

CL2 Once a value is chosen, correct learners even-
tually learn it.

Since the unearthing of the simple and practi-
cal Paxos protocol [13], consensus, which for years
had largely been the focus of theoretical papers,
has once again become popular with practitioners.
This popularity should not be surprising, given
that consensus is at the core of the state machine
approach [9, 18], the most general method for im-
plementing fault tolerant services in distributed
systems. Yet, many practitioners had been dis-
couraged by the provable impossibility of solv-
ing consensus deterministically in asynchronous
systems with one faulty process [6]. Paxos of-
fers the next best thing: while it cannot guaran-
tee progress in some scenarios, it always preserves

the safety properties of consensus, despite asyn-
chrony and process crashes. More specifically, in
Paxos one of the proposers is elected leader and
it communicates with the acceptors. Paxos guar-
antees progress only when the leader is unique
and can communicate with sufficiently many ac-
ceptors, but it ensures safety even with no leader
or with multiple leaders.

Paxos is also attractive because it can be made
very efficient in gracious executions, i.e. execu-
tions where there is a unique correct leader, all
correct acceptors agree on its identity, and all
correct replicas and all links between them are
timely. Except in pathological situations, it is
reasonable to expect that gracious executions will
be the norm, and so it is desirable to optimize
for them. For instance, FastPaxos [1] in a gra-
cious execution requires only two communication
steps1 to reach consensus in non-Byzantine envi-
ronments, matching the lower bound formalized
by Keidar and Rajsbaum [7]. Consequently, in
a state machine that uses FastPaxos, once the
leader receives a client request it takes just two
communication steps, in the common case, before
the request can be executed. Henceforth, we use
the terms “common case” and “gracious execu-
tion” interchangeably.

In this paper, we too focus on improving the
common case performance of Paxos, but in the
Byzantine model. Recent work has shown how
to extend the Paxos consensus protocol to sup-
port Byzantine fault tolerant state machine repli-
cation. The resulting systems perform surpris-
ingly well: they add modest latency [2], can proac-

1To be precise, this bound is only met for stable intervals
in which no replica transitions between the crashed and
“up” state.
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tively recover from faults [3], can make use of
existing software diversity to exploit opportunis-
tic N-version programming [17], and can be en-
gineered to protect confidentiality and reduce the
replication costs incurred to tolerate f faulty state
machine replicas [19].

Byzantine Paxos protocols fall short of the orig-
inal, however, in the number of communication
steps required to reach consensus in the common
case. After a client request has been received by
the leader, Byzantine protocols need a minimum
of three additional communication steps (rather
than the two required in the non-Byzantine case)
before the request can be executed.

The main contribution of this paper is to
present Fast Byzantine (or FaB) Paxos, the first
Byzantine Paxos protocol, as far as we know, that
requires only two communication steps to reach
consensus in the common case.

Confirming a conjecture by Lamport [12], we
find that the reduced latency comes at a price:
FaB Paxos requires 5f + 1 acceptors to toler-
ate f Byzantine acceptors, instead of the 3f + 1
needed by previous protocols. For traditional im-
plementations of the state machine approach, in
which the roles of proposers, acceptors and learn-
ers are performed by the same set of machines,
the extra replication required by our protocol may
appear prohibitively large, especially when con-
sidering the software costs of implementing N-
version programming (or opportunistic N-version
programming) to eliminate correlated Byzantine
faults [17].

We submit, however, that the new architecture
for Byzantine fault tolerant state machine replica-
tion that we have recently introduced [19] makes
this tradeoff look much more attractive. The key
principle of this new architecture is to physically
separate agreement from execution. In our archi-
tecture, a cluster of acceptors or agreement repli-

cas is responsible for producing a linearizable or-
der of client requests, while a separate cluster of
learners or execution replicas executes the ordered
requests.

For the purposes of this paper, the key advan-
tage of this new architecture is that decoupling
agreement from execution leads to agreement
replicas (i.e. our acceptors) that are much simpler

and less expensive than state machine replicas
used in traditional architectures—and can there-
fore be more liberally used. In particular, our
agreement replicas are cheaper both in terms of
hardware—because of reduced processing, stor-
age, and I/O requirements—and, especially, in
terms of software: application-independent agree-
ment replicas can be engineered as a generic li-
brary that may be reused across applications,
while with traditional replicas the costs of N-
version programming must be paid anew with
each different service.

This paper is organized as follows. After dis-
cussing related work and system model in Sec-
tions 2 and 3, we present in Section 4 our main
contribution—a Byzantine Paxos protocol that in
the common case terminates in two communica-
tion steps. In the following section we show how
to use FaB Paxos to achieve fast Byzantine fault-
tolerant state machine replication, and finally we
draw our conclusions.

2 Related Work

Consensus and state machine replication have
generated a gold mine of papers. The veins from
which our work derives are mainly those that
originate with Lamport’s Paxos protocol [13] and
Castro and Liskov’s work on Practical Byzantine
Fault-tolerance (PBFT) [2]. In addition, the tech-
niques we use to reduce the number of communi-
cation steps are inspired by the work on Byzan-
tine quorum systems pioneered by Malkhi and Re-
iter [14].

The two protocols that are closest to FaB
Paxos are the FastPaxos protocol by Boichat and
colleagues [1], and Kursawe’s Optimistic asyn-
chronous Byzantine agreement [8]. Both proto-
cols share our basic goal: to optimize the perfor-
mance of the consensus protocol when runs are,
informally speaking, well-behaved. Just like FaB
Paxos, when runs are well-behaved both proto-
cols can (i) operate without expensive public key
cryptography operations and (ii) reach consensus
in only two communication steps.

The differences arise in characterizing precisely
what qualifies as good behavior and what is the
extent of bad behavior that these protocols are
designed to tolerate.
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The conditions under which FastPaxos achieves
consensus in two communication steps are quite
similar to those needed by FaB Paxos to be
equally fast. FastPaxos can deliver consensus in
two communication steps during stable periods,
i.e. periods where no process crashes or recovers,
a majority of processes are up, and correct pro-
cesses agree on the identity of the leader. The
conditions under which we achieve gracious exe-
cutions are somewhat weaker than these, in that
during gracious executions processes can fail, pro-
vided that the leader does not fail. Another differ-
ence is that FastPaxos does not rely on eventual
synchrony but on an eventual leader oracle. Since
we only use the eventual synchrony assumption to
provide leader election, our protocol also applies
to the eventual leader oracle model. The most sig-
nificant difference between the two protocols lies
in the failure model they support: in FastPaxos
processes can only fail by crashing, while in FaB
Paxos they can fail arbitrarily. However, Fast-
Paxos only requires 2f + 1 acceptors, compared
to the 5f + 1 used in FaB Paxos.

In contrast to FastPaxos, Kursawe’s elegant op-
timistic protocol assumes the same Byzantine fail-
ure model that we adopt and operates with only
3f + 1 acceptors, instead of 5f + 1.

However, the notion of what makes an exe-
cution well-behaved is much stronger for Kur-
sawe’s protocol than for FaB Paxos. In particular,
his optimistic protocol achieves consensus in two
communication steps only as long as channels are
timely and no process is faulty: a single faulty
process causes the fast optimistic agreement pro-
tocol to be permanently replaced by a traditional
pessimistic, and slower, implementation of agree-
ment. To be fast, FaB Paxos only requires gra-
cious executions, which are compatible with pro-
cess failures as long as there is a unique correct
leader and all correct acceptors agree on its iden-
tity.

