
���������
	��
������������������������� ���"!#���%$ � ��&'�������(�)�*���,+-�

Sangmin Park .
University of Texas at Austin

Chandrajit Bajaj†

University of Texas at Austin

/1032#4658739:4

Direct volume rendering can be accomplished through correct
transfer functions that convert data values to visual properties such
as transparency and color. Multi-dimensional transfer functions
that have additional axes of gradient magnitude and the second
derivative as well as intensity, are useful for the visualization of
the features that intensity ranges are overlaped, but gradient mag-
nitudes are distinguishable. However, multi-dimensional transfer
functions are hard to control by hand, since correct combination
of data values of each axis should be searched to find a correct
voxel role in terms of boundary by try and error in multi-dimesional
space. In other words, some voxels exactly on a boundary should
be totally opaque and others supporting the boundary should have
proper transparencies based on the distance from the boundary. In
this paper, we present how to decide the voxel role that is fixed
once a volume dataset is generated and suggest a multi-dimensional
transfer function that minizes user interactions through the pre-
defined voxel roles.

Keywords: Volume Rendering, Transfer Function

; <>= 465@?BADCE9:4�FG? =

One of the main advantages of direct volume rendering is to vi-
sualize volume data without generating geometric structures. The
direct volume rendering simply converts each volume element (or
voxel) to visual properties such as opacity and color and composes
the properties into an image. The converting work is usually done
by transfer functions. Good transfer functions produce good images
that visuzlize interesting structures in volume data while removing
uninteresting area. However, it is known that finding good transfer
function is one of the hardest problems in the direct volume render-
ing area.

The multi-dimensional transfer functions of direct volume render-
ing are precisely the mathematical functions of several parame-
ters such as intensity, gradient magnitude and the second deriva-
tive. Since transfer functions that have more than one domain are
hard to control by hand, many people still use intensity-based one-
dimensional (1D) transfer functions. The survery of [Kindlmann
2002] reviews many types of transfer functions and describes the

H
e-mail: smpark@cs.utexas.edu

†e-mail: bajaj@cs.utexas.edu

reasons why transfer function generation is not a trivial work. It
also explains that transfer functions can be generalized by increas-
ing the function’s domain. [Kniss et al. 2001] shows the advantage
of multi-dimensional transfer functions against 1D transfer func-
tions. Even though multi-dimensional transfer functions are hard
to control, the functions are still useful for separately visulizing
several features that intensity ranges are overlapped, but other data
such as gradient magnitude are distinguishalbe.

When multi-dimensional transfer functions are designed, intensity
has been worked as the first axis perfectly. The second axis of trans-
fer functions has been gradient magnitude in many researches such
as [Levoy 1988], [Kindlmann and Durkin 1998], [Kniss et al.
2001], [Kniss et al. 2002], and [Kniss et al. 2003] without any
doubt for more than a decade, since it has been believed that some
region of volume data with high gradient magnitude is likly to have
a boundary (or a feature) that should be visualized. As the third
axis, the directional second derivative along gradient direction is
used in [Kniss et al. 2001], [Kniss et al. 2002], and [Kniss et al.
2003].

When we consider only two-dimensional (2D) transfer functions
with intensity and gradient magnitude, the two parameters do not
represent boundary information directly. If we add one more axis
of the directional second derivative to the 2D transfer function,
then it is more promising to visualize boundaries, but a bound-
ary and surrounded voxel information of the boundary still hide
behide the three axes. [Kindlmann and Durkin 1998] suggests a
semi-automatic method to find boundaries in the 2D space of inten-
sity and gradient magnitude through histogram volume inspection.
[Kniss et al. 2001] developed a convenient interface with manipu-
lation widgets to search boundaries in 3D space of intensity, gradi-
ent magnitude and the directional second derivative. However, the
methods suggest a way to search boundaries using gradient magni-
tude and the second derivative that have no direct boundary infor-
mation.

