A Framework for Dynamic Byzantine Storage

Jean-Philippe MartinLorenzo Alvisi
Laboratory for Advanced Systems Research
The University of Texas at Austin
{jpmartin,lorenz¢@cs.utexas.edu
Extended technical report

Abstract faulty server, such as data that have been digitally signed
or associated with message authentication codes (MACs).

We present a framework for transforming sev- Iraditional BQS protocols set two parameterss-he

eral quorum-based protocols so that they can dynamicall§€t of servers iD the quorum system, ghdheresilience
adapt their failure threshold and server count, allow- thresholddenoting the maximum number of servers that

ing them to be reconfigured in anticipation of possibleCan be faulty—and treat them as constants throughout the
failures or to replace servers as desired. We demonlife of the sysfcem. The rigidity of these static protocols is
strate this transformation on the dissemination quo-clearly undesirable.
rum protocol. The resulting system provides confirmable Fixing f forces the administrator to select a conserva-
wait-free atomic semantics while tolerating Byzan-tive value for the resilience threshold, one that can toéera
tine failures from the clients or servers. The system caffie worst case-failure scenario. Usually, this scenarlb wi
grow without bound to tolerate as many failures as debe relatively rare; however, since the valuefafetermines
sired. Finally, the protocol is optimal and fast: only the the size of the quorums, in the common case quorum op-
minimal number of servers 3£ + 1— is needed to toler- €rations are forced to access unnecessarily large sets, wit
ate any/ failures and, in the common case, reads require?Pvious negative effects on performance.
only one message round-trip. Fixing N not only prevents the system administrator
from retiring faulty or obsolete servers and substituting
them with correct or new ones, but also greatly reduces the
1. Introduction advantages of any technique designed to chgdymam-
ically. For a given Byzantine quorum protocadl; must
Quorum systems5] are a valuable tool for building be chosen to accommodate the maximum valyg, of
highly available distributed data services. These systemhe resilience threshold, independent of the valug thfat
store a shared variable at a set of servers and perform retiié system uses at a given point in time. Hence, in the
and write operations at some subset of these servers ¢ammon case the degree of replication required to toler-
quorumn). To access the shared variable, protocols definate f,,,. failures is wasted.
some intersection property for the quorums which, com- Alvisi et al. [2] take a first step towards addressing
bined with the protocol description themselves, ensure thahese limitations. They propose a protocol that, for a
read and write operations obey precise consistency semdixed N, can dynamically raise or lowef within a range
tics. In particular, a shared register can provide, in Or{f, ;.... fma.] at run time without relying on any con-
der of increasing strengtbafe, regularor atomicseman- currency control mechanism (e.g., no locking). Improv-
tics [11]. ing on this result, Kong et al1p] propose a protocol that
Malkhi and Reiter 13] have pioneered the study of can dynamically adjusf and, once faulty servers are de-
Byzantineguorum systems (BQSs), in which servers maytected, can ignore them to obtain quorums that exhibit
fail arbitrarily. Their masking quorum systenguaran- betterload?, effectively shrinkingN. The protocol how-
tee data integrity and availability despite compromiseaver does not allow to add new servers\toWhile other
servers; they also introducissemination quorum systems quorum-based systems such as Ramil#h Rambo |1 [8],
that can be used by services that supmaif-verifying
data i.e., data that cannot be undEIeCtably altered by a Papers such ad 3| consider generalized fault structures, offering a
more general way of characterizing fault tolerance thanestiold.

* This work was supported in part by grants from the Texas Adedn However, such structures remain static.
Technology Program and Sandia National Laboratories andnby 2 Given a quorum systetfi, theload of S is the access probability of
Alfred P. Sloan Fellowship. the busiest quorum i, minimized over all strategies.

http://www.cs.utexas.edu/users/jpmartin
http://www.cs.utexas.edu/users/lorenzo
http://www.utexas.edu

and GeoQuorumsg] can adjust dynamically botli and showing that DQ-RPC is such an operation.

N, they cannot tolerate Byzantine failures. The rest of the paper is organized as follows. We cover
In this paper we propose a methodology for transformrelated work and system model, respectively, in Secion

ing static Byzantine quorum protocols into dynamic onesand Sectior8. We specify the transquorum properties in

where bothN and f can change, growing and shrinking Sectior4 and show in SectioB that our DQ-RPC satisfies

as appropriafeduring the life of the system. We have suc-the transquorum properties before concluding.

cessfully applied our methodology to several Byzantine

quorum protocols9, 13, 14, 17, 18]. The common charac- 2. Related work

teristic of these protocols is that they are based orGthe

RPCprimitive [13]. A Q-RPC contacts a responsive quo- ayisj et al. [2] are the first to propose a dynamic BQS

rum of servers and collects their answers, making it a ”ﬁrotocol. They let quorums grow and shrink depending

ural building block for implementing quorum-based ready, the value off, which is allowed to range dynamically

and write operations. Our methodology is simple and Nongithin an interval [Fiins s fruas]. This flexibility, how-

intrusive: all that it requires to make a protocol dynamic isever, comes at a cost: because their protocol does not al-

to substitute each call to Q-RPC with a call to a new primi1OW to changeV, it reqUIre2(fras — fmin) MOTE SEIVErS

tive, called DQ-RPC fodynamicQ-RPC. DQ-RPC main- 3 an equivalent static protocol to tolerate a maximum
tains the properties of Q-RPC that are critical for the cory Fmas failures.

rectness of Byzantine quorum protocols, even wieand

f can _change. . . troducing a special, fault-free node that monitors the set
Defining DQ-RPC to minimize changes to existing pro-g¢ seryers in the quorum system. The monitor tries to de-

tocols is challenging. The main difficulty comes from o mine which are faulty and to inform the clients, so that
proving that read and write operations performed on th?ney can find a responsive quorums more quickly. In the

dynamic versipn of a protocoll maintain the same consisAg”e store servers can be removed frambut not added.
tency semantics of the operations performed on the Statihrefore, if the monitor mistakenly identifies a node as
version of the same protocol. In the static case, thesg iy and removes it fronV, the system’s resilience is re-

proofs rely on the intersection propgrties of the_ resp@SiVyy ced: The system toleratgs.,, Byzantine faulty servers
quorums contacted by Q-RPCs while performing the read,y a5 jong as the monitor never makes such mistakes.
and write operations. Unfortunately, these proofs do not The Rosebud projectLp] shares several of our goals.

carry elasny to DQ-RPC. WheN changes, Itis no longer posebud envisions a dynamic peer to peer system, where
ppsglb e to guarantee qullorum m'ltcerseC;'P”- given any tWoeyers can fail arbitrarily, the set of servers can be modi-
distinct timest, andt,, the set of machines itV att, oy at run-time, and clients use quorum operations to read

andt, may be completely disjoint. We address this prob- 4 \rite variables. It is hard to compare our protocols

Iem.by taking a fresh look at what makes Q-RPC—basepo Rosebud, because the only Rosebud reference we have
static prqtocols work. __identified [L9] does not give specific details of the proto-
Traditionally, the correctness of these protocols relieg|q they intend to use to achieve their goals. Nonetheless,
on properties of the quorums themselves, such as intersgga e d, by requiring loosely synchronized clocks and as-
tion. Instead_, we fpcus our attention on the properties O.i,uming servers with a cryptographic co-processor, appears
thedatathat is retrieved by quorum operations such as Q¢ make stronger assumptions than we do in this paper.

RPC. In p'artlc'ular, we identify two such propertiesund- Also, Rosebud'’s handling of view changes appears to dif-
nessandtimeliness Informally, soundness states that thet. rom ours in at least two ways. First, when an opera-
data that clients gather from the servers was previously,, jn Rosebud detects that the set of servers is changing,

written; timeliness requires this data to be as recent 3 simply restarts; second, Rosebud allowsto change
the last written value. We call these propertigsquo- oy 4t pre-set intervals. In contrast, we allow operations

rum properties, because they do not explicitly depend oR, -ontinue even ad’ is changing, and we allow’ (and
quorum intersection. We prove that transquorum PrOPEI?) {6 change at any time.

ties are sufficient to guarantee the consistency semantics Several quorum-based protocols allow to chaivgand
provided by each of the protocols that we consider. Now , but only tolerate crash failures. Rambo and Rambo
all that is needed to complete our transition from static t (8, 12] provide the same interface as our protocols: read
dynamic protocols is to show an instance of & quorum OR,ie and reconfigure. They guarantee atomic semantics in

eration that satisfies the transqyorum properties evenwhep ejiaple asynchronous network despite crash failures
fandX are allowed to change: we conclude the paper by |, GeoQuorumsg] the world is split inton. focal points

and servers are assigned to the nearest (geographically) fo

The Agile store 10] modifies the above protocol by in-

3 We focus on the mechanisms necessary for supporting dynamic qu
rums. A discussion of the policies used to determine when tasad
N and f is outside the scope of this paper. Some examples of such Partial-atomic semantics guarantees that reads eithefysatbmic
policies are given in3, 10]. semantics or abortf].

[name [can folerate (crash,Byz)

client failures| semantics

servers required

crash (f,0), without signatures crash atomic 2f +1
U-disseminationI7] | (0,b), using signatures crash atomic 3b+1
hybrid-d [9] (f,0), using signatures crash atomic 2f +3b+1
U-masking [L8] (0, b), without signatures correct partial-atomié | 4b + 1
hybrid-m [9] (f,b), without signatures correct partial-atomié | 2f +4b + 1
Phalanx 14] (0, b), without client signatures Byzantine partial-atomié | 4b + 1
hybrid Phalanx (f,b), without client signatures Byzantine partial-atomié | 2f +4b + 1

Figure 1: List of quorum protocols that can be made dynamimguBQ-RPC

cal point. The system provides atomic semantics as longtions return only when they complete (i.e. we consider
as no more thayf focal points have no servers assigned taconfirmable operationd f]).
them. Servers can join and leave; however, neitheor f Our dynamic quorum protocols maintain the same as-
can change with time. sumptions about client failures of their static counter-
Abraham et al. J] target large systems, such as peerparts. Clients communicate with servers over point-to-
to-peer, where it is important for clients to issue reads angoint, asynchronous fair channels. A fair channel guaran-
writes without having to know the set of all servers, and itees that a message sent an infinite number of times will
is important for servers to join and leave without having tareach its destination an infinite number of times. We al-
contact all servers. Thearobabilistic quorumsneet these low channels to drop, reorder, and duplicate messages.
goals (for example, clients only need to kn@(/n)

servers), provide atomic semantics with high probabilityq A new basis for determining correctness
and can tolerate crash failures of the servers.

