
Copyright

by

Tommy Marcus McGuire

2004

The Dissertation Committee for Tommy Marcus McGuire

certifies that this is the approved version of the following dissertation:

Correct Implementation of Network Protocols

Committee:

Mohamed G. Gouda, Supervisor

Lorenzo Alvisi

Michael D. Dahlin

Mootaz Elnozahy

Aloysius K. Mok

Correct Implementation of Network Protocols

by

Tommy Marcus McGuire, B.A., M.A.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2004

For C.S. and Ruth McGuire.

Also, for Max.

Acknowledgments

It is a cliche to say that the author owes too much to too many people to

adequately describe. In writing this, I discover that it is also true.

I would first like to thank my advisor, Mohamed G. Gouda. Without

him, this dissertation would not have been possible and I would not be the

person I am today. His support and guidance are without equal.

I would also like to thank my committee members, Lorenzo Alvisi,

Michael D. Dahlin, Mootaz Elnozahy, and Aloysius K. Mok. Their sugges-

tions have greatly improved this dissertation.

I am also grateful for the support of my friends and coworkers: Kay

Nettle, Fletcher Mattox, John Chambers, Stephanie Tomlinson, Dan Machold,

Cyndy Matuszek, Toren Smith, Joe Trent, Scott Sutcliffe, Chris McCraw, Tony

Bumpass, Casey Cooper, Pat Horne, Chris Kotrla, Matt Larson, Bart Phillips,

Carol Hyink, and Lewis Phillips. I must especially thank my ex-boss, Patti

Spencer. Without their patience, this work would not have been completed.

Finally, I am grateful for the support and encouragement of my family,

particularly Shirley and Jerry Casida and Joe and Virginia Schwind, through-

out this work.

v

But ultimately and most importantly, I must thank Dianne Driskell for

everything she has done. You mean more to me than I can express.

Tommy Marcus McGuire

The University of Texas at Austin

May 2004

vi

Correct Implementation of Network Protocols

Publication No.

Tommy Marcus McGuire, Ph.D.

The University of Texas at Austin, 2004

Supervisor: Mohamed G. Gouda

A number of issues combine to make network protocol development signif-

icantly more difficult than other areas of computer programming: problems

with time, concurrency, and failures; interactions between the network proto-

col and its environment; and obstacles in developing the protocol over time.

In order to address these issues, we introduce the Timed Abstract Pro-

tocol notation and the Austin Protocol Compiler. The Timed Abstract Pro-

tocol, or TAP, notation is a domain-specific formal language for describing

asynchronous message-passing network protocols, with two execution models:

an abstract execution model and a concrete execution model. The abstract

execution model is suited for protocol design, comprehension, and correctness

verification. The concrete execution model is suited for protocol implementa-

tion. We show that the two models are equivalent: that a protocol interpreted

under the concrete model preserves the intended behavior of the protocol in-

terpreted under the abstract model. The Austin Protocol Compiler, or APC,

is a system that transforms a protocol given in the Timed Abstract Protocol

vii

notation into executable C code and provides a runtime environment for the

protocol. In order to demonstrate the effectiveness of the TAP notation and

APC, we present implementations of a secure encryption key exchange proto-

col, a failure discovery protocol, and a Domain Name System server. While

discussing the latter, we examine the performance of the APC implementation

and show that it is comparable to two other DNS servers.

The combination of the Timed Abstract Protocol notation and the

Austin Protocol Compiler addresses the issues of network protocol develop-

ment by allowing precise and verifiable descriptions of protocols which can be

made executable easily, in order both to gain experimental experience and to

provide reference implementations.

viii

Contents

Acknowledgments v

Abstract vii

Chapter 1 Network Protocols 1

1.1 Protocol development problems 2

1.2 Existing solutions . 6

1.3 Protocol layering . 8

1.4 Protocol frameworks . 11

1.5 Protocol languages . 13

1.6 The Austin Protocol Compiler 16

Chapter 2 The Timed Abstract Protocol Notation 19

2.1 Messages and channels . 20

2.2 Processes . 21

2.3 Actions . 23

2.4 Statements . 24

2.5 Protocol style . 25

2.6 Justification . 26

ix

2.7 Details of TAP . 27

2.7.1 Message syntax . 29

2.7.2 Process syntax . 31

2.7.3 Action syntax . 33

2.7.4 Statement syntax . 34

2.7.5 Expression syntax . 36

Chapter 3 Execution Models of Network Protocols 39

3.1 Two Models . 39

3.2 Abstract Execution Model . 40

3.2.1 Abstract protocol state 41

3.2.2 Abstract protocol execution 41

3.2.3 Abstract faults . 42

3.2.4 Abstract timeout behavior 44

3.2.5 Abstract execution of the request/reply protocol 45

3.2.6 Justification . 46

3.3 Concrete Execution Model . 47

3.3.1 Concrete protocol state 48

3.3.2 Concrete protocol execution 48

3.3.3 Delayed message propagation 52

3.3.4 Concrete faults . 52

3.3.5 Concrete timeout behavior 53

3.3.6 Local fairness . 53

3.3.7 Concrete execution of the request/reply protocol 54

3.3.8 Justification . 55

3.4 Limitations of the Execution Models 55

x

Chapter 4 Equivalence of Execution Models 59

4.1 Protocol states . 60

4.2 Equivalent protocol states . 62

4.3 State transitions . 63

4.4 Computations . 63

4.5 Whole computations . 63

4.6 Equivalent computations . 65

4.7 Proof of equivalence . 65

4.8 Implementation consistency 66

4.8.1 Event serialization . 67

4.8.2 Event reordering . 69

4.9 Implementation completeness 77

4.10 Related work . 79

Chapter 5 Preserving Fairness 81

5.1 Global fairness . 82

5.2 Local fairness . 82

5.3 Proof of fairness equivalence 82

5.4 Fairness and the Austin Protocol Compiler 83

Chapter 6 The Austin Protocol Compiler 85

6.1 Architecture of the compiler 87

6.1.1 Message handling . 88

6.1.2 TAP processes . 90

6.2 APC runtime interfaces . 93

6.2.1 Initializing and executing the runtime system 93

6.2.2 Invoking C functions from TAP 96

xi

6.2.3 Message functions . 96

6.3 Architecture of the runtime system 97

6.4 Implementation of the concrete execution model 98

Chapter 7 Two examples 102

7.1 The secret exchange protocol 103

7.1.1 Hop integrity . 104

7.1.2 Implementation of the secret exchange protocol 105

7.1.3 Behavior of the secret exchange protocol 112

7.2 The accelerated heartbeat protocol 116

7.2.1 Implementation of the accelerated heartbeat protocol . 119

7.2.2 Behavior of the accelerated heartbeat protocol 123

Chapter 8 A DNS Server 128

8.1 The authoritative DNS server 132

8.2 Implementation performance 140

8.2.1 Latency . 143

8.2.2 Throughput . 145

8.2.3 Overhead . 146

8.3 Performance of the Austin Protocol Compiler 147

Chapter 9 Concluding Remarks 150

9.1 Summary . 150

9.2 Future research directions . 152

9.2.1 Enhancements . 152

9.2.2 Alternative compiler back ends 153

9.2.3 Alternative runtime systems 154

xii

Bibliography 157

Index 166

Vita 177

xiii

Chapter 1

Network Protocols

A network protocol is the set of rules necessary to allow two or more compu-

tational processes to communicate with each other. These processes may be

executing on the same machine or on different machines connected by many

different kinds of networks. The processes may be separate operating system

processes, running different programs; or may be virtual processes, modular

parts of a single program; or may be components of the operating system.

The key factors are that there are more than one process and that they must

communicate with each other.

As computational processes, they communicate by exchanging well-

defined messages across a communication channel, and the nature of this ex-

change defines the rules making up a network protocol. The most conspicuous

aspect of these rules is the format of the messages which the processes ex-

change. More importantly, however, the rules describe the computation that

each of the processes must make in order to send the correct message contain-

ing the correct values at the correct time.

The rules making up the network protocol, both the message formats

1

and the computations, are embodied by programs, and the development of

both the abstract rules and the concrete programs is the subject of this re-

search.

1.1 Protocol development problems

Network protocol development presents a number of problems beyond those

of developing traditional serial programs. Many of these problems are shared

with other parallel and distributed programming tasks, but many more are

unique to network protocols. The problems fall into one of three classes:

1. Intrinsic problems.

2. Extrinsic problems.

3. Compatibility problems.

Intrinsic problems. In general, the intrinsic problems in network protocol

development include the same classes of safety and liveness problems associ-

ated with any distributed or parallel program. In any communicating system,

whether it is a parallel or distributed program or a network protocol, the or-

dering of events is not well determined: many events may happen at once and

a given sequence of events may not be repeatable. The number of potential

orderings seriously hinders development, which is often based on intuitions

gained from serial programs.

Beyond those classes of problems, intrinsic problems in network protocol

development should also include two two further areas: communication errors

and security problems.

2

Communication errors such as message loss or message corruption are

not normally seen in general distributed or parallel programming. Although

a distributed program may be running in an environment subject to such

errors, it is usually built on a network protocol that hides the errors. However,

these errors are very common in the environment of message-passing network

protocols; common enough to need to be a basic feature of the conceptual

model for network protocols.

Security problems should be considered an intrinsic problem of network

protocols, although they are often not. Some aspects of security in a net-

work protocol are confidentiality; integrity; authorization; authentication and

its converse, anonymity; and non-repudiation and its converse, plausible de-

niability. All of these aspects should be treated as intrinsic problems for a

protocol since the number of possible attacks on each aspect make it impos-

sible to foresee all of them—conceptually, correcting vulnerabilities is easier

than defending against attacks.

Intrinsic problems of a network protocol apply, and can be described, in

isolation, without reference to any systems outside the processes and channels

involved in the protocol. For that same reason, they can also be handled in

isolation. Common, successful techniques for handling intrinsic problems use

formal methods such as correctness verification and model checking.

Extrinsic problems. While many of the intrinsic problems of network pro-

tocol development are shared with the development of any distributed or par-

allel program, other issues are unique to network protocols.

The environment of the network protocol introduces the extrinsic prob-

lems of network protocol development. There are interactions between some

3

extrinsic problems and the intrinsic problems described previously. For ex-

ample, while communication errors themselves are best considered intrinsic

faults, many characteristics of their occurrence are not. Consider a protocol

which sends a large number of small messages back-to-back, with no delay be-

tween messages, across a network containing a router which, when congested,

drops the most recently received messages. The protocol may be expecting

uncorrelated message loss errors, allowing at least some messages through the

network, but in this case message losses are not uncorrelated—the router will

tend to drop the entire burst. In this case, the behavior of the protocol may

be intrinsically correct, but unsatisfactory in use.

On the other hand, extrinsic problems also include non-error issues

such as the effects of the protocol on other instances of the protocol or other

protocols sharing the same network. These issues are significantly different

from intrinsic problems. A protocol’s correct behavior may cause congestion

collapse in a network shared by many instances of the protocol, or may starve

other protocols of network resources that must be shared. In general, such

behavior cannot be seen by examining the protocol in isolation; it often only

becomes visible with experience running a new protocol.

One set of examples of extrinsic problems in protocol development lies in

the original HyperText Transport Protocol, both versions 0.9 and (according

to the default behavior) 1.0[8]. The fundamental idea behind HTTP was

originally quite simple—the client opens a Transmission Control Protocol, or

TCP, connection with the server, makes a request, and reads the response.

The closing of the connection by the server indicates the end of the response;

from the client’s viewpoint, the connection resembles a normal file I/O stream.

Two problems with this simple approach are:

4

1. Opening a TCP connection requires a three-message handshake and clos-

ing the connection may require four messages[68, 69].1 Since the request

and response are normally fairly small, the connection management mes-

sages represented a significant part of the traffic involved in the request.

Since much of the cost of the work in the network is effectively per-

message, this inefficiency primarily impacted the network itself.

2. Between the round trips of the connection establishment and TCP’s

congestion avoiding slow-start behavior, the connection-per-request ap-

proach resulted in significant latency[66, 69]. One response to this la-

tency was to use multiple connections to the same server to make several

related requests simultaneously. Since congestion-control information

was not shared between connections, this response makes the overall set

of requests (for the resources associated with a single web page, for exam-

ple) behave in a more aggressive fashion in terms of congestion control,

again impacting the network[5].

The newer version of HTTP, 1.1[27], attempts to solve those two problems

by keeping connections alive for multiple requests and by multiplexing several

requests simultaneously on the same connection. As a result, HTTP 1.1 is no

longer simple.

Compatibility problems. The final class of problems in network proto-

col development does not directly concern the protocol itself, but rather the

network protocol development process, including interoperability, extensions,

1It is possible to piggy-back the connection closing flags on data messages, but many
traces of TCP connections do not show such behavior.

5

and enhancements. Generally, all of the components of a distributed or par-

allel program are developed together, as part of the same effort. Different

protocol components, such as different processes communicating by using a

protocol or different implementations of the same process in a given proto-

col, are not—a process on one machine may communicate with a process on

a completely different type of machine elsewhere, with both processes being

developed independently in space and time. If protocol development does not

center around a coherent specification of the protocol, interoperability between

the components suffers.

A related problem involves changes in the protocol itself. After using

a network protocol for a period of time, additional features may need to be

added to the protocol or existing behavior of the protocol may need to be

changed. Since parts of the protocol are implemented separately, the altered

protocol should be capable of continuing to interoperate with the previous

version. While the details of such changes are not foreseeable, if the original

development of the protocol does not include the possibility, the protocol may

later need to be scrapped entirely or its existence and inflexibility may hinder

future progress.

1.2 Existing solutions

There are many successful methods of handling each of these problems, al-

though not all methods cover all of the problems successfully.

The most visibly successful method is used by the Internet Engineering

Task Force and the Internet community. This method is based on natural-

language protocol standards documents, the Internet Drafts and the Request

6

For Comments series, along with interoperating implementations. The process

for Internet standards, including protocols, is described in RFC2026[17]. The

goals of the process, from RFC2026, are:

In general, an Internet Standard is a specification that is stable

and well-understood, is technically competent, has multiple, inde-

pendent, and interoperable implementations with substantial op-

erational experience, enjoys significant public support, and is rec-

ognizably useful in some or all parts of the Internet.

Unfortunately, standards documents are frequently large and imprecise.