In his paper on lower bounds for asynchronous
consensus’ [11], Lamport, in his “approximate
theorem” 3a, conjectures a bound N > 2Q + F +
2M on the minimum number N of acceptors re-
quired by 2-step Byzantine consensus, where: (i)
F is the maximum number of acceptor failures de-
spite which consensus liveness is ensured; (ii) M

is the maximum number of acceptor failures de-
spite which consensus safety is ensured; and (iii)
Q is the maximum number of acceptor failures de-
spite which consensus must be 2-step. Lamport
’s conjecture is more general than ours—we do
not distinguish between M , F , and Q—and more
restrictive—Lamport does not allow Byzantine
learners; we do. Lamport’s claim does not tech-
nically hold in the corner case where no learner
can fail (see Appendix C). Dutta, Guerraoui and
Vukolić have recently derived a proof of Lamport’s
original claim under the implicit assumption that
at least one learner may fail [4].

3 System Model

We make no assumption about the relative speed
of processes or communication links, or about the
existence of synchronized clocks. The network is
unreliable: messages can be dropped, reordered,
inserted or duplicated. However, if a message is
sent infinitely many times then it arrives at its
destination infinitely many times. Finally, the
recipient of a message knows who the sender is.
In other words, we are using authenticated asyn-
chronous fair links.

Following Paxos [10], we describe the behavior
of FaB Paxos in terms of the actions performed
by three classes of agents: proposers, acceptors,
and learners. We assume 3f +1 proposers, 5f +1
acceptors, and 3f + 1 learners. Note that a sin-
gle physical replica may play multiple roles in the
protocol. Each class contains at most f Byzan-
tine faulty agents. When we consider FaB Paxos
in connection with state machine replication, we
assume that an arbitrary number of clients of the
state machine can be Byzantine.

4 Fast Byzantine Consensus

We build FaB Paxos in stages: we start by de-
scribing a simple version of the protocol that relies
on relatively strong assumptions and we proceed
by progressively weakening the assumptions and
refining the protocol accordingly. The complete
FaB Paxos protocol that we obtain by the end of
this section provides the following guarantees for
each instance c of consensus:

• Safety (CS1-CS3).
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Figure 1: Common case operation

• Liveness (CL1-CL2) if the common case as-
sumptions hold during c.

• Low latency (consensus in two communica-
tion steps) in the common case.

A timely link delivers all messages between cor-
rect nodes within a finite (but unspecified) time
bound. Similarly, a timely replica processes all
messages within a finite unspecified time bound.

In the state machine section we examine run-
ning consensus repeatedly. In that case, if the
common case eventually holds, then eventually all
instances of consensus terminate in two commu-
nication steps.

4.1 FaB Paxos in the Common Case

We first describe how FaB Paxos works during
gracious executions when there is a unique correct
leader and all correct acceptors agree on its iden-
tity. Links between correct replicas, as well as the
correct replicas themselves are timely. At most f

proposers are malicious (but not the leader), at
most f acceptors are malicious, and at most f

learners are malicious.
In this model, we can satisfy safety (CS1-CS3)

and liveness (CL1-CL2) in two communication
steps (see Figure 1).

In the first step, the leader sends its proposal to
the acceptors. In the second step, the acceptors
forward their value to the learners. Each learner
then learns which value was chosen.

Acceptors only accept the first value that is sent
to them. We say that a value v is chosen if and
only if at least 3f + 1 correct acceptors accept
v. We will use this definition to prove that FaB
Paxos satisfies CS1, CS2, and CL1.

Correct learners learn v once they see that at
least 4f + 1 acceptors accepted it.

The correctness proofs are simple, in part be-
cause of the strong assumptions we are making
in this section. The safety proofs, however, hold

without modification for much weaker assump-
tions, as we will see later.

4.1.1 Correctness in the common case

Lemma 1 (CS1). Only a value that has been

proposed may be chosen.

Proof. Correct acceptors only accept values that
are sent by a proposer.

Lemma 2 (CS2). Only a single value may be

chosen.

Proof. There are at most 5f +1 correct acceptors
(fewer than two groups of 3f + 1) and correct
acceptors accept a single value.

Lemma 3 (CS3). Only a chosen value may be

learned by a correct learner.

Proof. By definition, a correct learner learns v

only if it sees that at least 4f + 1 acceptors ac-
cepted v. Since at most f acceptors are faulty,
then at least 3f + 1 correct acceptors have ac-
cepted v. Then, by definition, v was chosen.

Lemma 4 (CL1). A proposed value is eventually

chosen.

Proof. The leader sends its proposal v to all ac-
ceptors. Since links are reliable and the leader
is correct, all correct acceptors receive v. Since
there are at least 4f + 1 correct acceptors, v is
chosen.

Lemma 5 (CL2). Once a value is chosen, cor-

rect learners can eventually learn it.

Proof. If value v is chosen then, by definition,
3f + 1 correct acceptors have accepted v. Since
the leader is correct, it must have sent the same v

to all acceptors. Further, since links are reliable,
eventually all 4f +1 correct acceptors will receive
v. Upon receiving v, each correct acceptor sends
v to all learners. Since links are reliable, all cor-
rect learners will eventually receive v from 4f + 1
acceptors and learn v.
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4.2 Fair Links and Retransmission

So far we have assumed timely links. While this
is a reasonable assumption in the common case,
our protocol must also be able to handle periods
of asynchrony. In this section we weaken our net-
work model to consider fair asynchronous authen-
ticated links (see Section 3).

We refine the protocol presented in Section 4.1
so that it still satisfies both safety (CS1-CS3)
and liveness (CL1-CL2) under the weaker network
model. Note, however, that now consensus may
take more than two communication steps to com-
plete, e.g. when all messages sent by the leader
in the first step are dropped.

We use an end-to-end retransmission strategy:
The leader sends its proposal to all acceptors re-
peatedly until it gets an ACK from 2f +1 learners
(out of 3f + 1).

Acceptors forward their accepted value to the
learners every time they receive a proposed value
from the leader and, as in the common case pro-
tocol, correct acceptors accept at most one value.
When they learn a value and in response to ev-
ery subsequent acceptor message, learners send an
ACK to the leader.

Consensus requires all correct learners to learn
the same value. However, the above “push” re-
transmission protocol leaves open the possibility
that ACKs from faulty learners will cause the
leader to stop retransmitting before all learners
get a chance to learn the proposed value. To
counter this problem, we supplement retransmis-
sion with a “pull” protocol: learners periodically
query their peers and learn value v if f + 1 of
their peers learned v. Note that these exchanges
are not necessary when no message is dropped.

4.2.1 Correctness of retransmission

The safety proofs are identical to those in the pre-
vious section. The liveness proofs are different,
because we cannot rely on reliable links anymore,
but only on fair links. Before showing that re-
transmission will allow the protocol to eventually
complete, we show that faulty nodes cannot de-
feat our push protocol.

Lemma 6. Faulty nodes cannot cause a cor-

rect leader to stop resending before some value is

learned by at least f + 1 correct learners.

Proof. A correct leader resends until it receives
2f + 1 ACK from learners. Correct learners only
send ACK messages after learning a value. If
fewer than f + 1 correct learners learned a value,
then faulty learners cannot cause the leader to
stop resending because there are only f of them.
Since faulty acceptors and proposers have no im-
pact on retransmission, the lemma immediately
follows.

Lemma 7 (CL1). A proposed value is eventually

chosen.