Once a scalar volume dataset such as a medical volume dataset is
generated, the role of each voxel of the volume dataset is fixed in
terms of boundary. In other words, some of the voxels are exactly
on a boundary, some are a part of the boundary with some thickness
and others are not related to any boundary. If we know the role of
each voxel, then transfer function generation will be more intuitive
and easier. In this paper, we present a method to decide voxel roles
in terms of boundary and sugget another data values for the second
axis and the third axis for multi-dimensional transfer functions.

The remainder of the paper is organized as follows. In the next
section, we review related work. In section 3, we present a method
to decide a voxel role in volume data in terms of boundary. Based
on the voxel role, we suggest new opacity functions in section 4. In
section 5, The suggested opaicy functions are implemented using
modern graphics hardware and the rendering results are explained.
Finally, we make conclusions and suggest a couple of future work
in section 6.

� ����� 7�4 � A�� ? 5	�
[Levoy 1988] suggested two-dimensional transfer functions of in-

tensity and gradient magnitude and suggested a way to visual-
ize multiple semi-transparent surfaces. After the research, multi-
dimesional transfer functions have been the function of intensity
and gradient magnitude. [Kindlmann and Durkin 1998] suggested
semi-automatic generation of transfer functions. They still used
two-dimensional transfer functions of intensity values and gradient
magnitudes. The semi-automatic generation algorithm uses second
derivatives to automatically compute boundary thickness at some
intensity value and uses a linear function to assign alpha values
to the thickness. [Kniss et al. 2001] suggested three-dimensional
transfer functions and interactive interface widgets. The survey of
[Kindlmann 2002] explains many kinds of transfer functions, but all
multi-dimensional transfer functions are the functions of intensity,
gradient, and the second derivative.

Distance map have been used for volume rendering in [Gibson
1998a] and [Gibson 1998b]. For the purpose of binary segmented
volume data visualization, the distance map method was developed.
This reasearch gave us a hint on the multi-dimensional trasnfer
function design, since the distance map has an interesting character
like that: the zero-value iso-surface of the distance map yields the
object surface.

 � ?DC = A 735
��� � 4 � 9:4�FG? = 7 = A��-?�� ����� ? ��� 2
Gradient magnitude has been used for the second axis of transfer
functions without any doubt, since it contains the rate of chage of
values and allows the distinction between homogeneous regions
and transition regions [Kindlmann 2002]. Even though most
boundaries are in the transition regions that have high gradient
magnitude, gradient magnitude itself does not represent boundaries
clearly. In other words, some region that have relatively low gradi-
ent magnitude can be a boundary, while high gradient region cannot
be a boundary. The second derivative as one of the axes of transfer
functions is promising to find boundaries, since the zero-crossing
locations of it can be boundaries. However, it still has false bound-
aries at the local minima of the gradient magnitude. We belive that
the reasons make transfer function generation hard. In this section,
we exploit boundary detection techniques and suggest another data
values for the second axis of transfer functions.

����� �����! #"!$&%('*),+&-.+0/1-.23��
Many boundary detection (or edge detection) algorithms have been
developed in the image processing and pattern recognition areas.
One of the traditional edge detection techniqes is Canny’s method
that finds the local maxima along the gradient direction [Canny
1983]. The most common edge detection schemes include three
operations: differentiation, smoothing and edge labeling [Ziou and
Tabbone 1998].

