
A Framework for Dynamic Byzantine Storage

Jean-Philippe Martin, Lorenzo Alvisi
Laboratory for Advanced Systems Research

The University of Texas at Austin
{jpmartin,lorenzo}@cs.utexas.edu∗

Extended technical report

Abstract

We present a framework for transforming sev-
eral quorum-based protocols so that they can dynamically
adapt their failure threshold and server count, allow-
ing them to be reconfigured in anticipation of possible
failures or to replace servers as desired. We demon-
strate this transformation on the dissemination quo-
rum protocol. The resulting system provides confirmable
wait-free atomic semantics while tolerating Byzan-
tine failures from the clients or servers. The system can
grow without bound to tolerate as many failures as de-
sired. Finally, the protocol is optimal and fast: only the
minimal number of servers —3f + 1— is needed to toler-
ate anyf failures and, in the common case, reads require
only one message round-trip.

1. Introduction

Quorum systems [5] are a valuable tool for building
highly available distributed data services. These systems
store a shared variable at a set of servers and perform read
and write operations at some subset of these servers (a
quorum). To access the shared variable, protocols define
some intersection property for the quorums which, com-
bined with the protocol description themselves, ensure that
read and write operations obey precise consistency seman-
tics. In particular, a shared register can provide, in or-
der of increasing strength,safe, regular,or atomicseman-
tics [11].

Malkhi and Reiter [13] have pioneered the study of
Byzantinequorum systems (BQSs), in which servers may
fail arbitrarily. Their masking quorum systemsguaran-
tee data integrity and availability despite compromised
servers; they also introducedissemination quorum systems
that can be used by services that supportself-verifying
data, i.e., data that cannot be undetectably altered by a

∗ This work was supported in part by grants from the Texas Advanced
Technology Program and Sandia National Laboratories and byan
Alfred P. Sloan Fellowship.

faulty server, such as data that have been digitally signed
or associated with message authentication codes (MACs).

Traditional BQS protocols set two parameters—N , the
set of servers in the quorum system, andf , theresilience
thresholddenoting the maximum number of servers that
can be faulty1—and treat them as constants throughout the
life of the system. The rigidity of these static protocols is
clearly undesirable.

Fixing f forces the administrator to select a conserva-
tive value for the resilience threshold, one that can tolerate
the worst case-failure scenario. Usually, this scenario will
be relatively rare; however, since the value off determines
the size of the quorums, in the common case quorum op-
erations are forced to access unnecessarily large sets, with
obvious negative effects on performance.

Fixing N not only prevents the system administrator
from retiring faulty or obsolete servers and substituting
them with correct or new ones, but also greatly reduces the
advantages of any technique designed to changef dynam-
ically. For a given Byzantine quorum protocol,N must
be chosen to accommodate the maximum valuefmax of
the resilience threshold, independent of the value off that
the system uses at a given point in time. Hence, in the
common case the degree of replication required to toler-
atefmax failures is wasted.

Alvisi et al. [2] take a first step towards addressing
these limitations. They propose a protocol that, for a
fixed N , can dynamically raise or lowerf within a range
[fmin...fmax] at run time without relying on any con-
currency control mechanism (e.g., no locking). Improv-
ing on this result, Kong et al. [10] propose a protocol that
can dynamically adjustf and, once faulty servers are de-
tected, can ignore them to obtain quorums that exhibit
betterload2, effectively shrinkingN . The protocol how-
ever does not allow to add new servers toN . While other
quorum-based systems such as Rambo [12], Rambo II [8],

1 Papers such as [13] consider generalized fault structures, offering a
more general way of characterizing fault tolerance than a threshold.
However, such structures remain static.

2 Given a quorum systemS, theloadof S is the access probability of
the busiest quorum inS, minimized over all strategies.

1

http://www.cs.utexas.edu/users/jpmartin
http://www.cs.utexas.edu/users/lorenzo
http://www.utexas.edu

and GeoQuorums [6] can adjust dynamically bothf and
N , they cannot tolerate Byzantine failures.

In this paper we propose a methodology for transform-
ing static Byzantine quorum protocols into dynamic ones
where bothN andf can change, growing and shrinking
as appropriate3 during the life of the system. We have suc-
cessfully applied our methodology to several Byzantine
quorum protocols [9, 13, 14, 17, 18]. The common charac-
teristic of these protocols is that they are based on theQ-
RPCprimitive [13]. A Q-RPC contacts a responsive quo-
rum of servers and collects their answers, making it a nat-
ural building block for implementing quorum-based read
and write operations. Our methodology is simple and non-
intrusive: all that it requires to make a protocol dynamic is
to substitute each call to Q-RPC with a call to a new primi-
tive, called DQ-RPC fordynamicQ-RPC. DQ-RPC main-
tains the properties of Q-RPC that are critical for the cor-
rectness of Byzantine quorum protocols, even whenN and
f can change.

Defining DQ-RPC to minimize changes to existing pro-
tocols is challenging. The main difficulty comes from
proving that read and write operations performed on the
dynamic version of a protocol maintain the same consis-
tency semantics of the operations performed on the static
version of the same protocol. In the static case, these
proofs rely on the intersection properties of the responsive
quorums contacted by Q-RPCs while performing the read
and write operations. Unfortunately, these proofs do not
carry easily to DQ-RPC. WhenN changes, it is no longer
possible to guarantee quorum intersection: given any two
distinct timest1 and t2, the set of machines inN at t1
andt2 may be completely disjoint. We address this prob-
lem by taking a fresh look at what makes Q-RPC-based
static protocols work.

Traditionally, the correctness of these protocols relies
on properties of the quorums themselves, such as intersec-
tion. Instead, we focus our attention on the properties of
thedatathat is retrieved by quorum operations such as Q-
RPC. In particular, we identify two such properties,sound-
nessand timeliness. Informally, soundness states that the
data that clients gather from the servers was previously
written; timeliness requires this data to be as recent as
the last written value. We call these propertiestransquo-
rum properties, because they do not explicitly depend on
quorum intersection. We prove that transquorum proper-
ties are sufficient to guarantee the consistency semantics
provided by each of the protocols that we consider. Now,
all that is needed to complete our transition from static to
dynamic protocols is to show an instance of a quorum op-
eration that satisfies the transquorum properties even when
f andN are allowed to change: we conclude the paper by

3 We focus on the mechanisms necessary for supporting dynamic quo-
rums. A discussion of the policies used to determine when to adjust
N andf is outside the scope of this paper. Some examples of such
policies are given in [3, 10].

showing that DQ-RPC is such an operation.
The rest of the paper is organized as follows. We cover

related work and system model, respectively, in Section2
and Section3. We specify the transquorum properties in
Section4 and show in Section5 that our DQ-RPC satisfies
the transquorum properties before concluding.

2. Related work

Alvisi et al. [2] are the first to propose a dynamic BQS
protocol. They let quorums grow and shrink depending
on the value off , which is allowed to range dynamically
within an interval[fmin, ..., fmax]. This flexibility, how-
ever, comes at a cost: because their protocol does not al-
low to changeN , it requires2(fmax−fmin) more servers
than an equivalent static protocol to tolerate a maximum
of fmax failures.

The Agile store [10] modifies the above protocol by in-
troducing a special, fault-free node that monitors the set
of servers in the quorum system. The monitor tries to de-
termine which are faulty and to inform the clients, so that
they can find a responsive quorums more quickly. In the
Agile store servers can be removed fromN , but not added.
Therefore, if the monitor mistakenly identifies a node as
faulty and removes it fromN , the system’s resilience is re-
duced: The system toleratesfmax Byzantine faulty servers
only as long as the monitor never makes such mistakes.

The Rosebud project [19] shares several of our goals.
Rosebud envisions a dynamic peer to peer system, where
servers can fail arbitrarily, the set of servers can be modi-
fied at run-time, and clients use quorum operations to read
and write variables. It is hard to compare our protocols
to Rosebud, because the only Rosebud reference we have
identified [19] does not give specific details of the proto-
cols they intend to use to achieve their goals. Nonetheless,
Rosebud, by requiring loosely synchronized clocks and as-
suming servers with a cryptographic co-processor, appears
to make stronger assumptions than we do in this paper.
Also, Rosebud’s handling of view changes appears to dif-
fer from ours in at least two ways. First, when an opera-
tion in Rosebud detects that the set of servers is changing,
it simply restarts; second, Rosebud allowsN to change
only at pre-set intervals. In contrast, we allow operations
to continue even asN is changing, and we allowN (and
f) to change at any time.

Several quorum-based protocols allow to changeN and
f , but only tolerate crash failures. Rambo and Rambo
II [8, 12] provide the same interface as our protocols: read,
write and reconfigure. They guarantee atomic semantics in
an unreliable asynchronous network despite crash failures.

In GeoQuorums [6] the world is split inton focal points
and servers are assigned to the nearest (geographically) fo-

4 Partial-atomic semantics guarantees that reads either satisfy atomic
semantics or abort [18].

2

name can tolerate (crash,Byz) client failures semantics servers required
crash (f, 0), without signatures crash atomic 2f + 1
U-dissemination [17] (0, b), using signatures crash atomic 3b + 1
hybrid-d [9] (f, b), using signatures crash atomic 2f + 3b + 1
U-masking [18] (0, b), without signatures correct partial-atomic4 4b + 1
hybrid-m [9] (f, b), without signatures correct partial-atomic4 2f + 4b + 1
Phalanx [14] (0, b), without client signatures Byzantine partial-atomic4 4b + 1
hybrid Phalanx (f, b), without client signatures Byzantine partial-atomic4 2f + 4b + 1

Figure 1: List of quorum protocols that can be made dynamic using DQ-RPC

cal point. The system provides atomic semantics as long
as no more thanf focal points have no servers assigned to
them. Servers can join and leave; however, neithern norf
can change with time.

Abraham et al. [1] target large systems, such as peer-
to-peer, where it is important for clients to issue reads and
writes without having to know the set of all servers, and it
is important for servers to join and leave without having to
contact all servers. Theirprobabilistic quorumsmeet these
goals (for example, clients only need to knowO(

√
n)

servers), provide atomic semantics with high probability,
and can tolerate crash failures of the servers.

View-oriented group communication systems provide a
membership service whose task is to maintain a list of the
currently active and connected members of a group [4].
The output of the membership service is called aview. If
we consider the set of servers in the quorum system as a
group, then in our protocol the membership service is triv-
ially implemented by an administrator, who is solely re-
sponsible for steering the system from view to view (see
Section5.1).

An interesting property of our protocol is that it al-
lows processes who are outside the quorum systems —
i.e. the clients in our protocol—to query servers within the
quorum system to learn the current view. Note that our
clients do not learn about views from the membership ser-
vice, but rather indirectly, through the servers. Nonethe-
less, our protocol guarantees that, despite Byzantine fail-
ures of some of the servers, a correct client will only ac-
cept views created by the administrator and will never ac-
cept as current a view that is obsolete (see Section5.1).