Often the only formal specifications of a protocol are the implementations,

which are often not identified in the standards, are frequently not available

for inspection, and are themselves far from concise or understandable. For

instance, Wright and Stevens in Volume 2 of TCP/IP Illustrated [73] present

much of the code from the BSD4.4 TCP/IP suite implementation, and it is a

rather large volume. Additionally, as can be seen from TCP/IP Illustrated, the

implementation often hides the important details of a protocol in a larger mass

of code; important details handling intrinsic or extrinsic issues frequently com-

prise only a small fraction of the implementation, while these details require

a great deal of research and constitute the largest part of the difficulties in

protocol development. For example, Nagle’s algorithm[55], which adaptively

inhibits small messages in TCP connections and thus helps avoid network con-

gestion collapse, requires approximately four lines of code in TCP/IP Illus-

trated ’s presentation. Refinements to Nagle’s algorithm, originally published

in 1984, are still being suggested; for example, by Minshall, et al., in 1999[51].

The key to understanding and implementing any complex system with

7

vital but minuscule details, particularly in such an ad-hoc environment, is

modularization. In the case of network protocols, modularization almost al-

ways involves layering.

1.3 Protocol layering

Modularization proceeds by identifying some aspect of a system and encapsu-

lating that aspect as a component behind some interface which allows other

components to manipulate it while hiding the details of the component. In

network protocols, each component is a layer, conceptually built using the

services provided by a lower layer and in turn providing services to a higher

layer.

Figure 1.3 shows the most common illustration of such layering, the In-

ternational Standards Organization’s (ISO) Open Systems Interconnect (OSI)

reference model[56]. In this model, each layer communicates with the layers

above and below it, and conceptually, with the corresponding layer in some

other process. In practice, this model provides notation and descriptive terms;

it is not commonly used for implementations.

Figure 1.2 shows a similar model used by the Internet protocols. It has

been referred to as the hourglass model, since the Internet Protocol acts as a

common unifying layer. In contrast with the OSI model, this model is the basis

for the implementation of the Internet, not only from the standpoint of the

operating system’s code, but also in the layout of the messages exchanged—as

each message is sent, each descending layer prepends any information it uses

to the message as a header and as each message is received, each ascending

layer removes the corresponding header.

8

7. Application layer
6. Presentation layer

5. Session layer
4. Transport layer
3. Network layer
2. Data link layer
1. Physical layer

Transmission Reception

Figure 1.1: The OSI Reference Model. Messages being sent logi-
cally descend through the layers; messages being received ascend.

Application layer (SMTP, NNTP, HTTP, etc.)

Transport layer (TCP, UDP, SCTP, RTP, etc.)

Internet layer (IP)

Network layer (Ethernet, ATM, etc.)

Figure 1.2: The Internet model (the hourglass).

For support in developing layered protocols, one framework, the x-

Kernel[38, 57], stands out. The x-Kernel provides an efficient scaffolding for

assembling a number of network protocol layers, where each layer is imple-

mented independently using the library provided by the x-Kernel.

Unfortunately, layering introduces a new sin: the layering violation.

Like the crime of heresy, a layering violation may only be visible within its own

model. Specifically, a layering violation occurs when a layer n inappropriately

uses an interface of a layer greater than n + 1 or less than n− 1.

While such violations often indicate a failure in the modularity of the

design, in many cases layering becomes a goal itself2, resulting in contorted

protocol designs. For example, one feature of TCP that has caused layering

2In fact, Peterson and Davie[57] define protocol in terms of the layers.

9

violation arguments is Path MTU discovery[54]. The maximum transmission

unit (MTU) of a network link is the maximum size message that can be sent

over the link. The Path MTU (PMTU) is the smallest of the MTUs in the

network between two processes. If a process sends a message that is larger than

the MTU for a link, IP will fragment the message into parts small enough to

pass through the link. These fragments are not reassembled until all reach

the destination process and the loss of a single fragment results in the loss

of the whole message. Fragmenting and reassembling messages also requires

processing time from network components which may not have it to spare—

routers, in the first case, and the critical path for incoming messages, in the

second. For these and other reasons, protocols such as TCP would prefer not

to have their messages fragmented. On the other hand, these protocols would

also prefer to use the largest message possible, since that reduces the overhead

needed for the communication.

The potential layering violation revolves around the fact that MTU sizes

are attributes of network layers below IP, while the protocols attempting to

identify the best message size are above IP and IP does not provide them with

path MTU information. Path MTU discovery uses the “don’t fragment” flag

in IP messages, which causes an IP router to drop any message that is too large

and respond with an ICMP “can’t fragment” error message. TCP (or another

higher-layer protocol) can receive this error and then adjust its transmissions

to find the largest workable message size. Whether this is a layering violation

or not, RFC1191, describing path MTU discovery, is a Draft Standard on the

Internet Architecture Board Standards Track.

There are similar arguments around explicit congestion notification[60]

and many other useful techniques. The proliferation of these and other

10

techniques leads to the IETF being described as a “architectural pretzel

factory”[14]. In response, Braden, Farber, and Handley[16] propose a “role-

based architecture” as an non-layered alternative; whether it will be successful

as such is an open question.

The problems with HTTP described previously also demonstrate the

difficulties with a layered architecture—these problems show a conflict between

the behavior of HTTP and the intended use of TCP. Unfortunately, since the

development of congestion-controlled transport protocols such as TCP and

the deployment of such protocols are both difficult, adding another transport

protocol with semantics better matched to HTTP’s behavior did not occur.

1.4 Protocol frameworks

In Figure 1.2, the distance in terms of behavior between what the proto-

cols of the transport layer provide and what the protocols of the application

layer need is broad. Since many similar application protocols make individ-

ual choices from a relatively limited set of behaviors, protocol frameworks can

be designed to bridge this distance, in effect supplying intermediary layers

specifically designed for a class of applications.

Birman, et al.[11, 32], have developed several such frameworks (such as

Horus and Ensemble) based on micro-protocols and layering, where protocol

components implementing various behaviors can be assembled (somewhat like

Lego blocks) to create a system combining the behaviors. Unfortunately, the

protocol composition style does not necessarily take into account inter-micro-

protocol behavioral relationships which do not allow arbitrary composition.3

3Specifically, in one presentation, two blocks labelled “compression” and “encryption”

11

Another framework is the Blocks Extensible Exchange Protocol,

BEEP[63, 61]. The BEEP framework is designed to handle asynchronous,

message-passing, connection-oriented application protocols, and to provide for

the following aspects of application behavior[62]:

• framing, which tells how the beginning and ending of each message is

delimited;

• encoding, which tells how a message is represented when exchanged;

• reporting, which tells how errors are described;

• asynchrony, which tells how independent exchanges are handled;

• authentication, which tells how the peers at each end of the connection

are identified and verified; and,

• privacy, which tells how the exchanges are protected against third-party

interception or modification.

These aspects are described by “profiles” which define the syntax and seman-

tics of the messages exchanged. BEEP offers a great deal of flexibility for

handling much of the complexity in designing application protocols. Unfortu-

nately, the framework needed to provide the flexibility is quite complicated:

For example, Rose[61] says, “Messages are arbitrary MIME [Multipurpose In-

ternet Mail Extensions] content, but are usually textual (structured using XML

[the eXtensible Markup Language])”.

were shown composed both ways; unfortunately, these two components cannot be arbitrarily
composed because encryption results in incompressible data.

12

Although these frameworks are quite successful in their intended envi-

ronment, their size and complexity limit their applicability in environments

with restricted space or computational power, in addition to the limits im-

posed by their area of focus. Also, they are built with, and intended to be

used with, code written in a traditional programming language. As described

previously, most programming languages obscure the network protocol-specific

issues and problems.

Finally, while frameworks provide flexibility, this flexibility is only avail-

able in the domain of the framework—using a framework outside its design

domain is likely to be an uphill battle.

1.5 Protocol languages

Frameworks, such as those described previously, serve primarily as runtime

support for code written in a traditional programming language. Like the ad

hoc techniques described earlier, they have two limitations:

• Traditional programming languages do not highlight network protocol-

specific behavior, and impede understanding the protocol’s intrinsic, ex-

trinsic, and compatibility issues.

• Their size and complexity appear at runtime. (Although some frame-

works such as Ensemble minimize their runtime footprint by performing

optimizations at compile-time, such efforts are limited by the granularity

of the framework.)

An alternative approach is to create a notation intended for network

protocols, in order to deal with one or both of those limitations. Most research

13

in this area is aimed at the first limitation, as it is the most difficult.

Notations or domain specific languages intended for network protocols

come in two varieties: permissive and strict.

Permissive notations. Permissive notations are designed primarily to make

implementation easy. These notations expose the behavior of the protocol, and

are often very flexible, but are not typically intended to address protocol de-

velopment problems formally and verifiably.

A fine example of a permissive notation is Prolac[41, 42]:

Prolac is a new statically-typed object-oriented programming lan-

guage designed for implementing network protocols. Prolac is de-

signed to make protocol specifications readable to human beings,

and thus more likely to be correct; easily extensible to accommo-

date protocol enhancements; and efficient when compiled.

Explicit goals of Prolac are readability, efficiency, evolvability, and behavioral

predictiblity. This predictability, however, does not come based on formal

reasoning, but rather on informal specifications and easing their translation

into code. Specifically, Kohler says,

[Problems with inflexible abstractions] caused us to leave all

protocol-specific abstractions out of our protocol language. Pro-

lac is a domain-specific language, in that many of its features,

both small and large, were formulated in direct response to how

protocols work; however, it is completely without domain-specific

abstractions.

14

As a result, Prolac lacks a strong semantic grounding for verification. Ap-

proaches with similar, but less extreme, limitations are taken in Morpheus[3]

and Promela++[7].

On the other hand, Teapot[20], a language for writing cache coherence

protocols, is primarily a permissive notation, generating C code, but is also ca-

pable of generating a model specification for the MurΦ model checker[23]. The

combination, as described by Chandra[19], highlights the power of a domain-

specific language linked with formal methods.

Likewise, ESP[45, 43, 44] is a language for describing event-driven state

machines for programmable devices with limited CPU and memory resources.

The ESP compiler generates both efficient C code and Promela models for

checking the the state machines. However, ESP is not designed for network

protocols, and is not intended for human verification.

Strict notations. Strict notations are aimed primarily at making correct-

ness verification easy and only secondarily (if at all) at implementation. The

primary distinction among the strict notations is whether they are intended for

automatic model checking or manual verification. The notations intended for

automatic model checking often have a more complex, flexible structure, but

oppose that flexibility with tight limits necessary for efficient model checking,

such as a requirement that the models have a finite state. Notations intended

for manual verification have a much simpler structure, because the complexity

of the notation seriously impairs human verification, but do not place arbitrary

limits on the protocol under study.

Two strict, very abstract notations are Unity[21] and TLA+[47]. Un-

fortunately, as Chandy and Misra say when comparing Unity with other pro-

15

gramming approaches, “[The] generality of Unity is also its limitation when

applied to a specific class of problems.” Other strict notations more focused

on communications are Estelle, LOTOS, and SDL[70], the UDP Calculus[64],

and Promela[34, 35, 36]. These notations differ in a number of areas, includ-

ing their complexity and ability to express network protocols specifically, but

all are grounded in high-level abstraction. The tools available for each lean

towards verification and model checking aids rather than executable inter-

preters or compilers. Indeed, due to the complexity and abstraction, protocols

compiled from these notations, if such is possible at all, frequently exhibit

poor performance. Finally, the compilers required are themselves complex

programs.

On the other end of the strict notations is Esterel[10]. Esterel is a

synchronous language intended for specifying protocol behavior abstractly, but

Castelluccia, et al.[18], describe a compiler for protocols that generates efficient

code. On the other hand, Esterel is not focused on message-passing network

protocols and it is neither sufficiently abstract to easily verify protocols nor

sufficiently simple to easily implement them.

1.6 The Austin Protocol Compiler

The Austin Protocol Compiler, and the Timed Abstract Protocol notation,

are the subject of this work. The Timed Abstract Protocol notation, or TAP,

is a small, simple language designed specifically for describing asynchronous

message-passing network protocols with the ultimate goal of verification. TAP

is based on the Abstract Protocol notation, or AP, developed by Gouda[31],

which takes a very abstract, high level approach to network protocols. Un-

16

fortunately, like several of the other strict notations described previously, AP

makes very strong guarantees about time, concurrency, and failure that make

protocol verification easy but protocol implementation difficult.

For example, in AP a timeout is an action guarded by a global predicate:

the decision whether the action may be executed can potentially be based on

the values of variables in remote processes and the contents of the network

between processes as well as the local state. Also, AP guarantees that ac-

tions, made up of an arbitrary sequence of statements, and errors, which come

from a small class, must execute atomically and fairly, and that messages are

propagated through the channels of the network immediately.

The guarantees of AP make it impractical to implement directly. Fur-

ther, expressing some of the major sources of complexity in some protocols

is difficult, since AP does not provide a direct model of time. TCP[59, 15]

itself is one example that exposes this problem. This protocol is founded on

a sliding-window protocol for transferring data, but the majority of the com-

plexity in TCP involves when messages are to be sent—the round-trip time,

from the sender to the receiver and back, and the retransmission time for lost

messages are important factors to TCP. These factors are precisely those which

are difficult to express in the high-level of abstraction of AP.

Therefore, the Timed Abstract Protocol notation modifies AP slightly,

preserving the ease of verification while adding the ability to express temporal

behavior and moving slightly towards implementability. It also has two execu-

tion models: a high-level, abstract model allowing protocols to be understood

and verified readily, and a low-level, concrete model which makes efficient im-

plementation possible. The relationship between these two models, which is

described in detail later, is complex. However, in short, for many protocols the

17

two models are equivalent—a protocol implemented according to the concrete

model behaves the same as a protocol understandable in the abstract model.

The final piece of the protocol development puzzle is the Austin Proto-

col Compiler, or APC, which can transform a process described in TAP into

executable code in C. The combination of the Timed Abstract Protocol nota-

tion with the Austin Protocol Compiler satisfies the original three classes of

network protocol development problems in the following ways:

1. The simple domain-specific language of TAP, with its underlying formal

model, addresses the intrinsic problems of protocol development through

its clarity and verifiability.

2. The clarity of the TAP language, along with the fast turn-around of a

compiler, allows practical experience with a protocol while it is still in

development.

3. The formal TAP notation, with its emphasis on the protocol’s details,

and the ability of the compiler to create a running reference model create

an environment where the compatibility problems in protocol develop-

ment can be handled.

The next chapter discusses the TAP notation in detail, and the follow-

ing chapter presents the two execution models. Subsequently, Chapter 4 and

Chapter 5 argue the equivalence of the two execution models. Then, Chapter 6

describes the Austin Protocol Compiler and its runtime system. The following

two chapters present examples of the use of the TAP notation and APC. A

final chapter contains concluding remarks.