First, differentiation is the computation of the derivatives to iden-
tify edges. We compute gradient vectors represented by 4 f using
the central difference operator and the magnitude of the gradient
vector is 5�4 f 5 . The normalized gradient vector is computed as
following:

6
n 7 4 f584 f 5 (1)

The frequently used second-order derivative operators are the
Laplacian operator and the directional second-order derivative. In
this paper, we compute and use the directional second-order deriva-
tive along gradient direction. The operator is definded by:

∂ 2 f
∂ 2 6n 7 6

n 9:4;584 f 5 (2)

Second, for the smoothing purpose, a bilateral filter that smoothes
data values while preserving edges [Tomasi and Manduchi 1998],
is applied to gradient magnitude and the directional second deriva-
tive. A bilateral filter consists of a domain filter, Wd < 6x = , and a range
filter, Wr < 6x = , at a voxel,

6
x 7 < i j k = T :

Wd < 6x =#7 exp >�?�@3Ax B Ay C T @3Ax B Ay Cσ2
d D�E 6

y F N Ax (3)

and
Wr < 6x =#7 exp > ? @ f @3Ax CGB f @3Ay CHC 2σ2

s D E 6
y F N Ax E (4)

where N Ax is the set of neighbors of
6
x. The domain filter, Wd < 6x = ,

computes the weights of each voxel based on spatial distance at
6
x

and the range filter, Wr < 6x = , measures the “photometric” similarity
between a function value at

6
x and the neighborhood function val-

ues of center
6
x. The bilateral filter that combines the domain and

range filters and generates a new function value, If < 6x = , is described
as follows:

If < 6x =J7 ∑ Ay K N Lx Wd < 6x = Wr < 6x = f < 6x =
∑ Ay K N Lx Wd < 6x = Wr < 6x = (5)

Finally, edge labeling is to identify authentic edges while suppress-
ing false edges produced by the reasons of noise and non-maximum
high gradient magnitude values. Since we asssume that volume data
have reasonably high signal-to-noise ratio and some noise that can
be accumulated in the first and second derivative computations is re-
duced by a bilateral filter, we consider only removing the “phantom
edges” (defined in [Clark 1989]) or non-maximum gradient mag-
nitude among the zero-crossing locations of the directional second
derivative. To detect the zero-crossing locations of the directional
second derivative in 3D space, we compute the derivative values
with Equation (2) at every voxel and we compose a cube that has
the eight directional second derivative values at each vertex. If the
eight values of each vertex does not have the same signs, then the
cube contains the zero-crossing locations.

The survey, [Ziou and Tabbone 1998], shows several ways to re-
move the phantom edges, but the edges can be distinguised easily
by climbing the gradient magnitude values along gradient direction,
when we decide voxel roles. In the next sub-section, we present
how to decide the roles of each voxel in terms of boundary and how
to remove the phantom edges.

���HM)N2POQ-Q$# J/R+S$TO�$VUW�&X0+TY[Z\�!Y +
Since the direct volume rendering visualizes volume data without
generating any geometric structure, we do not need to search the
complete surfaces of the zero-crossing locations of the directional
second derivatives. Instead of searching the surfaces, it is enough
to find proper transparencies for all voxels. If we know the roles of
each voxel in terms of boundary, then we can assign correct trans-
parencies to the voxels easily based on the voxel roles. In other
words, if a voxel is exactly on a boundary, then the voxel should

be totally opaque, while a voxel that is a part of the boundary with
some thickness should have proper transparency.

In this paper, we define voxel roles with distance to an authentic
edge. The distance is Euclidean distance along gradient direction
in 3D space. To compute a distance from a voxel to an authentic
edge, two rays are shot to the both directions of the positive and
negative gradient at every voxel location. The two values of gradi-
ent magnitude and the directional second derivative are interpolated
with the tri-linear interpolation method at every sampling locations
along both positive and negative gradient directions. If the gradient
magnitude values decrease at the sampling locations of one of the
gradient directions, then the ray that has decreasing gradient mag-
nitude values is stopped to go further and only the other direction
ray keeps going until it hit a zero-crossing locations of the direc-
tional second derivative. Since gradient direction is perpendicular
to the edge orientation [Ziou and Tabbone 1998], if we follow the
gradient directions of a voxel that is close to a boundary, we easily
find a zero-crossing locations or a boundary in 3D space.