3. System model

Our system consists of a setN of n servers. Servers
can dynamically join and leave the system, i.e. bothN
andn can change during execution. To prevent Sibyl at-
tacks [7], the identity of every server is verified before it
is allowed to join the system. Servers can be either cor-
rect or faulty. A correct server follows its specification;
a faulty server can arbitrarily deviate from its specifica-
tion. The set of clients of the service is disjoint fromN .
Clients performreadandwrite operations on the variables
stored in the quorum system. We assume that these oper-

ations return only when they complete (i.e. we consider
confirmable operations [16]).

Our dynamic quorum protocols maintain the same as-
sumptions about client failures of their static counter-
parts. Clients communicate with servers over point-to-
point, asynchronous fair channels. A fair channel guaran-
tees that a message sent an infinite number of times will
reach its destination an infinite number of times. We al-
low channels to drop, reorder, and duplicate messages.

4. A new basis for determining correctness

The first step in our transition to dynamic quorum pro-
tocols is to establish the correctness of the static proto-
cols we consider (shown in Figure3) on a basis that does
not rely on quorum intersection. To do so, we observe that
at the heart of all these protocols lies the Q-RPC prim-
itive [13]. This primitive takes a message as argument,
sends that message to a quorum of responsive servers, and
returns the response from each server in the quorum. Our
approach to extend quorum protocols to the case where
servers are added and removed (and thus quorums may
not intersect anymore) is to define correctness in terms of
the properties of the data returned by quorum-based op-
erations such as Q-RPC. In this section, we first specify
two properties that apply to the data returned by Q-RPC;
then, we prove that these properties are sufficient to en-
sure correctness. In Section5 we will show that it is pos-
sible to implement Q-RPC-like operations that guarantee
these properties even when quorums do not intersect.

4.1. The transquorum properties

In the protocols listed in Figure3, quorum-based oper-
ations such as Q-RPC are the fundamental primitives on
top of which read and write operations are built. Not all
Q-RPCs are created equal, however. Some Q-RPC opera-
tions change the state of the servers (e.g. when the mes-
sage passed as an argument contains information that the
servers should store), others do not. Some Q-RPCs need
to return the latest data actually written in the system, oth-
ers are content with returning data that is not obsolete,
whether it was written or not. To capture this diversity,
we introduce two properties,timelinessandsoundness. We

3

READ

1. Q := Q-RPC(“READ”)
// Q is a set of〈ts, writer id, data〉writer

2. replyr := φ(Q) // returns largest valid value
3. Q := Q-RPC(“WRITE”,r)
4. returnr.data

WRITE (D)

1. Q := Q-RPC(“GETTS”)
2. ts := max{Q.ts} + 1
3. m := 〈ts, writer id,D〉writer

4. Q := Q-RPC(“WRITE”,m)

READ

1. Q := TRANS-QR(“READ”)
// Q is a set of〈ts, writer id, data〉writer

2. replyr := φ(Q) // returns largest valid value
3. Q := TRANS-QW (“WRITE”, r)
4. returnr.data

WRITE (D)

1. Q := TRANS-QT (“GET TS”)
2. ts := max{Q.ts} + 1
3. m := 〈ts, writer id,D〉writer

4. Q := TRANS-QW (“WRITE”,m)

Figure 2: U-dissemination protocol (fail-stop clients). On the left: Q-RPC. On the right: TRANS-Q.

call themtransquorumproperties because, as we will see
in Section5, they do not require quorum intersection to
hold. Intuitively, timeliness says that any read value must
be as recent as the last written value, while soundness says
that any read value must have been written before. Note
that not all Q-RPCs need to be both timely and sound. For
example, Q-RPCs used to gather the current timestamps
associated with the value stored by a quorum of servers do
not need to be sound—all that is required is that the re-
turned timestamps be no smaller than the timestamp of the
last write.

We then define three setsW, R, andT of Q-RPC-like
quorum operations. Each Q-RPC-like operation in a pro-
tocol belongs to zero or more of these sets.

Let w → r (w “happens before” r) indicate that the
quorum operationw ended (returned) before the quorum
operationr started (in real time). Further, leto be an or-
dering function that maps each quorum operation to an el-
ement of an ordered setM. We define the transquorum
properties as follows:

(timeliness) ∀w ∈ W,∀r ∈ T , o(r) 6= ⊥ :

w → r =⇒ o(w) ≤ o(r)

(soundness) ∀r ∈ R, o(r) 6= ⊥ :

∃w ∈ W s.t.r 6→ w ∧ o(w) = o(r)

In this paper we always chooseo so that when applied
to a Q-RPC-like operationx, it returns both a timestamp
and the data that is associated withx (i.e. either read or
written). This allows us to use the timeliness property to
ensure that readers get recent timestamps and the sound-
ness property to ensure that reads get data that has been
written.

4.2. Proving correctness with transquorums

Transquorum properties are all that is needed to prove
that the protocols listed in Figure3 correctly provide the
consistency semantics that they advertise. We present the
complete set of proofs in the appendix. For conciseness, in

the main body we limit ourselves to the first three proto-
cols in the figure. All three protocols have the same client
code, shown on the left in Figure2 and all three guarantee
atomic semantics. The server code is also identical: servers
simply store the highest timesetamped data they see and
send back to the client the data or its timestamp (in reply to
READ or GETTS requests, respectively). The protocols
differ in the size of the quorums they use and in the de-
gree of fault tolerance they provide: U-dissemination pro-
tocols [16] (a variant for fair channels of the dissemina-
tion protocol presented in [13]) can tolerateb Byzantine
faulty servers, crash can toleratef fail-stop faulty servers,
and hybrid-d can tolerate bothb Byzantine failures andf
fail-stop failures (f + b failures in total). To simplify our
discussion, since the three client protocols are identicalwe
will only discuss the U-dissemination protocol here; all we
say also applies to the crash and hybrid-d protocols, ex-
cept that the crash protocol does not use any signatures.
Another simplification is that we show the transforma-
tion on the non-optimized version of the U-dissemination
protocol. The technical report [15] shows how to shorten
reads to a single message round-trip in the common case
by skipping the write-back when it is not necessary.

4.2.1. Dissemination protocols with transquorumsTo
illustrate that we only rely on the transquorum properties
and not on the specific implementation of Q-RPC, we re-
place all Q-RPC calls in the protocol (Figure2) with an
“abstract” function TRANS-Q that we postulate has the
transquorum properties. TRANS-Q takes the same argu-
ments and returns the same values as Q-RPC.

The U-dissemination protocol on the right of Figure2
uses TRANS-Q as its low-level quorum communication
primitive. We have annotated each call to indicate which
set it belongs to (R,W, or T).

We use the notation〈a〉b to show thata is signed by
b. Note that data is signed before being written, and ver-
ified before being read. The functionφ(Q) returns the
largest value in the setQ that has a valid signature us-
ing lexicographical ordering: since our values are triplets
(ts, writer id,D), φ selects the largest valid timestamp,

4

Operations of this form are assigned this order and this set

r = TRANS-Q(“READ”) o(r) = φ(rret) R
w = TRANS-Q(“WRITE”, ts, writer id,D) o(w) = (warg.ts, warg.writer id, warg.D) W
t = TRANS-Q(“GET TS”) o(t) = (max(tret) + 1,⊥,⊥)5 T

Figure 3: Theo mapping

usingwriter id and thenD to break ties.
We assign each TRANS-Q quorum operation to one of

the sets (R,W or T) and define the orderingo(x) for each
quorum operationx. Our assignment is shown in Figure3.
The assignment is fairly intuitive: operations that change
the server state have been assigned to theW set and the or-
dering function consists either of what is being written, or
of what the caller extracts from the set of responses to its
query. More precisely, to defineo(x) we observe that any
quorum operationx has two parts: the arguments passed
to x and the value thatx returns. We use the notationxarg

to refer to the arguments that were passed to thex oper-
ation, andxret to indicate the value returned byx (that
value is always a set).

We want to show that the U-dissemination protocol
with TRANS-Q operations offers atomic semantics. In-
formally, atomic semantics requires all readers to see the
same ordering of the writes, and furthermore that this or-
der be consistent with the order in which writes were
made. Note that atomic semantics is concerned withuser-
level(or, simply,user) reads and writes, not to be confused
with thequorum-level operations(or, simply,quorum op-
erations) such as Q-RPC and TRANS-Q. We use lower-
case letters to denote quorum-level operations, and capital
letters to denote user-level operations (e.g.R or W). Sim-
ilarly, we use the mappingo to denote the ordering con-
straint that the transquorum properties impose on quorum
operations, and the mappingO to denote the ordering con-
straints imposed by the definition of atomic semantics on
user read and write operations.

Atomic semantics can be defined precisely as follows.

Definition 1. Every user readR returns the value that
was written by the last user writeW precedingR in the
ordering “<”. “ <” is a total order on user writes, and
W → X =⇒ W < X andX → W =⇒ X < W for any
user writeW and user read or user writeX.

We useO, which maps every user read and write opera-
tion to an element of some ordered setM′, to define com-
pletely the ordering relation“<”: X < X ′ ⇐⇒ O(X) <
O(X ′).

We are now ready to prove our first theorem, showing
that we can replace Q-RPC with any operation that satis-

5 We do not explicitly require this value to be larger than anytimes-
tamp previously sent by this client because we do not allow clients
to issue multiple concurrent writes.

fies the transquorum properties without compromising the
semantics of the U-dissemination protocol. The proof is
structured around the following three lemmas, which we
prove in AppendixA.1.

Lemma 1. Our ordering relation “<” is a total order on
user writes; further,W → X =⇒ W < X and X →
W =⇒ X < W for any user writeW and user read or
user writeX.

Lemma 2. All user readsR return the value that was writ-
ten by the last user writeW precedingR in the “<” or-
dering.

Combining the two lemmas gives our first theorem:

Theorem 1. The U-dissemination protocol provides
atomic semantics if (i) the TRANS-Q operations have the
transquorums properties for the functiono defined in Fig-
ure3, and (ii) for all r ∈ R : o(r) 6= ⊥.

5. Dynamic quorums

The transquorum properties allows us to reason about
quorum protocols without being forced to use quorums
that physically intersect. In this section, we leverage this
result to build DQ-RPC, a quorum-level operation that sat-
isfies the transquorum properties but also allows both the
set of servers and the resilience threshold to be adjusted.

We must first introduce some way to describe how our
system evolves over time, asN andf change.

5.1. Introducing views

We use the well-established termview to denote the
set N that defines the quorum system at each point in
time. Each view is characterized by a set of attributes, the
most important of which are the view numbert, the set
of serversN(t) and the resilience thresholdf(t). In gen-
eral, view attributes include enough information to com-
pute the quorum sizeq(t). The responsibility to steer the
system from view to view is left with an administrator,
who can begin a view change by invoking thenewView
command.