18

Chapter 2

The Timed Abstract Protocol

Notation

The Timed Abstract Protocol notation, or TAP, is designed to be a small lan-

guage for describing asynchronous, message passing network protocols. This

focus entails several features:

• TAP is intended to describe protocols which normally wait for an ex-

ternally generated event such as a received message or a timeout, then

perform local computation to handle the event. As a result, the processes

in TAP are made up of guarded actions, where the guards are based on

the availability of a received message, or a timeout occurance as well as

local state.

• Network protocols generally deal with two kinds of information: protocol

control information, which is mainly made up of integral values and

process addresses, and data, which is uninterpreted by the protocol.

Also, the processing of a protocol at a local level is usually simple and

19

should terminate quickly. Following these two observations, the state

of processes is limited to minimal control information and the control

structures are kept simple. These limitations serve to ease understanding

and verification.

• Specialized operations, such as sending a message, are necessary for asyn-

chronous message passing protocols. These operations are integrated

into the language where they have specific semantics, again easing un-

derstanding and verification.

In TAP, a network protocol consists of two or more processes, which

communicate by sending messages across channels. In this chapter, we begin

to present the syntax and general semantics of TAP by discussing a simple

example protocol.

2.1 Messages and channels

In TAP, a message is a sequence of fields, where each field is either an integral

value consisting of protocol control information or a byte array containing

uninterpreted data. The integral fields can be either constant or variable;

constant fields can be used to distinguish messages while variable fields carry

protocol information. For example, Figure 2.1 shows two messages, each of

which has a single, constant field identifying it. Figure 2.1 does not show the

full range of options; variable fields would not specify values and data fields

would specify the field size in bytes, with either a constant or non-constant

expression.

A channel is a queue of messages. Messages are inserted into the tail of

20

message rqst
begin

type : 8 bits = 0
end

message rply
begin

type : 8 bits = 1
end

Figure 2.1: Request/reply messages.

the queue by the sending process and removed from the head by the receiving

process.

When discussing a protocol, the contents of a channel are referred to

by a sequence of messages surrounded by angle brackets and separated by

semicolons: <m;n>. A channel itself is referred to by the notation ch.p.q,

where p and q are the names of the sending process and the receiving process,

respectively.

In the TAP notation, channels are implicit—they are identified by the

abstract addresses of the sending and receiving processes. Since each process is

itself one of the endpoints, only the remote address is needed within a process;

the name of the process identifies the address of its local endpoint.

Every process is connected to every other process by channels in both

directions. As a result, every process can send messages to any other process

it has the address of.

2.2 Processes

A process consists of a local state and a set of actions describing the behavior

of the process. Figure 2.2 shows the two processes of a simple request/reply

21

protocol.

process p
const q : address
var readyp : boolean = true
begin

readyp → send rqst to q;
readyp := false

[] rcv rply from q →
readyp := true

end

process q
var p : address
begin

rcv rqst from p →
send rply to p

end

Figure 2.2: Request/reply protocol, version 1.

The local state of a process is described by variables and constants, of

one of a number of data types. There are two data types used in processes p

and q in Figure 2.2:

1. An address is used to identify a channel between the current process

and another, either to send a message to another process or to recognize

the sender of a received message.1

2. A boolean is either true or false.

The remaining data type, integer, has values from 0 to 232 − 1. The

syntax of TAP also allows smaller ranges of integers as well as multidimensional

arrays of any of these data types.

1An address is special in that it cannot be assigned a literal value in TAP. Instead, its
value must be provided by the environment of the process. As described later, variable
addresses receive values when used in receive guards. Additionally, the Austin Protocol
Compiler runtime system provides the capability to set addresses outside the executable
code generated by the compiler.

22

2.3 Actions

Actions describe the computation performed by a process. Each action consists

of a guard, describing the circumstances under which the action is enabled,

and a body, providing the statements which are executed when the action is

executed.

When discussing protocol computations, the individual actions are re-

ferred to by the notation p.n, where p is the name of the process and n is the

number of the action within the process. Similarly, p.id refers to a variable or

constant id in a process p.

There are two kinds of action guards in Figure 2.2:

1. A local guard is a Boolean predicate involving the local state of the

process. The action is enabled when the predicate is true. An example

of a local guard is that of p.1, the first action of process p in Figure 2.2.

The guard of this action is the predicate readyp.

2. A receive guard identifies a message and the address of a remote process

and is enabled when a matching message is at the head of the channel

from a remote process. An example is p.2, the second action of process

p. The guard of this action is rcv rply from q, which is enabled when

a rply message is at the head of the channel form q to p. When this

action is selected for execution, as discussed later, the rply message will

be removed from the channel.

Again, the address here is special—a receive guard with a constant ad-

dress will only be enabled when the matching message is at the head

of the channel from the process identified by the address. On the other

23

hand, a receive guard with a variable address is enabled when the match-

ing message is at the head of the channel from any process; during the

execution of the action, the address variable takes as its value the address

of the remote process.

2.4 Statements

Most of the statements in TAP are relatively conventional. There are two

kinds of statements in Figure 2.2:

• The first is a send statement, send rqst to q. This statement inserts the

message rqst into ch.p.q.

• The second is an assignment statement, such as readyp := false. TAP

supports multiple assignment, where a list of variables on the left-hand-

side is matched by a list of expressions on the right-hand-side.

When a message is received or sent by an action, it introduces a message

structure that is local to the action. This message structure has records labeled

by the field names from the message. When a message is received, the records

contain the values of the fields from the incoming message. The values of the

fields of messages to be sent can be set by assigning to the records before

sending the message. These structures, however, do not participate in the

state of the process because they are not preserved between actions.

The statements are sequentially combined by separating them with a

semicolon.

Additional statements are also available in TAP:

• The skip statement does nothing.

24

• A conditional statement,

if p0 → s0 [] p1 → s1 [] . . . [] pn → sn fi,

chooses a branch pi → si nondeterministically from the branches with

true predicates among p0, . . . pn and executes the corresponding state-

ment si.

• The iteration statement, do p → s od, executes statement s repeatedly,

as long as predicate p is true.

2.5 Protocol style

A number of issues apply to the design of protocols specified in the TAP

notation. One is illustrated in Figure 2.2: protocol quiesence. Another two

are loop termination, and conditional completeness.

The protocol should be quiescent: it should not be possible for any

process in the protocol to continue executing local actions indefinitely. An

action, in TAP, is executed when its guard is enabled; this is at variance with

AP, where an action is executed only when its guard is enabled. The difference

is that a process in TAP cannot wait when an action is enabled. For example,

process p in Figure 2.1 will flood the network with requests, waiting only to

receive the reply to each.

Instead, every process in the protocol should only execute a finite num-

ber of local actions before every local action becomes disabled—this prevents

the process from abusing local resources. Such a process can instead wait for

a message to be received or for a timeout to expire.

25

A related issue is loop termination. Although neither process p nor pro-

cess q needs a do statement, other protocols will, and the necessity that actions

be atomic requires that loops terminate deterministically, and preferably after

performing only the computations needed by the protocol. This prevents the

execution of a single action from blocking all of the other computations of a

process.

Finally, the conditional statement syntactically uses multiple branches,

each with a boolean predicate and a body of statements. For clarity, the

predicates should be mutually exclusive, so that a single branch is possible in

any state, and the disjunction of the predicates should be true, so that some

branch is taken from any state.

2.6 Justification

The TAP notation is intended to specify message-passing network protocols

simply and clearly. Each of the features of the notation supports this goal:

1. The message specification describes the minimal features needed for most

common messages of existing protocols. It is neither as complete nor as

complex as other message specification languages such as ASN.1[24] and

XDR[67]. Instead, the TAP message notation is restricted to describing a

simple format which is interoperable with many Internet protocols while

allowing the programmer the flexibility to deal with other messages.

2. Processes have a simple structure, particularly in the definition of their

local state and the limited set of actions used to describe their behavior.

Coupled with the execution model, described in the next chapter, these

26

features make reasoning about network protocols easier.

3. Like Promela[36], Teapot[20], Esterel[10], and other formal notations,

TAP tries to avoid fine-grained data manipulation while expressing over-

all control structure. The statements describing the behavior of actions

are limited in number and simplified, when compared with general pur-

pose languages. This simplification, first, eases reasoning about the be-

havior, and second, reduces the tendency to include overly complex be-

havior or behavior unrelated to the network protocol in the specification.

This chapter has only described the basic syntax and semantics of TAP.

The details of TAP computations are the subject of the next chapter. However,

the next section contains a detailed discussion of the TAP language, based on

its grammar. Understanding the next section is not necessary in order to

understand subsequent chapters.

2.7 Details of TAP

In previous sections, we examined the TAP notation from an abstract view-

point, as a formal notation for specifying network protocols. Much of the

remainder of this work will continue with that viewpoint, but this section

examines the TAP notation as a programming language.

The discussion of the complete of the TAP language follows the struc-

ture of the TAP grammar—it re-covers the parts of TAP described previously

and includes features of TAP that will not be described fully until the next

chapter as well as features that are not further mentioned. The grammar is

described using the Extended Backus-Naur Format, with the following con-

27

ventions:

• {...} indicates zero or more copies of the contained elements.

• [...] indicates zero or one copy of the contained elements; i.e. the contents

are optional.

• (...|...) indicates a choice between the contained elements.

• Literal text is presented in quotation marks.

• Non-literal token elements are in italics. There are three of these:

– A string is a quote-delimited string of characters which does not

span lines. Internal quotes and newlines can be escaped by a back-

slash. These strings cannot be manipulated in TAP, but can serve

as arguments to functions as well as to directives as described later.

– A number is one or more decimal digits, indicating a non-negative

number.

– An id is an identifier, made up of a letter followed by any number

of letters or numbers.

Parsing of each source file begins with the start symbol:

start ::= elements

elements ::= {element}

element ::= “import” string

| “include” string

| message

| process

28

The source file given to the compiler consists of a sequence of elements.

Each element is either an import directive, an include directive, a message

definition, or a process definition.

The import directive looks for the file named in the string. The contents

of this file are read and processed by the compiler before any subsequent

elements in the current source file.

The include directive inserts a C include directive in the output file,

calling for the file named by the string. These included files form part of the

interface between the APC-generated C module and external C code.

2.7.1 Message syntax

message ::= m-header m-body

m-header ::= [“external”] “message” m-name [m-functs]

m-name ::= id

m-functs ::= “(” m-in “,” m-out “)”

m-in ::= id

m-out ::= id

m-body ::= “begin” fields “end”

fields ::= {field “,”} field

Each message definition consists of a header and a body. The message

header primarily provides a name for the message. The body of the message

is a sequence of fields, separated by commas. The message definition is used

by the compiler to produce:

1. A C structure with records for each field in the message.

29

2. Parsing and marshalling functions, which interpret and recognize re-

ceived messages and convert a message structure to a sequence of bytes

for transmission, respectively.

Optionally, the message can be marked as external, in which case the

compiler does not generate the C functions for marshalling and parsing the

message. This allows the programmer to provide such functions, in order to

handle more complex messages than those that can be described by TAP. Also

optionally, two functions can be identified which process the message immedi-

ately after the fields in the message have been parsed (m-in) and immediately

before the message is sent (m-out). These functions receive the message buffer

as well as the structure describing the fields of the message, allowing them to

compute a checksum for the message, for example.

field ::= f-name “:” f-type [“=” f-value]

f-name ::= id

f-value ::= expression

Each field definition consists of a field-name, a field-type, and optionally,

a field-value. If the field-value is present, the field is considered constant; the

field is automatically set to that value before the message is sent and received

messages are checked to ensure the field contains the proper value as part of

the process of recognizing messages. In these expressions, the only allowable

values are constants and the names of previous fields.

f-type ::= f-size (“bits” | “bytes”)

f-size ::= expression

30

A field-type describes the size and type of the contents of the field.

The expression describing the size can contain literal values or the names of

previous fields in the message. The type of the field is implied by the use of

bits or bytes to describe the field.2

• A bit field contains an unsigned integer value. The size expression de-

scribes the size of the field in bits; it must not be larger than 32 bits.

• A byte field contains a sequence of data bytes. The size expression

describes the size of the field in 8-bit bytes. For a received message,

the value of the record for the field in the structure generated by the

compiler will be a pointer to the data in the original message buffer.

When building a message to be sent, the value of the record should be

set to a pointer to a sequence of bytes which will remain valid until the

message is sent.

Each message has an additional field, named size, which indicates the

overall size of the message in bytes. When receiving a message terminating

with an arbitrary-length data field, the size field (minus the size of any previous

fields) provides the length of the final field. When sending such a message,

assigning to the size field allows the message marshalling functions to copy the

appropriate number of bytes from the array pointed to by the data field.

2.7.2 Process syntax

process ::= p-header p-body

p-header ::= “process” p-name [constants] [variables]

2For grammatical correctness, “bit” is allowed as a synonym for “bits” and likewise,
“byte” for “bytes”.

31

p-name ::= id

constants ::= “const” declarations

variables ::= “var” declarations

declarations ::= {declaration “;”} declaration

p-body ::= “begin” actions “end”

Each process definition also consists of a header and a body. The process

header provides a name for the process as well as the optional declarations for

the process’s constants and variables. The process’s body contains a sequence

of actions.

declaration ::= ids “:” type [“=” initial-value]

ids ::= {id “,”} id

type ::= “integer”

| number “..” number

| “boolean”

| “address”

| “array” “[” array-size “]” “of” type

array-size ::= number

initial-value ::= (number | “true” | “false”)

In each declaration, a sequence of identifiers which name constants or

variables are associated with a type and optionally an initial value. The basic

types allowed by TAP are 32-bit integers, booleans, and addresses. The integer

type can be specified as either a general integer or as a range of allowed values.

The initial values for variables or constants must match the type of the

variable or constant; the value of an integer is a number, and the value of a

32

boolean is either true or false. Addresses may not be given an initial value in

TAP. (The initial value of an address can be given via the C interface while

initializing the APC runtime system. See Chapter 6 for more information.)

The only complex type supported by TAP is the array, with any number

of dimensions. The allowed indices of each array dimension is given by the

array-size value; indices range from 0 to the array-size−1. If an initial value

is given for an array, each element of the array is set to the value.

2.7.3 Action syntax

actions ::= {action “[]”} action

action ::= guard “->” statements

guard ::= (local-guard | receive-guard | timeout-guard)

local-guard ::= expression

receive-guard ::= “rcv” m-name “from” address

address ::= id

timeout-guard ::= “timeout” t-name

t-name ::= id

In a TAP process, actions are separated by a box, written as two square

brackets: []. Each action consists of a guard and a sequence of statements.