View-oriented group communication systems provide a The first step in our transition to dynamic quorum pro-
membership service whose task is to maintain a list of theycols is to establish the correctness of the static proto-
currently active and connected members of a grellp [cols we consider (shown in FiguB on a basis that does
The output of the membership service is calledew. If ot rely on quorum intersection. To do so, we observe that
we consider the set of servers in the quorum system ass the heart of all these protocols lies the Q-RPC prim-
group, then in our protocol the membership service is trivitiye [13]. This primitive takes a message as argument,
ially implemented by an administrator, who is solely re-sends that message to a quorum of responsive servers, and
sponsible for steering the system from view to view (se@eturns the response from each server in the quorum. Our
Section5.1). approach to extend quorum protocols to the case where

An interesting property of our protocol is that it al- servers are added and removed (and thus quorums may
lows processes who are outside the quorum systems ot intersect anymore) is to define correctness in terms of
i.e. the clients in our protocol—to query servers within the[he properties of the data returned by quorum_based op-
quorum system to learn the current view. Note that ougrations such as Q-RPC. In this section, we first specify
clients do not learn about views from the membership setwo properties that apply to the data returned by Q-RPC;
vice, but rather indirectly, through the servers. Nonethe[-hen’ we prove that these properties are sufficient to en-
less, our protocol guarantees that, despite Byzantine faibure correctness. In Sectirwe will show that it is pos-
ures of some of the servers, a correct client will only acsible to implement Q-RPC-like operations that guarantee

cept views created by the administrator and will never aCthese properties even when quorums do not intersect.
cept as current a view that is obsolete (see Se&itn

4.1. The transquorum properties
3. System model
In the protocols listed in Figurg, quorum-based oper-

Our system consists of a sat of n servers. Servers ations such as Q-RPC are the fundamental primitives on
can dynamically join and leave the system, i.e. bath top of which read and write operations are built. Not all
andn can change during execution. To prevent Sibyl atQ-RPCs are created equal, however. Some Q-RPC opera-
tacks [7], the identity of every server is verified before it tions change the state of the servers (e.g. when the mes-
is allowed to join the system. Servers can be either coisage passed as an argument contains information that the
rect or faulty. A correct server follows its specification; servers should store), others do not. Some Q-RPCs need
a faulty server can arbitrarily deviate from its specifica-to return the latest data actually written in the system; oth
tion. The set of clients of the service is disjoint fram ers are content with returning data that is not obsolete,
Clients perfornreadandwrite operations on the variables whether it was written or not. To capture this diversity,
stored in the quorum system. We assume that these opeve introduce two propertieimelinessandsoundnessVe

READ READ

1. @Q := Q-RPC(“READ") 1. Q :=TRANS-Qr (“READ")
11 Q is a set of(ts, writer_id, data)yriter I Qis a set of(ts, writer_id, data)yriter
2. replyr := ¢(Q) Il returns largest valid value 2. replyr := ¢(Q) /l returns largest valid value
3. Q = Q-RPC(“"WRITE"y) 3. Q .= TRANS-Qy(“WRITE", 1)
4. returnr.data 4. returnr.data
WRITE (D) WRITE (D)
1. Q :=Q-RPC("GETTS") 1. Q .= TRANS-Q(“GET_TS")
2. ts:=maz{Q.ts} +1 2. ts ;== max{Q.ts} + 1
3. m = (ts,writer_id, D)yriter 3. m = (ts,writer_id, D)writer
4. Q := Q-RPC(“WRITE”/n) 4. @ = TRANS-Q,(“WRITE”, m)

Figure 2: U-dissemination protocol (fail-stop clientsh te left: Q-RPC. On the right: TRANS-Q.

call themtransquorumproperties because, as we will seethe main body we limit ourselves to the first three proto-
in Sectionb, they do not require quorum intersection tocols in the figure. All three protocols have the same client
hold. Intuitively, timeliness says that any read value mustode, shown on the left in Figugand all three guarantee
be as recent as the last written value, while soundness sag®mic semantics. The server code is also identical: server
that any read value must have been written before. Not@mply store the highest timesetamped data they see and
that not all Q-RPCs need to be both timely and sound. Faend back to the client the data or its timestamp (in reply to
example, Q-RPCs used to gather the current timestamBREAD or GETTS requests, respectively). The protocols
associated with the value stored by a quorum of servers diiffer in the size of the quorums they use and in the de-
not need to be sound—all that is required is that the regree of fault tolerance they provide: U-dissemination pro-
turned timestamps be no smaller than the timestamp of thecols [L6] (a variant for fair channels of the dissemina-
last write. tion protocol presented inlf]) can tolerateb Byzantine

We then define three set¥, R, and7 of Q-RPC-like faulty servers, crash can tolergtdail-stop faulty servers,
guorum operations. Each Q-RPC-like operation in a proand hybrid-d can tolerate bothByzantine failures ang
tocol belongs to zero or more of these sets. fail-stop failures { + b failures in total). To simplify our

Let w — r (w “happens before” r) indicate that the discussion, since the three client protocols are identeal
quorum operationv ended (returned) before the quorumwill only discuss the U-dissemination protocol here; all we
operationr started (in real time). Further, letbe an or- say also applies to the crash and hybrid-d protocols, ex-
dering function that maps each quorum operation to an etept that the crash protocol does not use any signatures.
ement of an ordered se¢!. We define the transquorum Another simplification is that we show the transforma-
properties as follows: tion on the non-optimized version of the U-dissemination

protocol. The technical report$] shows how to shorten
reads to a single message round-trip in the common case

(timeliness) Yw € W,Vr € T,0(r) # L : by skipping the write-back when it is not necessary.
w —r = o(w) < o(r)
(soundness) Vr € R,o(r) # L : 4.2.1. Dissemination protocols with transquorumsTo
Jw e Ws.t.r £ w A o(w) = o(r) illustrate that we only rely on the transquorum properties

and not on the specific implementation of Q-RPC, we re-
In this paper we always chooseso that when applied place all Q-RPC calls in the protocol (Figu2g with an
to a Q-RPC-like operatiom, it returns both a timestamp “abstract” function TRANS-Q that we postulate has the
and the data that is associated witl{i.e. either read or transquorum properties. TRANS-Q takes the same argu-
written). This allows us to use the timeliness property tanents and returns the same values as Q-RPC.
ensure that readers get recent timestamps and the sound-The U-dissemination protocol on the right of Figire
ness property to ensure that reads get data that has bages TRANS-Q as its low-level quorum communication

written. primitive. We have annotated each call to indicate which
set it belongs toR, W, or 7).
4.2. Proving correctness with transquorums We use the notatiofia), to show thata is signed by

b. Note that data is signed before being written, and ver-
Transquorum properties are all that is needed to proviéied before being read. The functiof(Q) returns the
that the protocols listed in Figui@correctly provide the largest value in the sep that has a valid signature us-
consistency semantics that they advertise. We present tivgy lexicographical ordering: since our values are triplet
complete set of proofs in the appendix. For conciseness, {iis, writer_id, D), ¢ selects the largest valid timestamp,

4

| Operations of this form | are assigned this order | and this set
r = TRANS-Q“READ") o(r) = o(rrer) R
w = TRANS-Q(“W RITE” ,ts, writer_id, D) | o(w) = (Warg.tS, Warg.writer_id, warq.D) 14%
t = TRANS-Q“GET T'S") o(t) = (maa(tyer) + 1, L, L)5 T

Figure 3: Theo mapping

usingwriter_id and therD to break ties. fies the transquorum properties without compromising the
We assign each TRANS-Q quorum operation to one ocfemantics of the U-dissemination protocol. The proof is

the setsR, W or 7)) and define the ordering(z) for each structured around the following three lemmas, which we

quorum operatiomw. Our assignment is shown in FiguBe prove in AppendixA.1.

The assignment is fairly intuitiye: operations that Chang?_emma 1. Our ordering relation “<” is a total order on

thelserverstlate havg beer_n assigned to/_l)met.and the O ser writes: furtherlV — X — W < X and X —

dering function consists either of what is being written, Oy — X < W for any user writel” and user read or

of what the caller extracts from the set of responses to tSser write X .

query. More precisely, to defingx) we observe that any

quorum Operatiom has two parts: the arguments passed_emma 2. Alluser read.SR return the Valge that was writ-

to = and the value that returns. We use the notation,, ~ t€n by the last user writél” precedingR in the “<" or-

to refer to the arguments that were passed toutloper- dering.

ation, andz,, to indicate the value returned by (that Combining the two lemmas gives our first theorem:

value is always a set).

We want to show that the U-dissemination protocol-rheo_rem 1. The_ U_-dissemination protocc_>| provides
with TRANS-Q operations offers atomic semantics. In-atomic semantics if (i) the TRANS-Q operations have the

formally, atomic semantics requires all readers to see {HEAnsquorums properties for the functierdefined in Fig-

same ordering of the writes, and furthermore that this or?'® 3. and (i) forallr € R - o(r) 7 L.
der be consistent with the order in which writes were
made. Note that atomic semantics is concerned ustr- 5 Dynamic quorums
level(or, simply,usei reads and writes, not to be confused
with the quorum-level operationr, simply,quorum op- The transquorum properties allows us to reason about
erationg such as Q-RPC and TRANS-Q. We use lower-quorum protocols without being forced to use quorums
case letters to denote quorum-level operations, and tapitéat physically intersect. In this section, we leverags thi
letters to denote user-level operations (é&gr W). Sim- result to build DQ-RPC, a quorum-level operation that sat-
ilarly, we use the mapping to denote the ordering con- isfies the transquorum properties but also allows both the
straint that the transquorum properties impose on quoruget of servers and the resilience threshold to be adjusted.
operations, and the mappiayto denote the ordering con- We must first introduce some way to describe how our
straints imposed by the definition of atomic semantics oBystem evolves over time, & and f change.
user read and write operations.

Atomic semantics can be defined precisely as follows.5 1. Introducing views

Definition 1. Every user readR returns the value that
was written by the last user writd” precedingR in the
ordering “<”. “ <” is a total order on user writes, and
W-X=W<XandX - W = X < W forany

user writeTV and user read or user writé .

We use the well-established teriew to denote the
set N that defines the quorum system at each point in
time. Each view is characterized by a set of attributes, the
most important of which are the view numberthe set
of serversN (t) and the resilience threshojd¢). In gen-

We useD, which maps every user read and write operaeral, view attributes include enough information to com-
tion to an element of some ordered #dt, to define com- pute the quorum size(t). The responsibility to steer the
pletely the ordering relatior™: X < X’ < O(X) < system from view to view is left with an administrator,
o(X"). who can begin a view change by invoking thewView

We are now ready to prove our first theorem, showingcommand.
that we can replace Q-RPC with any operation that satis- When the administrator callsewView , the view in-
formation stored at the servers is updated. We say that a
5 We do not explicitly require this value to be larger than smes- ~ VIEW ¢ startswhen a server receives a view change mes-

tamp previously sent by this client because we do not allcentdi sage for viewt (for example because the administrator

to issue multiple concurrent writes. callednewView(t,...)). A view ¢t endswhen a quorum

q(t) of servers have processed a message indicating thi@the there exists at most one active view. Since we know
some later view: is starting. After starting and before end- that the protocols in Figurg are correct for a static quo-
ing, the view isactive A view may start before the previ- rum system, we can simply make sure to evolve the sys-
ous view ended, i.e. there may exist multiple active viewsem through, as it were, a sequence of static quorum sys-
at the same time; our protocol makes sure that the praems. We can do so as follows.
tocol semantics (e.g. atomic) is maintained despite view
changes, even if client operations happen concurrently to
them.