When the administrator callsnewView , the view in-
formation stored at the servers is updated. We say that a
view t startswhen a server receives a view change mes-
sage for viewt (for example because the administrator
callednewView(t, . . .)). A view t endswhen a quorum

5

q(t) of servers have processed a message indicating that
some later viewu is starting. After starting and before end-
ing, the view isactive. A view may start before the previ-
ous view ended, i.e. there may exist multiple active views
at the same time; our protocol makes sure that the pro-
tocol semantics (e.g. atomic) is maintained despite view
changes, even if client operations happen concurrently to
them.

The newView function has the property that after
newView (t) returns, all views older thant have ended
and viewt has started. At this point the administrator can
safely turn off server machines that are not in viewt.

Obviously, we must restrict who can call thenewView
command. In our system, this is solely the privilege of
the administrator. If the administrator is malicious then we
cannot provide any guarantee (for example, it could start
a view containing no server to deny service to all clients).
However, the system can tolerate crash failures of the ad-
ministrator. This problem remains even if the administra-
tor algorithm is run in a Byzantine fault tolerant manner, as
long as that program takes its inputs from a person: the ma-
chine through which these inputs are transmitted must not
have been tampered with. Since the determination of fu-
ture values off and the decision of adding computers to
the system (possibly purchasing new ones as necessary) is
best done by a person, we consider a single crash-only ad-
ministrator machine for the remainder of this paper.

Since our system uses views to discretize time, so does
our definition of faults. We say that a server iscorrect in
some viewt if it follows the protocol from the beginning
of time until view t ends. Otherwise, it is faulty in view
t. Note that a server may be correct in some viewt and
faulty in a later viewu. However, faulty servers will never
be considered correct again. If some server recovers from
a failure (for example by reinstalling the operating sys-
tem after a disk corruption), it takes on a new name be-
fore joining the system. The notion of resilience thresh-
old is also parameterized using view numbers. For exam-
ple, a static U-dissemination protocol requires a minimum
of n ≥ 3f + 1 servers: this requirement now becomes
|N(t)| ≥ 3f(t) + 1 for each viewt. Our system assumes
that between the start and the end of viewt, at mostf(t)
of the servers inN(t) are faulty. Since views can over-
lap this means that sometimes a conjunction of such con-
ditions must hold at the same time.

5.2. A simplified DQ-RPC

We begin with a simplified version of DQ-RPC
that, while suffering from serious limitations, al-
lows us to present more easily several of the key features
of DQ-RPC—the full implementation of DQ-RPC is pre-
sented in Section5.3.

The easiest way to implement DQ-RPC is to ensure
that different views never overlap, i.e. that at any point in

time there exists at most one active view. Since we know
that the protocols in Figure3 are correct for a static quo-
rum system, we can simply make sure to evolve the sys-
tem through, as it were, a sequence of static quorum sys-
tems. We can do so as follows.

• Replies from servers are tagged with a view number
• Once a client accumulatesq(t) responses tagged with

view t, the DQ-RPC returns these responses.

Our simplified DQ-RPC has two outputs: a viewt (that
we call DQ-RPC’scurrentview) and a quorum ofq(t) re-
sponses. Pseudocode for the simplified DQ-RPC is shown
in Figure 4. The functionq(n, f) computes the quorum
size based on the number of serversn and the resilience
thresholdf . TheactiveServers() function gives the list
of servers in active views (views that have started but
not ended – there may be more than one). The variable
replies keeps track of all replies from active servers. Sim-
plified DQ-RPC loops until it getsq(|N(t)|, f(t)) mes-
sages tagged with the same viewt (vouched for by mes-
sagemt). We writem.tag for the view meta-information
tagged onto messagem. These tags contain three fields:
the set of serversN , the resilience thresholdf and the
view numbert. If we assume that clients have some ex-
ternal, infallible way to know which servers are in an ac-
tive view (theactiveServers function) then the above
simple scheme is sufficient: DQ-RPC sends its messages
to servers in an active view and it makes sure that it only
picks active views as its current view6.

Showing how DQ-RPC can determine which views are
active is the subject of the rest of this section.

5.2.1. View changesTo determine whether a view is ac-
tive, it is important to specify how the system starts (and
ends) views.

To initiate a view change, the administrator’s computer
first tells a quorum of machines on the old view that their
view has ended. These machines immediately stop accept-
ing client requests. Clients can thus no longer read from
the old view since they will not be able to gather a quo-
rum of responses. The administrator then performs a user-
level read on the machines from the old view to obtain
some valuev. Finally, the administrator tells all the ma-
chines in the new view that the new view is starting, and
provides them with the initial valuev. At this point, the
machines in the new view start accepting client requests.

Naturally, it is not always possible for the administrator
to make sure it has contacted all the new machines: if some
server is faulty then it could choose not to acknowledge,
causing the administrator to block forever. In our simpli-
fied DQ-RPC we remove this problem by simply assum-
ing that the administrator has some way to contact all the

6 It is necessary to pick an active view: after some DQ-RPC writes
data to the latest view, reads to a view that has ended would return
old data since different views may have no servers in common.

6

Simplified-DQ-RPC(D)

1. repeat
2. sendD to activeServers()
3. gather responses inreplies

4. replies := {r ∈ replies : r.sender ∈ activeServers()}
5. until ∃t,mt : mt ∈ replies ∧ mt.tag.t = t

∧|{r ∈ replies : r.tag.t = t}| ≥ q(|mt.tag.N |,mt.tag.f)

6. return{r ∈ replies : r.tag.t = t} // t is the current view associated with this operation

Figure 4: Simplified Dynamic quorum RPC

servers. We will see in Section5.3 how the full DQ-RPC
ensures that all view changes terminate.

A delicate point to consider when performing a view
change is that, after viewt ends, so does the constraint
that at mostf(t) of the machines in viewt can be faulty.
For example, if the view was changed to remove some de-
commissioned servers, it is natural to expect that the se-
mantics of the system from then on does not depend on
the behavior of the decommissioned servers.

And yet, the decommissioned machines know some-
thing about the previous state of the system. If they all be-
came faulty (as it may happen, since they are no longer un-
der the administrator’s watchful eye) they would be able to
respond to queries from clients that are not yet aware of the
new servers and fool them into accepting stale data, vio-
lating atomic semantics. This situation is depicted in Fig-
ure 5. To prevent the system from depending on servers
that have been decommissioned, the view change protocol
must ensure that no client can read or write to a view af-
ter that view has ended. Ourforgettingprotocol enforces
this property.

Safe View Certification through “Forgetting”The simpli-
fied DQ-RPC requires the client to receive a quorum of re-
sponses with viewt’s tag before it returns that value and
considers viewt current. If the servers are correct, then
this ensures that no DQ-RPC choosest as current aftert
ends (recall that views end once a quorum of their servers
have left the view).

The forgetting protocol ensures that this property holds
despite Byzantine failure of the servers. Clients tag their
queries with a noncee. Serveri tags its response with
two pieces of information: 1) serveri’s view certificate
〈i,meta, pub〉admin, signed by the administrator, and 2) a
signature for the nonce〈e〉priv, proving that serveri pos-
sesses the private key associated with the public key in the
view certificate. The key pairpub, priv is picked by the
administrator. In the certificate,meta contains the meta
information for the view, namely the view numbert, the
set of serversN and the resilience thresholdf . The quo-
rum sizeq can be computed from these parameters.

When servers leave viewt, they discard the view cer-
tificate and private key that they associated with that view.
The challenge is to ensure that even if they become faulty

later, they cannot recover that private key and thus can-
not vouch for a view that they left. We now discuss how
our protocol addresses this issue.

The private key is only transmitted when the admin-
istrator informs the server of the new view. Our network
model allows the channel to duplicate and delay this mes-
sage, which may therefore be received after the server has
left the view. To prevent the decommissioned server from
recovering the private key we encrypt the message using a
secret key that changes for every view.

The administrator’s view change message for viewt to
serveri contains the following:

(NEW VIEW, t, oldN,

encrypt
(

(〈i,meta, pub〉admin, priv), kt
i

))

We use the notationencrypt(x, k) for the result of en-
crypting datax using the secret keyk. The view keykt

i

is shared by the administrator and serveri for view t. It
is computed from the previous view’s key using a one-
way hash function:kt

i := h(kt−1

i). The administrator and
serveri are givenk0

i at system initialization.
When correct servers leave a viewt, they discard view

t’s certificate, private keypriv and view keykt
i . As a result

they will be unable to vouch for viewt later even if they
become faulty and gather information from duplicated net-
work messages. This ensures that client following the sim-
plified DQ-RPC protocol will not pick viewt as its current
view aftert ends.

5.2.2. Finding the current view In the previous section
we have seen how clients can identify old views. We now
need to make sure that the clients will be able to find the
current view, too.

If the set of servers that the client contacts to perform
its DQ-RPC intersects with the current view in one correct
serveri, then the client will receive up to date view infor-
mation fromi and will be able to find the current view.

If that is not the case, then the client can consult well-
known sites to which the administrator publishes the list
of the servers in the current view. Our certified tags ensure
safety: even if the information the client retrieves from one
of these sites is obsolete, the client will never pick as cur-
rent a view that has ended. Therefore it suffices that the

7

...

newView
f=1 f=4

if faulty, can these servers
pretend that the reconfiguration

 never took place?

Figure 5: Example of view change

client eventually learn of an active view from one of the
well-known sites.

In the case of a local network, clients could also broad-
cast a query to find the servers currently inN . This solu-
tion has the advantage of simplicity but it only works if all
servers are in the same subnet.

5.2.3. Summary Clients only accept responses if they
all have valid tags for the same view. Until they accept a
response, clients keep re-sending their request (for read or
write) to the servers. Clients use the information in the tags
to locate the most recent servers, and periodically check
well-known servers if the servers do not respond or do not
have valid tags. Tags are valid if their view certificate has a
valid signature from the administrator and the tag includes
a signature of the client-supplied nonce that matches the
public key in the certificate.

Replacing Q-RPC with this simplified DQ-RPC in a
dissemination quorum protocol from Figure3 results in
a dynamic protocol that maintains all the properties listed
in the figure.

However, simplified DQ-RPC has two significant lim-
itations. First, it requires the administrator’snewView
command to wait for a reply from all the servers in the new
view, which may never happen if some servers in the new
view are faulty. Second, it does not let DQ-RPCs (and,
implicitly, user-level read and write operations issued by
clients) complete during a view change: instead the opera-
tions are delayed until the view change has completed. We
address both limitations in the next section.