There are three forms of guards: local, receive, and timeout. Chapter 3 de-

scribes the behavior of each of the guards in more detail, and Chapter 6 con-

tains the details of the runtime support for each guard.

Local guards are made up of a predicate, a boolean expression. The

action is enabled when the guard evaluates to true.

Receive guards specify a message accepted by the action and an address.

33

The guard may be enabled if and only if the received message matches the

message specified by the receive guard. If the address is a constant, then the

action will only be enabled if the message is from the process identified by

the address. If the address is a variable, then the action will be enabled no

matter where the message is from and the address will be set to the source of

the message.

Timeout actions provide a name, t-name, for the action for use with

the activation statement; the behavior of such actions is described in the next

chapter.

2.7.4 Statement syntax

statements ::= {statement “;”} statement

statement ::= “skip” | function-call | assignment | send

| conditional | loop | activate

In any sequence of statements, the individual statements are separated

by semicolons. The two fundamental statements are skip, which does nothing,

and a function call, which invokes a C function and is more fully described on

page 37.

assignment ::= left-sides “:=” expressions

left-sides ::= {left-side “,”} left-side

left-side ::= (id | field-reference | array-reference)

expressions ::= {expression “,”} expression

TAP assignment statements allow multiple values to be assigned simul-

taneously; in the code generated by the APC compiler, each expression is

34

evaluated independently and stored in a temporary location. Subsequently,

the values are assigned to the left-hand-side locations. Locations which can

be assigned values are either variables, message fields, or array elements.

send ::= “send” m-name “to” address

A fundamental operation in TAP is sending a message, identified by

m-name, to a process, identified by the address. Any necessary fields in the

message should be set before executing the send statement.

conditional ::= “if” guarded-statements “fi”

guarded-statements ::= {guarded-statement “[]”} guarded-statement

guarded-statement ::= expression “->” statements

TAP provides a conditional statement with guarded branches separated

by the box. Each branch consists of a boolean expression guarding a sequence

of statements. In execution, one branch with a true-valued expression is chosen

and executed. If no branches are enabled, execution continues with the next

statement after the conditional.

loop ::= “do” expression “->” statements “od”

The iteration statement in TAP is made up of a single guarded state-

ment, which provides a sequence of statements which are executed repeatedly

as long as the expression evaluates to true.

activate ::= “act” t-name “in” delay

delay ::= expression

35

The activate statement, along with the timeout guards, is discussed

in detail in Chapter 3. In general terms, it sets a timer associated with the

timeout guard identified by t-name. The delay gives the value of the timer,

after which the timeout guard enables the corresponding action.

2.7.5 Expression syntax

In order to simplify the description of the TAP expression, the grammar rule

is broken into a number of sub-rules below. The expression rule is the combi-

nation of all of the individual sub-rules.

expression ::= (id | number | “true” | “false” | string)

The fundamental expressions in TAP are variable names, numbers, true

and false, and strings (which may only be used as arguments to function calls).

expression ::= field-reference

| array-reference

| function-call

field-reference ::= m-name “.” (f-name | “size”)

array-reference ::= (array-reference | id) “[” expression “]”

function-call ::= function-name “(” [expressions] “)”

function-name ::= id

Further expressions are field references, array references, and function

calls. Field references are described by a message name and either a field

within the message or the special field, “size”, which contains the overall size

of the message in bytes.

36

Array references follow the traditional syntax, with a numeric expres-

sions describing the element within the array.

A function call identifies a C function by name and executes it with the

arguments given by the expressions. The C type of the return value of the

function should be one of:

• void, for functions called as statements,

• unsigned long, for integer values, or

• unsigned char *, for an assignment to a message’s data field.

expression ::= “(” expression “)”

| expression binary-operator expression

| unary-operator expression

binary-operator ::= “=” | “>” | “<” “<=” | “>=” | “<>”

| “|” | “&” | “+” | “-” | “*” | “/”

unary-operator ::= “˜” | “-”

The next group of general expressions include the normal binary and

unary operators. The binary operators are equality, inequality, boolean oper-

ators, and arithmetic operators. Unary operators are boolean and arithmetic

negation.

These operators have the precedence described in Figure 2.3.

expression ::= “size”

The final form of expression, a bare reference to a size message field, is

only valid in an expression that is part of a message definition. The value of

the “size” expression is the overall size of the message in bytes.

37

5 “=” “>” “>=” “<” “<=” “<>”
4 “&” “|”
3 “+” “-”
2 “*” “/”
1 “˜” “-” (unary)

Figure 2.3: TAP operator precedence, from lowest to highest.

38

Chapter 3

Execution Models of Network

Protocols

3.1 Two Models

An execution model for a programming notation describes the basic features

of the computations for programs in the notation. These features include,

for example, what information is captured at a state of the computation,

what events can happen at each state, and the actual behavior of the events

described in the notation.

With sequential languages, only one execution model is needed. A single

execution model can support both:

• Effective reasoning about the program described in the notation, to pro-

duce both a clear, elegant design as well as arguments about the correct

behavior of the program.

• Simple and efficient implementation of the program.

39

However, when the environment becomes more complex, as it does in

the case of message-passing network protocols, a single model may not be

sufficient. In fact, attempting to satisfy both goals in a single model may

result in satisfying neither.

This chapter presents two models for the execution of the Timed Ab-

stract Protocol notation:

• The abstract model is intended to make protocol verification easy and to

allow clear and elegant design. This model abstracts away many details

of protocol execution and is not representative of reality.

• The concrete model is intended to be easily implemented, with no fea-

tures that would be complex or inefficient to provide in a running system.

With two models, a single protocol has two meanings. This chapter de-

scribes the two models and the next two chapters demonstrate the relationship

between the two models and show under what conditions they are equivalent.

3.2 Abstract Execution Model

The abstract execution model is intended to provide a conceptual framework

for thinking about network protocols. Since the environment of network proto-

cols is complex, it is necessary for an abstract model to make strong, unrealistic

assumptions. The goals of these assumptions are to simplify reasoning about

network protocols while still providing a useful model representing the network

protocol environment.

40

3.2.1 Abstract protocol state

The state of a protocol in the abstract execution model consists entirely of:

• The values of the variables of every process in the protocol, and

• The contents of the channel between each pair of process.

In the abstract execution model, when the protocol begins execution, the val-

ues of the variables of the initial state of each process are given in the process

definition and all of the channels are empty.

3.2.2 Abstract protocol execution

The computation of the protocol in the abstract model consists of a sequence

of action executions, moving the protocol from one state to the next. The com-

putation of a protocol proceeds under the following assumptions concerning

atomicity, message propagation, and fairness:

• Global atomicity: Only one action is executed at a time. At each state,

one action from all of the enabled actions in all of the processes in the

protocol is nondeterministically chosen and executed.

• Immediate message propagation: When a message is sent, if it is the

first message in the channel, then the receiving action for that message

is enabled for execution at the next state.

• Global fairness: In computation consisting of an infinite number of

states, if an action becomes enabled at a state then it is either disabled

or chosen for execution at a subsequent state.

41

From these assumptions, the computation of the request/reply protocol

of Figure 2.2 can be understood. At the initial state, readyp is true and the

channels are empty, so p.1 is the only enabled action. That action sends a rqst

message to process q, and sets readyp to false. At the second state, q.1 is the

only enabled action, and this action receives the rqst message and responds

with a rply message. At the third state, p.2 is the only enabled action, and it

sets readyp to true, returning the protocol to the initial state. Computation

continues in this fashion forever; see Figure 3.1.

1

23

p.1

q.1

p.2 State 1: readyp ∧ ch.p.q = <> ∧ ch.q.p = <>
State 2: ¬readyp ∧ ch.p.q = <rqst> ∧ ch.q.p = <>
State 3: ¬readyp ∧ ch.p.q = <> ∧ ch.q.p = <rply>

Figure 3.1: State transitions for the request/reply protocol, version 1.

Unfortunately, the actual behavior of a network protocol is not this neat

and the model so far presented is too unrealistic. At a minimum, it leaves out

an important aspect of network protocol behavior: faults.

3.2.3 Abstract faults

The only faults described in the abstract execution model are message faults,

which are the most common faults that network protocols must deal with.

There are four possible message faults:

1. Message loss: A message in a channel is removed from the channel.

2. Message corruption: A message in a channel is replaced with the special

message, error, which indicates that the message has been corrupted in

42

some fashion.

3. Message reordering: The order of two messages in the same channel is

swapped. A channel containing <m;n> subsequently contains <n;m>.

4. Message duplication: A message in a channel is duplicated. A channel

containing <m> subsequently contains <m;m>.

The specific faults that a protocol may face depend on the environ-

ment in which the protocol executes. For example, if the protocol is intended

to execute in an environment that provides message checksums, the possibil-

ity of message corruption is eliminated—a message corruption failure will be

transformed into a message loss failure.

The message faults are treated almost identically to the other actions;

if a channel contains a suitable message or messages, fault actions are enabled

and can be chosen and executed. However, in a computation consisting of an

infinite number of states, faults are rare: There can only be a finite number

of faults.

With the addition of message faults, the request/reply protocol of Fig-

ure 2.2 has problems. On the one hand, the protocol need not deal with

message reordering since the protocol has only one message in any channel at

a time. Also, additional actions could be easily be added to the two processes

to receive corrupt error messages and the protocol could be made to recog-

nize duplicated messages by using message sequence numbers. On the other

hand, if either the rqst or rply is lost, the protocol deadlocks. Each of the

processes waits for a message that cannot arrive, and the TAP language as so

far described provides no method of escaping this deadlock. The solution is

the subject of the next section.

43

3.2.4 Abstract timeout behavior

In order to handle message loss, TAP has an additional action guard and an

additional statement:

• The timeout guard, timeout t, provides a name, t, for the action. This

name is used by the activation statement.

• The activation statement, act t in d, provides a delay, d, between the

activation statement being executed and the timeout action t becoming

enabled. For the request/reply protocol in this abstract model, the delay

is essentially arbitrary—any non-zero delay will have the same behavior.

However, in a protocol with multiple timeout actions or multiple delays,

the delay values will describe the relative behavior of the timeouts.

Every timeout guard has a time variable associated with it, which either

is null or has a numeric delay. Initially, the value of every time variable is null.

The execution of an activation statement with a timeout guard name t sets

the value of the time variable associated with the timeout guard t to the delay

given in the activation statement.

At any abstract state where no action is enabled, the values of all of

the non-null time variables are reduced by the value of the smallest non-null

time variable, making the value of the smallest time variable or variables zero.

A time variable with a zero value enables the associated timeout guard, and

at a state where any time variable has a value of zero, only a timeout action

can be executed. The execution of the timeout action resets its time variable

to null.

Figure 3.2 shows process p with the addition of an activation statement

and an action with a timeout guard. This version of the process, intended

44

process p
const q : address
var readyp : boolean = true
begin

readyp → send rqst to q;
act rsnd in 1000;
readyp := false

[] rcv rply from q → readyp := true
[] timeout rsnd → send rqst to q;

act rsnd in 1000
end

Figure 3.2: Request/reply protocol, version 2.

to handle message loss, executes an activation statement after sending a rqst,

and the corresponding timeout action resends the rqst. Process q remains the

same as in Figure 2.2.

In process p, the timeout delay used by the activation statements is

1000 ms, which must be an upper bound on the round-trip delay, by assump-

tion. To avoid such assumptions, a protocol should simply choose the delay

sensibly or dynamically adjust the delay, but will need to be prepared to handle

duplicated messages.

3.2.5 Abstract execution of the request/reply protocol

The execution of the request/reply protocol of Figure 3.2 is more complex

than the execution described on page 42. Figure 3.3 shows the state diagram

of the protocol. In this diagram, State 1 represents situations where readyp is

true and process p can send a rqst. States 2 and 3 represent situations with a

message in one of the channels. State 4 represents situations where messages

45

have been lost.

1

23

4

p.1

q.1

p.2

p.3
loss loss

State 1: readyp
State 2: ¬readyp ∧ ch.p.q = <rqst>
State 3: ¬readyp ∧ ch.q.p = <rply>
State 4: ¬readyp

Figure 3.3: State transitions for the request/reply protocol, ver-
sion 2. Channels not described are empty and transitions labelled
“loss” represent message losses.

Process p from Figure 3.2 retransmits the rqst message when one is lost.

At State 4, both ch.p.q and ch.q.p are empty and no actions are enabled. The

time variable for the rsnd timeout action is reduced to zero and the timeout

action is executed, resending the rqst message and returning the protocol to

State 2. Since a message could be lost again, it also re-executes the activation

statement, resetting the time variable.

3.2.6 Justification

The main goal of the abstract model is to provide a conceptually simple ab-

straction of the network protocol environment. The features of the abstract

model combine to satisfy this goal:

1. Global atomicity and immediate message propagation limit the number

of states that the model can be in, as well as the number of transitions

between states.

46

2. The model of message faults abstracts the general faults that a protocol

may be subject to, retaining those that are realistically common.

3. The timeout behavior abstracts the passage of real time without refer-

ence to a clock. Again, this limits the number of states of the model.

The timeout behavior also provides a flexible mechanism for describing

protocols with time-based features.

4. Global fairness ensures progress in the protocol. If the correctness of

the protocol requires the execution of a specific action and that action

becomes enabled and is not subsequently disabled before it is executed,

then it is guaranteed to eventually be executed.

The behavior of the abstract model described in this section is unrealis-

tic, but is almost reasonable. Another execution model, much closer to reality,

is described later. The relationship between the abstract model and the con-

crete model, and the requirements made on protocols by that relationship, is

the subject of the next two chapters.

3.3 Concrete Execution Model

Unlike the abstract execution model, the concrete execution model is designed

to closely resemble the execution environment of a network protocol, including

simultaneous events, delayed message propagation, clock-based timeouts, and

local fairness.

As in the abstract execution model, when a protocol begins execution,

the channels are empty and the values of the variables at the initial state of

47

each process are given in the process definition. The computation also proceeds

in a sequence of action executions.

3.3.1 Concrete protocol state

The state of a protocol in the concrete model has a more complex structure

than that of the protocol in the abstract model. In addition to variables, each

process has an execution pointer, which either indicates the next statement to

be executed in an action of the process or takes a null value when no action is

being executed by the process. Also, rather than consisting of a single queue,

the channel between each pair of processes p and q is divided into two queues,

an incoming queue of ch.p.q and an outgoing queue of ch.p.q. When a process

p sends a message m to process q, message m is placed at the tail of the

incoming queue of ch.p.q. Later, m is moved from the head of the incoming

queue of ch.p.q to the tail of the outgoing queue of ch.p.q. Finally, process q

receives m, removing it from the head of the outgoing queue.