Proof. Since no value can be learned by a correct
learner before being chosen (CS3), Lemma 6 im-
plies that the correct leader will resend at least
until a value is chosen.

The correct leader repeatedly sends its proposal
to all acceptors. Since links are fair, eventually
all correct acceptors receive the leader’s proposal.
Since there are more than 3f+1 correct acceptors,
the proposed value is eventually chosen.

Lemma 8 (CL2). Once a value is chosen, cor-

rect learners can eventually learn it.

Proof. Lemma 6 shows that the leader will not
stop resending until f+1 correct learners acknowl-
edge. This eventually happens: after a value v is
chosen (Lemma 7), the acceptors repeatedly send
that value to all learners. Since links are fair,
eventually at least f +1 correct learners will have
learned v.

The pull protocol ensures that all the other cor-
rect learners also eventually learn v: They peri-
odically query their peers and learn v when they
see that f + 1 other learners have learned v.

4.3 Failure Detector and Leader Elec-
tion

So far, we have assumed that all replicas agree on
a correct leader from the start. We now show how
proposers can detect faulty leaders and elect a
replacement. We delay a proof of the correctness
of the resulting protocol until the next section,
where we present the recovery protocol used by
FaB Paxos when a faulty leader is detected.

We are now operating under the weakest model
for which FaB Paxos is designed, in which as many
as f proposers, f acceptors and f learners can be
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Byzantinely faulty. We assume that at the begin-
ning of the run of FaB Paxos links are fair, asyn-
chronous and authenticated. There exists how-
ever some time T after which the system enters
a stable phase during which both correct repli-
cas and the links between them are timely. This
model was introduced by Dwork [5].

4.3.1 Failure detector

The failure detector is based on a classical time-
out mechanism. Because of space limitations we
list the properties of the failure detector below.
We refer the reader to Appendix A.1 for the proofs
and a more detailed explanation.

Lemma 9. A leader that makes no progress is

eventually suspected by all correct proposers.

Lemma 10. Eventually, no correct proposer sus-

pects a correct leader.

4.3.2 Leader election

Our leader election protocol follows closely the
one used by Castro and Liskov in PBFT [2]. De-
spite the few minor changes that we introduce
(e.g. we use neither checkpoints certificates nor
prepared certificates) the proof of correctness of
the PBFT leader election protocol applies to ours
as well.

4.4 Recovery Protocol

When proposers suspect the current leader of be-
ing faulty, they elect a new leader who then in-
vokes the recovery protocol. There are two sce-
narios that require special care.

First, some value v may have already been cho-
sen: the new leader must then propose the same
v to maintain property CS2.

Second, a previous malicious leader may have
performed a poisonous write [16], i.e. a write that
prevents learners from reading any value—for ex-
ample, a malicious leader could write a different
value to each acceptor. If the new leader is cor-
rect, consensus should nonetheless terminate.

In the protocols discussed in Sections 4.1
and 4.2, the first scenario was addressed by re-
quiring acceptors to accept a single value. Un-
fortunately, enforcing this requirement in the sec-
ond scenario would prevent termination. Hence,

in the full version of FaB Paxos we allow accep-
tors to change their values in response to a new
proposal. Naturally, we must take precautions to
ensure that CS2 still holds. In particular, our re-
covery protocol ensures the following:

1. If the new leader l is correct and a value v

had been chosen prior to l’s election, then l

will propose v.

2. Eventually either a value is chosen or another
leader is elected to replace l.

4.4.1 Introducing change vouchers

To regulate the conditions under which a correct
acceptor accepts multiple values, we introduce the
notion of a change voucher. Intuitively, we would
like a change voucher to help ensure CS2 by pro-
viding correct acceptors with reliable information
about the progress of the protocol. A change
voucher should let a correct acceptor a determine
whether a value has already been chosen, and, if
so, should vouch for that value. A leader that
wants a to accept a new value accompanies its re-
quest with a change voucher; a complies with the
change when either the change voucher establishes
that no value has been chosen or if it vouches for
the value proposed by the leader.

Unfortunately, a faulty new leader could now
use a change voucher twice to cause two differ-
ent values to be chosen. Further, this can happen
even if individual proposers only accept a given
change voucher once. Consider the following sit-
uation. We split the acceptors into four groups.
The first group has size 2f +1, the second has size
f and contains malicious acceptors, and the third
and fourth have size f . Suppose the values they
have initially accepted are “A”,“B”,“B”, and “C”,
respectively. A malicious new leader l can gather
a change voucher establishing that no value has
been chosen With this voucher, l can first sway f

acceptors from the third group to “A” (by defi-
nition, “A” is now chosen) , and then, using the
same change voucher, persuade the acceptors in
the first and fourth group to change their value to
“B”—“B” is now chosen. Clearly, this execution
violates CS2.

4.4.2 Implementation of change vouchers

In order to prevent faulty leaders from using
change vouchers more than once, we make two
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changes to our protocol.
First, we require each proposed value to be as-

sociated with a unique proposal sequence number
(psn): a proposal now consists of a pair (v, psn).
Every time a correct leader proposes a new value,
it increments the proposal sequence number. Cor-
rect acceptors accept v only if they receive (v, psn)
and one of the following conditions holds: (i) they
have not accepted any previous proposal; (ii) they
last accepted ov on receiving the pair (ov, opsn),
and ov = v and opsn ≤ psn; or (iii) they last
accepted ov on receiving (ov, opsn), the new pro-
posal comes with a change voucher (cv, cpsn) such
that opsn ≤ cpsn and cpsn = psn − 1, and the
change voucher either fails or vouches for v.

Note that now change vouchers vouch not just
for a value v, but also for the associated proposal
sequence number.

Second, we change the definition of chosen: a
value v is chosen if there are 3f +1 correct accep-
tors who at some point in time accept the same

pair (v, psn). Similarly, learners now only learn v

if they receive the same pair (v, psn) from 4f + 1
different acceptors.

The new leader gathers the change voucher by
asking a quorum of 4f + 1 responsive acceptors
for the last value pair they have accepted (or ⊥ if
they have not accepted anything yet). Acceptors
digitally sign their replies. When the leader has
gathered 4f + 1 replies with the same proposal
sequence number, the set of replies gathered by
the new leader constitutes a change voucher. If
the change voucher contains some value v 6= ⊥ at
least 2f +1 times, then we say that it vouches for
v. Otherwise we say that it fails.

As we prove in the next section, change vouch-
ers have the following three properties.

1. A change voucher can vouch for at most one
value.

2. If some value (v, psn) is chosen, then all
change vouchers (cv, cpsn) with cpsn ≥ psn

vouch for v.

3. Conversely, if a change voucher (cv, cpsn)
fails, then no value (v, psn) with psn ≤ cpsn

is ever chosen.

If the change voucher vouches for some value v,
then the new leader l resumes the normal leader

protocol using v as the value to be proposed. Oth-
erwise, l resumes the normal leader protocol using
a value of its choosing. In both cases, l piggybacks
the change voucher alongside its proposal to jus-
tify its choice of value.

Let us revisit the troublesome scenario of before
in light of these changes. Suppose, without loss
of generality, that the malicious leader l gathers a
failed change voucher for proposal sequence num-
ber 0. To have “A” chosen, l performs two steps:
first, l sends a new proposal (“A”, 1) to the ac-
ceptors in the first group; then l sends (“A”, 1)
together with the failed change voucher for pro-
posal 0 to the acceptors in the third group. Note
that the first step is critical to have “A” chosen,
as it ensures that the 3f + 1 correct acceptors in
the first and third group accept the same (v, psn)
pair.