Sampling Locations

Hit
Location

Voxel

False Boundary

Authentic Boundary

Gradient Vector

Figure 1: The Voxel Role or Distance Computation by Sampling
from a Voxel to an Authentic Edge along the Gradient Direction of
the Voxel

Figure 1 shows a 2D example on computing a distance from a
voxel to an authentic edge along the negative gradient direction.
Ideally, the two values of gradient magnitude and the directional
second derivative are changed like Figure 2 along both positive
and negative gradient directions.

f(x)

f’’(x)

Voxel

False
Edge

Authentic
Edge

False
Edge

Negative
Direction

Positive
Direction

f’(x)

Distance

Figure 2: The Authentic and False Edges and The Relations of f ,
f � , and f � �

The sampling locations are represented by
6
xs < t =�7 6

x
�

t
� f @3Ax C� � f @3Ax C � ,

where ? dmax � t � dmax. If the signs of the two directional second
derivative values are changed at the two consecutive sampling loca-
tions of t1 and t2 as following, f � � < 6xs < t1 = =�� f � � < 6xs < t2 = = � 0, then we
compute the exact zero-crossing location with the bisection method,
[Buchanan and Turner 1992]. Experimentally, we decide the sam-
pling interval and dmax such as Lmin � 5 and Lmin � 15 respectively,
where Lmin 7 Min < Width of a Voxel, Height of a Voxel, Depth of
a Voxel = .

(a) Visible Human Male CT

(b) MRI Brain

(c) Engine

Figure 3: Volume Data Slice(left), the Directional Second Deriva-
tive(middle) and Distance(right): The red and blue colors of the
middle images represent the negative and positive values of the di-
rectional second derivative respectively.

Figure 4: Turbin Blade Distance Image: The right-hand side image
is the enlarged picture of the left image of the yellow box.

Figure 3 shows the results of the distance and the directional sec-
ond derivative computation as well as each dataset slice. The posi-
tive and negative second derivative values are colored with blue and
red respectively. Therefore, the zero-crossing locations of the sec-
ond derivative are between the two colors. To denote the distance
values through images, we linearly flip the distance values. For ex-
ample, if the distance values at d < 6x = ranges from 0 to dmax, then
we simply compute the following formula for each pixel value of
Figure 3 (right) and Figure 4.

D < 6x =J7 dmax ? d < 6x =
dmax

� 255 (6)

� � C � 4�F��J� F�� ��= 2 FG? = 7 ��� 5@7 = 2	� � 5�
'C = 9:4�FG? = 2
In this section, we suggest the opacity functions of the distance
from a voxel to an authentic edge and the 2D opacity functions of
intensity and gradient magnitude at hit locations. The two kinds of
opacity functions are multiplied to generate the final opacities of
each voxel.

� ���
��J$ /12P- '��J�� J/R-Q2 �� O������� -.+ JO 2P- '
Once we decide each voxel role in terms of boundary, the trans-
parency of each voxel can be generated easily based on the role
or the distance that is computed in the previous section. We sug-
gest three different opacity functions, linear, concave nonlinear, and
convex nonlinear functions as Figure 5. The linear opacity function
is to map the flipped distance and the concave and convex nonlinear
funcions use the n-th power of the distance as following:

αd < d =#7 Max < ? a � d
dc

�
a E 0 = E (7)

αd < d =#7 � a
dn

c
<�� d ? dc � = n if d � dc

0 others E (8)

and

αd < d =#7 Max < ? a � dn

dn
c

�
a E 0 = E (9)

where 0 � dc � dmax, 0 � a � 1, and n � 1. Equation 7, 8 and
9 are linear (Figure 5 (a)), concave nonlinear (Figure 5 (b)), and
convex nonlinear (Figure 5 (c)) opacity functions respectively. The
location of the three opacity functions are controled with dc and a
and n dominates the shape of the nonlinear functions.