5.3. The full DQ-RPC for dissemination quorums

The full DQ-RPC for dissemination quorums follows
the same pattern as its simplified version: it sends the mes-
sage repeatedly until it gets a consistent set of answers,
and picks a current view in addition to returning the quo-
rum of responses. DQ-RPC uses the technique described
in the previous section to determine whom to send to, but
it can decide on a response sooner than the simplified DQ-
RPC because it can identify consistent answers without re-
quiring all the responses to be tagged with the same view.
The full DQ-RPC also runs a different view change proto-
col that terminates despite faulty servers.

DQ-RPC(msg)

1. Sendersdr := new Sender(msg)
2. static ViewTrackerg vt := new ViewTracker
3. repeat
4. sender.sendTo(g vt.get().N)
5. (Q, t) := g vt.consistentQuorum(sdr.getReplies())
6. if running for too longthen g vt.consult()
7. until Q 6= ∅

// t is the current view associated with this operation
8. returnQ // sender stops sending at this point

Figure 6: Dynamic quorum RPC

We split the implementation of DQ-RPC into three
parts. The main DQ-RPC body (Figure6) takes a mes-
sage and sends it repeatedly to the servers believed to con-
stitute the current view. The client’s current view changes
with the responses that it gets; if no responses are received
for a while then DQ-RPC consults well-known sources for
a list of possible servers (line 6). The repetitive sending
is handled by the Sender object, and the determination of
the current view is done by the ViewTracker object (Fig-
ure9). The client exits when it receives a quorum of con-
sistent answers. In the simplified protocol, answers were
consistent if they all had the same tag. In this section we
develop a more efficient notion of consistent responses.

The Sender is given a message and a destination and it
repeatedly sends the message to the destination. The desti-
nation can be changed using thesendTo method and the
replies are accessed throughgetReplies (The code for
the Sender object can be found in [15]). The code for the
Sender object is shown in Figure7.

The ViewTracker acts like a filter: Sender must go
through it to read messages. The ViewTracker looks at
the messages and keeps track of the most recent view
certificate it sees. As we saw in the forgetting protocol,
messages are tagged with a signed view certificate and a
signed nonce. Messages that do not have a correct sig-
nature for the nonce are not considered as vouching for
the view (line 3 of ViewTracker.consistentQuorum).
However, even if the nonce signature is invalid, View-
Tracker will use valid view certificates to learn which

8

servers are part of the latest view (line 5). The most re-
cent view certificate can be accessed through theget
method. The ViewTracker can also get new candidates
from well-known servers with theconsult method.
Finally, the ViewTracker has the responsibility of de-
ciding when a set of answers is consistent, through the
consistentQuorum method.

5.3.1. Introducing generationsOur dynamic protocols
only require the minimal number of servers [16] to toler-
atef faults:3f + 1. The price for this minimal replication
is that every time new servers are added, the data must be
copied to them.

When more machines are available, it is possible to use
the additional replicas to speed up view changes. We offer
this capability through the newspreadparameter. When
the spread parameterm is non-zero, quorum operations
involve more servers than strictly necessary. This mar-
gin allows the quorums to still intersect when a few new
servers are added, allowing these view changes to proceed
quickly. As a result, there are now two different kinds of
view changes: one in which data must be copied and one
in which no copy is necessary. In the second case we say
that the old and new views belong to the samegeneration.
Each view is tagged with a generation numberg that is in-
cremented at each generation change.

These two parameters,m andg, are stored in the view
meta-data alongside withN , f andt.

The additional servers do not necessarily need to be
used to speed up view changes. Using a smallerm with
a givenn makes the quorums smaller and reduces the load
on the system. The parameterm therefore allows the ad-
ministrator to trade-off low load and quick view changes.

Intra-Generation: When Quorums Still IntersectWhen
clients write using the DQ-RPC operation, their message
is received by a quorum of responsive servers. The size
of the quorum depends on the parameters of the current
view t (recall thatt is also determined in the course of
a DQ-RPC). The quorum size depends on the failure as-
sumptions made by the protocol. For a U-dissemination
Byzantine protocol that toleratesb faulty servers, the quo-
rum size isq(n, b,m) = ⌈(n + b + 1)/2 + m/4⌉.

In the absence of view changes, our quorums intersect
in b+1+m/2 servers. Ifm new (blank) servers are added
to the system, then our quorums intersect inb + 1 servers,
which is still sufficient for correctness: one of the servers
is correct and the reader will recognize the signature on the
correct data. Thus, up tom servers can be added to the sys-
tem before data must be copied to any of the new servers.

Similarly, if m of the servers that were part of a write
quorum are removed, new quorums will still intersect in
b+1 servers and the system will behave correctly. Finally,
if b is increased or reduced by up tom (causing the quo-
rums to grow or shrink accordingly), new quorums will
still intersect the old ones inb + 1 servers.

More generally, if after a writea servers are added,d
servers are removed,b is modified byc, andm is reduced
tommin then the quorums will still intersect sufficiently as
long asa + d + c ≤ mmin. If a view change would break
this inequality then the value must be copied to some of
the new servers before the view change completes: we say
that the old and new views are in different generations.

limbo

joining ready

newView
we are not part of

newView we
are part of

newView
we are part of

finished reading
from previous view

or new view is
in same generation

powered off

Figure 8: Server transitions for the dissemination protocol

5.3.2. View changes: closing the generation gapThe
copying of data across generations is done as part of the
view change protocol. Unlike the view change protocol
that is associated with simplified DQ-RPC, the full view
change protocol terminates.

View changes are initiated by the administrator when
some machines need to be added, removed or moved, or
when the resiliencef or the spreadm have to be changed.
The newView method first determines whether the new
view will be in the same generation as the previous one,
using the relation in Section5.3.1. It then computes the
key pairs and certificates for the new view. Finally the ad-
ministrator encodes the certificates using the appropriate
shared key and sends them to all servers int, re-sending
when appropriate and waiting for a quorum of responses.

Servers switch states according to the diagram in Fig-
ure 8. When they receive a new view message for a new
generation (and they are part of that generation), servers
piggyback that message on top of a read they perform on
a quorum from the old view. They then update their value
with what they read (if it is newer than the value they cur-
rently store) and update their view certificate. If they are
part of the new view but there is no generation change then
the servers just update their view information as per the
forgetting protocol. If they are not part of the new view
then the servers update their certificates too. In that case
they will not be able to vouch for the new view since they
have no valid view certificate for it, but they will still be
able to direct clients to the current servers.

Servers are in thelimbo state initially and after leaving
the view. They are in thejoining state while they copy in-
formation from the older view, and they are in theready
state otherwise. Servers process client requests in all three

9

Sender variables

m message the message that is to be transmitted
m destinations the set of destination addresses
m thread a resend thread (initially not running)
m replies set of (sender, reply, meta) triples
m recentReply set of senders who sent a reply in the most recent view
m delay delay until the next retransmission (initially 1 second)

constructor Sender(msg)

1. m message := msg

Sender.sendTo(Dests)

1. m destinations := Dests

2. if m thread is not runningthen
3. createm thread // the worker threadm thread will call run()

Sender.run()

1. m message.nonce = a new nonce
2. while (true)
3. m recentReply = senders inm replies with meta that has the same view number asg vt.get()

4. asynchronously sendm message to each element ofm destinations - m recentReply

5. waitm delay seconds
6. m delay := m delay * 2
7. while ((j,r,s):=g vt.receive(m message.nonce)) // received valid reply (r,s) from serverj
8. if j ∈ m destinations then
9. m replies := m replies ∪ (j, r, s)

Sender.getReplies()

1. returnm replies

Figure 7: Sender class for dynamic quorum RPC

states. Servers in thejoining state use the view certificate
for the old view (if they have it) until they areready.

The administrator’snewView waits for a quorum of
new servers to acknowledge the view change and then it
posts the new view to the well-known locations and re-
turns. At this point, the administrator knows that the data
stored in the machines that were removed from the view
are not needed anymore and therefore the old machines
can be powered off safely.

There may still be some machines in thejoiningstage at
this point. These machines do not prevent operations from
completing because DQ-RPC operations only needf + 1
servers in the new generation to complete, and any dis-
semination quorum contains at leastf + 1 correct servers.

WhennewView returns, the old view has ended and
the new view has started andmatured, meaning that at
least one correct server is done processing the view change
message for it. This means that reads and writes to the new
view will succeed and reads and writes to the old view will
be redirected to the new view (either by the old servers or
after consultation of the well-known locations).

The protocol as presented here requires the administra-
tor to be correct. If the administrator crashes after sending
the new view message to a single faulty new server, the
new server can cause the servers in the old view to join the
limbo state without informing the new servers that they
are supposed to start serving. In AppendixB we show a
variant that tolerates crashes in the sense that if the ad-
ministrator machine crashes at any point during the view
change and never recovers then read and write operations
will still succeed even though it is not possible to change
views anymore. The basic idea is that the servers in the old
view make sure that a quorum of servers in the new view
is informed of the view change before they let the old view
end.

5.3.3. DQ-RPC satisfies transquorums for dissemina-
tion quorums We now prove our final theorem:

Theorem 2. U-dissemination, crash and hybrid-d based
on DQ-RPC provide atomic semantics.

The complete proof is in AppendixB.1. We present the
main lemmas below.

10

(meta) ViewTracker.get()
// returns the latest view meta-data

1. returnm maxMeta

ViewTracker.consult
// ask well-known servers for the latest meta-data

1. Choose a serverj at random from the list of well-
known view publishers

2. Send(CONSULT,m maxMeta) to j

(sender, reply,meta) ViewTracker.receive(nonce)
// used by the Sender object when gathering replies

1. if there is no message waiting,then returnfalse
2. receive(msg,meta) from sender
3. if not validCertificate(meta) then returnfalse
4. if meta.t > m maxMeta.t then
5. m maxMeta := meta
6. if msg == CONSULT-ACK then goto 1
7. return(sender,msg,meta)

(messages, view) ViewTracker.consistentQuorum(messageTriples)
// returns a consistent quorum of messages (if any) and the current view

1. msgInQuorun := {m ∈ messageTriples : m.sender ∈ m maxMeta.N}
2. if |msgInQuorun| < q(|m maxMeta.N |,m maxMeta.f,m maxMeta.m) then return(∅,⊥)

// fail if there is no consistent quorum of messages
3. validMessages := {m ∈ msgInQuorun : validTag(m)}
4. recentMessages := {m ∈ validMessages : m.meta.g == m maxMeta.g}
5. if |recentMessages| < m maxMeta.f + 1 then return(∅,⊥) // fail if the view is not mature
6. return(msgInQuorun,m maxMeta)

ViewTracker.consult // consults well-known servers for the latest meta-data

1. Choose a serverj at random from the list of well-known view publishers
2. Send(CONSULT,m maxMeta) to j

Figure 9: Definition of the ViewTracker object

Lemma 3. The viewt chosen by a DQ-RPC operation is
concurrent with the DQ-RPC operation.