Fortunately, this first step is also what prevents
l from using the failed change voucher to sway the
acceptors in the first group to accept “B”. Because
they have last accepted the pair (“A”, 1), when l

presents the acceptors in the first group the failed
change voucher for proposal sequence number 0,
they will refuse it as too low, on account of (iii).

4.4.3 Correctness of change vouchers

Change vouchers contain 4f + 1 values with the
same proposal sequence number. When the new
leader starts gathering replies for the change
voucher, different acceptors might have different
proposal sequence numbers. The gathering phase
eventually terminates because there is no dan-
ger in advancing a given acceptor to a higher psn

without modifying the proposal’s value. The new
leader therefore estimates the maximal proposal
sequence number max-psn (using the largest psn

it has seen so far), tells the acceptors to advance
to it, and then attempts to gather the change
voucher. If max-psn is not large enough (because
the new leader has not heard from some acceptor
with a larger proposal number), then the leader
adjusts max-psn and tries again. Since this ad-
justment is only necessary the first time the leader
hears from a given acceptor, the loop is guaran-
teed to terminate.

We now prove the three properties of change
vouchers that we claimed in the previous section.
The first property (a change voucher can vouch
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for at most one value) trivially derives from the
size of change vouchers, and the third property is
equivalent to the second one. Remains to prove
the second property.

Lemma 11. If some value (v, psn) is chosen,

then all change vouchers (cv, cpsn) with cpsn ≥
psn vouch for v.

Proof. By contradiction. Let cpsn ≥ psn be
smallest proposal sequence number of any change
voucher that does not vouch for v. That change
voucher was assembled by the leader from the
replies of a set X of 4f + 1 acceptors. By def-
inition, if (v, psn) is chosen then there is exists a
set V of 3f + 1 correct acceptors that all accept
(v, psn) at some point in time. Since there are
5f + 1 servers in total, V and X intersect in a set
Y of at least 2f + 1 correct acceptors.

We now narrow down the time at which accep-
tors in Y must have accepted (v, psn). They can-
not accept (v, psn) after responding to the gather
message with a value different from v, for after the
gather message they can only change their value
by incrementing their proposal sequence number
to cpsn+1, which is strictly greater than psn. So
all acceptors in Y either (1) already have value v

when they reply to the gather message and later
accept (v, psn), or (2) they accept (v, psn), then
accept a different value, and then reply to the
gather message. If all acceptors in Y fell under
option (1), then the change voucher would have
vouched for v. So there must be some acceptor s

who accepts (v, psn) and then accepts a different
value before replying to the gather message.

By rule (iii), for acceptor s to change its value
from (v, psn) to some other value (v′, psn′), v′ 6=
v, s must have accepted a change voucher
(cv′, cpsn′) vouching for v′ with psn ≤ cpsn′ and
cpsn′ + 1 = psn′. Since s is in X, s’s reply
was taken into account in the change voucher
that had cpsn as its proposal sequence number;
thus psn′ ≤ cpsn. Putting it all together yields
cpsn′ < cpsn. This violates our hypothesis that
cpsn is the smallest proposal sequence number
among the change vouchers that do not vouch for
v.

4.4.4 Correctness with the leader election
and recovery protocols

The proofs for CS1, CS3 and CL2 are unchanged.

Lemma 12 (CS2). Only a single value may be

chosen.

Proof. By contradiction. Suppose that two val-
ues (v, psn) and (v′, psn′) are both chosen, and
v 6= v′. Since there are 5f + 1 acceptors in
total (more than two groups of 3f + 1), there
is at least one correct acceptor s who accepted
(say) (v, psn) first, and (v′, psn′) second. Since
v 6= v′, s must have accepted a change voucher
(cv, cpsn) that either fails or vouches for v′, with
psn ≤ cpsn < psn′. By lemma 11, (cv, cpsn)
must vouch for v since (v, psn) was chosen and
psn ≤ cpsn.

Lemma 13 (CL1). Some proposed value is even-

tually chosen.

Proof. Since only a value that has been proposed
may be chosen (CS1), it is sufficient to show that
some value is eventually chosen.

We first show that if the proposal retransmis-
sion protocol stops, then a value has been chosen.
Leaders only stop retransmitting in three cases:
(i) they get an acknowledgment from at least one
correct learner, (ii) they are faulty and choose to
stop retransmitting, or (iii) another leader gets
elected. A value has been chosen in the first
case since correct learners only acknowledge after
some value was chosen. In the second case, the
leader election protocol ensures that a new leader
is eventually elected. In the third case, the new
leader will continue consensus and thus continue
retransmission, unless it gets an acknowledgment
from a correct leader as in the first case.

We now prove the lemma by contradiction.
Suppose that no value is chosen. Eventually,
no correct proposer suspects a correct leader
(Lemma 10). Faulty leaders are eventually sus-
pected by all correct proposers (Lemma 9), and
a new leader is elected. Since leaders are elected
in round-robin fashion and there is at least one
correct proposer, eventually the correct proposer
is elected and not suspected. The correct leader
runs the recovery protocol and eventually gathers
a change voucher. The leader proposes the value
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returned by the change voucher, or its own value
if the change voucher failed. In either case, the
protocol ensures that correct acceptors will accept
the value v accompanied with the change voucher.
Since by assumption a vaulue is never chosen, the
correct leader retransmits forever; since links are
fair, all correct acceptors eventually receive and
accept v. By definition, v is chosen.

4.5 FaB Consensus Wrap-Up

We obtain the full FaB Paxos protocol by assem-
bling all the sub-protocols described in the pre-
vious sections. Safety holds even in the weakest
model, when as many as f proposers, f accep-
tors, and f learners are Byzantinely faulty. Even
if the system starts in an asynchronous phase in
which links are fair, asynchronous and authenti-
cated, we assume that there exists some time T

after which correct replicas and the links between
them are timely. The model assumes that the sta-
ble phase lasts forever, although in practice it is
sufficient that the stable phase lasts long enough
for consensus to terminate.

The protocol makes progress as soon as every-
one agrees on a leader that makes progress. At the
latest, this happens at time T . Consensus termi-
nates in two communication steps from then on.

5 FaB State Machine

In this section we show how to build a fast Byzan-
tine replicated state machine using FaB Paxos.
We follow the basic Paxos methodology: the ac-
ceptors determine the order in which a client’s
request is processed by the learners, which then
respond to the client. A different instance of con-
sensus is run for each “slot” in the sequence of
requests (so the first instance determines which
request is executed first, and so on). Each mes-
sage is labeled with the instance of consensus that
it belongs to.

There is one challenge, however: a faulty leader
could poison a large number of instances of con-
sensus, making recovery difficult. Furthermore,
a new correct leader may not be able to deter-
mine which instances of consensus have been poi-
soned. We use a rate-limiting protocol to control
the number of consensus protocols that are run-
ning in parallel. The new leader can then easily
run recovery on all of these instances of consensus

and then resume fast operation.

5.1 Rate limiting protocol

This protocol ensures that no more than α in-
stances of consensus run in parallel.

After learners learn a value, they go through
a confirmation phase by sending a confirmation
message to a responsive quorum of 4f + 1 ac-
ceptors and waiting for an acknowledgment in re-
turn. Acceptors do not send the acknowledgment
right away: they wait until they receive a con-
firmation from 2f + 1 learners. Then they con-
sider the proposal confirmed and acknowledge the
learners. The acceptors ignore all messages la-
beled last confirmed+1 + α or later. Because the
response can be sent to the client before the con-
firmation phase, the rate limiting protocol does
not add a communication step before the client
gets a reply.