0

a

α

(a) Linear Map

cd 0

a

α

cd 0

a

α

cd

(b) Concave Nonlinear (c) Convex Nonlinear

D DD

Figure 5: Alpha Maps

Since the opacity function, αd < d = , is computed based on only dis-
tance, we define another opacity function of intensity like αu < v =
that is controled by a user. The final opacity value is computed
by the multiplication of the two opacity functions as following,
αu < v = � αd < d = . The opacity function has both of user control and
automatic opacity generation. While a user turn on some range of
the intensity values with αu < v = by assigning a totally opaque value
such as 1, αd < d = automatically generate the opacities of each voxel
with the alpha map of Figure 5. αu < v = also provides the ramps of
traditional 1D transfer functions.

� �HM � %($ "!2P+J -�� $�� J2 - �#"#+��(� %W-! +#"8+0/1�� #"�$ XT2PO
Most multi-dimensional transfer functions have gradient magnitude
for the second axis, while intensity works as the first axis. The
2D transfer functions of intensity and gradient magnitude are more
powerful than 1D transfer functions to visualize separately several
features that have the overlapped intensity ranges, but the distin-
guishable gradient magnitude ranges. However, as the dimension
of transfer functions is extended to 2D space, it is much harder to
control by hand. One of the main reasons is that, to visualize an in-
teresting feature or a boundary, while we decide the intensity range
of the feature, we also need to search the gradient magnitude range
of the feature. In other words, we need to search the combined
ranges of intensity and gradient magnitude.

Since direct volume rendering assumes that most boundaries of vol-
ume data have some thickness, all voxels that are in a thick bound-
ary (or boundary voxels) should be visualized with proper trans-
parencies, while iso-surfacing extracts very thin surfaces at the ex-
act locations of a boundary. Therefore, the gradient magnitude
range of a feature can vary from a relatively small value to a big
value in a thick boundary. Even though all voxel’s opacities of a
volume dataset are decided by some pre-processing, it is not a triv-
ial work to collect boundary voxels through searching a gradient
magnitue range.

To reduce the gradient magnitude range searching work, we replace
each voxel’s gradient magnitude value with the interpolated gradi-
ent magnitude value at the hit location. When we compute the dis-
tance as in Figure 1, the gradient magnitude value at the hit location
is interpolated by the tri-linear interpolation method. If we use the
interpolated gradient magnitude at hit location as the second axis,
then it will make the searching work easier, since we only have to
consider the gradient magnitude range at a boundary.

The 2D opacity function of intensity and gradient magnitude is rep-
resented as αu < vE g = , where g represents gradient magnitude of each
voxel at the hit location. Each voxel’s opacity is finally decided by
αu < vE g = � αd < d = . The 2D opacity function, αu < v E g = , is controled by
a user like [Kniss et al. 2001]’s function, but the opacity values of
each voxel can be 1 always, since the opacity funciton of distance,
αd < d = , generates alpha values. A user only have to select some
regions to be visualized in the 2D space of intensity and gradient
magnitude.

The 3rd column of Figure 6 shows the graphs of intensity and gra-
dient magnitude at the hit location that is described in Figure 1.
The each slice of Figure 3 is used for the graphs. We can easily
recognize that each blob of the 3rd column graphs of Figure 6 rep-
resents a boundary and the blobs are usually located in the local
maxima of gradient magnitude (the 1st column graphs of Figure 6)
or in the zero-crossing locations of the second derivative (the 2nd
column graphs of Figure 6).