Lemma 4. The DQ-RPC protocol in Figure6 provides the
transquorum properties for the ordering functiono of Fig-
ure3.

Lemma 5. When using DQ-RPC for the U-dissemination,
crash or hybrid-d protocol, noR operation returns⊥.

5.4. Optimizations

Our protocol can be optimized in several ways. For
space reasons, we defer the detailed explanation of the op-
timizations to SectionB.2 in the appendix and only briefly
go over each optimization here.

The first group of optimizations makes both the dissem-
ination and the masking protocols faster. Reads can pro-
ceed in a single round-trip in the common case where no
write is concurrent with the read by skipping the writeback
in this case. Both the DQ-RPC operation andnewView
can be improved for speed, at the cost of a little complex-
ity. New servers can pre-fetch the data immediately when
they are added to the system instead of waiting until the
next generation change, allowing generation changes to
complete faster.

The second group of optimizations concerns the view
meta-data that is exchanged between the servers and the
clients. This communication can be reduced by omitting
the view information in some cases, using asymmetric

quorums for faster reads, and sending differences instead
of the whole data.

Third, we can improve resilience. The administrator
program is less likely to crash if it runs on a replicated
state machine instead of a single computer. Also, our sys-
tem adapts well to proactive recovery since clients can use
the system even when servers are constantly added and re-
moved in the background.

We have successfully applied the methodology pre-
sented in this paper to masking quorum system storing
generic data. The DQ-RPC protocol remains the same in
that case but thenewView operation needs to be adapted:
the details can be found in AppendixC.

6. Conclusions

We present a methodology that easily transforms sev-
eral existing Byzantine protocols for static quorum sys-
tems [9, 13, 14, 17, 18] into corresponding protocols that
operate correctly when the administrator is allowed to add
or remove servers from the quorum system, as well as
to change its resilience threshold. Performing the trans-
formation does not require extensive changes to the pro-
tocols: all that is required is to replace calls to the Q-
RPC primitive used in static protocols with calls to DQ-
RPC, a new primitive that in the static case behaves like
Q-RPC but can handle operations across quorums that
may not intersect while still guaranteeing consistency. Our
methodology is based on a novel approach for proving the
correctness of Byzantine quorum protocols: through our

11

mainLoop()

1. receivemessage from machinei
2. response := result of calling the non-private function with the same name as the first element of

message, if any (⊥ otherwise).
3. reply toi with (m viewCert, 〈message.nonce〉m priv, response)

write (ts,D)

1. if (m ts<ts) then (m ts,m D) := (ts,D)
2. return “WRITE-ACK”

read()

1. return(m ts,m D)

newView(t, oldN , encryptedBody)
// encryptedBody is of the formencrypt ((〈i,meta, pub〉admin, priv), kt

i)

1. newK := ht−m meta.t(m k)

2. (cert, priv) := decrypt(encryptedBody, newK)

3. if (cert.meta.N does not include this server)then
4. // limbo
5. (m cert,m priv,m k) := (cert, priv, newK)

6. return “OK”
7. if (cert.meta.g == m cert.meta.g) then
8. // intra-generation view change (ready state)
9. (m cert,m priv,m k) := (cert, priv, newK)

10. return “OK”
11. // inter-generation view change (joining state)
12. (newTS, newD) := φ(Q-RPC(“READ+NEWVIEW”, cert)) to the servers inoldN

13. if m ts < newTS then (m ts,m D) := (ts,D)
14. (m cert,m priv,m k) := (cert, priv, newK) // ready state now
15. return “OK”

read+NewView(cert)

1. if (m cert.meta.t < cert.meta.t ∧ cert has a valid signature) then
2. (m cert,m priv) := (cert,⊥)

3. return(m ts,m D)

Figure 10: Server protocol for dissemination quorums

transquorum properties, we specify the characteristics of
quorum-level primitives (such as Q-RPC) that are crucial
to the correctness of Byzantine quorum protocols and pro-
ceed to show that it is possible to design primitives, such as
DQ-RPC, that implement these properties even when quo-
rums don’t intersect. We hope that designers of new quo-
rum protocols will be able to leverage this insight to easily
make their own protocols dynamic.

7. Acknowledgments

The authors would like to thank Eunjin Jung and Jeff
Napper for several interesting conversations and feedback
on the paper presentation.

References

[1] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic sys-
tems. InProc. 17th Intl. Symp. on Distributed Computing (DISC),
Oct. 2003.

[2] L. Alvisi, D. Malkhi, E. Pierce, M. Reiter, and R. Wright. Dynamic
Byzantine quorum systems. InProc. of the Intl. Conference on De-
pendable Systems and Networks (DSN), June 2000.

[3] L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault detection
for byzantine quorum systems.IEEE Trans. Parallel Distrib. Syst.,
12(9):996–1007, 2001.

[4] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communica-
tion specifications: a comprehensive study.ACM Computing Sur-
veys (CSUR), 33(4):427–469, 2001.

[5] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a
partitioned network: a survey.ACM Computing Surveys (CSUR)
Volume 17, Issue 3, pages 341–370, Sept. 1985.

[6] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geo-
quorums: Implementing atomic memory in mobile ad hoc net-
works. InProc. 17th Intl. Symp. on Distributed Computing (DISC),
Oct. 2003.

[7] J.R. Douceur. The sybil attack. InProc. of the IPTPS02 Workshop,

12

March 2002.
[8] S. Gilbert, N. Lynch, and A. Shvartsman. Rambo II: Rapidly re-

configurable atomic memory for dynamic networks. InProc. 17th
Intl. Symp. on Distributed Computing (DISC), pages 259–268, June
2003.

[9] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Ef-
ficient consistency for erasure-coded data via versioning servers.
Technical Report CMU-CS-03-127, Carnegie Mellon University,
2003.

[10] L. Kong, A. Subbiah, M. Ahamad, and D.M. Blough. A reconfig-
urable byzantine quorum approach for the agile store. InProc. 22nd
Intl. Symp. on Reliable Distributed Systems (SRDS), Oct. 2003.

[11] L. Lamport. On interprocess communications.Distributed Com-
puting, pages 77–101, 1986.

[12] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic
memory service for dynamic networks. InProc. 16th Intl. Symp.
on Distributed Computing (DISC), pages 173–190, Oct. 2002.

[13] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed
Computing 11/4, pages 203–213, 1998.

[14] D. Malkhi and M. Reiter. Secure and scalable replication in Pha-
lanx. In Proc. 17th IEEE Symp. on Reliable Distributed Systems
(SRDS), Oct 1998.

[15] J-P. Martin and L. Alvisi. A framework for dynamic byzantine stor-
age. Technical Report TR04-08, The University of Texas at Austin,
2004.

[16] J-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantinestorage.
In Proc. 16th Intl. Symp. on Distributed Computing (DISC), pages
311–325, Oct. 2002.

[17] J-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine quorum sys-
tems. InProc. of the Intl. Conference on Dependable Systems and
Networks (DSN), pages 374–383, June 2002.

[18] E. Pierce and L. Alvisi. A framework for semantic reasoning
about byzantine quorum systems. InBrief Announcements, Proc.
20th Symp. on Principles of Distributed Computing (PODC), pages
317–319, Aug. 2001.

[19] R. Rodrigues, B. Liskov, and L. Shrira. The design of a robust peer-
to-peer system. InTenth ACM SIGOPS European Workshop, Sept.
2002.

[20] P. Thambidurai, YK. Park, and K. S. Trivedi. Interactiveconsis-
tency with multiple failure modes.9th Intl. Conference on Dis-
tributed Computing Systems, June 1988.

[21] A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice: A mecha-
nism for background transfers. In5th Symp. on Operating Systems
Design and Implementation, Dec 2003.

A. Dissemination Protocol

A.1. U-Dissemination provides atomic semantics

We show that transquorums suffice to prove that the U-
dissemination protocol of Figure2 is atomic.

Theorem 3. The U-dissemination protocol provides
atomic semantics if (i) the TRANS-Q operations have the
transquorums properties for the functiono defined in Fig-
ure3, and (ii) for all r ∈ R : o(r) 6= ⊥.

Lemma 6. Our ordering relation “<” has the follow-
ing properties: (i) W → X =⇒ W < X and (ii)
X → W =⇒ X < W for any user writeW and user
read or user writeX.

Proof. Because we assume that user reads and writes are
confirmable,R → W means thatR returns beforeW
starts.

We build the orderingO for user reads and writes from
the orderingo of the quorum operations that are invoked
within these user operations.

The simplest choice would be to setO(X) = o(x) for
some quorum operationx that is called as part of the user-
level operationX. Unfortunately we need to take one ex-
tra step to make sure that user reads get ordered after the
user write whose value they read.

Let last o(X) be the value assigned through theo map-
ping to the last quorum operation in the (read or write)
user-level operationX. For a user write operation W, we
defineO(W) to be the pair(last o(W), 0). For a user read
operationR, we defineO(R) to be the pair(last o(R), 1).
The second element in these pairs ensures that user read
operations are ordered after the user write whose value
they return.

We now show that condition (i) holds. Suppose first
thatW → X. W ends with aW operation andX starts
with an quorum operationt ∈ T , so, by timeliness,
last o(W) ≤ o(t). If X is a user read then its second ele-
ment is 1, soO(W) < O(X). If X instead of a user write
thenlast o(X) > o(t) and thereforeO(W) < O(X) still
holds.

To show (ii), suppose now thatX → W . The last quo-
rum operation ofX (regardless of whether it is a user read
or write) is aW operation. The first quorum operation of
W , t, is aT operation. By timeliness,last o(X) ≤ o(t).
The write then fills in the last two elements ofo(t) with its
writer id and dataD, resulting in a value that is strictly
larger thano(t). This value is then passed to the last quo-
rum operation inW , ensuring thatlast o(W) > o(t).
Since last o(X) ≤ o(t) ando(t) < last o(W), it fol-
lows thatO(X) < O(W).

13

Lemma 7. Our ordering relation “<” is a total order on
user writes.

Proof. By construction, any two readsW1 andW2 can be
compared. To show that< is a total order, we need to also
show thatO(W1) = O(W2) =⇒ W1 = W2.

AssumeO(W1) = O(W2). W1 andW2 cannot be per-
formed by different writers, because theo value includes
the writer id, which is different for each writer. And if
W1 andW2 are performed by the same writer they can-
not be distinct. If they were, because user writes are con-
firmable it would either follow thatW1 → W2 (and, by
(1) O(W1) < O(W2), or, symmetrically, thatW2 → W1

andO(W2) < O(W1).

Lemma 8. All user readsR return a value that was writ-
ten by some user writeW , andR 6→ W .