5.1.1 Correctness of rate limiting

The safety proofs for CS1-CS3 and the liveness
proof CL2 are unmodified. We first show that
the confirmation phase terminates.

Lemma 14. When links between correct replicas

are timely and the leader is correct, correct learn-

ers eventually receive 4f + 1 acks to their confir-

mation message.

Proof. If the leader is correct, then eventually all
correct learners learn of the chosen value v. These
correct learners send notification to all acceptors
and wait for an acknowledgment from 4f + 1 of
them. Since there are at least 2f + 1 correct
learners who are sending confirmation messages
to all acceptors, eventually correct acceptors will
receive confirmation from f + 1 learners and will
start sending acknowledgments to the learners.
Since there are 4f +1 correct acceptors, the learn-
ers will eventually receive 4f + 1 acks and termi-
nate the confirmation phase.

Lemma 15 (CL1). In the common case, a pro-

posed value is eventually chosen.

Proof. We prove the lemma by induction. The
first instance of consensus is not affected by the
rate limiting protocol, thus it will choose a value
and confirm. If consensus instance x confirms,
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then consensus instance x + 1 will accept mes-
sages and will eventually choose a value and con-
firm. Thus, in the common case all instances of
consensus eventually choose a proposed value.

5.2 Optimizations

Our FaB state machine can be optimized in sev-
eral ways. Because of space limitation we can only
sketch them here—they are presented in full in a
technical report [15]. [Note to the reviewers: we

have included the optimizations in appendix]

Tentative executions Castro and Liskov’s
PBFT [2] introduces tentative executions as a way
to reduce the number of communication steps
required by Byzantine state machine replication
without reducing the number of communication
steps used by PBFT’s consensus protocol. The
idea is to let replicas execute clients’ requests be-
fore consensus is reached, tentatively trusting the
information provided by the leader. If all replicas
send to the client, together with their reply, the
information that the protocol requires to complete
consensus, the client can perform the last step of
the consensus protocol at the same time as the
replicas and verify whether trust in the leader was
well put. In case of conflict, tentative executions
are rolled back and the requests are eventually
re-executed in the correct order. With this opti-
mization, PBFT uses (in the common case) three
communication steps from the moment the pri-
mary receives the request until the client receives
a correct reply. The same optimization can ap-
plied to the FaB state machine, reducing to just
two the number of communication steps required
in the common case between the leader receiving
the request and the client receiving the reply.

2f + 1 Learners One of the benefits of physi-
cally separating agreement from execution [19] is
the opportunity to reduce the number of learn-
ers from 3f + 1 to 2f + 1, thereby reducing the
required number of independently failing imple-
mentations of a given service.

To reduce the number of learners required in
FaB Paxos, we modify the retransmission proto-
col. With only 2f +1 learners, f of whom may be
faulty, the retransmission protocol must be able
to stop after the leader receives a response from
f + 1 learners, only one of which may be correct.

Out-of-date learners running the pull protocol
must be able to identify correct learners. We use
signatures to provide evidence before retransmis-
sion stops: the learners sign their results and ex-
change signatures. The resulting group of signa-
tures can be used by a learner to vouch for its
reply’s correctness. Unless we are careful, gather-
ing these signatures could add an additional com-
munication step to the protocol. Fortunately, the
reply can be sent to the client before generating
and distributing the signatures: the client will be
able to identify correct responses, since these will
be vouched by at least f + 1 learners.

6 Conclusions

FaB Paxos is the first Byzantine Paxos protocol
to achieve consensus in just two communication
steps in the common case, matching the lower
bound on the number of communication steps for
the crash failure model. This advantage comes at
the cost of requiring a significantly higher number
of acceptors than those needed by slower Byzan-
tine Paxos protocols. These extra acceptors are
precisely what allows a newly elected leader in
FaB Paxos to determine, via the change vouchers,
whether or not a value had already been chosen
for the current instance of consensus under the su-
pervision of a previous leader—a key property to
guarantee the safety of FaB Paxos in the presence
of failures.

In traditional state machine architectures, the
costs of this additional replication would make
FaB Paxos unattractive for all but the applica-
tions most committed to reducing latency. In the
new state machine architecture that we have re-
cently proposed, however, acceptors are signifi-
cantly cheaper to implement [19], making the de-
sign point occupied by FaB Paxos much more in-
triguing.
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A Consensus

A.1 Failure Detector

The failure detector has the following two proper-
ties: (1) a leader that makes no progress is even-
tually suspected by all correct proposers, and (2)
when links are timely, eventually no correct pro-
poser suspects a correct leader. Our failure detec-
tor is based on a classical time-out mechanism.

After learners learn a value, they send an ac-
knowledgment message to all proposers. We use
that message to detect progress.

Each proposer p starts a timer at the beginning
of the consensus protocol (either when consensus
is started explicitely, or triggered by a retransmis-
sion from a client who is waiting for a response). If
it has received fewer than f +1 acknowledgments
when the timer expires, then p suspects the cur-
rent leader and doubles the time-out delay. The
time-out delay is eventually large enough that no
correct leader is suspected.

Lemma 16. A leader that makes no progress is

eventually suspected by all correct proposers.

Proof. If a leader makes no progress, then no
correct learner will send an acknowledgment,
and therefore proposers will receive at most f

acknowledgments (from the malicious learners).
Since all proposers receive fewer than f + 1 ac-
knowledgments, all correct proposers will suspect
the leader.

Lemma 17. Eventually, no correct proposer sus-

pects a correct leader.

Proof. The system eventually reaches the stable
phase where links are timely, and time-outs grow
until eventually they are large enough that no
message is incorrectly considered lost. Then, cor-
rect leaders are never suspected because all pro-
posers receive the required f +1 acknowledgments
in time. Since the leader is correct and links are
timely, all correct learners learn the value pro-
posed by the leader and send an acknowledgment
to all proposers. These acknowledgments are not
lost and arrive in time because links are timely
and time-outs have grown enough. Thus, each
correct proposer will receive at least 2f + 1 ac-
knowledgments.

Proposers

Acceptors

Learners

request response

Client

tentative
execution

verification

Figure 2: Optimized FaB state machine

B State Machine Optimizations

B.1 Tentative Execution

Figure 2 shows the operation of a FaB state ma-
chine that uses tentative execution. In a straight-
forward implementation of state machine replica-
tion, learners do not process a client’s request or
reply to the client until they receive from the ac-
ceptors the relative order in which that request
should be executed. In contrast, with tentative
execution the leader sends the request and a sug-
gested execution order to the learners directly.
The learners tentatively execute the request in the
suggested order, and reply to the client, without
waiting to hear from the acceptors whether the
execution order suggested by the leader is correct.

Eventually, the learners do receive from the ac-
ceptors the information necessary to either con-
firm or repudiate the tentative execution order.
In the latter case, the learners roll back the af-
fected requests. Acceptors send the same infor-
mation also to the client, who can then determine
whether or not the reply received as a result of
tentative execution will be rolled back.

B.2 2f + 1 Learners

We show how to reduce the number of learners
to 2f + 1 without delaying the replies to clients.
This optimization requires some communication
and the use of signatures in the common case,
but still manages to answer queries within four
communication steps (or three with tentative ex-
ecution).