% < �'& ��� � ��= 4#7�4�FG? = 7 = A ��� 2 C � 4#2
We have implemented a 3D texture-based volume renderer using
nVidia graphics cards such as GeForce3, 4, and FX. Since the cards
provide at least four 3D multi-textures and dependent texture reads
with register combiners, the mult-dimensional transfer functions
can be implemented on a PC equipped with those graphics cards.
As far as we use a single PC, the maximum resolution of the load-
able volume data is governed by the texture memory size of those
graphics cards. To visualize a large size volume dataset, we also
have implemented a 3D texture-based parallel volume rendering

f vs. f � f vs. f � � f vs. f �

(a) Visible Human Male CT

(b) MRI Brain

(c) Engine

Figure 6: The Graphs of f vs. f � (1st Column), f vs. f � � (2nd
Column), and f vs. f � (3rd Column): The f and f � values of the
3rd column graphs are interpolated at the hit locations of the zero-
crossing second derivative. Each slice of (a), (b), and (c) of Figure
3 is used to generate these graphs.

tool, but we skip the detail description, since the topic is beyond
this paper,

Figure 7 shows the rendering pipe line in a nVidia GeForce card. In
the rendering pipeline, dependent texture is used for implementing
the opacity function, αu < v E g = that is controled by a user and assign-
ing colors to each voxel with the color function of v and g. For the
shading purpose, diffuse is computed by the dot product of a light
vector, L, and a normal vector, N. The normal vectors of voxels
are stored in a 3D texture memory with the RGB format. The dot
product of the half vector, H 7 < L � V = � 2, and a normal vector,
N, computes the specular contribution. To avoid too wide specular
area, we compute the 8th power of the dot product, < H 9 N = 8, with
the register combiners.

The volume rendering pipeline requires the six components, RGB
normal, intensity (v), gradient magnitude (g), and distance (d), for
each voxel. If we want to visualize a 2563 volume dataset, (=16
Mbytes), then we need at least 2563 � 6, (=96 Mbytes) texture
memory. To reduce the texture memory requirement, our imple-
mentation relies on hardware assisting texture compression that is
one of the ARB OpenGL extensions. Especially, we use the s3tc
texture compression format [NVIDIA 2004] that is provided by
the nVidia graphics cards. Since the format treats a 4 � 4 block as
a single pixel, the compression ratio is 1 � 16. In our implementa-
tion, the s3tc compression format is used for only normal vectors,
and the rendering results are reasonably acceptable without hurting
rendering performance a lot, even though it is a lossy compression
method. If we use the texture compression format, then the loadable
maximum resolution of a graphics card that has 128 Mbyte texture
memory is 256 � 256 � 512.

We generated several images to test the distance-based multidimen-

Light Vector (L)

Normal Vector
Volume (N)

Tex2

Half Vector (H)

Dot Product
(N H).

.(H N)
Specular Power

. 8
Specular
(H N)

.
Diffuse
(L N)

Dot Product (L N).

Alpha1*Alpha2

RGB Color*Diffuse
+ Specular

RGB

Alpha

Tex0

Volume Data
(v, g)

RGB Color

Distance Volume

Tex3 Conversion through
Look Up Table

Alpha1

Alpha2

Register Combiners

Dependent Texture
Tex1

u (v, g)α C(v, g)

Figure 7: Rendering Pipeline in a nVidia GeForce Card: Three tex-
ture volume datasets feed into the register combiners and a RGB
color and an alpha value are computed with the register combiners.
The solid lines represent data flow and processes and the dashed
line indicate the register combiners.

(a) (b) (c)

Figure 8: The Turbine Blade Graphs and an Alpha Map: (a) is
the general graph of f vs. f � , (b) is the graph of f vs. f � at Hit
Locations and (c) is the alpha map, αu < v E g = , defined by a user

sional transfer functions with several alpha maps. First, all voxels
are turned on by assigning 1 to all voxels that are in the white re-
gion of Figure 8 (c) and we adjust the alpha map parameters of a
and n and fixed dc like Figure 9. When we want to visualize thick
and opaque boundaries of a volume dataset, then the convex alpha
map of Figure 9 (c) will be usefull, while the concave alpha maps
of Figure 9 (c) - (e) are useful to make boundaries thinner. Figure
9 shows that simply assigning small alpha values to each voxel (a)
is different from making boundary thinner (e).