The newView function has the property that after
newView (¢) returns, all views older than have ended ~ Our simplified DQ-RPC has two outputs: a vie\that
and viewt has started. At this point the administrator carve call DQ-RPC'scurrentview) and a quorum of(t) re-
Safe|y turn off server machines that are not in view sponses. Pseudocode for the Slmpllfled DQ-RPC is shown

Obviously, we must restrict who can call thewView N Figure4. The functiong(n, f) computes the quorum
command. In our system, this is solely the privilege ofSiZ€ based on the number of servarand the resilience
the administrator. If the administrator is malicious thes w threésholdf. TheactiveServers() function gives the list
cannot provide any guarantee (for example, it could staRf servers in active views (views that have Started_but
a view containing no server to deny service to all clients)Not ended — there may be more than one). The variable
However, the system can tolerate crash failures of the ad¢Plics keeps track of all replies from active servers. Sim-
ministrator. This problem remains even if the administraPlified DQ-RPC loops until it getg(|N (#)], f(¢)) mes-
tor algorithm is run in a Byzantine fault tolerant manner, a$29es tagged with the same viewouched for by mes-
long as that program takes its inputs from a person: the m&agemt). We writemn.tag for the view meta-information
chine through which these inputs are transmitted must né@gged onto message. These tags contain three fields:
have been tampered with. Since the determination of fu1e set of serversV, the resilience threshold and the
ture values off and the decision of adding computers toView numbert. If we assume that clients have some ex-
the system (possibly purchasing new ones as necessary}%na!, infallible way to know which servers are in an ac-
best done by a person, we consider a single crash-only atité view (theactiveServers function) then the above
ministrator machine for the remainder of this paper. simple scheme is sufficient: DQ-RPC sends its messages

Since our system uses views to discretize time, so dod@ SETVers in an active view and it makes sure that it only
our definition of faults. We say that a servercisrrectin ~ PICKS active views as its current viéw . o
some viewt f it follows the protocol from the beginning ~ Showing how DQ-RPC can determine which views are
of time until view ¢ ends. Otherwise, it is faulty in view activels the subject of the rest of this section.

t. Note that a server may be correct in some vieand 5.2.1. View changesTo determine whether a view is ac-

faulty ina later viewu. How_ever, faulty servers will never tive, it is important to specify how the system starts (and
be considered correct again. If some server recovers fro%ds) views

a failure (for example by reinstalling the operating sys- To initiate a view change, the administrator's computer

;e:n ‘.”‘ffﬁirna ?;]Sk cot[run[i)]tlt?rr;]), '; t?ikis ofnr a iTie\;]V natr:re bhef'irst tells a quorum of machines on the old view that their
ore joining the system. The notion ot resiience Iresh;., has ended. These machines immediately stop accept-
old is also parameterized using view numbers. For exal

"?hg client requests. Clients can thus no longer read from

ple, a static U-dissemination protocol requires a minimurqhe old view since they will not be able to gather a quo-
of n > 3f + 1 servers: this requirement now becomes

IN(t)] > 3f(1) + 1 for each viewt. Our system assumes rum of responses. The administrator then performs a user-

. level read on the machines from the old view to obtain
that between the start and the eno! of vugvat mostf () some valuev. Finally, the administrator tells all the ma-
of the servers inV(t) are faulty. Since views can over-

. . . . chines in the new view that the new view is starting, and
lap this means that sometimes a conjunction of such Corﬂ)’rovides them with the initial value. At this point, the
ditions must hold at the same time. '

machines in the new view start accepting client requests.

Naturally, it is not always possible for the administrator
5.2. A simplified DQ-RPC to make sure it has contacted all the new machines: if some
server is faulty then it could choose not to acknowledge,

We begin with a simplified version of DQ-RPC causing the administrator to block forever. In our simpli-

that, while suffering from serious limitations, al- fied DQ-RPC we remove this problem by simply assum-
lows us to present more easily several of the key featurdag that the administrator has some way to contact all the
of DQ-RPC—the full implementation of DQ-RPC is pre-
sented in Sectiob.3 6 It is necessary to pick an active view: after some DQ-RPCewrit
The easiest way to implement DQ-RPC is to ensure data to the latest view, reads to a view that has ended wotchre

that different views never overlap, i.e. that at any point in old data since different views may have no servers in common.

e Replies from servers are tagged with a view number

e Once a client accumulate$t) responses tagged with
view t, the DQ-RPC returns these responses.

Simplified-DQ-RPC(D)

1. repeat

2. sendD to activeServers()

3. gather responses ifaplies

4. replies :={r € replies : r.sender € activeServerg}

5. until 3¢, mt : mt € replies Amt.tag.t =t
A{r € replies : r.tag.t =t}| > q(|mt.tag.N|, mt.tag.f)
6. return{r € replies : r.tag.t = t} Il t is the current view associated with this operation

Figure 4: Simplified Dynamic quorum RPC

servers. We will see in Sectidh3 how the full DQ-RPC later, they cannot recover that private key and thus can-

ensures that all view changes terminate. not vouch for a view that they left. We now discuss how
A delicate point to consider when performing a viewour protocol addresses this issue.

change is that, after view ends, so does the constraint The private key is only transmitted when the admin-

that at mostf(¢) of the machines in view can be faulty. istrator informs the server of the new view. Our network

For example, if the view was changed to remove some denodel allows the channel to duplicate and delay this mes-

commissioned servers, it is natural to expect that the sesage, which may therefore be received after the server has

mantics of the system from then on does not depend deft the view. To prevent the decommissioned server from

the behavior of the decommissioned servers. recovering the private key we encrypt the message using a
And yet, the decommissioned machines know somesecret key that changes for every view.

thing about the previous state of the system. If they all be- The administrator’s view change message for vidw

came faulty (as it may happen, since they are no longer userveri contains the following:

der the administrator’s watchful eye) they would be able to

respond to queries from clients that are not yet aware of the (NEW_VIEW, ¢, 0ldN,

new servers and fool them into accepting stale data, vio- encrypt (({i, meta, pub)agmin, priv), kl))

lating atomic semantics. This situation is depicted in Fig- .

ure5. To prevent the system from depending on server¥/e Use the notationncrypt(z, k) for the result of en-

that have been decommissioned, the view change protoc@lyPting dataz using the secret key. The view keyk;

must ensure that no client can read or write to a view afiS shared by the administrator and servéor view ¢. It

ter that view has ended. Oforgettingprotocol enforces 1S computed from the previous view's key using a one-
this property. way hash functionk! := h(k!™"). The administrator and

i . 0 TR
Safe View Certification through “ForgettingThe simpli- server; are giver; at system initialization.

. . . . When correct servers leave a viewthey discard view
fied DQ-RPC requires the client to receive a quorum of re-, o . . . wt yt

o . t's certificate, private keyriv and view keyk!. As a result
sponses with view'’s tag before it returns that value and ’

;) they will be unable to vouch for view later even if they
considers viewt current. If the servers are correct, thenbecome faulty and gather information from dunlicated net-
this ensures that no DQ-RPC choosess current aftet y 9 P

. : work messages. This ensures that client following the sim-
ends (recall that views end once a quorum of their servers... . S .
: plified DQ-RPC protocol will not pick view as its current
have left the view).

The forgetting protocol ensures that this property hoId%’IeW aftert ends.

despite Byzantine failure of the servers. Clients tag theib.2.2. Finding the current view In the previous section
queries with a nonce. Server: tags its response with we have seen how clients can identify old views. We now
two pieces of information: 1) serveis view certificate need to make sure that the clients will be able to find the
(1, meta, pub) aamin, Signed by the administrator, and 2) acurrent view, too.

signature for the nonc&),...,, proving that servei pos- If the set of servers that the client contacts to perform
sesses the private key associated with the public key in this DQ-RPC intersects with the current view in one correct
view certificate. The key paipub, priv is picked by the serveri, then the client will receive up to date view infor-
administrator. In the certificatepeta contains the meta mation from: and will be able to find the current view.

information for the view, namely the view numbgrthe If that is not the case, then the client can consult well-
set of serversV and the resilience threshojd The quo- known sites to which the administrator publishes the list
rum sizeg can be computed from these parameters. of the servers in the current view. Our certified tags ensure

When servers leave viewy they discard the view cer- safety: even if the information the client retrieves froneon
tificate and private key that they associated with that viewof these sites is obsolete, the client will never pick as cur-
The challenge is to ensure that even if they become faultyent a view that has ended. Therefore it suffices that the

_1 newView f=4

if faulty, can these servers
pretend that the reconfiguration
never took place?

Figure 5: Example of view change

client eventually learn of an active view from one of theDQ-RPC(msg)
well-known sites.