In the 2f + 1 version of FaB Paxos, learners
must satisfy two requirements: (i) f + 1 correct
learners must communicate with the client so that
the client can identify the correct reply, and (ii)
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eventually all correct learners must agree on the
ordering. These requirements are discharged by
the push and pull protocols, respectively. We
need to modify these protocols in order for them
to continue to function despite the reduction in
the number of learners.

In the original push protocol, the leader re-
transmits the query until it gets an acknowledg-
ment from 2f + 1 learners, ensuring that f + 1
of them are correct. When there are only 2f + 1
learners in total, f of whom possibly faulty, the
leader may never receive this many acknowledg-
ments. We therefore change the push protocol
so that it ends as soon as the leader gets f + 1
acknowledgments—retransmission may now stop
when only a single correct learner knows the cor-
rect response.

In order for the pull protocol to be able to
pick up where the push protocol left, that sin-
gle correct learner must be able to convince other
learners that its reply is correct. We therefore
strengthen the push protocol’s postcondition by
adding information in the acknowledgments. In
addition to the client’s request and reply obtained
by executing that request, acknowledgments now
also contain f+1 signatures from distinct learners
that verify the same reply.

After computing the reply to the client’s re-
quest, learners now sign it and send that signature
to all learners, expecting to eventually receiving
f+1 signatures that verify their reply. Since there
are f + 1 correct learners, each is guaranteed to
be able to eventually gather a complete acknowl-
edment that will satisfy the leader. The leader is
then assured that at least one of the learners who
sent it a valid acknowledgment is correct and will
support the pull protocol.

In the pull protocol, learners periodically query
for each other’s acknowledgments. They learn
value v if they receive from any of their peers
an acknowledgment for v with f + 1 valid signa-
tures. Thus, eventually all correct learners learn
the value v.

Learners now send their acknowledgment sig-
natures to every learner and wait to receive f + 1
matching valid signatures. This could slow down
the response to the clients, but we observe that it
is safe for learners to send their response directly

to the client before computing the signature or
sending it to their peers. Clients can already dis-
tinguish correct replies from incorrect ones since
only correct replies are vouched for by f +1 learn-
ers.

B.3 Rejoin

One possible improvement to our protocol is to
allow repaired servers to rejoin the system (for
example a crashed node that was rebooted). This
allows our system to tolerate more faults, as long
as at any point in time no more than f servers
are either faulty or rejoining.

The rejoin protocol must restore the replicas’s
state, and as such it is different depending on the
role that the replica plays. Proposers do not have
much state, although it is useful to know who the
leader is. Therefore, a joining proposer queries
a quorum of acceptors for their current proof-of-
leadership and adopts the largest valid response.

Acceptors must never accept two different val-
ues for the same proposal number. In order to en-
sure that this invariant holds, a rejoining acceptor
queries the other acceptors for the last confirmed
decree d, and it then ignores all decrees until d+α.
Once the system moves on to this instance of con-
sensus, the acceptor has completed its rejoin.

The state of the learners consists of the list of
executed operations (more precisely, the state re-
sulting from executing all these operations). A
rejoining learner therefore queries a quorum of
other learners for the list of executed operations.
Checkpoints could be used for faster state transfer
as has been done before [2, 10].

C Approximate Theorem Coun-

terexample

Lamport’s “approximate theorem” 3a [12] gives a
lower bound on the number of acceptors for two-
step consensus. Our phrasing of this theorem dif-
fers from his because there is a counterexample to
the approximate theorem.

The “approximate theorem” 3a reads: “If there
are at least two proposers whose proposals can be
learned with a 2-message delay despite the fail-
ure of Q acceptors, or there is one such possibly
malicious proposer that is not an acceptor, then
N > 2Q+F +2M .” N is the number of acceptors.
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M is the number of failures despite which safety
must be ensured. F is the number of failures de-
spite which liveness must be ensured. We believe
that the statement is correct, except in the corner
case where no learner can fail. In that case, it is
possible to use only 3f + 1 acceptors to tolerate
f Byzantine failures and be able to learn in two
message delays despite up to f Byzantine failures
(3a claims that 5f+1 acceptors are needed in that
case). Learners learn v if 2f+1 acceptors say they
have accepted it. Since any two quorums of 2f +1
intersect in a correct acceptor, no two learners will
learn different values. If the leader is faulty then
it is possible that no value gets learned. In that
case we go through a leader election, and the new
leader asks the learners for the value that they
have learned. Since learners are all correct, the
new leader can wait for all learners to reply with a
signed response. The leader can therefore choose
a value to propose that will maintain the safety
properties. Since the learners’ answers are signed,
the new leader can forward them to the acceptors
to convince them to accept a new value.

D Pseudocode

Common Case Algorithm
=====================

c l i e n t . invoke ( opera t i on ) {
t s ++
r := Q−RPC(1 , Proposers , ( ” invoke ” , operat ion , t s

) )
re turn r

}

proposer . onInvoke ( sender , operat ion , t s ) {
i f c l i e n t −t s [ sender ]>=ts then

rep l y with la s t−r ep l y [ sender ]
r eturn

c l i e n t −t s [ sender ] := t s // only one
concur rent c a l l per c l i e n t

i f ( I−am−l e ade r ( ) ) then
decr ee++
f i r s t O f ( { propose ( sender , operat ion ) }

, { wait un t i l ( not I−am−Leader ( ) )
}

)
e l s e

send (” invoke−forward ” , sender ,
operat ion , t s ) to current−l e ade r
( )

// r e t ran smi s s i on handled by the
c l i e n t

}

proposer . propose ( sender , operat ion ) {
R := open−jaw−Q−RPC(4 f +1 , Acceptors , 2 f +1 ,

Learners , ( ” propose ” , decree , 0 , operat ion ,
pol ) )

// re tu rn s a f t e r r e c e i v i ng an ACK from 2 f +1
d i f f e r e n t l e a r n e r s

r ep l y := value pre sent f +1 t imes in R
la s t−r ep ly [ sender ] : = rep ly
send rep ly to sender

}

proposer . onInvokeForward ( sender , c l i e n t , operat ion , t s )
{

onInvoke ( c l i e n t , operat ion , t s ) ;
}

proposer . onDenied ( sender , proposal , newPol ) {
i f pol<newPol then pol := newPol

}

// psn stands f o r proposa l sequence number
acceptor . onPropose ( sender , decree , psn , value , pol , [

op t i ona l ] change−voucher ) {
i f e l e c t s ( po l ) != sender then drop reques t
max−pol := max ( max−pol , po l )
i f l a s t−accepted−proposa l [ dec r ee ]>psn or pol<

max−pol then
send ( ” denied ” , l a s t−accepted−proposa l [

d ec r ee ] ,max−pol ) to sender
r e turn

i f p roposa l [ dec ree ] !=\ bot and proposa l [ d ec r ee
] != value

and not al low−change ( decree , psn , value , change−
voucher ) then
send ( ” denied ” , l a s t−accepted−proposa l [

d ec r ee ] ,max−pol ) to sender
r e turn

proposa l [ dec r ee ] := value
la s t−accepted−proposa l [ dec ree ] = psn
send ( ” accepted ” , decree , psn , value , e l e c t s (max−

pol ) ) to a l l l e a r n e r s
r ep l y with ” propose−ok ” to sender

}

acceptor . allow−change ( decree , psn , value , change−voucher
) {

// change i s introduced in l a t e r v e r s i on s o f
the p ro to co l

re turn f a l s e
}

l e a r n e r . onAccepted ( sender , decree , psn , value , ac t ive−
l e ade r ) {

i f d e c i s i on [ dec ree ] != \ bot then
poke ; drop reques t // pos t condi t i on

a l r eady holds ; nothing to do
va l [ s ender ] [ dec ree ] [ psn ] : = value
regent [ d ec r ee ] : = max ( regent [ decr ee ] , a ct ive