Since the gradient magnitude value of a voxel is replaced with the
value at the hit location of the zero-crossing second derivative, it is
easy to decide a gradient magnitude range. Figure 10 shows the
advantange of the f vs. f � graph at the hit locations, (b), against the
general f vs. f � graph, (a). You can see a feature that has a wide
gradient magnitude range from the top to the bottom of Figure 10
(a) and the range is mixed with other features. However, the feature
is easily distingushable in Figure 10 (b). Therefore, the proposed
multi-dimensional transfer function can reduce user interaction.

One of the main reasons that make transfer function geneneration
hard is a huge number of degrees of freedom. Even though we
consider only 1D transfer functions, each control point has the two
degrees of freedom in intensity and transparency axes. However, in
the proposed multi-dimensional transfer functions, the number of
degrees of freedom is reduced very much, since the alpha values of
each voxel are decided by the alpha function, αd < d = , automatically.
Plus, since the shape and location of αd < d = can be controled by the
three parameters, a, dc, and n, a user can adjust the transparency
effect.

� � ? = 9 � C32 FG? = 2 7 = A
 C 46C 5 � � ? 5	�
In this paper, we presented the multi-dimensional transfer functions
of intensity, gradient magnitude at hit location, and distance to the
zero-crossing locations of the second derivative. Multi-dimensional
transfer functions are better than 1D transfer functions to visual-
ize separately some features that have overlapped intensity ranges,
but distinguishable gradient magnitude ranges. However, the tra-
ditional multi-dimesional transfer functions are hard to control by
hand, since the functions have an enormous number of degrees of
freedom. The proposed multi-dimensional transfer functions can
reduce the number of degrees of freem radically, since the alpha
values of all voxels are decided automatically with the three param-
eters, a, dc, and n based on distance to the zero-crossing location of
the second derivative. Plus, the gradient magnitude range searching
time can be saved, since each voxel’s gradient magnitude values is
replaced with the gradient magnitude value of the hit location.

Since we use 2D dependent texture for the alpha function, αu < vE g = ,and distance is converted to transparancy by a look up table that is
computed with αd < d = , the two alpha functions are separated in the
rendering pipeline. Therefore, we only can use the same function,
αd < d = , for all v and g. We need to modity the rendering pipeline
to implement 3D dependent texture or a similar thing. Another im-
provement of this paper is to show how much bilateral filters can
improve Canny’s edge detector. Originally, Canny’s edge detector
is combined with Gaussian filters.

� / 9�� = ?�� ��� A�� � ��= 4#2
This work was supported in part by NSF grants ACI-0220037,
CCR-9988357, EIA-0325550, a UT-MD Anderson Whitaker grant,
and a subcontract from UCSD 1018140 as part of the NSF-NPACI
project, Interaction Environments Thrust.

��� � � 5 � = 9 � 2
BAJAJ, C. L., PASCUCCI, V., AND SCHIKORE, D. R. 1997. The

contour spectrum. In Proceedings of the 1997 IEEE Visualiza-
tion Conference, 167–173.

BUCHANAN, J. L., AND TURNER, P. R. 1992. Numerical Methods
and Analysis. McGraw-Hill, Inc.

CANNY, J. 1983. Finding edges and lines in images. Tech. rep.

CLARK, J. J. 1989. Authenticating edges produced by zero-
crossing algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence 11, 1, 43–57.

FRANCIS, J. J., AND DE JAGER, G. 2003. The bilateral medial
filter. In Proceedings of the Fourteenth Anuual Symposium of
the Pattern Recognition Association of South Africa.

GIBSON, S. F. F. 1998. Constrained elastic surface nets: gener-
ating smooth surfaces from binary segmented data. In Medical
Image Computation and Computer Assisted Surgery.

GIBSON, S. F. F. 1998. Using distance maps for accurate sur-
face representation in sampled volume. In Volume Visualization
Symposium, IEEE.