In the case of a local network, clients could also broad- L Se€ndesdr := new Senddrnsg)

2. static ViewTrackerg_vt := new ViewTracker

cast a query to find the servers currentlyNn This solu- 3. repeat
tion has the advantage of simplicity but it only works ifall 4. sender.sendTg(vt.get().N)
servers are in the same subnet. 5. (Q,t) := g-vt.consistentQuorumafr.getReplies())

5.2.3. Summary Clients only accept responses if they ? ur:i“runnmg for too longhen g_vt.consult()

all have valid tags for the same view. Until they accepta "~ j/ ;g %fc%rrent view associated with this operation
response, clients keep re-sending their request (for read 08. return@ I/ sender stops sending at this point
write) to the servers. Clients use the information in thstag

to locate the most recent servers, and periodically check
well-known servers if the servers do not respond or do not
have valid tags. Tags are valid if their view certificate has a
valid signature from the administrator and the tag includes

a signature of the client-supplied nonce that matches the We split th? implementation Of. DQ-RPC into three
public key in the certificate. parts. The main DQ-RPC body (Figu6 takes a mes-

Replacing Q-RPC with this simplified DQ-RPC in a Sage and sends it repeatedly to the servers believed to con-
dissemination quorum protocol from Figugeresults in stitute the current view. The client’s current view changes

a dynamic protocol that maintains all the properties IisteﬁfvIth the'responses that it gets; if no responses are received
in the figure. for a while then DQ-RPC consults well-known sources for

However, simplified DQ-RPC has two significant lim- a list of possible servers (Iin_e 6). The repetitive_sen_ding
itations. First, it requires the administratorgwView S handled by the Sender object, and the determination of

command to wait for a reply from all the servers in the newNe CUIrént view is done by the ViewTracker object (Fig-

view, which may never happen if some servers in the nelre9)- The client exits when it receives a quorum of con-

view are faulty. Second, it does not let DQ-RPCs (andsistent answers. In the simplified protocol, answers were

implicitly, user-level read and write operations issued b);:ons:stent i theyf?II_had thg sarr;e tag_. In this section we
clients) complete during a view change: instead the oper&€velop a more efficient notion of consistent responses.

tions are delayed until the view change has completed. We The Sender is given a message and a destination and it
address both limitations in the next section. repeatedly sends the message to the destination. The desti-

nation can be changed using ttendTo method and the

5.3. The full DQ-RPC for dissemination quorums ~ 'eplies are accessed througggtReplies (The code for
the Sender object can be found &B]). The code for the

The full DQ-RPC for dissemination quorums follows Sender object is shown in Figure
the same pattern as its simplified version: it sends the mes- The ViewTracker acts like a filter: Sender must go
sage repeatedly until it gets a consistent set of answerhrough it to read messages. The ViewTracker looks at
and picks a current view in addition to returning the quothe messages and keeps track of the most recent view
rum of responses. DQ-RPC uses the technique describedrtificate it sees. As we saw in the forgetting protocol,
in the previous section to determine whom to send to, buhessages are tagged with a signed view certificate and a
it can decide on a response sooner than the simplified D@igned nonce. Messages that do not have a correct sig-
RPC because it can identify consistent answers without rexature for the nonce are not considered as vouching for
quiring all the responses to be tagged with the same viewthe view (line 3 of ViewTrackeconsistentQuorum).
The full DQ-RPC also runs a different view change proto-However, even if the nonce signature is invalid, View-
col that terminates despite faulty servers. Tracker will use valid view certificates to learn which

Figure 6: Dynamic quorum RPC

servers are part of the latest view (line 5). The most re- More generally, if after a write: servers are added,

cent view certificate can be accessed throughgee servers are removedlis modified bye, andm is reduced
method. The ViewTracker can also get new candidate® m,,;, then the quorums will still intersect sufficiently as
from well-known servers with theonsult method. long asa + d + ¢ < m,,;,. If a view change would break
Finally, the ViewTracker has the responsibility of de-this inequality then the value must be copied to some of
ciding when a set of answers is consistent, through thihe new servers before the view change completes: we say
consistentQuorum method. that the old and new views are in different generations.

5.3.1. Introducing generations Our dynamic protocols
. e newView
only require the minimal number of serveds] to toler- we are part of

ate f faults:3 f 4+ 1. The price for this minimal replication O

is that every time new servers are added, the data must be powered off finished reading

copied to them. O from previous view O
When more machines are available, it is possible to use or new view is

.- R . joining in same generation ready
the additional replicas to speed up view changes. We offer anrgv'v]\;ir?vgfwe
this capability through the newpreadparameter. When —
the spread parameten is non-zero, quorum operations we are not part of

. . . limbo
involve more servers than strictly necessary. This mar-

gin allows the quorums to still intersect when a few newFigure 8: Server transitions for the dissemination protoco
servers are added, allowing these view changes to proceed
quickly. As a result, there are now two different kinds of
view changes: one in which data must be copied and one
in which no copy is necessary. In the second case we s
that the old and new views belong to the sayaaeeration
Each view is tagged with a generation numbgéhat is in-
cremented at each generation change.

These two parameters; andg, are stored in the view
meta-data alongside witN, f andt.

The additional servers do not necessarily need to b§0
used to speed up view changes. Using a smaflexith
a givenn makes the quorums smaller and reduces the lo
on the system. The parametertherefore allows the ad-
ministrator to trade-off low load and quick view changes.

¥3.2. View changes: closing the generation gaphe
copying of data across generations is done as part of the
view change protocol. Unlike the view change protocol
that is associated with simplified DQ-RPC, the full view
change protocol terminates.
View changes are initiated by the administrator when
me machines need to be added, removed or moved, or
hen the resiliencg or the spreadn have to be changed.
he newView method first determines whether the new
view will be in the same generation as the previous one,
using the relation in SectioB.3.1 It then computes the
Intra-Generation: When Quorums Still Intersedthen key pairs and certificates for the new view. Finally the ad-
clients write using the DQ-RPC operation, their messagginistrator encodes the certificates using the appropriate
is received by a quorum of responsive servers. The sizhared key and sends them to all servers, ire-sending
of the quorum depends on the parameters of the curremthen appropriate and waiting for a quorum of responses.
view ¢ (recall thatt is also determined in the course of Servers switch states according to the diagram in Fig-
a DQ-RPC). The quorum size depends on the failure aswe 8. When they receive a new view message for a new
sumptions made by the protocol. For a U-disseminatiogeneration (and they are part of that generation), servers
Byzantine protocol that toleratédaulty servers, the quo- piggyback that message on top of a read they perform on
rum size isg(n,b,m) = [(n+ b+ 1)/2 + m/4]. a quorum from the old view. They then update their value
In the absence of view changes, our quorums interseetith what they read (if it is newer than the value they cur-
inb—+1+m/2 servers. lfim new (blank) servers are added rently store) and update their view certificate. If they are
to the system, then our quorums intersedi in 1 servers, part of the new view but there is no generation change then
which is still sufficient for correctness: one of the serverghe servers just update their view information as per the
is correct and the reader will recognize the signature on thfergetting protocol. If they are not part of the new view
correct data. Thus, up te servers can be added to the sys-then the servers update their certificates too. In that case
tem before data must be copied to any of the new serverghey will not be able to vouch for the new view since they
Similarly, if m of the servers that were part of a write have no valid view certificate for it, but they will still be
quorum are removed, new quorums will still intersect inable to direct clients to the current servers.
b+ 1 servers and the system will behave correctly. Finally, Servers are in thémbo state initially and after leaving
if bis increased or reduced by ups#teo (causing the quo- the view. They are in thpining state while they copy in-
rums to grow or shrink accordingly), new quorums will formation from the older view, and they are in tieady
still intersect the old ones i+ 1 servers. state otherwise. Servers process client requests in a# thr

Sender variables

m_message the message that is to be transmitted

m_destinations | the set of destination addresses

m_thread a resend thread (initially not running)

m_replies set of (sender, reply, meta) triples

m_recentReply | set of senders who sent a reply in the most recent view
m_delay delay until the next retransmission (initially 1 second)

constructor Sende(msg)
1. m_message := msg
Sender.sendT¢Dest s)

1. m_destinations ;= Dests
2. if m_thread is not runningthen
3. createn_thread /I the worker threadn_thread will call run()

Sender.run()

1. m_message.nonce = a Nnew nonce

2. while (true)

3. m_recent Reply = senders inn_replies with meta that has the same view numbegag.get()

asynchronously send_message to each element ofi_destinations - m_recent Reply

waitm_delay seconds

m_delay :=m_delay * 2

while ((j,r,s):=g.vt.receivefn_message.nonce)) I received valid reply,s) from server;j
if 7 € m_destinations then

9. m_replies := m_replies U (j,r,s)

Sender.getReplie§

1. returnm_replies

© N aA

Figure 7: Sender class for dynamic quorum RPC

states. Servers in theining state use the view certificate ~ The protocol as presented here requires the administra-
for the old view (if they have it) until they amready. tor to be correct. If the administrator crashes after sepdin

The administratorsiewView waits for a quorum of the new view message to a single faulty new server, the
new servers to acknowledge the view change and then €W server can cause the servers in the old view to join the
posts the new view to the well-known locations and relimbo state without informing the new servers that they
turns. At this point, the administrator knows that the dat#re supposed to start serving. In AppenBixve show a
stored in the machines that were removed from the viewariant that tolerates crashes in the sense that if the ad-
are not needed anymore and therefore the old machinggnistrator machine crashes at any point during the view
can be powered off safely. change and never recovers then read and write operations

There may still be some machines in jbiming stage at will still succeed even though it is not possible to change
this point. These machines do not prevent operations frof{€WS anymore. The basic idea is that the servers in the old
completing because DQ-RPC operations only nged1 view make sure that a quorum of servers in the new view
servers in the new generation to complete, and any dids informed of the view change before they let the old view
semination quorum contains at legst 1 correct servers. end.

WhennewView returns, the old view has ended and5.3.3. DQ-RPC satisfies transquorums for dissemina-
the new view has started amdatured meaning that at tion quorums We now prove our final theorem:
least one correct server is done processing the view chan . N .
message for it. This means that reads and writes to the neﬁ\eorem 2. U-d|§sem|nat.|on, crash_ and hybrid-d based
view will succeed and reads and writes to the old view will®" DQ-RPC provide atomic semantics.
be redirected to the new view (either by the old servers or The complete proof is in AppendB.1. We present the
after consultation of the well-known locations). main lemmas below.

10

- (sender, reply, meta) ViewTracker.receive(nonce)
(n7/e ’ﬁg@u\r/hes"ﬂgaﬁl'ﬁggtg\?f& meta-data /I used by the Sender object when gathering replies

1. returnm_mazMeta 1. if there is no message waitinfpen returnfalse
ViewTracker consult 2. receive(msg, meta) from sender
I ask well-known servers for the latest meta-data3- !]]: nottvatthertlflcatZ(e}intat) ttﬁe” returnfalse
. . i £ >me .t then
1. Choose a servgrat random from the list of well- 5’ me “m_m?x?\ﬁfa :i ?nem

known view publishers 6. if sy ——
. . g == CONSULT-ACKthen goto 1
2. SendCONSULT, m-mazMeta) t0 j 7. return(sender, msg, meta)

(messages, view) ViewTracker.consistentQuorum(messageTriples)
/I returns a consistent quorum of messages (if any) and tirerdwiew
1. msgInQuorun := {m € messageTriples : m.sender € m_maxMeta.N}
2. if ImsgInQuorun| < q(|m-mazxMeta.N|, m_maxMeta.f, m_maxMeta.m) then return(, L)
/[fail if there is no consistent quorum of messages
. validM essages := {m € msgInQuorun : validTagm)}
. recentMessages = {m € validMessages : m.meta.g == m_maxMeta.g}
. if [recent Messages| < m_maxMeta.f + 1 thenreturn(@, L) // fail if the view is not mature
return(msgInQuorun, m_maxM eta)

ViewTracker.consult // consults well-known servers for the latest meta-data

1. Choose a serverat random from the list of well-known view publishers
2. SendCONSULT, m_maxMeta) to j

oA W

Figure 9: Definition of the ViewTracker object

Lemma 3. The viewt chosen by a DQ-RPC operation is quorums for faster reads, and sending differences instead
concurrent with the DQ-RPC operation. of the whole data.