3.3.2 Concrete protocol execution

The execution of the protocol is broken into events. Each event is one of:

1. An action choice. In this event, which is possible when a process has

a null execution pointer and an enabled local or receive action guard,

one enabled action of the process is nondeterministically chosen and the

execution pointer of the process is set to the first statement of that action.

If the chosen action has a receive guard, then this event also removes the

message specified by the guard from the head of the outgoing queue of

the channel.

48

2. The execution of a skip statement.

3. The execution of an assignment statement.

4. The execution of a send statement. In this event, the message is inserted

into the incoming queue of the specified channel.

5. The execution of a timeout activation statement.

6. The execution of a conditional choice. This event is possible when the

execution pointer points to either a conditional statement or an iteration

statement. If the pointer points to a conditional statement, one branch is

nondeterministically chosen from the enabled branches and the execution

pointer is set to the first statement of that branch. If no branch is

enabled, the execution pointer is set to the next statement in the action

being executed. If the execution pointer points to an iteration statement

and the iteration guard is true, the execution pointer is set to the first

statement of the iteration body. Otherwise, the execution pointer is set

to the next statement in the action being executed or to null, if the

conditional is the final statement of the action.

7. A fault occurance.

8. A message transmission. In this event, a message is moved from the head

of the incoming queue of a channel to the tail of the outgoing queue of

the same channel.

9. A timer advance. Timeout behavior in the concrete model is described

on page 53. However, the timer advance event possibly sets the execution

pointer of one or more processes to the first statement of an action with

49

a timeout guard; in this case, it also sets the time variable associated

with the action to null.

Events 1-6 are executed in some process in TAP. Events 2, 3, 4 and 5 set

the execution pointer of the process to the next statement in the action being

executed. When one of these events is the final statement of an action, the

execution pointer is set to null.

A concrete computation of the protocol consists of a sequence of steps

moving the protocol from one state to the next, starting with the initial state

of the protocol. A step in a concrete computation consists of one or more

simultaneous events such that, for any two events e1 and e2 occurring in the

same step, the following conditions hold:

1. Process execution. There are six types of events describing the execution

of actions in a process:

(a) Choosing an action, Event 1.

(b) Executing a skip, Event 2.

(c) Executing an assignment, Event 3.

(d) Sending a message, Event 4.

(e) Activating a timeout, Event 5.

(f) Evaluating a conditional choice, Event 6.

If e1 is one of these events for some action in a process, then e2 cannot

be one of these events for any action in the same process.

2. Action choice. If e1 is an action choice event, Event 1, in some pro-

cess, then the execution pointer of that process at the concrete state

immediately before the step is null.

50

3. Action execution. There are five types of events describing the execution

of statements of an action in a process:

(a) Executing a skip, Event 2.

(b) Executing an assignment, Event 3.

(c) Sending a message, Event 4.

(d) Activating a timeout, Event 5.

(e) Evaluating a conditional choice, Event 6.

If e1 is one of these events for some statement in an action in a process,

then the execution pointer of that process at the state immediately before

the step points to that statement.

4. Message operation. There are four types of events operating on a mes-

sage:

(a) Sending a message, Event 4.

(b) Transmitting a message, Event 8.

(c) Choosing an action which receives a message, Event 1.

(d) A fault occurrence on a message, Event 7.

If e1 is one of these events, e2 cannot be one of these events operating

on the same message.

5. Message transmission. If e1 is a message transmission event in some

channel, Event 8, then e2 cannot be another message transmission event

in the same channel.

51

6. Timer advance. A timer advance event, Event 9, cannot occur in a step

with any other event.

The concrete execution model can be described as locally atomic, since the ac-

tions within each process are executed atomically. However, different processes

execute in parallel, and many events can occur in the same step.

3.3.3 Delayed message propagation

The channels between processes are separated into two queues. When a mes-

sage is sent from process p to process q, the message enters the incoming queue

of channel ch.p.q, where it does not enable a receive action in process q even

if it is the first message in the channel. A separate event, a message transmis-

sion, is needed to move the message from the incoming queue of ch.p.q to the

outgoing queue of the same channel. When a message is at the head of the

outgoing queue of ch.p.q, then the corresponding receive guard is enabled.

3.3.4 Concrete faults

The concrete model includes all of the faults listed on page 42: message loss,

message corruption, message reordering, and message duplication.

For simplicity, all faults in the concrete execution model occur when

the message suffering the fault is in the outgoing queue of the channel. (There

is no loss of generality in this requirement, since any fault in the incoming

queue before the message is transmitted is equivalent to the same fault in the

outgoing queue, after the message has been transmitted.)

52

3.3.5 Concrete timeout behavior

The concrete execution model includes the timeout activation statement and

the timeout guard as described on page 44, with the activation statement

behaving exactly as in the abstract execution model. However, the concrete

model includes an event called a timer advance, Event 9, which is allowed

whenever a time variable is non-null at any state where the execution pointers

of all processes are null. Each timer advance reduces the values of all non-

null time variables by one; if any time variable becomes zero, then the timer

advance resets the time variable to null and sets the execution pointer of the

process with the associated timeout action to the first statement of the timeout

action.

3.3.6 Local fairness

In the concrete execution model, execution is locally fair: In a computation

consisting of an infinite number of states,

1. If an action in a given process becomes enabled, eventually either that

process will execute the action or the action will be disabled.

2. A message in the incoming queue of a channel will eventually be trans-

mitted to the outgoing queue.

This condition differs from the global fairness condition in that it only describes

the execution within a single process, not throughout the network protocol.

53

3.3.7 Concrete execution of the request/reply protocol

The flavor of the execution of the request/reply protocol can be found in the

sequence of steps in Figure 3.4. Each line horizontally represents a step; the

left column shows events in the execution of process p and the right column

shows events in the execution of process q. Each event in the figure is followed

by the identifying number of the event in parentheses. The first four steps show

the execution of the action from process p guarded by readyp. The next three

steps show two timer advances and the transmission of the request message in

ch.q.p. The next two steps show the execution of the action of process q. The

next step shows the transmission of the reply message in ch.q.p. The final two

steps show the execution of the receive action of process p.

readyp = true (1)
send rqst to q (4)
act rsnd in 1000 (5)
readyp, out := false, out + 1 (3)

transmit rqst on ch.p.q (8)
rcv rqst from p (1)
send rply to p (4)

transmit rply on ch.q.p (8)
rcv rply from q (1)
readyp := true (3)

...

Figure 3.4: Computation steps for request/reply protocol. Each
line horizontally represents a step; the left column shows events in
the execution of process p and the right column shows events in
the execution of process q.

54

3.3.8 Justification

The concrete execution model is designed to represent the normal execution

environment of an asynchronous, message passing network protocol. It does

so in the following ways:

• Local atomicity models the execution of a group of processes: each pro-

cess serially executes its actions, but multiple processes execute in par-

allel.

• The channels between processes can take an arbitrary time to deliver a

message, even with no faults.

• Local fairness allows a computation to delay an action with a enabled

local predicate indefinitely by executing other enabled actions. On the

other hand, message and timeouts are acted on fairly.

Clearly, the concrete execution model differs from the abstract execution

model. However, the two execution models can be shown to be equivalent for

a rich class of protocols. This equivalence is discussed in the next chapter.

3.4 Limitations of the Execution Models

The execution models described in this chapter are primarily intended to de-

scribe the common execution environments of network protocols. In order to

do this, they omit a number of features which are important in certain specific

situations.

Some of the features which are omitted are:

1. Process errors.

55

2. Process termination.

3. Time errors.

4. Unrecognized message faults.

5. Security vulnerabilities.

Process errors. In both the abstract and the concrete execution mod-

els, processes cannot exhibit any failures. This assumption is certainly

unrealistic—there are a number of possible failure modes which may be im-

portant to a specific network protocol:

• The simplest failure mode is a process crash. In a crash, a process which

is not currently executing an action fails permanently, ceasing to respond

to incoming messages and no longer generating outgoing messages.

In AP, it is possible to simulate a process crash with a small number of

additions to a process:

1. Add an initially true boolean variable, active, to the process.

2. Add an activity action to the process:

true → active := false

3. Add an activity condition to every action: ensure that every other

local action guard is of the form

active ∧ . . .

and that the body of every action with a receive or timeout guard

is of the form

56

if ¬active → skip

[] active → . . .

fi

As a result of these changes, the process will, at some point in its com-

putation, appear to fail.

The simulated crash is unsatisfactory in TAP because a process in TAP is

viewed as a specification rather than a model—specifying that a process

will crash is considerably different from allowing the possibility that it

will crash. The difference is demonstrated by the semantics of actions

in TAP, where an action with a true local guard will immediately be

executed.

• A more complex failure mode is a process crash during the execution of an

action. The global atomicity of the abstract execution model precludes

such a failure, since action execution is an all-or-nothing affair.

• Finally, a process may fail in such a way as to continue to operate while

sending incorrect messages to other processes, a Byzantine failure.

Allowing any of these errors requires modification of both of the execution

models.

Process termination. A related option is the possibility of allowing a pro-

cess to voluntarily terminate. In the execution models, all protocol executions

are infinite and no process ever terminates.

57

Time errors. One assumption made by both execution models is that time

passes at the same rate throughout the network. However, it is possible that

some process may have a faulty clock, in which case time, for that process,

would appear to pass faster, slower, or erratically. A faulty clock would alter

the execution of actions with timeout guards for that process.

Unrecognized message faults. A final limitation of the execution mod-

els is the assumption that message corruption is recognizable by the process

receiving the message. Unfortunately, it is possible that a message may be-

come corrupted so that the corruption is unrecognized but the data or protocol

control information in the message is altered.

Security vulnerabilities. If security correctness is to be addressed as part

of a network protocol, a model of the security vulnerabilities in the execution

of the protocol is needed. Such vulnerabilities include message modification,

insertion, replay, and observation, as well as process state modification and

process replacement.

58

Chapter 4

Equivalence of Execution

Models

The relationship between the abstract and concrete models is one of implemen-

tation: the abstract model of a protocol P in TAP represents the specification

of P whereas the concrete model of P represents its implementation.

This relationship is complex. On the one hand, they share the same

notation and fundamental operations, but on the other, they have different

operational assumptions. Fortunately, the two models are equivalent for a large

class of protocol computations. In other words, it is possible to demonstrate

that a protocol that behaves correctly in the abstract model will also behave

correctly in the concrete model, and vice versa.

In order to demonstrate the equivalence of the abstract execution model

from page 40 and the concrete execution model from page 47, a number of

terms and relationships first need to be defined.

59

4.1 Protocol states

The state of a protocol in a model describes all of the useful information about

the protocol at a point in its computation, specifically determining the next

transitions that are possible.

An abstract state of a protocol in the abstract execution model is made

up of:

• The values of all variables in all processes in the protocol, and

• The contents of all channels between processes in the protocol.

A concrete state of a protocol in the concrete execution model is made

up of:

• The values of all variables in all processes in the protocol,

• The values of the execution pointers of all processes in the protocol, and

• The contents of all incoming and outgoing queues of channels between

processes in the protocol.

For convenience, we adopt the notation that abstract states are named

as, at, and so on, whereas concrete states are named cs, ct, and so on. When

discussing corresponding states, a hub state cs corresponds to an abstract

state as, a hub state ct corresponds to an abstract state at, and so on.

In the concrete execution model, the extent of an event consists of the

variables, execution pointers, and messages in the concrete states before and

after the step with the event. Specifically,

60

1. The extent of an action choice event, Event 1, consists of the variables

and execution pointer of the process executing the event, and the mes-

sages at the head of the outgoing queues of the channels terminating

with the process.

2. The extent of a skip event, Event 2, consists of the execution pointer of

the process executing the event.

3. The extent of an assignment event, Event 3, consists of the variables and

execution pointer of the process executing the event.

4. The extent of a send event, Event 4, consists of the execution pointer of

the process executing the send statement and the message being inserted

into the incoming queue of a channel.

5. The extent of a timeout activation event, Event 5, consists of the exe-

cution pointer of the process executing the activation statement and the

time variable associated with the timeout guard being activated.

6. The extent of a conditional choice event, Event 6, consists of the variables

and execution pointer of the process executing the event.

7. The extent of a fault occurrence, Event 7, consists of the message or

messages altered or destroyed by the event.

8. The extent of a message transmission, Event 8, is the message being

transmitted.

9. The extent of a timer advance event, Event 9, consists of all of the exist-

ing time variables and the execution pointers of the processes containing

those time variables.

61

Further, two events in the concrete execution model are independent if

and only if the extents of the two events do not overlap, in which case the

events do not observe or modify the same variables, time variables, process

execution pointers, or messages.

4.2 Equivalent protocol states

A concrete state is a hub state if and only if:

• The values of the execution pointers of all processes in the state are null.

• The incoming queue of each channel in the state is empty.

Informally, every hub state corresponds to some abstract state. At a hub state

in a computation of some protocol, the next event in the execution of every

process will be to begin an action, and since every message in a channel is in

the outgoing queue of the channel, the actions that are enabled are the same

as in the corresponding abstract state.

An abstract state, as, and a corresponding concrete state, cs, of the

same protocol are equivalent if and only if the following conditions hold:

• cs is a hub state.

• The values of the variables in as are equal to the values of the variables

in cs.

• The sequence of messages in the outgoing queue of each channel in cs is

identical to the sequence of messages in the corresponding channel in as.

62

Every abstract state is equivalent to some hub state, but not every

concrete state is equivalent to an abstract state; in particular, the non-hub

states are not equivalent to any abstract state.

4.3 State transitions

An abstract transition is a pair of abstract states, as and at, such that there

is an action or error enabled at as and the execution of this action or the

occurrence of this error leads to at.

A concrete transition is a pair of concrete states, cs and ct, such that

there is a step consisting of one or more events each allowed at cs and the

simultaneous execution of the step leads to ct.

4.4 Computations

An abstract computation of a protocol is a possibly infinite sequence of abstract

states of the protocol beginning with the initial state of the protocol, such that

every pair of successive states is an abstract transition.

A concrete computation of a protocol is a possibly infinite sequence of

concrete states of the protocol beginning with the initial state of the protocol,

such that every pair of successive states is a concrete transition.