KINDLMANN, G., AND DURKIN, J. W. 1998. Semi-automatic
generation of transfer functions dor direct volume rendering. In

Proceedings of the 1998 IEEE Symposium on Volume Visualiza-
tion.

KINDLMANN, G. 2002. Multidimensional transfer functions for in-
teractive volume rendering: Design, interface, interaction. SIG-
GRAPH Course Notes 8, 3.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2001. Inter-
active volume rendering using multi-dimensional transfer func-
tions and direct manipulation widgets. In Proceedings of the
Conference on Visualization.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2002. Multi-
dimensional transfer functions for interactive volume rendering.
IEEE Transactions on Visualization and Computer Graphics 8,
3, 270–285.

KNISS, J., PREMOŽE, S., IKITS, M., LEFOHN, A., HANSEN, C.,
AND PRAUN, E. 2003. Gaussian transfer functions for multi-
field volume visualization. In IEEE Visualization 2003.

LEVOY, M. 1988. Display of surfaces from volume data. Computer
Graphics and Applications 8, 5, 29–37.

NVIDIA. 2004. OpenGL Extension Specifications. NVIDIA Cor-
poration, March. http://developer.nvidia.com/page/home.

PFISTER, H., LORENSEN, B., SCHROEDER, W., BAJAJ, C.,
KINDLMANN, G., AND PFISTER, H. 2001. The transfer func-
tion bake-off. In IEEE Computer Graphics and Applications,
16–22.

TENGINAKAI, S., LEE, J., AND MACHIRAJU, R. 2001. Salient
iso-surface detection with model-independent statistical signa-
tures. In Proceedings IEEE Visualization, 231–238.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. In Proceedings of the IEEE International
Conference on Computer Vision.

ZIOU, D., AND TABBONE, S. 1998. Edge detection techniques -
an overview. Pattern Recognition and Image Analysis 8, 4, 537–
554.

α

d max

1

D
(a) Linear Alpha Map with a 7 0 � 1 and dc 7 dmax

α

d max

1

D
(b) Convex Alpha Map with a 7 1 � 0, dc 7 dmax, and n 7 3 � 0

α

d max

1

D
(c) Concave Alpha Map with a 7 1 � 0, dc 7 dmax, and n 7 3 � 0

α

d max

1

D
(d) Concave Alpha Map with a 7 1 � 0, dc 7 dmax, and n 7 5 � 0

α

d max

1

D
(e) Concave Alpha Map with a 7 1 � 0, dc 7 dmax, and n 7 7 � 0

Figure 9: Turbine Blade Rendering with several Alpha Maps

(a) General f vs. f � (b) f vs. f � at Hit Locations

Figure 10: The Tooth Dataset Graphs

A B

C D

E F

G H

Figure 11: Rendered Images of the Tooth Dataset: Each image of
A - H is generated by using the alaph maps, A - H, of Figure 12
and the convex alpha map of Figure 9 (b) is used for αd < d =

A B C D

E F G H

Figure 12: Alpha Maps, αu < v E g = , for the Tooth Images of Figure
11

α

d max

1

D

(a) User Defined Opacity Function in 2D Space of Intensity and
Gradient Magnitude: Gradient magnitude is replace with the value

at the hit locations of the zero-crossing second derivative

(b) Rendered Image: The two alpha functions are used to generate
this image, αu < vE g = of (a) and αd < d = of Figure 9 (b). Two

different regions are rendered at the same time.

Figure 13: Tooth Image

(a) General f vs. f � (b) f vs. f � at Hit Locations

α

d max

1

D

(c) User Defined Opacity Function in 2D Space of Intensity and
Gradient Magnitude: Gradient magnitude is replace with the value

at the hit locations of the zero-crossing second derivative

(d) Rendered Image: The two alpha functions are used to generate
this image, αu < v E g = of (a) and αd < d = of 9 (b).

Figure 14: Visible Human Male CT