−l e ade r )
i f \ e x i s t s decr ee d and \ e x i s t s psn p such

that 4 f +1 o f the va l [ ] [ d ] [ p ] have the
same value v then

de c i s i on [ dec ree ] := v
responder [ decr ee ] . poke ( )

// no d i r e c t rep ly , but the responder w i l l
when we ’ ve made a de c i s i on

}

// l e a r n e r s maintain an array o f a c t i v e ob j e c t s
c a l l e d re sponders : one per dec ree .

l e a r n e r . re sponder [ dec ree ] . run ( ) {
re sponder [ dec ree ] . executeWhenReady ( )

}

l e a r n e r . re sponder [ dec ree ] . executeWhenReady ( ) {
wait un t i l d e c i s i o n [ dec r ee ] != \ bot
wait un t i l l a s t−executed == decree − 1 ,

p e r i o d i c a l l y c a l l i n g waitingGap
r e s u l t [ d ec r ee ] : = execute ( d e c i s i on [ decr ee ] )
la s t−executed := decree
poke ( )

}

// c a l l e d when a value was chosen f o r some decree d
// but not value was chosen f o r d ’ , d’<d
l e a r n e r . waitingGap ( ) {

// do noth ing
}

l e a r n e r . re sponder [ dec ree ] . poke ( ) {
i f r e s u l t [ dec ree ] == \ bot then return
send ( ” r e s u l t ” , r e s u l t ) to c l i e n t once
send ( ” ack−from−l e a r ne r ” , decree , r e s u l t ) to

regent [ dec r ee ] once
}

Pul l Protoco l
=============

// query ne ighbor s when there i s a gap in the
d e c i s i o n sequence

l e a r n e r . waitingGap ( ) {
next := la s t−executed + 1
i f ( d e c i s i o n [ next ] != \ bot ) r e turn ;
send ( ” pu l l ing−d e c i s i o n ” , next ) to a l l l e a r n e r s once

}
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l e a r n e r . onPul l ingDecree ( sender , dec ree ) {
i f ( d e c i s i o n [ dec r ee ] !=\ bot ) r ep ly with ( ” de c i s i on ” ,

decree , d e c i s i on [ dec ree ] ) ;
}

// dec ide v i f f +1 other l e a r n e r s have dec ided v
l e a r n e r . onDec is ion ( sender , decree , va lue ) {

l ea rner−says [ d ec r ee ] [ va lue ] union= sender
i f th e re i s a dec ree d and a va lue v s . t . | l ea rne r−

says [ d ] [ v ]|> f and de c i s i on [ d]==\bot
then {

de c i s i on [ d ] := v ;
responder [ d ] . poke ( ) ;

}
}

Rate Limit ing Algorithm
=======================

// con f i rmed i [ d ec r ee ] <=>

// acceptor i got an Ack f o r dec ree ’ decree ’ from
2 f +1 l e a r n e r s

// OR acceptor i knows that some co r r e c t
a ccep tor s j has con f i rmed j [ d ec r ee ]

// OR decree i s negat ive
//
// r ep o r t ed j [ dec ree ] =>

// l e a r ne r j has d e c i s i o n [ dec r ee ] != \ bot and
that de c i s i on was communicated

// to 4 f +1 ac cep tor s who responded ( with ack−
conf irmed )

// OR decree i s negat ive

acceptor . onPropose ( sender , decree , psn , value , po l ) {
f o r each j \ in [ dec ree − alpha , dec ree − 1 ] s .

t . not conf irmed [ j ] :
Q := Q−RPC(3 f +1,Acceptors , ( ” get−

conf irm ” , j ) )
i f Q conta ins f +1 ” yes ” then

conf irmed [ j ] : = t rue
i f e x i s t s j \ in [ decr ee − alpha , decr ee − 1 ] s

. t . not conf irmed [ j ] then
drop reques t ;

super ( )
}

acceptor . onGetConfirm ( sender , d ec r ee ) {
r ep l y with conf irmed [ dec ree ]

}

acceptor . onAckFromLearner ( sender , dec ree ) {
Acks [ dec r ee ] : = Acks [ dec ree ] union sender
i f | Acks [ dec r ee ]| >= 2 f +1 then

conf irmed [ dec ree ] := true
rep l y with ” ack−confi rmed ”

drop reques t
}

l e a r n e r . onAccepted ( sender , decree , psn , value , ac t ive−
l e ade r ) {

i f one o f r eport ed [ decree − 1 ] . . . r eport ed [
decr ee − alpha ] i s f a l s e then

drop reques t ;
super ( )

}

l e a r n e r . re sponder [ dec ree ] . run {
p a r a l l e l ( { executeWhenReady ( ) }

, { // repor t on execut ion
wait un t i l d e c i s i on [ decr ee ] != \

bot
Q−RPC(4 f +1,Acceptors , ( ” ack−from−

l e a r ne r ” , dec ree ) )
r eport ed [ dec ree ] := true }

)
}

Recovery Algorithm
==================

// puts the funky r e g i s t e r back in a good s t a t e
proposer . r ecove r ( ) {

a s s e r t ( e l e c t s ( pol ) == s e l f )
Q := Q−RPC(3 f +1 , Acceptors , ( ” get−l a t e s t −

confirmed−decree ” , po l ) )
l a s t e s t −conf irmed := f+1th l a r g e s t value in Q
f o r dec ree := l a t e s t −conf irmed to l a t e s t −

conf irmed +3 ( excluded )
complete−decree ( dec r ee )

decr ee := l a t e s t −conf irmed + 2
}

// ensu re s that a d e c i s i on has been reached on that
p a r t i c u l a r dec r ee

proposer . complete−decree ( decr ee ) {
ack [ ] : = array o f 3 f +1 values , a l l ” f a l s e ”
t r i p l e t [ ] : = ar r ray o f 5 f +1 quadruple ts : (

decree , psn , value , s i g ) ( i n i t a l l y a l l \ bot
)

max−p := 0
repeat

send (” read−s igned−decree−and−advance
” , decree ,max−p , po l ) to a l l
acc epto r s i such that t r i p l e t [ i
]==\bot or t r i p l e t [ i ] . psn<max−p

f o r each (” read−s igned−decree−and−
advance−ok ” , decree , t r i p l e ) in
the input queue from sender

i f t r i p l e . s i g i s v a l i d
and t r i p l e . psn<=
max−p then t r i p l e t
[ s ender ] := t r i p l e

max−p := l a r g e s t psn in t r i p l e t [ ]
Proof := { t r i p l e t [ i ] | t r i p l e t [ i ] .