Third, we can improve resilience. The administrator
program is less likely to crash if it runs on a replicated
state machine instead of a single computer. Also, our sys-
tem adapts well to proactive recovery since clients can use
Lemma 5. When using DQ-RPC for the U-dissemination,the system even when servers are constantly added and re-

crash or hybrid-d protocol, n&® operation returnsL.. moved in the background.
We have successfully applied the methodology pre-

sented in this paper to masking quorum system storing
generic data. The DQ-RPC protocol remains the same in
that case but theewView operation needs to be adapted:

Our protocol can be optimized in several ways. Foth€ details can be found in Appendix
space reasons, we defer the detailed explanation of the op-
timizations to Sectiol.2in the appendix and only briefly 6. Conclusions
go over each optimization here.

The first group of optimizations makes both the dissem- We present a methodology that easily transforms sev-
ination and the masking protocols faster. Reads can preral existing Byzantine protocols for static quorum sys-
ceed in a single round-trip in the common case where ntems P, 13, 14, 17, 18] into corresponding protocols that
write is concurrent with the read by skipping the writebackoperate correctly when the administrator is allowed to add
in this case. Both the DQ-RPC operation ar&lvView or remove servers from the quorum system, as well as
can be improved for speed, at the cost of a little complexto change its resilience threshold. Performing the trans-
ity. New servers can pre-fetch the data immediately wheformation does not require extensive changes to the pro-
they are added to the system instead of waiting until theocols: all that is required is to replace calls to the Q-
next generation change, allowing generation changes RPC primitive used in static protocols with calls to DQ-
complete faster. RPC, a new primitive that in the static case behaves like

The second group of optimizations concerns the viev-RPC but can handle operations across quorums that
meta-data that is exchanged between the servers and timay not intersect while still guaranteeing consistency. Ou
clients. This communication can be reduced by omittingnethodology is based on a novel approach for proving the
the view information in some cases, using asymmetricorrectness of Byzantine quorum protocols: through our

Lemma 4. The DQ-RPC protocol in Figuré provides the
transquorum properties for the ordering functiomf Fig-
ure 3.

5.4. Optimizations

11

mainLoop()

1. receivemessage from machine

2. response = result of calling the non-private function with the samame as the first element of

message, if any (L otherwise).

3. reply toi with (m_viewCert, (message.nonce),, priy, response)

write (ts,D)

1. if (m_ts<ts) then (m_ts,m_D) := (ts,D)
2. return “WRITE-ACK”

read()
1. return(m_ts,m_D)
newView(t, oldN, encrypted Body)

Il encryptedBody is of the foremcrypt (((i, meta, pub) aamin, priv), kt)

. newkK = ptmm-metat(py k)

. (cert, priv) := decrypt(encrypted Body, newK)
. If (cert.meta.N does not include this servethen
I limbo

return “OK”
. if (cert.meta.g == m_cert.meta.g) then

©CENDGOA®N R

=
o

return “OK”
. Il inter-generation view change (joining state)

el el
w N R

L if m_ts < newTS then (m_ts,m_D) := (ts,D)

'—\
~

15. return “OK”
read+NewView(cert)

(m_cert, m_priv,m_k) := (cert, priv, newk)

Il intra-generation view change (ready state)
(m_cert, m_priv,m_k) := (cert, priv, newk)

. (newTS,newD) = ¢p(Q-RPC(“READ+NEWVIEW", cert)) to the servers inld N

. (m_cert,m_priv,m_k) := (cert, priv,newK) I/ ready state now

1. if (m_cert.meta.t < cert.meta.t A cert has a valid signature) then

2. (m_cert, m_priv) := (cert, L)
3. return(m_ts,m_D)

Figure 10: Server protocol for dissemination quorums

transquorum properties, we specify the characteristics dReferences

qguorum-level primitives (such as Q-RPC) that are crucial
to the correctness of Byzantine quorum protocols and pro
ceed to show that it is possible to design primitives, such as
DQ-RPC, that implement these properties even when quoL
rums don'’t intersect. We hope that designers of new quo-
rum protocols will be able to leverage this insight to easily 3
make their own protocols dynamic. n

1]

7. Acknowledgments [5]

. . 6

The authors would like to thank Eunjin Jung and Jeff[]
Napper for several interesting conversations and feedback
on the paper presentation. (7]

12

I. Abraham and D. Malkhi. Probabilistic quorums for dynarays-
tems. InProc. 17th Intl. Symp. on Distributed Computing (DISC)
O

ct. 2003. . . : . .
] L. Alvisi, D. Malkhi, E. Pierce, M. Reiter, and R. Wright.\mamic

Byzantine quorum systems. Rroc. of the Intl. Conference on De-
pendable Systems and Networks (DSNje 2000.

] L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault tkction

for byzantine quorum systemi=EE Trans. Parallel Distrib. Syst.
12(9):996-1007, 2001.

G. V. Chockler, I. Keidar, and R. Vitenberg. Group commuanic
tion specifications: a comprehensive stu&§CM Computing Sur-
veys (CSUR)33(4):427-469, 2001.

S. Davidson, H. Garcia-Molina, and D. Skeen. Consistenca
partitioned network: a surveyACM Computing Surveys (CSUR)
Volume 17, Issue,dages 341-370, Sept. 1985.

S. Doley, S. Gilbert, N. Lynch, A. Shvartsman, and J. WelGteo-
quorums: Implementing atomic memory in mobile ad hoc net-
works. InProc. 17th Intl. Symp. on Distributed Computing (DISC)
Oct. 2003.

J.R. Douceur. The sybil attack. Froc. of the IPTPS02 Workshop

March 2002.)
S. Gilbert, N. Lynch, and A. Shvartsman. Rambo |l: Rapiddy
configurable atomic memory for dynamic networks.Piroc. 17th

(8]

r

Intl. Symp. on Distributed Computing (DIS@pges 259-268, June

3.
G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reitei
ficient consistency for erasure-coded data via version@rgess.

(9]

E

Technical Report CMU-CS-03-127, Carnegie Mellon Univigrsi

2003
(10]
urable byzantine quorum approach for the agile storrarc. 22nd
Intl. Symp. on Reliable Distributed Systems (SRDS}. 2003.
L. Lamport. On interprocess communicatiorBistributed Com-
puting, pages 77-101, 1986.

[11]

[12]
memory service for dynamic networks. Rroc. 16th Intl. Symp
on Distributed Computing (DISCpages 173-190, Oct. 2002.
D. Malkhi and M. Reiter. Byzantine quorum systeni¥stributed
Computing 11/4pages 203-213, 1998.

D. Malkhi and M. Reiter. Secure and scalable replicaiio Pha-

(23]
[14]

lanx. InProc. 17th IEEE Symp. on Reliable Distributed System

(SRDS)Oct 1998.

J-P. Martin and L. Alvisi. A framework for dynamic byzané stor-
age. Technical Report TR04-08, The University of Texas attitiy
2004.

J-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantinstorage.
In Proc. 16th Intl. Symp. on Distributed Computing (DIS@ages

311-325, Oct. 2002. .)
J-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine gqmum sys-

[15]

[16]

[17]

tems. InProc. of the Intl. Conference on Dependable Systems an

Networks (DSN)pages 374-383, June 2002.

[18] E. Pierce and L. Alvisi.

N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic

A framework for semantic reasanin

about byzantine quorum systems. Brief Announcements, Proc.

20th Symp. on Principles of Distributed Computing (PODg2)ges
317-319, Aug. 2001.

R. Rodrigues, B. Liskov, and L. Shrira. The design oflaust peer-
to-peer system. Iiienth ACM SIGOPS European Worksh8gpt.
2002.

P. Thambidurai, YK. Park, and K. S. Trivedi. Interactivensis-
tency with multiple failure modes9th Intl. Conference on Dis
tributed Computing Systemiune 1988.

[21] A.Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice: A rhae

[19]

[20]

nism for background transfers. Hth Symp. on Operating Systems

Design and Implementatioec 2003.

13

&O
S

A. Dissemination Protocol
A.1. U-Dissemination provides atomic semantics

We show that transquorums suffice to prove that the U-

L. Kong, A. Subbiah, M. Ahamad, and D.M. Blough. A reconfig dissemination protocol of Figutzis atomic.

Theorem 3. The U-dissemination protocol provides
atomic semantics if (i) the TRANS-Q operations have the
transquorums properties for the functiordefined in Fig-

ure 3, and (i) forallr € R : o(r) # L.

Lemma 6. Our ordering relation “<” has the follow-

JNng properties: ()W — X = W < X and (ii)

X — W = X < W for any user writel/” and user
read or user writeX .

Proof. Because we assume that user reads and writes are
nfirmable,R — W means thatR returns beforel’
tarts.

We build the ordering for user reads and writes from
the orderingo of the quorum operations that are invoked
within these user operations.

The simplest choice would be to 8t X) = o(x) for
some quorum operationthat is called as part of the user-
level operationX. Unfortunately we need to take one ex-
tra step to make sure that user reads get ordered after the
user write whose value they read.

Letlast_o(X) be the value assigned through th@ap-
ping to the last quorum operation in the (read or write)
user-level operatioX’. For a user write operation W, we
defineO(W) to be the pailast_o(W),0). For a user read
operationR, we defineD(R) to be the paiflast_o(R), 1).
The second element in these pairs ensures that user read
operations are ordered after the user write whose value
they return.

We now show that condition (i) holds. Suppose first
thatiWW — X. W ends with aV operation andX starts
with an quorum operatiot € 7, so, by timeliness,
last_.o(W) < o(t). If X is a user read then its second ele-
mentis 1, s@(W) < O(X). If X instead of a user write
thenlast_o(X) > o(t) and therefor® (W) < O(X) still
holds.

To show (i), suppose now th& — . The last quo-
rum operation ofX (regardless of whether it is a user read
or write) is ayV operation. The first quorum operation of
W, t,is aT operation. By timelinessgast_o(X) < o(t).
The write then fills in the last two elementsadf) with its
writer_id and dataD, resulting in a value that is strictly
larger tharo(t). This value is then passed to the last quo-
rum operation inl¥, ensuring thatast_o(WW) > o(t).
Sincelast_o(X) < o(t) ando(t) < last_o(W), it fol-
lows thatO(X) < O(W). O

Lemma 7. Our ordering relation “<” is a total orderon A.2. Quorum Intersection implies Transquo-

user writes. rums
compared. To show that is a total order, we need to also Semantics for any TRANS-Q operation that has the tran-
show thatO (W) = O(W3) = W, = Wo. squorums property. The proof also follows for the hy-

brid dissemination protocoR[)] since it follows the same
schema. In this section, we show that the traditional im-

Iﬁrmeqtbyglﬁerr](_en; _/vrlge_;fs, be::z:use th:alui mc}:ddes_f plementation of Q-RPC (using quorum intersection) satis-
e writerid, which is different for each writer. And if g o0 transquorums property.