Proof. The value that is returned by readR is the third
element in the first quorum operationr ∈ R in R. By
soundness, this value was passed to some quorum opera-
tion in W. Both user-level write and user-level read oper-
ations call aW quorum operation, but we observe that the
user-level read calls it with a value that it first gets from a
R quorum operation. We can therefore use soundness re-
peatedly to show that there must have been some quorum
operationw ∈ W inside a user-level write operationW
such thato(r) = o(w) andr 6→ w. This proves the first
part of the lemma. Sincer did not happen beforew, it is
also impossible thatR happened beforeW (since the lat-
ter would imply the former). This proves the second part
of the lemma.

Lemma 9. All readsR return the value that was written
by the last writeW precedingR in the “<” ordering.

Proof. Lemma 8 tells us that the value returned byR
was written by some writeW . By construction ofO,
we haveO(W) = (last o(W), 0) = (last o(R), 0) <
(last o(R), 1) = O(R), soW precedesR in the “<” or-
dering. By definition, for any writeW ′ that is ordered af-
ter W in <” we know thatO(W ′) > O(W). Since the
pairs forO(W) andO(W ′ have the same second element,
the first element inO(W ′) must be larger than the first
in O(W). Hence, sinceO(R) andO(W) have the same
first element, it follows thatW ′ is ordered in “<” after R.
ThereforeW is the last write precedingR in the “<” or-
dering.

The four lemmas together prove our first theorem,
showing that we can replace Q-RPC with any operation
that satisfies the transquorum properties without compro-
mising the semantics of the U-dissemination protocol.

A.2. Quorum Intersection implies Transquo-
rums

We have shown that U-dissemination provides atomic
semantics for any TRANS-Q operation that has the tran-
squorums property. The proof also follows for the hy-
brid dissemination protocol [20] since it follows the same
schema. In this section, we show that the traditional im-
plementation of Q-RPC (using quorum intersection) satis-
fies the transquorums property.

Both the u-dissemination and the crash protocol are
special cases of the hybrid dissemination protocol. All
three use quorums of size

⌈

n+b+1

2

⌉

and requiree at least
2f+3b+1 servers to toleratef crash failures andb Byzan-
tine failures from the servers (a total off + b failures).
Any number of clients may crash. In the case of the U-
dissemination protocol,f is zero. In the case of the crash
protocol,b is zero.

The client protocol is shown in Figure2. Servers store
the highest-timestamped value they have received that has
a valid signature (except for the crash protocol in which
signatures are not necessary).

There must be at least2f + 3b + 1 servers. Servers do
not communicate with each other; clients use the Q-RPC
operation to communicate with servers. The Q-RPC op-
eration sends a given message to a responsive quorum of
servers.

Any two quorums intersect in2q−n = b+1 servers. At
least one of these servers,s, is not Byzantine faulty (and
has not crashed).

We use the same orderingo as Section4.2.1, namely
W calls are ordered according to their arguments, andR
andT calls are ordered according to their return value. No
R quorum operation ever returns⊥, so we do not need to
consider that case. We prove the timeliness and soundness
conditions separately.

Lemma 10 (timeliness).For the quorum size and order-
ing described above:∀w ∈ W∀r ∈ T : w → r =⇒
o(w) ≤ o(r)

Proof. The quorum to which the value was written withw
intersects with the quorum from whichr reads in one non-
Byzantine server that has not crashed. That server will re-
port the timestamp that was written inw; since the server is
not Byzantine faulty that data has a valid signature. Theφ
function will therefore return a value that is at least as large
aso(w). The result of that function is equal too(r).

Lemma 11 (soundness).For the quorum size and or-
dering described above:∀r ∈ R : ∃w ∈ W s.t.r 6→
w ∧ o(w) = o(r)

Proof. Values selected throughφ(Q-RPCR) have a valid
signature (by definition ofφ). We know that valid values

14

returned byR must come from aW operation since only
W quorum operations introduce new values. Since these
signatures cannot be faked, it follows that theW quorum
operationw did not happen after afterr.

This proves that the dissemination protocols in Figure3
are atomic when using the traditional Q-RPC.

B. Fault-Tolerant Dissemination View
Change

Let si := encrypt(|i,N, f,m, t, g, pub〉adm, priv, kt
i).

The administrator sends〈(N, f,m, t, g), s0 . . . sn−1〉admin

to a responsive quorum of new servers and then a respon-
sive quorum of old servers.

New servers forward that message to the old servers,
causing them to end the old view. The old servers acknowl-
edge right away but they also start a new thread with which
they send that message back to a responsive quorum of
new servers. The new servers proceed as before (Figure8),
namely they wait for an acknowledgement from a quorum
of old servers before joining the ready state in which they
acknowledge to the administrator and tag their responses
with the new view.

As a result, if a single correct old server ends view
t then eventually a quorum of new servers will have re-
ceived the message for the new viewt + 1. That is enough
to guarantee that viewt + 1 has matured, so reads in the
new view will go through. If on the other hand no old cor-
rect server ends viewt then reads in viewt will go through.
Since in the event of an administrator crash the old servers
are not turned off, in both cases the system will continue
to process reads and writes and provide atomic semantics.
If the view change does not include a generation change
then the server transitions directly to the ready state.

The careful reader will have noticed that if a single
faulty server in the old view has the view certificate for
the new view but no correct server in the new view does
(which may happen if faulty servers collude and the ad-
ministrator crashes after sending its first message), the
faulty old server can cause our implementation of DQ-
RPC to block because the clients will try to get answers
from the new servers even though the new servers do not
process requests yet. However, the implementation of DQ-
RPC that we describe in the optimizations Section (B.2)
does not have this problem and will allow reads and writes
to continue unhampered because the old view has not
ended and DQ-RPC can process its replies.

B.1. DQ-RPC makes U-dissemination dynamic

Theorem 4. U-dissemination, crash and hybrid-d based
on DQ-RPC provide atomic semantics.

Lemma 12. The viewt chosen by a DQ-RPC operation is
concurrent with the DQ-RPC operation.

Proof. The view t is chosen in ViewTracker’s
findConsistentQuorum method (Figure 9).
By inspection we observe that ift is chosen then
q(n(t), f(t),m(t)) responses from different servers were
tagged with a view that was no more recent thant.

Suppose, by contradiction,, that viewt has ended.
Then, a quorumQ0 of servers int have processed the view
change message and discarded the view meta-information
associated with viewt. The forgetting protocol en-
sures that the servers inQ0 that were correct during view
t will not be able to regain the view meta-information. By
quorum intersection7, the quorum ofq(t) replies int se-
lected by DQ-RPC to vouch for viewt intersects the quo-
rum Q0 in at least one servers that was correct int. The
servers cannot generate a valid tag for viewt, contradict-
ing our hypothesis thatt had ended. Thus, viewt has not
ended.

View certificates are signed by the administrator, and
such signatures cannot be faked. Since the responses con-
tain a certificate for viewt, at least one server received
this certificate from the administrator. Therefore, viewt
has started.

Lemma 13. The DQ-RPC protocol in Figure6 provides
the transquorum properties for the ordering functiono of
Figure3.

Lemma 14. When using DQ-RPC for the U-
dissemination, crash or hybrid-d protocol, noR op-
eration returns⊥.

Lemma 15. All reads succeed. That is, there is no DQ-
RPCT or DQ-RPCR operationx such thatφ(x) = ⊥.

Proof. The φ(Q) function returns the largest valid ele-
ment of Q. DQ-RPC replies contain at leastf + 1 re-
sponses tagged with the latest generation. Servers only use
the most recent tag once they have data, so all DQ-RPC
replies contains at least one non-⊥ reply from a correct
server that can be chosen byφ.

Lemma 16. All T operations in the dissemination DQ-
RPC are timely.

Proof. Lemma15shows thato(r) 6= ⊥, so we must prove
∀w ∈ W,∀r ∈ T : w → r =⇒ o(w) ≤ o(r). Our proof
proceeds by case analysis on the views associated with op-
erationsr andw.

If w andr picked views that are in the same genera-
tion then the two quorums intersect in at least one correct

7 It is safe to use quorum intersection here, sinceQ0 andq(t) are quo-
rums of the same viewt.

15

server. Sincew → r and servers never decrease the times-
tamp they store, it follows thato(w) ≤ o(r).

If w picked a viewt that is in the generation that im-
mediately precedes the generationv to whichr’s view be-
longs, then we consider the last viewu in t’s generation.
As we have seen in the previous paragraph, reads from a
quorumq(u) in u will result in a timestamp that is at least
as large aso(w). Such a read occurs when a server tran-
sitions to the ready state inv’s generation, and all correct
servers that enterv’s generation therefore have a times-
tamp at least as recent aso(w). The readr waits until it
knows that viewv is mature, so at least one correct server
answered the DQ-RPCr after installing viewv. Since
that server is correct, its reply is valid. Since that reply
has a timestamp at least as recent aso(r) and dissemina-
tion quorums pick the largest valid reply, it follows that
o(w) ≤ o(r).

If w picked a view that happens several generations be-
fore r then we can apply the previous paragraph’s reason-
ing several times to show thato(w) ≤ o(r).

Finally, it is not possible forw to pick a view in a later
generation than whatr picks if w → r. DQ-RPCs decide
on a view whose generation is vouched for by at leastf+1
servers with data. That means that one of these servers is
correct. Correct servers only install a generation after all
previous generation have ended, sor cannot pick an ear-
lier generation.

This covers all the possible ordering for generations, so
∀w ∈ W,∀r ∈ T : w → r =⇒ o(w) ≤ o(r).

Lemma 17. All R operations in the dissemination DQ-
RPC are sound.

Proof. Since no dissemination operation returns⊥ we
show∀r ∈ R : ∃w ∈ W s.t.r 6→ w ∧ o(w) = o(r).
Sinceo(r) picks the largest valid value and the crypto-
graphic primitives hold,o(r) can only return a value that
was written previously, so one for which aw operation ex-
ists. Furthermore that value must have been forwarded to
the reader so the write must happen before the read or con-
currently with it.

B.2. Optimizations

B.2.1. Single-Roundtrip ReadsBoth the U-
dissemination and U-masking protocols (and their
hybrid counterparts) can be sped up by skipping the write-
back in the case ofunanimous reads, i.e. reads in which
responses in the quorum agree. This idea is not new
but it is interesting since it leads to single-roundtrip
reads in the common case where no operation is paral-
lel with the read.

For single-roundtrip reads the TRANS-QR oper-
ations must have the property that∀r1, r2 ∈ R :

unanimous(r1) ⇒ o(r1) ≤ o(r2). This property holds
for quorum intersection (since an unanimous read means
that the service state is similar to what it would be af-
ter writing that value), and it also holds for both our
dissemination and masking DQ-RPC implementa-
tions.

B.2.2. Reducing TransmissionsThe protocol, as de-
scribed in this paper, piggybacks view information onto
each message sent by the servers. Also, clients ver-
ify all of these messages. Since in most cases the view
will be the same as it was in the previous exchange, sev-
eral optimizations can be used to decrease both the
amount of data that needs to be transmitted and the com-
putations necessary to verify that information.