4.5 Whole computations

It is possible to have a concrete computation that cannot be related to an

abstract computation simply because, at every state of the concrete computa-

63

tion, some action is always in the process of being executed; in other words,

an execution pointer of at least one process is non-null at each state of the

concrete computation. In such a computation, there are no hub states after

the initial state. Also, since timer advance events are allowed in any concrete

state where all of the execution pointers are null, it is possible to have a con-

crete computation where timeouts happen too fast: where every time variable

is reduced to zero immediately after it is created and the associated timeout

action is executed before it would be in the abstract model.

However, a class of finite concrete computations, called whole compu-

tations, can be defined so that any concrete computation in this class can

be related to a finite abstract computation. A whole computation is a finite

concrete computation in which:

1. The final state of the concrete computation is a hub state.

2. Only hub states with no enabled action guards are the initial states of

transitions with timer advance events.

While both of these requirements are chosen for technical reasons, they

do have intuitional justifications. For the first requirement, a final hub state

for any finite concrete computation can be identified by appending the re-

maining events from the incomplete action executions as well as the message

transmission events for the messages in the incoming queue of any channel. For

the second requirement, if the amount of time described by a timer advance

is greater than the duration of the execution of an action, it is reasonable to

assume that the processes execute each enabled action without delays. As a

result, the protocol spends most of its running time waiting.

64

4.6 Equivalent computations

Let P be a protocol specified in TAP, PA be a finite abstract computation of

P , and PC be a whole concrete computation of P .

The two computations PA and PC are equivalent if and only if:

1. The final state of PA is equivalent to the final state of PC .

2. The sequence of actions and faults executed in PA is the same as the

sequence of actions and faults executed in PC .

Since actions in the concrete execution model are not atomic, for an ac-

tion to be executed in PC means that the events making up the execution

of the action are executed in sequence in PC .

The two requirements indicate that equivalent computations end equiv-

alently, and in the process of execution behave equivalently.

4.7 Proof of equivalence

In order to demonstrate that the abstract execution model and the concrete

execution model are equivalent, we will prove that the models satisfy the

following two conditions for any protocol P specified in TAP that satisfies the

conditions we have described:

1. Implementation consistency: For any whole concrete computation PC ,

there exists an equivalent finite abstract computation PA.

2. Implementation completeness: For any finite abstract computation PA,

there exists an equivalent finite concrete computation PC . (It will turn

out that PC is whole.)

65

Figure 4.1 presents a graphical representation of the two conditions. The set

A is made up of finite abstract computations of protocol P and the set C is

made up of whole concrete computations of P .

A C

Implementation completeness

Implementation consistency

Figure 4.1: The execution model relationship. A is the set of finite
abstract computations of protocol P specified in TAP and C is the
set of whole concrete computations for P .

In the next section, we prove that the implementation consistency con-

dition holds, and in the following section we prove that the implementation

completeness condition holds.

4.8 Implementation consistency

In this section, we demonstrate that the implementation consistency condition

holds by transforming the whole concrete computation PC of a protocol P

specified in TAP into an equivalent concrete computation P ′
C of P , which is

itself equivalent to an abstract computation PA of P . P ′
C is constructed from

PC by serialization and reordering.

66

4.8.1 Event serialization

The computation PC of a process P specified in TAP consists of a sequence

of transitions, where each transition is a step made up of one or more events.

The first transformation serializes each step of PC , resulting in a computation

consisting of a sequence of transitions made up of single events. Fortunately,

this transformation is possible because simultaneous events in the concrete

execution model are independent.

Theorem 1 Any two events that occur in the same step of a concrete compu-

tation of a protocol are independent.

Proof

Let e1 and e2 be two events that occur in the same step of PC .

• If e1 is an event in the execution of an action, e2 must not be an event in

the execution of an action from the same process by the process execu-

tion condition described on page 50, Rule 1. Since the execution model

does not allow shared variables, they cannot observe or modify the same

variables, time variables, or execution pointer.

• If e1 is an event operating on a message, e2 cannot operate on the same

message, by the message operations condition, Rule 4.

• If e1 is a message transmission, e2 cannot also be a transmission on the

same channel, by the message transmission condition, Rule 5.

Therefore, e1 and e2 cannot observe or modify the same variables, time vari-

ables, execution pointers, or messages, and e1 and e2 are independent.

67

Given that any two events in the same step are independent, a step

consisting of more than one event can be transformed into a sequence of steps.

cs ct

cs cs′ ct

e1, e2, ..., en

1 step

e1 e2, ..., en

2 steps

becomes

Figure 4.2: The serialization transformation.

Theorem 2 (Serialization) A step consisting of n simultaneous events,

where n > 1, can be converted to a sequence of two steps, the first consist-

ing of one event and the second consisting of n − 1 events, such that if the

original step starts at state cs and yields state ct, and if the sequence starts

at state cs, then the sequence will also yield state ct. (See Figure 4.2.)

Proof

Consider two transitions:

• A concrete transition made up of a step consisting of events e1, e2, ...en

beginning in cs and ending in ct, and

• A sequence of two transitions beginning in cs, the first transition made

up of a step consisting of e1 and ending in cs′, and the second transition

beginning in cs′ and made up of a step consisting of e2, ...en and ending

in ct′.

By Theorem 1, e1 must be independent of all of e2...en. Therefore, all of

the extents of e2...en remain unchanged from cs to cs′ in the sequence and

68

the extent of e1 remains unchanged from cs′ to ct′ in the sequence by e2...en.

Therefore, ct′ is equivalent to ct.

Let P s
C be the concrete computation constructed by repeatedly serial-

izing the transitions in PC , such that all transitions in P s
C consist of steps of a

single event.

1. Since the serialization transformation only introduces states, all of the

states in PC occur in P s
C in order, although they may be separated by

intermediate states.

2. All of the events in PC occur in P s
C , and those events which are not

simultaneous in PC occur in the same order.

3. For all of the events in any transition of PC , the extent of the event is

equal to the extent of the same event in P s
C .

For the remainder of this chapter, we consider only this serialized com-

putation P s
C .

4.8.2 Event reordering

The serialized concrete computation P s
C consists of a sequence of transitions

made up of single-event steps, where the events from the execution of an action

in one process can be interleaved with the events from the execution of actions

from other processes and with faults. The second transformation reorders the

steps of P s
C to produce an equivalent computation which is itself equivalent to

an abstract computation.

69

A serialized concrete computation is uninterrupted if the following con-

ditions hold:

1. Abstract action atomicity. All steps with events in the execution of

an action (Events 1, 2, 3, 4, 5, and 6) are not separated by any steps

with events from the execution of any other action, faults (Event 7), or

timer advances (Event 9).

2. Abstract message transmission. Every event sending a message

(Event 4) is immediately followed by the message transmission event

(Event 8) for that message.

3. Abstract timer advance. The timer advance event reducing a time

variable to zero occurs only in a hub state where all other actions are

disabled.

The goal of reordering is to construct an uninterrupted concrete com-

putation P ′
C from a serialized concrete computation P s

C .

In order to transform the serialized computation P s
C into an uninter-

rupted computation P ′
C , the initial event in each action execution is held fixed

in the sequence and the remaining events in the execution of every action are

moved left to be sequential with the preceding events in the execution of the

action.

cs ct cu

cs ct′ cu

e1 e2

e2 e1

becomes

Figure 4.3: The reordering transformation.

70

Theorem 3 (Reordering) A sequence of two concrete transitions, each con-

sisting of a single event where the two events are independent, can be reordered

such that if the original sequence starts at state cs and yields state cu, and if

the new sequence starts at state cs, then the new sequence will also yield cu.

(See Figure 4.3.)

Proof

Let e1 be the event making up a transition beginning in cs and yielding ct,

and e2 be an event making up the transition beginning in ct and yielding cu.

If e1 is independent of e2, then the extent of e2 is unchanged by e1 from cs to

ct, and therefore it is possible to create a transition made up of e2 from cs to a

new state ct′. Since e1 is independent of e2, the extent of e1 remains unchanged

from cs to ct′ and therefore it is possible to create a second transition made up

of e1 from ct′ to a new state cu′. However, the extent of e2 remains unchanged

from ct′ to cu′, and therefore, cu′ is equivalent to cu.

The new sequence from cs to cu replaces the original sequence in the

computation. In order to use the reordering theorem, the events which are

independent must be identified.

Theorem 4 Events in an execution of an action (2, 3, 4, 5, and 6) are inde-

pendent of:

1. Prior events in the computation which are part of the execution of actions

in other processes.

2. Message transmission events unless the first event sends the message

which is transmitted.

71

3. Fault events unless the first event sends the message which suffers the

fault.

Proof

Let e1 be one of Events 2, 3, 4, 5, or 6 of an execution of an action in process

p.

1. Let e2 be one of Events 1, 2, 3, 4, 5, or 6 of an execution of an action in

process q, where p 6= q. The extent of e1 includes only variables of p, the

execution pointer of p, and time variables for actions of p, and messages

in the incoming queue of channels originating at p. Likewise, the extent

of e2 includes only variables of q, the execution pointer of q, and time

variables for actions of q, and message in the incoming queue of channels

originating at q, or in the outgoing queue of channels terminating at q.

Since these extents do not overlap, e1 and e2 are independent.

2. Let e2 be a message transmission event (Event 8) for a message m.

• If e1 is not a send event, then its extent does not include a message.

Therefore, e1 and e2 are independent.

• If e1 is a send event for a message m′ and m 6= m′, then since e1 and

e2 do not operate on the same message, e1 and e2 are independent.

As a result, e1 and e2 are independent.

72

3. Let e2 be a fault event (Event 7) on a message m. By reasoning similar

to the case above, e1 and e2 are independent.

Theorem 4 enables the construction of a concrete computation that

follows the abstract action atomicity condition from P s
C .

Theorem 5 A serialized concrete computation containing a transition made

up of an event from the execution of an action following another transition

made up of an event from the same execution of the action can be reordered

so that the second event immediately follows the first.

Proof

Let e1 and e2 be concrete transitions in P s
C that are part of a single execution

of an action, where e2 follows e1.

• e1 is one of Events 1, 2, 3, 4, 5, or 6.

• e2 is one of Events 2, 3, 4, 5, or 6.

If e1 and e2 are separated by other events, each of these intervening events

must be one of:

1. Events 1, 2, 3, 4, 5, or 6 in the execution of other processes. However, e2

can be reordered with such an event, because by Theorem 4, the events

are independent.

2. Fault events (7) or message transmission events (8) that do not involve

messages also involved in the transition being reordered. Again, by The-

orem 4, e2 can be reordered with such an event, since even if e2 sends a

message, it cannot be the one transmitted.

73

The intervening event cannot be a timer advance event (9), since timer advance

events are assumed to only occur in hub states and there is no hub state

between e1 and e2. Therefore, the computation can be reordered to make e1

and e2 immediately sequential.

In order to achieve the abstract message transmission condition, we

must demonstrate that reordering P s
C to follow the abstract message transmis-

sion condition is possible.

Theorem 6 A serialized concrete computation can be reordered so that a tran-

sition with a message transmission event immediately follows the transition

with the event sending the message, as long as send or message transmission

events involving messages in the same channel.

Proof

As described on page 52, any fault events involving a message only occur

after the message is transmitted from the incoming queue of the channel to

the outgoing queue. Likewise, the action choice event removing the message

from the channel occurs after the message is transmitted. Therefore, a message

transmission must be independent of any intervening events between the event

sending the message and the transmission event. By Theorem 3, the transi-

tion with the transmission event can be reordered with any such intervening

transition.

Following Theorem 5 and Theorem 6, it becomes possible to construct

the uninterrupted concrete computation.

74

Theorem 7 A serialized concrete computation P s
C can be converted into an

uninterrupted concrete computation.

Proof

The uninterrupted computation can be constructed by first noting that the

first transition in the computation is an action choice event, the first event in

the execution of an action, and then following the algorithm:

1. Reorder the computation so that the current action follows the abstract

action atomicity condition. (Theorem 5.)

2. If the current action sends any messages, reorder the computation so

that this action follows the abstract message transmission condition. The

reordering must be done for each message sent by the action in the order

that the messages are sent, to preserve the order of the messages in the

channel. (Theorem 6.)

3. The state following the current action is a hub state. If there are no

further transitions in the computation, the uninterrupted computation

has been completed. If there are further transitions, the next transition

from this hub state is one of the following:

• A timer advance not setting the execution pointer of any process,

or a fault event. In this case, the next state is also a hub state;

continue with step 3 while examining the next transition.

• A timer advance setting the execution pointer of one or more pro-

cesses. In this case, reorder the computation so that each action

execution initiated by the timer advance follows the abstract atom-

75

icity and abstract message transmission conditions. Then, continue

with step 3 following the final transition in the last of the actions.

• An action choice event. In this case, continue with step 1.

Because the reorderings described by Theorem 5 and Theorem 6 do not alter

hub states, timer advance events are not involved in these reorderings. As a

result, timer advance events remain unaltered in the new computation and

because the original computation was whole, it therefore satisfies the abstract

timer advance condition.

The algorithm terminates, because it traverses the computation from

beginning to end, and when it does, the reordered computation is uninter-

rupted.

The uninterrupted computation P ′
C constructed by the steps above is

equivalent to an abstract computation.

Theorem 8 (Implementation consistency) For any whole concrete com-

putation of a protocol specified in TAP, there exists an equivalent finite abstract

computation of the protocol.

Proof

Let PC be a concrete computation of a protocol P specified in TAP and P ′
C

be an uninterrupted computation produced from PC by the steps above. P ′
C

is equivalent to some finite abstract computation PA because:

• The final state of PC is a hub state, which is preserved in P ′
C . This state

is equivalent to the final state of PA.

76

• An uninterrupted computation consists of a sequence of:

– Serial events representing the execution of an action followed by a

hub state.

– Fault transitions, followed by a hub state.

– Timer advance events, followed by either a hub state or the exe-

cution of an action. The timer advance events obey the same con-

ditions as the abstract timeout semantics; specifically, that actions

with timeout guards only become enabled when no other guard is

enabled and that all timeout actions with enabled guards are exe-

cuted before any non-timeout action which may become enabled.

As a result, the sequence of actions and faults executed in P ′
C are the

same as that in PA.

4.9 Implementation completeness

As described previously, implementation completeness means that, for any

finite abstract computation of a protocol P , there exists an equivalent finite

concrete computation. The concrete computation is constructed using the

abstract computation as a model.

Theorem 9 For any finite abstract computation of a protocol specified in

TAP, there exists an equivalent finite concrete computation of the protocol.

77

Proof

Let PA be a finite abstract computation of a protocol P specified in TAP.