Wy and W5 are performed by the same writer they can-
not be distinct. If they were, because user writes are con- Both the u-dissemination and the crash protocol are
firmable it would either follow that¥; — W, (and, by special cases of the hybrid dissemination protocol. All
(1) O(W1) < O(Ws), or, symmetrically, thatV, — 1, three use quorums of siZej+ | and requiree at least
andO(Ws) < O(W). O 2f+3b+1serversto toleratg¢ crash failures anblByzan-
tine failures from the servers (a total ¢f+ b failures).
Any number of clients may crash. In the case of the U-
dissemination protocolf is zero. In the case of the crash
protocol,b is zero.

AssumeO (W;) = O(W3). Wy andW, cannot be per-

Lemma 8. All user readsR return a value that was writ-
ten by some user writd’, andR /~ W.

. . . The client protocol is shown in Figuz Servers store
Proof. The value that is returned by reddlis the third the highest-timestamped value they have received that has

element in thg first quorum operation€ R in E. By a valid signature (except for the crash protocol in which
soundness, this value was passed to some quorum ope ?dnatures are not necessary)

tion in WW. Both user-level write and user-level read oper-
ations call @V quorum operation, but we observe thatthe ~There must be at leasff + 3b + 1 servers. Servers do
user-level read calls it with a value that it first gets from a0t communicate with each other; clients use the Q-RPC
R quorum operation. We can therefore use soundness r@Peration to communicate with servers. The Q-RPC op-
peatedly to show that there must have been some quoru@@tion sends a given message to a responsive quorum of
operationw € W inside a user-level write operatidiy ~ SEIvers.

such thabo(r) = o(w) andr /4 w. This proves the first Any two quorums intersect i2y—n = b-+1 servers. At

part of the lemma. Since did not happen before, itis least one of these serveks,is not Byzantine faulty (and
also impossible thak happened befor@” (since the lat- has not crashed).

ter would imply the former). This proves the second part

of the lemma. We use the same orderingas Sectio.2.1, namely

W calls are ordered according to their arguments, Bnd

] and7 calls are ordered according to their return value. No
Lemma 9. All reads R return the value that was written quorum operation ever returtis so we do not need to

by the last writelV” precedingR in the “<" ordering. consider that case. We prove the timeliness and soundness
conditions separately.

Proof. Lemma8 tells us that the value returned by | emma 10 (timeliness). For the quorum size and order-
was written by some writd?. By construction ofO, ing described abovevw € Wvr € T : w — r =
we haveO(W) = (last-o(W),0) = (last-o(R),0) < o(w) < o(r)

(last_o(R),1) = O(R), soW precedesR in the “<” or-

dering. By definition, for any writé?” that is ordered af- Proof. The quorum to which the value was written with
ter W in <” we know thatO(W’) > O(WW). Since the intersects with the quorum from whietreads in one non-
pairs forO(W) andO (W' have the same second element,Byzantine server that has not crashed. That server will re-
the first element irO(W’) must be larger than the first port the timestamp that was writterin since the server is
in O(W). Hence, sinc&(R) and O(W) have the same not Byzantine faulty that data has a valid signature. #he
first element, it follows thalV’ is ordered in <" after R. function will therefore return a value that is at least agéar
ThereforelV is the last write preceding in the “<” or- aso(w). The result of that function is equal tgr). O

dering. O .
d Lemma 11 (soundness).For the quorum size and or-

dering described aboverr € R : Jw € Ws.tr 4
The four lemmas together prove our first theoremy A o(w) = o(r)
showing that we can replace Q-RPC with any operation
that satisfies the transquorum properties without comprdroof. Values selected through(Q-RPC;) have a valid
mising the semantics of the U-dissemination protocol. signature (by definition o). We know that valid values

14

returned byR must come from &V operation since only Lemma 12. The viewt chosen by a DQ-RPC operation is
W quorum operations introduce new values. Since thessoncurrent with the DQ-RPC operation.
signatures cannot be faked, it follows that thequorum

operationw did not happen after after OO0 Proof. The view ¢ is chosen in ViewTracker's
findConsistentQuorum method (Figure 9).
This proves that the dissemination protocols in Figlire By inspection we observe that if is chosen then
are atomic when using the traditional Q-RPC. q(n(t), f(t),m(t)) responses from different servers were
tagged with a view that was no more recent than
B. Fault-Tolerant Dissemination View Suppose, by contradiction,, that vietvhas ended.
Change Then, a quorund), of servers int have processed the view

change message and discarded the view meta-information
Lets, = encrypt(|i, N, f,m, t, g, pub)agm, priv, k). associated with viewt. The forgetting proto_col en-
- sures that the servers @y, that were correct during view
The administrator send$N, f,m,t,g), S0 - - - Sn—1)admin . : . . 4
. ¢ will not be able to regain the view meta-information. By
to a responsive quorum of new servers and then a respon- . . o
sive quorum of old servers quorum intersectioh the quorum ofy(¢) replies int se-
q ' lected by DQ-RPC to vouch for viewintersects the quo-
New servers forward that message to the old servergym Qo in at least one serverthat was correct in. The
causing them to end the old view. The old servers acknowkervers cannot generate a valid tag for viewcontradict-
edge right away but they also start a new thread with whickhg our hypothesis thathad ended. Thus, viewhas not
they send that message back to a responsive quorum &hded.
NEW SEIVETS. Th_e new servers proceed as before (Fiure View certificates are signed by the administrator, and
namely they wait for an acknowledgement from a quorum . .
S . . such signatures cannot be faked. Since the responses con-
of old servers before joining the ready state in which the

acknowledae to the administrator and tag their respons ain a certificate for view, at least one server received
X 9 . 9 P ?ﬁis certificate from the administrator. Therefore, view
with the new view.

has started. U
As a result, if a single correct old server ends view

¢ then eventually a quorum of new servers will have reLemma 13. The DQ-RPC protocol in Figuré provides
ceived the message for the new view 1. That is enough the transquorum properties for the ordering functioof

to guarantee that view+ 1 has matured, so reads in the Figure 3.

new view will go through. If on the qther hand noold cor-| amma 14. When using DQ-RPC for the U-
rgctse_rver ends viewthen regd_s in viewwill go through. dissemination, crash or hybrid-d protocol, f& op-
Since in the event qf an administrator crash the_old Serve§ation returns..

are not turned off, in both cases the system will continue

to process reads and writes and provide atomic semantids€mma 15. All reads succeed. That is, there is no DQ-
If the view change does not include a generation chang@PCr or DQ-RPG; operationz such thatp(z) = L.

then the server transitions directly to the ready state.

. . . . Proof. The ¢(Q) function returns the largest valid ele-

Th ful Il h hat if I : :
e careful reader will have noticed that if a sing ement of Q. DQ-RPC replies contain at leagt+ 1 re-

faulty server in the old view has the view certificate for : .
sponses tagged with the latest generation. Servers only use

the new view but no correct server in the new view doe?he most recent tag once they have data, so all DQ-RPC

(which may happen if faulty servers collude and the ad- " .
o S replies contains at least one ndnreply from a correct
ministrator crashes after sending its first message), the
: : server that can be chosen by O

faulty old server can cause our implementation of DQ-

RPC to block because the clients will try to get answerg emma 16. All 7 operations in the dissemination DQ-
from the new servers even though the new servers do NRipC are timely.
process requests yet. However, the implementation of DQ-

RPC that we describe in the optimizations SectBi2 proof. Lemmal5shows thab(r) # L, SO we must prove
does not have this problem and will allow reads and writeg,, ¢ Y vr € T : w — r = o(w) < o(r). Our proof

to continue unhampered because the old view has ngfoceeds by case analysis on the views associated with op-
ended and DQ-RPC can process its replies. erations: andw.

_ o _ If w andr picked views that are in the same genera-
B.1. DQ-RPC makes U-dissemination dynamic tion then the two quorums intersect in at least one correct

Theorem 4. U-dissemination, crash and hybrid-d based7 itis safe to use quorum intersection here, sifigeandq(t) are quo-
on DQ-RPC provide atomic semantics. rums of the same view

15

server. Sincev — r and servers never decrease the timesananimousr;) = o(r1) < o(r2). This property holds

tamp they store, it follows that(w) < o(r). for quorum intersection (since an unanimous read means
If w picked a viewt that is in the generation that im- that the service state is similar to what it would be af-

mediately precedes the generatiot whichr's view be- te_r Writ_ing _that value), and_ it also holds f(_)r both our
longs, then we consider the last viewin 's generation. dissémination and masking DQ-RPC implementa-

As we have seen in the previous paragraph, reads fromtiQ"ns:

uorum in v will result in a timestamp that is at least . .
a g(w) in u P B.2.2. Reducing TransmissionsThe protocol, as de-
as large a®(w). Such a read occurs when a server tran-

sitions to the ready state irls generation, and all correct scribed in this paper, piggybacks view information onto

; . . each message sent by the servers. Also, clients ver-
servers that entew’'s generation therefore have a times-, . . .
. ... Ify all of these messages. Since in most cases the view
tamp at least as recent agv). The readr waits until it

: . will be the same as it was in the previous exchange, sev-
knows that viewv is mature, so at least one correct server

answered the DQ-RPE after installing viewo. Since eral optimizations can be used to decrease both the

. . ; . : amount of data that needs to be transmitted and the com-
that server is correct, its reply is valid. Since that reply

has a timestamp at least as recenb@s and dissemina- putations necessary t? ver-|fy that |hformat|on. _
tion quorums pick the largest valid reply, it follows that ~ Servers send the view information along with the ad-
o(w) < o(r). ministrator certificate and signed nonce. To optimize for

If w picked a view that happens several generations bébe common case while retaining the forgetting property

fore r then we can apply the previous baragraph's reaso described in Sectioh.2.1, servers could omit the view in-
: . PPl P paragrap "formation and instead just send the view numbdf the
ing several times to show thafw) < o(r).

_ o . _ o client knows about that view then it has all the necessary
Finally, it is not possible for to pick a view in alater data to verify the signature. If it does not, then the client

generation than what picks if w — r. DQ-RPCs decide sends a request to the server to retrieve the complete view
on a view whose generation is vouched for by atlgast jnformation.

servers with data. That means that one of these servers is
correct. Correct servers only install a generation after alIn
previous generation have ended,rscannot pick an ear-
lier generation.