Servers send the view information along with the ad-
ministrator certificate and signed nonce. To optimize for
the common case while retaining the forgetting property
described in Section5.2.1, servers could omit the view in-
formation and instead just send the view numbert. If the
client knows about that view then it has all the necessary
data to verify the signature. If it does not, then the client
sends a request to the server to retrieve the complete view
information.

Another opportunity arises in the choice of quorums.
Instead of using the same quorums for the views meta-
information as for the data, we can use asymmetric quo-
rums. This is beneficial because view meta-data is read
more often than it is written. These asymmetric quorums
use the smallest possible read quorums (2f + 1 since the
view meta-information is self-verifying) and the largest
possible write quorums (n − f). The current approach in
ViewTracker is to verify that (1) there is a dissemination
(resp. masking) quorum of responses such that no mem-
ber claims that the current view has ended and (2) enough
responses are in the same generation as the current view.
The first point can be changed to (1) there is a read quorum
of responses such that no member claims that the current
view has ended. Reads naturally still need to gather a dis-
semination (resp. masking) quorum of responses in order
to read the variable, but with this change it is not necessary
anymore that all the responses be tagged with view infor-
mation. The client can then indicate in its queries whether
the server should include a view certificate in its reply.

Another natural optimization is that in the few cases
were servers still need to send the view meta-information
to the clients, the servers can send the difference between
their information and the one the client knows instead of
sending the whole thing.

B.2.3. Proactive RecoveryProactive recovery is a tech-
nique in which machines are periodically refreshed to a
known good state. This brings down the number of faulty
machines and thus reduces the risk that the system will fail
because more thanf servers are faulty.

16

Proactive recovery requires us to remove a server, re-
fresh it (for example by rebooting it), and then bring it
back in the system under a different name. Our dynamic
quorums are particularly well suited for proactive recovery
because we can add and remove servers with little over-
head, and client operations can complete even if they span
several different views.

B.2.4. Tolerating More Faults We can replace the ad-
ministrator machine with a replicated state machine to re-
duce the likelihood that it fails.

B.2.5. Faster Reads and WritesIt is possible to speed
up quorum operations by slightly weakening the condi-
tions under which the DQ-RPC function returns. The cor-
rectness of the protocol only requires that DQ-RPC selects
as its current viewt one that is concurrent with the DQ-
RPC. The DQ-RPC we show in this paper always picks the
most recent concurrent view that is knows of. This causes
DQ-RPC to sometimes wait for messages when that is not
necessary. Consider the case whereq +1 responses are re-
ceived. The first response is in viewt + 1 and all the oth-
ers are in viewt. In that situation it would be perfectly
reasonable to pick the lastq responses as the result of the
DQ-RPC operation, but our simplified operation will wait
until it gets aq responses in viewt + 1.

The change impacts ViewTracker (Section9). Instead
of keeping track of the most recent view certificate it sees
(m maxS), ViewTracker must now inspect each set of re-
sponses to see if there exists some view that can be consid-
ered current.findQuorum is replaced with the following
code:

1. findqrm ⊆ messageTriples such that
2. letmt := largest-timestamped element ofqrm

3. ∀m ∈ qrm : m.sender ∈ mt.meta.N , and
4. |qrm| = q(|mt.meta.N |,mt.meta.f ,mt.meta.m),
5. and|{m ∈ qrm : validTag(m) ∧ m.meta.g ==

mt.meta.g}| ≥ mt.meta.f + 1

6. if no suchqrm existsthen return(∅,⊥)

7. return(qrm,mt.meta)

This code is slightly harder to read than the original, but
it still picks a current view that is concurrent with the DQ-
RPC and it allows DQ-RPC to complete sooner in the case
outlined above. The termination condition here is strictly
weaker than before, so there is no situation where this DQ-
RPC would be slower than the original one.

Theget method must also be modified to include more
servers than just the last view, for example the union of the
two most recent views.

B.2.6. Faster Generation ChangesOur protocols’ abil-
ity to add servers when necessary relies on the fact that the
data will be copied to the new servers. The DQ-RPC and

view change protocols make sure that the protocol seman-
tics are maintained despite the copying. However, copy-
ing data takes time. There are some cases where we can
speed up generation changes.

Consider first the case where some servers of the new
view are also part of the old view. It would be unwise for
them to just keep whatever data they have, for the data
they are storing could be untimely and the new view may
require them to hold timely data (for example if the quo-
rum size changes). In most cases, however, the data on the
server is timely and we can avoid the copy by usingcon-
ditional reads. In a conditional read, the server issuing the
read indicates the timestamp of the data that it has. If the
respondent does not have data that is newer than the indi-
cated timestamp then it sends a response with empty data
(but the timestamp and view certificates are still included
when appropriate). If the respondent has newer data then
it sends it as usual. As a result, servers that are already
timely do not need to transfer the data across the network
and they can join the new view much more quickly.

Conditional reads yield their full power when used in
combination with our second optimization. Recall that the
spread parameter allows new servers to join the system
without having to receive a copy of the data first (intra-
generation view changes). These servers normally partic-
ipate in the protocol and refresh their data in the next
generation change. We can choose, instead, to have the
new (blank) servers read the current value of the data in
the background (perhaps using TCP Nice [21]). When it
comes time for the generation change, the servers can use
conditional reads: if they already have the right data then
they can move to the new view instantly.

C. Generic Data

C.1. Masking Protocols with Transquorums

In this section we show that the U-masking protocol
provides partial-atomic semantics despite up tob Byzan-
tine faulty servers. This protocol assumes that the network
links are asynchronous authenticated and fair. Clients are
assumed to be correct and the administrator machine may
crash.

The U-masking protocol is shown in Figure11. The
only change from its original form [18] is that we have
substituted TRANS-Q for Q-RPC operations.

Partial-atomic semantics: All readsR either return⊥,
or return a value that satisfies atomic semantics.

Theorem 5. The U-masking protocol provides partial-
atomic semantics if the Q-RPC operation it uses has the
transquorums properties for the functiono defined below.

Proof. We defineo andO in the exact same way as we did

17

for the dissemination protocol in Section4.2.1. Then we
show the following three properties:

1. X → W =⇒ O(X) < O(W) andW → X =⇒
O(W) < O(X)

2. O(W1) = O(W2) =⇒ W1 = W2

3. ReadR returns either⊥ or the value written by some
W such that

(a) R 6→ W , and

(b) 6 ∃W ′ : O(W) < O(W ′) < O(R)

The first two points show thatO defines a total order
on the writes and that the ordering is consistent with “hap-
pens before”. The third point shows that reads return the
value of the most recent preceding write.

We prove that the protocols satisfy partial-atomic se-
mantics by building an ordering functionO for the read
and write operations that satisfies the requirements for
partial-atomic semantics.

Both read and write end with aW quorum operationw.
The first quorum operation in writes never returns⊥. By
the first property of transquorums, that operation therefore
has a timestamp that is at least as large as that ofw. The
write operation then increases that timestamp further, en-
suring thatX → W =⇒ O(X) < O(W). Our construc-
tion of the mappingO ensures that if a read happens after
a write, then that read gets ordered after the write. These
two facts imply property (1).

The o value includes thewriter id, which is different
for each writer - and if the same writer performs two writes
then (1) implies that they’ll have different values. There-
fore property (2) holds:O(W1) = O(W2) =⇒ W1 =
W2. These two properties together show that writes are to-
tally ordered in a way that is compatible with the happens
before relation.

Next we show that non-aborted reads return the value
of the preceding write (property (3)). Soundness tells us
that this value does not come from an operation that hap-
pened after R (3a). We know that the value returned by
reads must come from a write operation since only writes
can introduce new values that are reported byb+1 servers:
so the value returned by a readR comes from some
write W . Note thatO(R) andO(W) have the samets,
writer id andD; they only differ in the last element (and
soO(W) < O(R)). Thus, any writeW ′ > W will nec-
essarily also be ordered afterR sinceO(W ′) > O(R)
(3b).

If the Q-RPC operations have thenon-triviality prop-
erty thatR quorum operations that are concurrent with no
other quorum operation never return⊥, then U-masking
has the property that reads that are not concurrent with
any operation never return⊥ either. This follows directly

from the fact that if no operation is concurrent with a read
R then no quorum operation is concurrent with any ofR’s
quorum operations. Our implementation of DQ-RPC has
the non-triviality property.

C.2. DQ-RPC for Masking Quorums

In this section we show how to build the DQ-RPC and
view change protocol for masking quorums, when data is
not signed. Only one line needs to change: line 5 of View-
Tracker’sfindQuorum (Figure9), shown below.

if |recentMessages| < 2 ∗ m maxMeta.f + 1 then
return(∅,⊥)

Thus read operations now wait until they get2f + 1
servers vouching for the current generation instead of
f + 1. It follows thatf + 1 correct servers have entered
the new generation, so they will be able to countermand
any old value proposed by servers that have not finished
the view change.

The view change protocol must be modified however,
because as described in Section5.3.2it relies on the fact
that the servers’ read of the current value never fail. This
is not true in the case of masking quorums, where reads
may fail if some write is concurrent with it.

Figure13gives the view change protocol for the admin-
istrator. If clients are correct then the function is guaran-
teed to eventually terminate. If no write is concurrent with
the view change then the administrator only goes through
the loop once. Once the newView operation returns, it is
safe to turn off the machines in the old view that are not
part of the new view – we say that the new view isweaned.

In order to provide atomic semantics, we must ensure
that reads reflect the values written previously, and thus
we must propagate data from the old view to the new one.
The view change protocol allows clients to query the new
servers right away, before the administrator copies any
data. How can this work?

The key is that (as shown in Figure15) the new servers
will get their data from the old ones to service client re-
quests. Once a new server has read some value from the
old servers it never needs to contact the old servers again
since writes are directed to the new ones (we say that the
server isweaned). Once enough new servers have data
stored locally, it is possible to shut down the old servers
– we must just be careful that nothing bad happens to new
servers that were in the middle of reading from the old
ones.