psn==max−p }
i f | Proof |>=4f +1 then

va l := value in 2 f +1
elements o f Proof
, or ” no−op ” i f
there ’ s none

send ( ” propose ” , decree ,
max−p+1,val , pol ,
p roo f ) to a l l
Acceptors

f o r each ( ” ack−from−
l e a r n e r ” , decree , r )
from sender

ack [ sender
] := true

un t i l | ack []|>=2 f+1
}

// s igned read , p lus guarantee that we ’ l l i gnore
e a r l i e r r e gent s

acceptor . onReadSignedDecreeAndAdvance ( sender , decree
, psn , po l ) {

i f ( e l e c t s ( pol ) != sender ) then drop reques t
max−pol := max ( max−pol , po l )
i f max−pol==pol and l a s t−accepted−proposa l [

decr ee ]<psn then
l a s t−accepted−proposa l [ decr ee ] := psn

rep := ( proposa l [ decr ee ] , decree , l a s t−accepted
−proposa l [ dec ree ] )

r ep l y with ( rep , s i gna tu re ( rep ) )
}

acceptor . onGetLatestConf irmedDecree ( sender , po l ) {
i f ( e l e c t s ( pol ) != sender ) then drop reques t
r ep l y with l a r g e s t x such that conf irmed [ x ]

i s t rue
}

acceptor . allow−change ( decree , psn , value , change−voucher
) {

i f change−voucher con ta in s 4 f +1 va l i d l y
s igned ( de c r e e i , psn i , v a l u e i ) t r i p l e t s
such that

d e c r e e i==decree and psn i==psn − 1 and
l a s t−accepted−proposal<=psn i f o r a l l
i and

( e i t h e r 2 f +1 of the e n t r i e s have va l u e i==
value or no 2 f +1 e n t r i e s have the
same va lue )

then re turn true
e l s e r e turn f a l s e

}

Leader E l ec t ion Algorithm
=========================

regency ( pol ) {
re turn the sma l l e s t o f the 2 f +1 signed

numbers in pol
}

e l e c t s ( po l ) {
re turn regency ( pol ) mod ( the number o f

propo ser s )
}

// va l i d po l con ta in s 2 f +1 s igned vote s that e l e c t
the same l e ade r

va l i d ( pol ) {
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re turn t rue i f f po l con ta in s 2 f +1 numbers n i
each s igned by a d i f f e r e n t proposer

and there e x i s t s x s . t . f o r a l l n i in pol : x
== n i mod ( the number o f p ropose rs )

}

// c a l l e d when no prog re s s i s observed
proposer . noProgress ( ) {

l e t suspected−l e ader := e l e c t s ( po l )
l e t advance := 1
f i r s tO f (

{ r epeat f o r e v e r {
vote := s ign ( regency

( po l ) + advance
)

send ( ” vote ” , vote ) to
vote mod (

number o f
propose r s )

wait f o r timeout
seconds

advance := advance
+ 1

timeout := timeout
∗ 2

} } ,
{ r epeat f o r e v e r {

proc es s incoming ”new
−l e ad er ”
messages

} } ,
{ wait un t i l suspected−l e ader <

e l e c t s ( pol ) }
)
// at t h i s point , a new l e ade r has been

e l e c t ed
}

proposer . onNewLeader ( sender , newPol ) {
i f regency ( newPol )>regency ( po l ) then

po l := newPol
// no rep l y neces sa ry

}

proposer . onVote ( sender , vote ) {
vote s [ s ender ] := vote
l e t votesForMe := l a r g e s t 2 f +1 elements in

votes [ ]
i f ( pol < votesForMe ) then

pol := votesForMe / / I become
the l eade r

i f ( vote<regency ( pol ) ) or ( IamLeader ( ) ) then
send ( ” new−l e ade r ” , po l ) to

sender
}

proposer . IamLeader ( ) {
i f e l e c t s ( po l )==me then re turn t rue
e l s e r e turn f a l s e

}

2 f +1 l e a r n e r s ( op t i ona l )
========================

// only repor t a f t e r we have f +1 va l i d s i gna tu r e s
l e a r n e r . re sponder [ dec ree ] . run {

p a r a l l e l ( { executeWhenReady ( ) }
, { // repor t on execut ion

wait un t i l d e c i s i on [ decr ee ] != \
bot

and there are f +1 va lues j s . t .
s i gna tu re [ d ec r ee ] [ j ] != \ bot

Q−RPC(4 f +1,Acceptors , ( ” ack−from−
l e a r ne r ” , dec ree ) )

r eport ed [ dec ree ] := true }
)

}

// sign , and send s igna tu r e to f e l l ow l e a r n e r s too
l e a r n e r . re sponder [ dec ree ] . poke ( ) {

i f r e s u l t [ dec ree ] == \ bot then return
send ( s ign (” ack−from−l e a r n e r ” , decree , r e s u l t ) )

to a l l l e a r n e r s once
i f th e re are f +1 va lues j s . t . s i gna tu re [

decr ee ] [ j ] != \ bot then
send (” ack−from−l e a r n e r ” , decree ,

r e s u l t ) to regent [ decr ee ] once
}

// s t o r e s i gna tu r e s
l e a r n e r . onAckFromLearner ( sender , decree , r e su l t ,

s i gna tu re ) {
s i gna tu re [ dec ree ] [ sender ] := ( ” ack−from−

l e a r n e r ” , decree , r e su l t , s i gna tu r e )
}

// l e ader can now stop re t ran smi s s i on (” push ”) once
i t has f +1 i d e n t i c a l r e p l i e s

proposer . propose ( sender , operat ion ) {
R := open−jaw−i d en t i c a l −Q−RPC(4 f +1 , Acceptors

, f +1 , Learners , ( ” propose ” , decree , 0 ,
operat ion , po l ) )

// re tu rn s a f t e r r e c e i v i ng an i d e n t i c a l r ep l y
from f +1 d i f f e r e n t l e a r n e r s

r ep l y := value pre sent f +1 t imes in R
la s t−r ep ly [ sender ] : = rep ly
send rep ly to sender

}

//
// With 2 f +1 l e a rne r s , the pu l l p ro to c o l must change

as f o l l ow s
//

// query ne ighbor s when there i s a gap in the
d e c i s i o n sequence

l e a r n e r . waitingGap ( ) {
next := la s t−executed + 1
i f ( d e c i s i o n [ next ] != \ bot ) r e turn ;
send ( ” pu l l ing−d e c i s i o n ” , next ) to a l l l e a r n e r s once

}

l e a r n e r . onPul l ingDecree ( sender , dec ree ) {
i f ( d e c i s i o n [ dec r ee ] !=\ bot )
and there are f +1 va lues j s . t . s i gna tu re [ decr ee ] [ j

] != \ bot then
rep ly with ( ” de c i s i on ” , decree , d e c i s i on [ dec ree

] , s i gn atu re [ decr ee ] [ ] ) ;
}

// dec ide v i f a l e a r n e r has f +1 s i g na tu r e s f o r v
l e a r n e r . onDec is ion ( sender , decree , value , s i g s [ ] ) {

i f th e re are f +1 va lues j s . t . s i g s [ j ] != \ bot then
{
de c i s i on [ dec ree ] := va lue ;
responder [ dec r ee ] . poke ( ) ;

}
}

Helper Functions
================

p a r a l l e l ( code block , code block , . . . )
execu te s a l l code b locks in p a r a l l e l and wait un t i l

a l l r e turn .

f i r s tO f ( code block , code block , . . . )
execu te s a l l code b locks in p a r a l l e l .
As soon as one o f the b locks returns , k i l l a l l the

other b l ocks and re tu rn

There i s an o rder i ng r e l a t i o n on the proof−of−
l e ad e r s h i p s

e l e c t s ( proof−of−l e a de r sh ip )
r e turns the name of the propose r who i s vouched f o r

by th i s proof−of−l e ade r sh i p

s i gna tu re ( anything )
r e turns a va l i d d i g i t a l s i gna tu re f o r the arguments

( us ing the c a l l e r ’ s key pa i r )
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