Construct PC from PA by doing the following:

1. Begin with a sequence of concrete hub states, where each hub state in

the sequence is equivalent to the corresponding abstract state in PA.

2. Between each pair of hub states corresponding to an action execution

abstract transition, insert a sequence of concrete transitions consisting

of single events corresponding to the execution of the action.

3. Immediately following each send event, insert a message transmission

event for the message.

4. Insert a concrete transition consisting of an error event between each

pair of hub states corresponding to an abstract fault.

5. Immediately prior to the execution of an event choosing a timeout action,

insert a number of steps consisting of timer advance events equal to the

value of the time variable associated with the action.

The resulting PC is equivalent to PA, since

• By the first step, the final state of PC is equivalent to the final state of

PA.

• By the second and fourth steps, the sequence of action executions and

faults in PC is the same as the sequence in PA.

Also, the resulting PC is a valid concrete computation of P , since every pair of

successive states is a concrete transition—the second and fourth steps fill the

78

transitions between all of the hub states and the third and fifth steps ensure

that the correct actions are enabled at the next hub state.

4.10 Related work

The proofs in this chapter (and the next) have antecedents, especially in con-

sidering the atomicity of distributed systems.

Sivilotti[65] describes conditions under which sections of code can be

considered atomic, simplifying reasoning about distributed systems:

Any computation in a synchronization system is a refinement of

an atomic computation if that synchronization system has enabled-

stable [the execution of a send in a different process does not disable

an enabled receive] and send-monotonic receives [when swapped

with a prior send, a receive returns the same or a stronger result

if it returns anything], as well as commuting sends [two sends in

different processes can be exchanged in any computation with no

effect].

Further, message passing systems such as those described here in the concrete

model satisfy those conditions if the “message-passing layer [has] arbitrary but

finite delay [that] can be modeled as another process in the computation that

is responsible for shuttling messages from origin to destination.” As will be

seen in the next chapter, the fairness condition of the concrete model ensures

that a message can experience only a finite delay.

Lipton[49] proved a theorem concerning combining atomic operations to

79

demonstrate partial correctness and deadlock-freedom properties, using com-

mutivity relations between atomic actions in a manner that appears to be

similar to that of this chapter.

Lamport and Schneider[48] and Lamport[46] also discuss the demon-

stration of safety properties for a program if the properties hold for a coarser-

grained but otherwise similar program. However, the relationship between

Lamport’s work and the two models described here is clearer in the latter.

In that paper, Lamport characterizes the relationship between a distributed

algorithm A (analogous to a protocol executed in the concrete model) and a

reduced version of the same algorithm, Â (analogous to a protocol executed

in the abstract model), in which “an entire operation is a single atomic action

and message transmission is instantaneous.” The conditions Lamport gives

for this reduction to hold are satisfied by the abstract and concrete models,

along with the protocol style assumptions in Chapter 2.

By satisfying the conditions of the previous work, any results due to

those theorems apply to the relationship between the abstract and concrete

models. In fact, the proofs in this chapter and the next could be considered to

be corollaries of the previous theorems, although corollaries limited to the TAP

asynchronous message-passing system. However, the proofs in this chapter and

the next go further by asserting an equivalence between the two models. This

equivalence is not limited to properties relying on atomicity, and relates the

models in both directions.

80

Chapter 5

Preserving Fairness

The previous chapter dealt with the equivalence of the two models of execution

based on finite computations. This equivalence indicates that the two models

are strongly related. However, one aspect of the two models that was not

dealt with by the previous chapter is fairness, since fairness does not apply

to finite computations. This chapter describes the relationship between global

and local fairness for infinite computations.

Because in both models fairness is described in terms of action execu-

tions, this chapter will deal with a simplified version of the concrete model

which is identical to the abstract model except for the local fairness condi-

tion. As a result, all states described are abstract states, and the events of

the concrete model are not mentioned. Also, since the abstract model does

not feature delayed message propagation, local fairness is projected into the

abstract model by removing the condition requiring eventual message trans-

mission. Similar arguments can be made in the concrete model by constructing

a projection of global fairness, but the proofs would be more complex.

81

5.1 Global fairness

An infinite abstract computation is globally fair if, when an action in any

process becomes enabled in a state asi, then the computation has a subsequent

state asj, j ≥ i, where that action is either disabled or executed.

5.2 Local fairness

An infinite abstract computation is locally fair if, when an action in process

p is enabled in a state asi, then the computation has a subsequent state asj,

j ≥ i, where that action is either disabled or executed.

Global fairness differs from local fairness in that the former is property

of the global computation while the latter is a property of each process in a

computation.

5.3 Proof of fairness equivalence

The proof that global and local fairness are equivalent is presented in two steps:

first, that global fairness implies local fairness for abstract computations, and

second, that local fairness implies global fairness for abstract computations.

Theorem 10 Any globally fair abstract computation is locally fair.

Proof

Let PG be a globally fair abstract computation of protocol P specified in TAP,

p be a process in P , and p.l be an action of p that is enabled in state asi of PG.

82

By global fairness, there is a state asj, j ≥ i, where p.l is disabled or executed.

In either case, PG satisfies the conditions for local fairness.

Theorem 11 Any locally fair abstract computation is globally fair.

Proof

Let PL be a locally fair computation of protocol P specified in TAP, p be a

process in P , and p.l be an action of p that is enabled in state asi of PL. By

local fairness, there is a state asj, j ≥ i, where p.l is disabled or executed.

Therefore, PL satisfies the conditions for global fairness.

5.4 Fairness and the Austin Protocol Com-

piler

As described previously, local fairness is a property of each process in a com-

putation. As a result, assuming the statements in each action of the process

are well behaved as described in Chapter 2, it is possible for the compiler and

runtime environment to ensure local fairness for individual processes while

a guarantee of global fairness would be impractical. Specifically, as long as

each action execution terminates, the APC system will ensure that an action

which becomes enabled will not be ignored forever; it will eventually either be

executed or become disabled.

Early versions of the Austin Protocol Compiler did not make this guar-

antee, as they used a different algorithm for choosing actions to attempt to

83

execute. The necessity of the guarantee did not become clear until attempting

to create the proofs in this chapter—the original proofs were more complex

and made significant requirements of protocols in order to preserve fairness—

and the implementation of the guarantee required changes in the compiler and

the runtime system. It is interesting to note that the subsequent algorithm for

choosing actions is much simpler than the original; the changes brought on to

improve the fairness qualities also improved the implementation.

A similar situation also occurred regarding the timeout semantics de-

scribed in Chapter 3. The early versions of the APC system allowed multiple

time variables for each timeout action. The proofs in the previous chapter, as

well as the realization that the current approach made many protocols sim-

pler, brought on a change to a single time variable per timeout action, and the

implementation of that change improved the compiler and runtime system.

The next chapter contains a detailed examination of the current APC

system.

84

Chapter 6

The Austin Protocol Compiler

The final piece of the protocol development puzzle is the Austin Protocol

Compiler, or APC, which can transform a process described in TAP into ex-

ecutable code in C. In use, the philosophy behind APC is similar to that of

yacc—to provide a simple, flexible interface to complex underlying techniques.

Within this philosophy, a protocol specification is written in TAP, based on

the abstract execution model. APC then translates that specification into an

executable system, based on the concrete execution model.

The most important requirement for APC is to correctly implement the

concrete execution model of the TAP notation. Some parts of this requirement

are necessarily assumptions made about the execution environment and others

are implemented by the systems on which APC is based, but the major com-

ponent of the requirement must be dealt with by the APC implementation.

Additionally, there are two further goals for APC:

• Integration with the C systems programming language. TAP, the lan-

guage provided by APC, is necessarily simple and by design does not

85

Austin Protocol Compilerfilename.ap
filename.h

filename.c

Figure 6.1: The Austin Protocol Compiler

contain many features necessary to a general-purpose programming lan-

guage. Rather than extending this language, APC provides for protocols

to call arbitrary C functions, allowing file input/output, cryptography,

database and buffer management, and other tasks to be handled in the

manner best suited for each of them.

• Simplicity of implementation. Before APC can meet any other goals,

its correct operation must be assured. By keeping the implementation

simple and the compiler’s output understandable, this assurance can be

validated.

APC generates portable C code as shown in Figure 6.1. The file con-

taining the TAP source is filename.ap, the file filename.c contains function

definitions, and the file filename.h contains the data structure definitions and

function prototypes.

The generated code is intended to be readable and uses meaningful

identifiers based on the original TAP source. This choice does have a disad-

vantage in that the identifiers may conflict with those used elsewhere by the

programmer, however it provides the advantage of allowing the generated code

to be compared with the original source.

Error handling in APC is currently somewhat primitive, with some

errors only identified by the C compiler. Fortunately, the readability of the

generated code and the structural similarity of the code to the original source

86

make these errors significantly easier to locate.

The APC runtime library is built on top of a base network protocol,

which provides services for sending and receiving messages. The base network

protocol is limited to UDP in the current version. In turn, the APC-generated

code interfaces with other systems for specific functionality within the control

structure of the protocol.

The Austin Protocol Compiler software is available from the Austin

Protocol Compiler home page1 in the APC package.

The remainder of this chapter discusses the architecture of the Austin

Protocol Compiler, the programming interfaces provided by the compiler-

generated code and the runtime library, and the details of the runtime library

itself.

6.1 Architecture of the compiler

The compiler is implemented in approximately 1500 lines of Python plus a

500 line grammar specification using Flex and Bison and a 1000 line C/Python

interface between the parser and the Python code.2 The overall architecture of

the compiler is shown in Figure 6.2. The Python components of the compiler

are written in an object-oriented fashion, with the primary classes being nodes

of the abstract syntax tree. The AST is instantiated by a function, the AST

node generator of Figure 6.2, called from the parser. The generic AST nodes,

called the Generic AST in Figure 6.2, are instances of classes for tokens and

symbols. These instances provide access to the information from the parse

1http://www.cs.utexas.edu/users/mcguire/software/apc/
2This interface, made up of two components called FlexModule and BisonModule, is a

separate, generic package.

87

http://www.cs.utexas.edu/users/mcguire/software/apc/

Generic AST

C-specific AST

AST node generator

Flex/Bison parser

filename.c

filename.h

filename.ap

Austin Protocol Compiler

Python
C

Figure 6.2: Architecture of APC.

tree such as identifier names, numeric values, and sub-trees. The base module

containing the AST generator and the generic AST classes also provides the

interface to call the parser on a file, as well as syntax and other error handling.

A second module provides C code generation. This module consists of

subclasses of the generic AST node classes, shown as the C-specific AST in

Figure 6.2. These subclasses provide methods to the generate C code from

their corresponding elements of the abstract syntax of TAP.

The compiler design is simple, compact, and provides the ability to fur-

ther extend the C code generator or to replace it with other output generators.

The code generated by the compiler is made up of two major pieces:

message handling and TAP processes.

6.1.1 Message handling

In the generated C code, messages are represented by three components:

1. A data structure named after the message, describing the message’s fields

for use in the process’ actions. The data structure contains one record

per field with the type of each record based on the type of the field: a

88

bit-sized, integer field results in a long integer record, and a byte-sized,

data field results in a unsigned character pointer record.

2. A function allowing an action to recognize and parse a message when

it is received. The message reader function converts integer fields from

network byte order to host byte order, checks that constant fields have

an appropriate value, and assigns to each character pointer record the

matching location in the incoming message. The reader function returns

true if the message being parsed is recognized, according to its size and

the value of constant fields, and false otherwise.

3. A function enabling an action to store the message an a buffer for trans-

mission. The message writer function converts integer records to network

byte order and copies their value as well as the data pointed to by char-

acter pointer records to a temporary buffer for transmission.

The message definition notation is intended primarily to support the

message formats used by common Internet protocols, specifically the “box” di-

agrams common in RFCs. Neither the message definition notation of TAP nor

the code generated is intended to handle every possible format for messages.

For messages which cannot be handled in TAP, the message definition can be

declared “external” in the TAP source. In this case, the two functions are not

generated and must be provided by the programmer. By hand-generating the

two functions, messages that do not match the formats of the notation can be

accommodated.

89

6.1.2 TAP processes

A TAP process is also represented in the C code by three components:

1. A pair of data structures, called the state data structure and the tag

data structure, with the state data structure containing the process’s

state and the tag data structure containing information describing the

process;

2. A pair of initialization functions, the first setting up the state data struc-

ture and the second setting up the tag data structure of the process; and

3. A set of action functions, with one function per action in the process;

Process data structures. The state data structure contains records for

each of the process’s constants and variables. The fields are referenced by

the code of the process’s actions. Fields in the structure are either unsigned

integers, abstract addresses, or arrays of one of those basic types.

The tag data structure has a generic prefix common to all processes,

allowing the protocol runtime system to interact with the process. The tag

data structure contains records holding:

• A text string naming the process,

• A reference to the state data structure for the process,

• Lists of action function records for actions with local and receive guards,

• A list of time variables used by timeout guards in the process, along with

the function implementing the action, and

90

• A buffer for messages sent locally between processes executing within

the same runtime system,

Process initialization. Each process uses two initialization functions, one

for each of the two data structures. The first sets the records of the state data

structure with the initial value of the process’s variables and constants.

The second function sets up the tag data structure, including calling

the function to initialize the state data structure, setting up the local message

buffer and the records for the process’s action functions and time variables.

Additionally, this function prepares the information needed to assign values to

abstract addresses which are part of the process’s state. Finally, this function

informs the APC runtime system about the process.

As described previously, there is no way to specify a value for an address

variable or constant from within TAP, and the address variables and constants

are translated into state data structure records containing abstract addresses.

One way that a variable address acquires a value is when used in a receive

guard—the process of recognizing the message sets the variable to the address

of the message’s sender. On the other hand, it is necessary to identify a remote

process in order to begin to communicate with it. Many address variables or

constants need to be initially assigned an address, either for the base network

protocol or for local communication. As part of the process structure initial-

ization, the generated code registers with the runtime system the identifier

used by the process for each of its addresses as a text string. This identifier

is associated with the location of the address constant or variable in the pro-

cess’s state. Since the variables and constants can be arrays, the identifier

is additionally associated with the dimensions of the variable or constant—a

91

non-array simply has zero dimensions. This registration is used to identify the

address when it is assigned a value by external code, using functions provided

by the APC runtime system described on page 94.

Action functions. The actions of a process are translated to C functions.

The parameters of the functions depend on the type of the action guard,

although all action functions take the tag data structure of the process con-

taining the action as a parameter. Actions with local and timeout guards

produce functions with no other arguments while actions with receive guards

produce functions that also take a buffer containing the received message, the

message’s size, and the abstract address of the sender.