So the new servers, when they are asked for data that
they don’t have, first check whether the old servers are still
available by checking whether a peer server has a wean
certificate (using the READLOCAL call). If the server
receives a wean certificate, it knows that there is no point

18

READ

1. Q := TRANS-QR(”READ”) // reply is of the form(ts, writer id, data)

2. replyr := φ(Q) // φ : the only non-countermanded value vouched byb + 1 servers, or⊥
3. if r==⊥ then return⊥
4. Q := TRANS-QW (“WRITE”, r)
5. returnr.data

WRITE (D)

1. Q := TRANS-QT (”GET TS”)
2. ts := max{Q.ts} + 1

3. Q := TRANS-QW (“WRITE”, (ts, writer id,D))

Figure 11: U-masking protocol for correct clients

helping but
safe to turn off

unweaned weaned

powered off

newView
we are not part of

newView
we are part of

newView
we are part of

finished reading
from previous view

or new view is
in same generation
or received wean

certificate

helping

newView
returns

Figure 12: Server transitions for the masking protocol

in trying to contact the old servers: the server then returns
whatever local data it has, possibly⊥. If there is no wean
certificate then the server forwards the request to the old
servers. If the old servers have been shut down in the mean
time then this request may take forever; that’s OK because
the old servers are only turned off if the administrator com-
pleted successfully, and in that case thewaitForWean
function will eventually stop any read thread that is stuck
in this manner.

The waitForWean function periodically queries the
peers to see if they have a wean certificate. This ensures
that if the new view is weaned then eventually all servers
will know about it (or move on to an even more recent
view).

When new unweaned servers receive a write request,
they make sure that the old view has ended, then store the
data and acknowledge. But servers do not consider them-
selves weaned as a result of a write. So when someone
tries to read that data, the servers will still try to contact
the servers in the old view to make sure the local data is

recent enough.

The servers go through different states, as described in
Figure12. A server that is not part of the current view is
in thehelpingstate. In that state it responds to queries but
tags them with the most recent view certificate, thus direct-
ing clients to more recent servers. When a server receives
a new view certificate (and the server is part of the new
view), it moves on to theunweanedstate. It accepts re-
quests from clients right away and startswaitForWean
in a parallel thread to detect when the system becomes
weaned. Read requests are forwarded to the old servers; if
a non-⊥ reply can be determined then that reply is stored
locally before being forwarded to the client and the server
moves on to theweanedstate. Servers will also move to
weanedwhen they receive a wean certificate from their
peers.

19

newView

1. Give their view certificate to a quorum in the new view
2. Give info about the new view to a quorum in the old view
3. Repeat
4. a := read on old view
5. b := read on new view
6. Until (a 6= ⊥ ∨ b 6= ⊥)
7. Generate wean certificate (“old view is gone now”)
8. Writemax(a, b) to a quorum in the new view
9. Write the wean certificate to a quorum in the new view

Figure 13: View change protocol for masking quorums

Server i’s variables

m D the current data
m ts the data’s timestamp (initially -1)
m meta current view meta-information: (N ,f ,m,t,g,pubKey)
m oldMeta meta-information for the previous view: (N ,f ,m,t,g,pubKey)
m cert admin certificate for (m meta)
m priv private key matching certificate
m weanCert certificate that the view inm meta is weaned
m serverWeaned true if the server is weaned (initially false)
m oldEnded true if the server knows that the old view ended (initially false)

Figure 14: Server variables for masking quorums

C.3. DQ-RPC Satisfies Transquorums for Mask-
ing Quorums

We now show that DQ-RPC also satisfies transquorums
when we use the masking quorum’sφ operation. Recall
that thatφ returns the value that is vouched for byf + 1
servers and that is not countermanded, or⊥ if there is no
such value.

Lemma 18. The masking DQ-RPC operations are timely.

Proof. Recall that timeliness means∀w ∈ W,∀r ∈
T , o(r) 6= ⊥ : w → r =⇒ o(w) ≤ o(r). The proof is
similar to that for the dissemination case. Ifw andr picked
views in the same generation then the two quorums inter-
sect in at leastf +1 correct servers. Sincew happened be-
forer and servers never decrease the timestamp they store,
it follows thato(r) 6= ⊥ ⇒ o(w) ≤ o(r).

If w picked a viewt that is in the previous generation
from r’s view (sayv), then we consider the last viewu
in t’s generation. As we have seen in the previous para-
graph, non-aborted reads from a quorumq(u) in u will re-
sult in a timestamp that is at least as large aso(w). Since
r picked a view that is in a more recent generation thanu,
it follows that r received2f(v) + 1 replies inv’s gener-

ation (so at least one correct). Correct servers in the new
view only respond to a read request until they know that
either they or their view has weaned. It follows that the
replies inr contained at leastf(v) + 1 repliesC that are
at least as recent as the highest-timestamped value whose
write completed in viewu, which in turn is at leasto(w).
So if r were to pick any value such thato(r) < o(w)
then that value would be countermanded byC. Therefore
o(r) 6= ⊥ ⇒ o(w) ≤ o(r).

It is not possible forw to pick a view in a later gener-
ation than whatr picks if w → r sinceR masking DQ-
RPCs wait until any previous generation has ended. This
concludes our proof that∀w ∈ W,∀r ∈ R, o(r) 6= ⊥ :
w → r =⇒ o(w) ≤ o(r).

Lemma 19. The masking DQ-RPC operations are sound.

Proof. Soundness requires that∀r ∈ R, o(r) 6= ⊥ : ∃w ∈
W s.t.r 6→ w ∧ o(w) = o(r).

Correct servers only respond to read queries with data
that was previously written – either directly to them or to
the previous quorum. Theφ function ensures this property
by only accepting values that are vouched for byf + 1
servers.

20

write (ts,D)

1. if (m ts<ts) then (m ts,m D) := (ts,D)
2. if notm oldEnded then askOldView()

// m oldEnded holds at this point
3. return “OK”

read()

1. if (m serverWeaned ∨ m weanCert 6= ⊥) then return (m ts,m D)
2. if askPeers()then return (m ts,m D)
3. if askOldView()then return (m ts,m D)

// notm serverWeaned andm weanCert == ⊥, and the read from the old servers failed
4. return(−1,⊥)

readLocal()

1. returnm weanCert

privateaskOldView()

1. Q′:=Q-RPC(”READ+HELP”,m cert) to a quorum of servers inm oldMeta.N

2. m oldEnded := true
3. if φ(Q′) 6= ⊥ then
4. m serverWeaned := true
5. if (m ts,m D) < φ(Q′) then (m ts,m D) := φ(Q′)

6. if |{m ∈ Q′ : m ts < m.ts}| < m oldMeta.f + 1 then
7. m serverWeaned := true
8. returnm serverWeaned ∨ m weanCert 6= ⊥

privateaskPeers()

1. Q′:=Q-RPC(”READLOCAL”) to a quorum of servers inm meta.N

2. if any response includes a valid wean certificatecert for this viewthen
3. m oldEnded := true
4. m weanCert := cert

5. returnm serverWeaned ∨ m weanCert 6= ⊥
privatewaitForWean() // started on its own thread when the server hears of the new view

1. while (notm serverWeaned) ∧ (m weanCert == ⊥) do
2. askPeers()
3. wait for some time
4. kill any read() or write() thread that is waiting for the old servers

Figure 15: Server protocol for masking quorums

Theorem 6. DQ-RPC satisfies transquorums even if the
old servers are taken offline after the newView call returns.

The masking DQ-RPC also tolerates crashes from the
administrator: all operations still eventually complete as
long as the servers from the old view arenot taken offline.

Lemma 20. If some viewt never ends then all quorum op-
erations to that view eventually complete.

Proof. An individual servers responds to read quorum op-
erations once either it receives a reply from the old servers
or it knows that its view is weaned (in that latter case the

server only responds after the client resends its query). If
the administrator failed then the old servers are not taken
offline and thus they will eventually respond. If the ad-
ministrator did not fail then eventuallys will know that its
view is weaned.

The wait quorum operation waits on the same condi-
tions, thus individual servers will eventually respond to
write quorum operations. The help and readlocal oper-
ations do not block on anything, thus they will complete
trivially.

It follows from the above lemma that as long as some

21

view stays around long enough, all DQ-RPC operations
will complete.

Theorem 7. DQ-RPC satisfies transquorums even if the
administrator crashes during a view change, as long as
both the old and the new servers are kept online.

C.4. Masking Protocols for Byzantine Faulty
Clients

We now turn our attention to a variant of the U-masking
protocol that can handle Byzantine failures from the client.
We use Phalanx [14] with an improvedφ function that
provides partial-atomic semantics (the original Phalanx
only provides safe semantics). The client code is shown
in Figure16. Phalanx does not require the clients to have
public-private key pairs, but the servers do. In step 4 of the
WRITE operation, the clients collect signatures from the
servers (theechoes). Servers only accept writes if they are
accompanied by a quorum of valid signatures. For write-
backs, servers requiref+1 of a different type of signature.
Notice that the signature step is neither timely nor sound:
the signatures’ only purpose is to make the write call suc-
ceed.

It is natural to ask why we consider Byzantine faulty
clients. After all, nothing prevents faulty clients from con-
tinuously writing incorrect values. However, in many prac-
tical situations such faulty clients would eventually be
identified and removed from the system. More to the point,
our goal here is to show that the DQ-RPC operation can
make many protocols dynamic. We have included the pro-
tocol of Figure16 for completeness.

The protocol guarantees partial-atomic seman-
tics, meaning that all reads that return a value sat-
isfy atomic semantics and reads that are not concurrent
with any other operation always return a value.

22

READ

1. Q := TRANS-QR(”READ”)
2. replyr := φ(Q) // largest non-countermanded triple vouched for by at leastf + 1 servers
3. if r==⊥ then return⊥
4. letV bef + 1 valid signatures forr taken fromQ

5. Q := TRANS-QW (”WRITE-BACK”, r, V)
6. returnr.data

WRITE (D)

1. Q := TRANS-QT (”READ TS”)
2. ts := max{Q.ts} + 1

3. letm := (ts, writer id,D)

4. Q′ := TRANS-Q(”SIGN”,m)
5. letV be a quorum of valid signatures form taken fromQ′

6. Q′′ := TRANS-QW (”WRITE”,m,V)

Figure 16: Masking quorum or hybrid-m for Byzantine faulty clients

23

	Introduction
	Related work
	System model
	A new basis for determining correctness
	The transquorum properties
	Proving correctness with transquorums
	Dissemination protocols with transquorums

	Dynamic quorums
	Introducing views
	A simplified DQ-RPC
	View changes
	Finding the current view
	Summary

	The full DQ-RPC for dissemination quorums
	Introducing generations
	View changes: closing the generation gap
	DQ-RPC satisfies transquorums for dissemination quorums

	Optimizations

	Conclusions
	Acknowledgments
	Dissemination Protocol
	U-Dissemination provides atomic semantics
	Quorum Intersection implies Transquorums

	Fault-Tolerant Dissemination View Change
	DQ-RPC makes U-dissemination dynamic
	Optimizations
	Single-Roundtrip Reads
	Reducing Transmissions
	Proactive Recovery
	Tolerating More Faults
	Faster Reads and Writes
	Faster Generation Changes

	Generic Data
	Masking Protocols with Transquorums
	DQ-RPC for Masking Quorums
	DQ-RPC Satisfies Transquorums for Masking Quorums
	Masking Protocols for Byzantine Faulty Clients