Another opportunity arises in the choice of quorums.
stead of using the same quorums for the views meta-
information as for the data, we can use asymmetric quo-
rums. This is beneficial because view meta-data is read
This covers all the possible ordering for generations, Sghore often than it is written. These asymmetric quorums
YweW,VreT @ w—r = o(w) < o(r). O use the smallest possible read quorugs+ 1 since the
view meta-information is self-verifying) and the largest
possible write quorumsa(— f). The current approach in
ViewTracker is to verify that (1) there is a dissemination
Proof. Since no dissemination operation returnswe (reésp. masking) quorum of responses such that no mem-
showVr € R : 3w € Wstr 4 wAo(w) = o(r). berclaimsthat fche current view has.ended and (2) enough
Sinceo(r) picks the largest valid value and the crypto-esponses are in the same generation as the current view.
graphic primitives holdo(r) can only return a value that The firstpointcan be changed to (1) the.re is aread quorum
was written previously, so one for whichaoperation ex- Of responses such that no member claims that the current
ists. Furthermore that value must have been forwarded #§€W has ended. Reads naturally still need to gather a dis-

the reader so the write must happen before the read or co$ffmination (resp. masking) quorum of responses in order
currently with it. [toreadthe variable, but with this change it is not necessary

anymore that all the responses be tagged with view infor-
mation. The client can then indicate in its queries whether
the server should include a view certificate in its reply.

Lemma 17. All R operations in the dissemination DQ-
RPC are sound.

B.2. Optimizations

B.2.1. Single-Roundtrip ReadsBoth the U- Another natqral optimization is that in the few cases
. T) .were servers still need to send the view meta-information
dissemination and U-masking protocols (and their . :
: . .. 1o the clients, the servers can send the difference between
hybrid counterparts) can be sped up by skipping the write; .~ . . .
. their information and the one the client knows instead of
back in the case afinanimous reads.e. reads in which

responses in the quorum agree. This idea is not ne\§vend|ng the whole thing.

but it is interesting since it leads to single-roundtripg 3. proactive RecoveryProactive recovery is a tech-
reads in the common case where no operation is pargljque in which machines are periodically refreshed to a
lel with the read. known good state. This brings down the number of faulty

For single-roundtrip reads the TRANSRQoper- machines and thus reduces the risk that the system will fail
ations must have the property thai;,72 € R : because more thafiservers are faulty.

16

Proactive recovery requires us to remove a server, radew change protocols make sure that the protocol seman-
fresh it (for example by rebooting it), and then bring ittics are maintained despite the copying. However, copy-
back in the system under a different name. Our dynamimg data takes time. There are some cases where we can
guorums are particularly well suited for proactive recgver speed up generation changes.
because we can add and remove servers with little over- ~qncider first the case where some servers of the new

head, and client operations can complete even if they spgfiy are also part of the old view. It would be unwise for
several different views. them to just keep whatever data they have, for the data
. they are storing could be untimely and the new view may
B‘.Z'.4' Toleratmg Mor_e Faults _We can replace t_he ad- require them to hold timely data (for example if the quo-
ministrator machine with a replicated state machine to réum size changes). In most cases, however, the data on the
duce the likelihood that it fails. server is timely and we can avoid the copy by usiog-
. . . ditional reads In a conditional read, the server issuing the
525, Faster Reads and Vimitesitis possible 10 speed \ead indicates the timestamp of the data that it has. If the
ha b y S1ghtly 9 respondent does not have data that is newer than the indi-

tions under which the DQ-RPC function returns. The cor—Cated timestamp then it sends a response with empty data

rectness of the protocol only requires that DQ-RPC select(%ut the timestamp and view certificates are still included

as its current view one that is concurrent with the DQ- when appropriate). If the respondent has newer data then
RPC. The DQ-RPC we show in this paper always picks thﬁ sends it as usual. As a result, servers that are already

most recent concurrent view that is knows of. This causefs
. . . |{nely do not need to transfer the data across the network
DQ-RPC to sometimes wait for messages when that is ng L . :

; and they can join the new view much more quickly.
necessary. Consider the case whgetel responses are re- a _ _ _
ceived. The first response is in view+ 1 and all the oth- Conditional reads yield their full power when used in
ers are in viewt. In that situation it would be perfecﬂy combination with our second Optimization. Recall that the
reasonable to pick the lagtresponses as the result of thespread parameter allows new servers to join the system

DQ-RPC operation, but our simplified operation will wait Without having to receive a copy of the data first (intra-
until it gets ag responses in view+ 1. generation view changes). These servers normally partic-
ipate in the protocol and refresh their data in the next

) . " . eneration change. We can choose, instead, to have the
of keeping track of the most recent view certificate it see)
. . new (blank) servers read the current value of the data in
(m_max$, ViewTracker must now inspect each set of re-

. . . the background (perhaps using TCP Ni2d]]. When it
sponses to see if there exists some view that can be consid- .)
. : ; : comes time for the generation change, the servers can use
ered currentfindQuorum is replaced with the following

conditional reads: if they already have the right data then

The change impacts ViewTracker (Sect@n Instead

code: they can move to the new view instantly.
1. findgrm C messageTriples such that
2. letmt = largest-timestamped elementgfn C. Generic Data
3. Vm € grm : m.sender € mt.meta.N, and
4. |grm| = q(|mt.meta.N|,mt.meta.f, mt.meta.m), C.1. Masking Protocols with Transquorums
5. and|{m € grm : validTagm) A m.meta.g ==
-mt.meta.gt| > mt.meta.f +1 In this section we show that the U-masking protocol
6. if no suchgrm existsthen return(f, 1) provides partial-atomic semantics despite up Byzan-
7. return(grm, mt.meta) tine faulty servers. This protocol assumes that the network

links are asynchronous authenticated and fair. Clients are

This code is slightly harder to read than the original, bugssumed to be correct and the administrator machine may
it still picks a current view that is concurrent with the DQ- ¢rash.

RPC and it allows DQ-RPC to complete sooner in the case . . N
outlined above. The termination condition here is strictly The U-masking protocol is shown in Figuid. The

weaker than before, so there is no situation where this D(g_n:)y (?hangt::-rgzmsits ?riginaFle;ocr:mlB] is.that we have
RPC would be slower than the original one. ubstitute -Q for Q- operations.

Theget method must also be modified to include more Partial-atomic semant_|c§ All read_sR either _returm_,
servers than just the last view, for example the union of th8" return a value that salisfies atomic semantics.
two most recent views. Theorem 5. The U-masking protocol provides partial-
atomic semantics if the Q-RPC operation it uses has the
B.2.6. Faster Generation Change<Our protocols’ abil- transquorums properties for the functiordefined below.
ity to add servers when necessary relies on the fact that the
data will be copied to the new servers. The DQ-RPC an&roof. We defineo andO in the exact same way as we did

17

for the dissemination protocol in Sectidn2.1 Then we from the fact that if no operation is concurrent with a read
show the following three properties: R then no quorum operation is concurrent with anyXs
quorum operations. Our implementation of DQ-RPC has
1. X —-W= 0X)<OW)andW — X = the non-triviality property.

oOW) < O(X)
2. OWy) =0(Ws) = W, = W, C.2. DQ-RPC for Masking Quorums
3. ReadR returns eitherl or the value written by some
W such that In this section we show how to build the DQ-RPC and
view change protocol for masking quorums, when data is
(@) R # W, and not signed. Only one line needs to change: line 5 of View-
(b) AW : O(W) < O(W') < O(R) Tracker'sfindQuorum (Figure9), shown below.
The first two points show thad defines a total order if |recentMessages| < 2 x m_maxMeta.f + 1 then
on the writes and that the ordering is consistent with “hap- return(0, L)
pens before”. The third point shows that reads return the]])
value of the most recent preceding write. Thus read operations now wait until they get + 1

Wi hat th | . - . servers vouching for the current generation instead of
e pré)vebt_lzé'g the protgco_s s]:'msfy(%a;na-rz]itomm dse-f + 1. It follows that f + 1 correct servers have entered
mantics by building an ordering functiont for the read . 4o qy generation, so they will be able to countermand

and write operations that satisfies the requirements fcgny old value proposed by servers that have not finished
partial-atomic semantics. the view change

Both read and write end with)d’ quorum operatiom.

: o . The view change protocol must be modified however,
The first quorum operation in writes never returnsBy

he f ¢ h ion theref because as described in Sect®B.2it relies on the fact
the first property of transquorums, that operation theee Olthat the servers’ read of the current value never fail. This

ha; a t|mes'Famp thaF is at least as Igrge as that dhe is not true in the case of masking quorums, where reads
write operation then increases that timestamp further, er?‘hay fail if some write is concurrent with it

suring thatX — W = O(X) < O(W). Our construc- .)])
tion of the mapping) ensures that if a read happens after Figurel3gives the view change protocol for the admin-

a write, then that read gets ordered after the write. Thedgtrator. If clients are correct then the function is guaran
two facts imply property (1). teed to eventually terminate. If no write is concurrent with
. o o the view change then the administrator only goes through
Theo va_lue mcludes thevvrlter_lq, which is d'ﬁefe”F the loop once. Once the newView operation returns, it is
for each writer - andif the same writer performs two WItSsafe to turn off the machines in the old view that are not
then (1) implies that they’ll have different values. There-
fore property (2) holdsO(W;) = O(Wsy) = W, =) ;)
W>. These two properties together show that writes are to- N order to provide atomic semantics, we must ensure

tally ordered in a way that is compatible with the happen§hat reads reflect the values written previously, and thus
before relation. we must propagate data from the old view to the new one.

The view change protocol allows clients to query the new

Next we Sh.OW th‘?‘t non-aborted reads return the Valu?ervers right away, before the administrator copies any
of the preceding write (property (3)). Soundness tells USata. How can this work?

that this value does not come from an operation that hap-] o

pened after R (3a). We know that the value returned by The key is that (as shown in Figui®) the new servers
reads must come from a write operation since only writeVll get their data from the old ones to service client re-
can introduce new values that are reported-byt servers: quests. Once a new server has read some value from the
so the value returned by a redd comes from some ©ld Servers it never needs to contact the old servers again
write . Note thatO(R) and O(W) have the sames, ~ Since writes are directed to the new ones (we say that the
writer_id and D; they only differ in the last element (and S€rver isweaneg. Once enough new servers have data
s0O(W) < O(R)). Thus, any writé¥’ > W will nec- stored locally, it is possible to shut down the old servers

part of the new view — we say that the new viewisaned

essarily also be ordered afté sinceO(W’) > O(R) — We mustjustbe careful that nothing bad happens to new
(3b). O servers that were in the middle of reading from the old
ones.
If the Q-RPC operations have tmen-triviality prop- So the new servers, when they are asked for data that

ertythatR quorum operations that are concurrent with nathey don’t have, first check whether the old servers are still
other quorum operation never retutn then U-masking available by checking whether a peer server has a wean
has the property that reads that are not concurrent wittertificate (using the READOCAL call). If the server

any operation never returh either. This follows directly receives a wean certificate, it knows that there is no point

18

READ

1. Q := TRANS-Qr ("READ") Il reply is of the form(ts, writer_id, data)
2. replyr :=¢(Q) Il ¢ : the only non-countermanded value vouched by1 servers, orL
3. if r==1 thenreturn L
4. @ :=TRANS-Qy(“WRITE”",)
5. returnr.data
WRITE (D)

1. Q :=TRANS-Q/("GET_TS”)
2. ts == max{Q.ts} + 1
3. Q := TRANS-Qu(“WRITE”, (ts, writer_id, D))

Figure 11: U-masking protocol for correct clients

newView
we are part of

finished reading
O from previous view O
or new view is
unweaned in same generation weaned

or received wean
certificate

newView
we are part of

< <
O < > O o~ newView O

helping but returns -
powered off safe to turn off helping

newView
we are not part of

Figure 12: Server transitions for the masking protocol

in trying to contact the old servers: the server then returngecent enough.

whatever local data it has, possibly If there is nowean g gervers go through different states, as described in
certificate then the server forwards the requesF to the Olﬁigure 12 A server that is not part of the current view is
servers. If the old servers have been shut down in the megfithe helpingstate. In that state it responds to queries but
time then this request may take forever; that's OK becausgys them with the most recent view certificate, thus direct-
the old servers are only turned off if the administrator oMy clients to more recent servers. When a server receives
pleted successfully, and in that case tingitForWean a new view certificate (and the server is part of the new
function will eventually stop any read thread that is stuclg/iew), it moves on to theinweanedstate. It accepts re-
in this manner. quests from clients right away and stataitForWean
ThewaitForWean function periodically queries the in a parallel thread to detect when the system becomes
peers to see if they have a wean certificate. This ensurggeaned. Read requests are forwarded to the old servers; if
that if the new view is weaned then eventually all servers non-L reply can be determined then that reply is stored
will know about it (or move on to an even more recentlocally before being forwarded to the client and the server
view). moves on to theveanedstate. Servers will also move to

When new unweaned servers receive a write requeétyeanedwhen they receive a wean certificate from their

they make sure that the old view has ended, then store tRE€"S:
data and acknowledge. But servers do not consider them-
selves weaned as a result of a write. So when someone
tries to read that data, the servers will still try to contact

the servers in the old view to make sure the local data is

19

newView

=

Give their view certificate to a quorum in the new view
Give info about the new view to a quorum in the old view
Repeat

a :=read on old view

b :=read on new view
Until (a# LVvb# 1)
Generate wean certificate (“old view is gone now”)
Write maz(a, b) to a quorum in the new view
Write the wean certificate to a quorum in the new view

©oNo GO ~®WDN

Figure 13: View change protocol for masking quorums

Server’s variables

m_D the current data

m_ts the data’s timestamp (initially -1)

m_meta current view meta-informationN, f,m,t,g,pubK ey)
m_oldMeta meta-information for the previous viewV, f,m,t,g,pubK ey)
m_cert admin certificate forie_meta)

m_priv private key matching certificate

m_weanClert certificate that the view im_meta is weaned
m_serverWeaned | true if the server is weaned (initially false)

m_oldEnded true if the server knows that the old view ended (initiallis&)

Figure 14: Server variables for masking quorums

C.3. DQ-RPC satisfies Transquorums for Mask- ation (so at least one correct). Correct servers in the new
ing Quorums view only respond to a read request until they know that
either they or their view has weaned. It follows that the
We now show that DQ-RPC also satisfies transquorumi§Plies inr contained at least(v) + 1 repliesC' that are
when we use the masking quorumisoperation. Recall at least as recent as the highest-timestamped value whose
that thatg returns the value that is vouched for lfy+ 1 Write completed in view:, which in turn is at least(w).

servers and that is not countermanded,df there is no SO if r were to pick any value such thatr) < o(w)
such value. then that value would be countermandeddyTherefore

. . _o(r) # L= o(w) < o(r).
Lemma 18. The masking DQ-RPC operations are timely. _)) .
It is not possible forw to pick a view in a later gener-

Proof. Recall that timeliness meangw € W,vr e ationthan what picks if w — r sinceR masking DQ-
T,o(r) # L : w— r = o(w) < o(r). The proof is RPCs wait until any previous generation has ended. This
similar to that for the dissemination caseutindr picked ~ concludes our proof thatw € W,vr € R,o(r) # L :
views in the same generation then the two quorums intef = " = o(w) < o(r). -
sect in at leasf + 1 correct servers. Sineae happened be- . .
forer and servers never decrease the timestamp they stof€Mma 19. The masking DQ-RPC operations are sound.
it follows thato(r) # L = o(w) < o(r).

If w picked a viewt that is in the previous generation Pro0f- Soundness requires that € R, o(r) # L : 3w €
from 7's view (saywv), then we consider the last view YV S:t7 7 w A o(w) = o(r).
in t's generation. As we have seen in the previous para- Correct servers only respond to read queries with data
graph, non-aborted reads from a quorg) in w willre- that was previously written — either directly to them or to
sult in a timestamp that is at least as large@s). Since the previous quorum. Thgfunction ensures this property
r picked a view that is in a more recent generation than by only accepting values that are vouched for oy 1
it follows thatr received2f(v) + 1 replies inv’s gener- servers. O

20

write (ts,D)

1. if (m_ts<ts) then (m_ts,m_D) = (ts,D)

2. if notm_oldEnded then askOldView()
/I m_old Ended holds at this point

3. return “OK”

read()

1. if (m_serverWeaned V m_weanCert # 1) thenreturn (n_ts,m_D)
2. if askPeers(hen return n_ts,m_D)
3. if askOldView()then return ¢n_ts,m_D)
/I notm_serverWeaned andm_weanCert == 1, and the read from the old servers failed
4. return(—1, 1)

readLocal()
1. returnm_weanCert
privateaskOldView()
1. Q":=Q-RPC("READ+HELP"mn_cert) to a quorum of servers im_oldMeta. N

2. moldEnded :=true

3. if ¢p(Q") # L then

4, m_serverWeaned .= true

5 if (m_ts,m_D) < ¢(Q’) then (m_ts,m_D) := $(Q’)
6. if |{m € Q" : m_ts < m.ts}| < m_oldMeta.f + 1 then

7 m_serverWeaned .= true

8. returnm_serverWeaned V m_weanCert # L
privateaskPeerg)

1. Q":=Q-RPC("READLOCAL") to a quorum of servers im_meta.N
2. if any response includes a valid wean certifieate for this viewthen
3. m_oldEnded := true

4, m_weanClert = cert

5. returnm_serverWeaned V m_weanCert # L

privatewaitForWean() /I started on its own thread when the server hears of the new vi
1. while (notm_serverWeaned) N (m_weanCert == 1) do
2. askPeers()
3. wait for some time

4. kill any read() or write() thread that is waiting for thelaervers

Figure 15: Server protocol for masking quorums

Theorem 6. DQ-RPC satisfies transquorums even if theserver only responds after the client resends its query). If
old servers are taken offline after the newView call returnsthe administrator failed then the old servers are not taken
offline and thus they will eventually respond. If the ad-

The masking DQ-RPC also tolerates crashes from thginistrator did not fail then eventuallywill know that its
administrator: all operations still eventually comple& a view is weaned.

long as the servers from the old view auat taken offline.
The wait quorum operation waits on the same condi-

Lemma 20. If some view never ends then all quorum op- tions, thus individual servers will eventually respond to

erations to that view eventually complete. write quorum operations. The help and rdadal oper-
ations do not block on anything, thus they will complete
Proof. Anindividual server responds to read quorum op- trivially. O

erations once either it receives a reply from the old servers
or it knows that its view is weaned (in that latter case the It follows from the above lemma that as long as some

21

view stays around long enough, all DQ-RPC operations
will complete.

Theorem 7. DQ-RPC satisfies transquorums even if the
administrator crashes during a view change, as long as
both the old and the new servers are kept online.

C.4. Masking Protocols for Byzantine Faulty
Clients

We now turn our attention to a variant of the U-masking
protocol that can handle Byzantine failures from the client
We use Phalanx14] with an improved¢ function that
provides partial-atomic semantics (the original Phalanx
only provides safe semantics). The client code is shown
in Figure16. Phalanx does not require the clients to have
public-private key pairs, but the servers do. In step 4 of the
WRITE operation, the clients collect signatures from the
servers (thechoey Servers only accept writes if they are
accompanied by a quorum of valid signatures. For write-
backs, servers requiret 1 of a different type of signature.
Notice that the signature step is neither timely nor sound:
the signatures’ only purpose is to make the write call suc-
ceed.

It is natural to ask why we consider Byzantine faulty
clients. After all, nothing prevents faulty clients fromnzo
tinuously writing incorrect values. However, in many prac-
tical situations such faulty clients would eventually be
identified and removed from the system. More to the point,
our goal here is to show that the DQ-RPC operation can
make many protocols dynamic. We have included the pro-
tocol of Figurel6 for completeness.

The protocol guarantees partial-atomic seman-
tics, meaning that all reads that return a value sat-
isfy atomic semantics and reads that are not concurrent
with any other operation always return a value.

22

READ

1. Q := TRANS-Qr ("READ")
2. replyr :=¢(Q) /I largest non-countermanded triple vouched for by at lgast1 servers
3. if r==1 thenreturn L
4. letV be f + 1 valid signatures for taken from@)
5. @ := TRANS-Q, ("WRITE-BACK”, r, V)
6. returnr.data
WRITE (D)

. Q ;= TRANS-Q7("READ _TS")

ctsi=max{Q.ts}+1

. letm = (ts, writer_id, D)

. Q' = TRANS-Q("SIGN";m)

. letV be a quorum of valid signatures for taken from@’
. Q" := TRANS-Q,,("WRITE”, m,V)

o0 WN PP

Figure 16: Masking quorum or hybrid-m for Byzantine faultients

23

	Introduction
	Related work
	System model
	A new basis for determining correctness
	The transquorum properties
	Proving correctness with transquorums
	Dissemination protocols with transquorums

	Dynamic quorums
	Introducing views
	A simplified DQ-RPC
	View changes
	Finding the current view
	Summary

	The full DQ-RPC for dissemination quorums
	Introducing generations
	View changes: closing the generation gap
	DQ-RPC satisfies transquorums for dissemination quorums

	Optimizations

	Conclusions
	Acknowledgments
	Dissemination Protocol
	U-Dissemination provides atomic semantics
	Quorum Intersection implies Transquorums

	Fault-Tolerant Dissemination View Change
	DQ-RPC makes U-dissemination dynamic
	Optimizations
	Single-Roundtrip Reads
	Reducing Transmissions
	Proactive Recovery
	Tolerating More Faults
	Faster Reads and Writes
	Faster Generation Changes

	Generic Data
	Masking Protocols with Transquorums
	DQ-RPC for Masking Quorums
	DQ-RPC Satisfies Transquorums for Masking Quorums
	Masking Protocols for Byzantine Faulty Clients