For local and receive guards, the action functions logically take the form

of a single C if statement. The translated guard of the action makes up the

condition of the statement, with local guards having a translated predicate,

and receive guards calling message parsing functions. The translated state-

ments of the action become the body of the if statement. Timeout guards

do not have any predicate associated with the guard and therefore the func-

tions for such actions do not have the overall conditional structure, but simply

contain the translated statements.

The integer returned value of the action function is used by the runtime

system to distinguish three possibilities:

• A returned value of zero indicates that the guard of the action was false.

In this case, the statements of the action function have not executed and

the state of the process has not changed.

• A returned value greater than zero indicates that the guard of the ac-

92

tion was true. In this case, the statements of the action function have

executed and the state of the process may have been changed.

• A returned value less than zero indicates that an unexpected error has

occurred. Such errors will terminate the runtime system.

The generated code is linked with a runtime system to produce the

executable protocol. The information provided by the compiler is used by the

runtime system to implement TAP’s concrete execution model.

6.2 APC runtime interfaces

Like yacc, the Austin Protocol Compiler generates a protocol implementa-

tion that is invoked from an external program and that in turn invokes other

external functions. The interfaces between the external program and the pro-

tocol implementation, and between the protocol implementation and external

functions are described by C functions and data structures. The next section

describes the interface between the external program and the protocol im-

plementation, and the following section describes the interface to code called

from TAP statements. Finally, the last section in this chapter describes the

interface between the runtime system and the functions recognizing incoming

messages and and buffering outgoing messages, as used by messages which are

declared “external.”

6.2.1 Initializing and executing the runtime system

Preparing to execute a TAP process is essentially a four step procedure:

93

1. The first step is to initialize the protocol engine, described on page 97,

and the base network protocol. The function used to do this with the

UDP base network protocol is:

UDP initialize engine(int port)

This function accepts a UDP port number on which to listen for incoming

messages.

2. The second step is to initialize each process that will execute within the

protocol engine, using a function generated by the compiler:

process p(char *process tag,

p state t *state,

p process t *process)

The p will be replaced by the name of the TAP process. The process tag

argument provides a text identifier for the local message-passing address

of the process, allowing more than one instance of a TAP process to be

executed within a single protocol engine while allowing another process

to send messages locally to this instance. The state and tag data struc-

tures are generated by the compiler, but must be allocated by the code

calling this function; the handling of these two arguments is described

on 91.

3. Since there is no way to initialize an address variable or constant in TAP,

the code invoking the protocol engine must do it, calling the following

function for each address variable or constant:

94

APC set address(APC process t process,

char *identifier,

APC address type t type,

char *address)

The process and the identifier arguments identify the address variable

or constant to be initialized; the identifier is the name of the address

variable or constant in the TAP process definition. If the actual ad-

dress is an element of an array, the identifier argument should also have

an array reference suffix describing the particular element to be initial-

ized: “addr[1]”, for example. The type argument indicates whether the

address is either:

• A base network protocol address, in which case the address argu-

ment should be a string describing the address according to the

convention of the base network protocol interface. For UDP, this

is “hostname:port number”, the remote host name or IP address

followed by the remote UDP port number separated by a colon, or

• A local address, in which case the address argument should match

the process tag of a local process, given in the process initialization

function.

4. The final step is to execute the protocol engine:

APC engine()

This function does not terminate unless the protocol engine reports an

error.

All of these functions may report errors via their returned values.

95

6.2.2 Invoking C functions from TAP

Because the protocol implementation generated by APC is embedded in C,

functions invoked by the protocol process’s statements are called as normal C

functions, with the following argument conventions:

• Integer values are passed as C long integers, and

• Data values, such as fields in messages, are passed as unsigned character

pointers.

Values may be passed as arguments to functions or may be returned by func-

tions, as described in the grammar on page 37.

6.2.3 Message functions

As described previously on page 89, messages may be declared to be external,

in which case the programmer must provide implementations of the functions

reading a newly received message and writing an outgoing message to a buffer.

The prototypes of these two functions, with m replaced by the name of the

message, are:

• read m(unsigned char *incoming, int in length, m *dest)

• write m(m *src, unsigned char *outgoing, int out length)

The dest and src arguments are pointers to the data structure describing the

message’s fields; this structure is always generated by the compiler and the type

of the structure is named after the message. The incoming, in length, outgoing,

and out length parameters describe the buffer containing the incoming message

or to which the outgoing message should be written.

96

6.3 Architecture of the runtime system

The runtime system is divided into three components:

• The abstract protocol engine and interface made up of approximately

1000 lines of C.

• The base network protocol interface, including sending and receiving

messages and managing address values. For the current version, the base

network protocol is limited to UDP and is made up of approximately

350 lines of C.

• The local message passing interface, interacting with TAP processes in

the same way as the base network protocol although only transferring

messages between processes executing in the same runtime engine. This

interface is made up of approximately 250 lines of C.

The core of the runtime system is the protocol engine, illustrated in

Figure 6.3. During the engine’s execution, it maintains the engine maintains

references to:

• The processes that are running within the engine,

• All of the local and receive action records, with pointers to the functions

implementing the actions and to the process containing each action, and

• All of the time variables associated with each timeout-guarded action in

the processes running in the engine.

The protocol engine supports the execution of multiple local processes by

maintaining the references to the action records without regard to the process

97

Receive action records of p

Local action records of p

Time variable records of p

Process p tag
APC protocol engine

Process p state

Local message interface

Base protocol (UDP)Base protocol (UDP)

Local message interface

Runtime library Generated code

Figure 6.3: APC runtime architecture. Each process has pointers
to its state structure and to its own action records. The protocol
engine has pointers to each process and to lists of all of the action
records.

containing the actions or time variables. For example, if multiple processes

are running within a single engine, when a base network protocol message is

received the receive action functions from all processes running in the engine

are allowed to try to parse it. The first action function which recognizes the

message executes the statements from its action, with the state for the process

supplied from the action record. After a message has been recognized and

handled, no further receive action functions are tried with the message.

6.4 Implementation of the concrete execution

model

The protocol engine described previously is designed to ensure the guarantees

of the TAP concrete execution model. The algorithm used by the engine

is shown in Figure 6.4. This algorithm ensures the following conditions of

98

1. Attempt to execute each local action function once.

2. If any process has messages waiting in its local buffer, attempt
to execute the process’s receive actions with each waiting mes-
sage.

3. Calculate a new delay value:

(a) If any local or receive action function executed in step 1
or 2, the new delay is zero;

(b) If there are outstanding time variables, the delay is the
time until the next time variable expires;

(c) Otherwise, the delay is unbounded, and the process will
wait until a message arrives from the base network pro-
tocol.

4. Wait for the delay to expire, if there is one, or for a message
to be received from the base network protocol.

5. If a message has been received, attempt to execute each pro-
cess’s receive action functions with the waiting message.

6. If the time variable delay has expired, execute the correspond-
ing timeout action function.

7. Return to step 1.

Figure 6.4: Algorithm of the APC protocol engine.

protocol execution that satisfy the concrete execution model from page 48:

1. The execution of the engine proceeds by invoking the functions imple-

menting the actions of each process serially. Each of the functions exe-

cutes atomically with respect to the other actions of the process contain-

ing it, ensuring that no two actions from the same process are executed

concurrently.

2. The action choice event of the concrete execution model is performed by

the protocol engine in steps 1, 2, 5, and 6, outside of the execution of

99

any action function. As a result, no action function can be executing

when another action is chosen for execution.

3. The compiler generates each action function to correctly implement the

statements of the body of the action, ensuring the proper execution of

each action.

4. Because message transmission is decoupled from the execution of each

action function, by the base network protocol and by the local message

interface, no two operations on the same message can be simultaneous.

5. Each action function is assumed to execute quickly, relative to the du-

ration of the timeout delay. As a result, the passage of time can be

assumed to occur in step 4, outside the execution of any action.

The assumptions concerning message delay and errors described on

pages 52 and 52 are based on the behavior of the base network protocol.

The UDP base protocol satisfies these conditions, and while the local message

transmission mechanism does not delay messages and should not suffer from

faults in the same way as the base network protocol, its behavior does not

contradict the assumptions.

The concrete model’s timeout behavior described on page 53 is likewise

based on the behavior of implemented protocol actions—each action function

is assumed to execute quickly, relative to the duration of the timeout delay.

As a result, the passage of time is assumed to occur entirely in step 4, and the

choice of executing an action with a timeout guard can be assumed to occur

in step 6.

100

Finally, the overall algorithm of Figure 6.4 enforces the local fairness

conditions described on page 53—no action in a process can be prevented from

executing indefinitely by the execution of other actions, since every action

function is invoked before any one is invoked again.

The algorithm of Figure 6.4 is also the source of the requirement for

protocol quiescence on page 25: if any local action becomes enabled, then it

must be executed or disabled before the process will wait again. The algorithm

makes it impossible for any process to wait when a local action is enabled.

The Austin Protocol Compiler and its runtime system implement the

guarantees made by the concrete execution model, and the concrete execution

model is equivalent to the abstract execution model. As a result, the behavior

of an implemented protocol will be the same as the behavior expected from

the protocol in the abstract model.

101

Chapter 7

Two examples

In order to validate the Austin Protocol Compiler, we took two protocols

described elsewhere, re-specified them in TAP, and completed the framework

needed to create prototype implementations of them. These two protocols

serve as both a sanity check on the behavior of an implementation produced

by APC and as functional examples of relatively complex protocols built using

APC.

The first protocol is the secret exchange protocol, which is intended to

securely change message integrity keys used between two network routers. This

protocol is the simpler of the two examples in this chapter and demonstrates

the basic functionality of APC. After describing the background of the secret

exchange protocol and presenting its TAP specification as well as the outside

code needed by it, two traces of its execution are presented, the first showing

the protocol executing normally and the second showing the behavior of the

protocol reacting to an attacking adversary.

The second protocol is the accelerated heartbeat protocol, which is used

to monitor the status of the processes involved in the protocol as well as the

102

network between the processes. This protocol is more complex since it dynam-

ically adjusts its timeout delays in response to message losses. After describing

its background and presenting its specification and code, three traces are pre-

sented, showing the protocol’s normal behavior, its response to a permanently

failed process, and its response to a temporary series of lost messages.

The specifications and code of both of these protocols are part of the

apc-examples package, available from the Austin Protocol Compiler home

page.1

7.1 The secret exchange protocol

Current TCP/IP networks are vulnerable to a number of security problems.

One class of security problems that is particularly difficult to handle is called

a denial-of-service attack, whose aim is to exhaust the resources of a network

or of a host, so that normal services provided by the network or the host are

reduced or denied. Two examples of denial-of-service attacks are:

• “Smurf” attacks[2], which use the ICMP Echo Request/Reply

messages[58] to attack a network host d. The attacker inserts an Echo

Request into the network with the source address forged to be the ad-

dress of d and with a destination address set to a multicast address for

every host on the network. Every host on the network receiving such a

request sends an Echo Reply message to d, flooding the network and d.2

• SYN attacks[1], which attack the TCP connection protocol of a network

1http://www.cs.utexas.edu/users/mcguire/software/apc/
2Hosts should not respond to ICMP messages sent to multicast addresses, but historically

this condition has not always been implemented correctly.

103

http://www.cs.utexas.edu/users/mcguire/software/apc/

host d. Normally, a TCP connection is opened by a three-way hand-

shake: a host c sending d a message with the SYN flag set, after which

d replies to c with a message having the SYN and ACK flags set, and

c completing the handshake with a message having an ACK flag set;

following the handshake, both hosts know that the connection has been

successfully created. When d receives the SYN message, it must reserve

resources for the new connection, and these resources are the target of

the attack; if many SYN messages are received in a short time, d will

run out of resources and be unable to open new connections until those

half-connections time out. In order to make the attack harder to defend

against, the attacker forges the source addresses of the SYN messages,

setting each to the address of a different host.

Denial-of-service attacks are difficult to defend against because there needs

to be no relationship between the attacker and the contents of the forged

messages constituting the attack. Other attacks, however, are possible using

similar techniques. In general, an attacker can insert forged messages, modify

existing messages, and replay old messages as part of an attack.

7.1.1 Hop integrity

In order to defend against these kinds of attacks, we introduced protocols to

provide hop integrity [28] for a network. A network provides hop integrity iff:

1. Whenever a router p receives a message m supposedly from an adjacent

router q, then p can determine whether m was modified by an attacker

after it was sent by q and before it was received by p.

104

2. Whenever p receives m supposedly from q, then p can determine whether

m is a copy of an earlier message received by p.

Hop integrity can be provided by two protocols for transferring data

messages between two routers: the weak integrity protocol and the strong

integrity protocol. The weak integrity protocol adds to each message a message

digest computed of the text of the message and a secret key shared between

the two routers, satisfying the first requirement of hop integrity. The strong

integrity protocol also adds sequence numbers (using “soft” state) to prevent

message replay and satisfy the second requirement of hop integrity.

An attacker attempting to modify a message between q and p will be

detected by the weak integrity protocol. An attacker attempting to replay a

message between q and p will be detected by the strong integrity protocol.

Finally, an attack made up of forged messages will also be detected, since

• If a forged message appears to have traveled through q, it will not contain

the correct message digest, and

• If forged messages appear to have come from a host on the subnetwork

between q and p, traditional ingress filtering[26] will detect the forgery.

7.1.2 Implementation of the secret exchange protocol

Both the weak integrity protocol and the strong integrity protocol make use

of a secret key shared between the two routers executing the processes of the

protocols. By design, the secret key should be changed often. Generating

and exchanging the secret key is the function of the secret exchange protocol.

One process of the secret exchange protocol, pe, is executed by the router p

105

process pe
const Rp : integer = 0;

Bq : integer = 0;
te : integer = 20000;
tr : integer = 1000;
qe : address

var sp : integer = 0;
sq : array [2] of integer = 0;
d, e : integer;
initialize : boolean = true

· · ·

Figure 7.1: The secret exchange protocol, part 1.

and is shown in Figure 7.1, Figure 7.2 and Figure 7.3. The other process,

qe, is executed by q and is defined symmetrically. Figure 7.4 defines the two

messages used by the secret exchange protocol.

The messages used by the protocol are a key change request and a key

change reply:

• The rqst message contains a one byte field for the message type and an

8 byte data field containing two 32 bit keys. The first key in the field

is the current key used for sending messages to p, and the second is the

newly generated key.

• The rply message contains a one byte type field and a single 32 bit data

field acknowledging the new key.

Process pe uses the following constants and variables:

• The constant Rp is the long-term private key of pe and the constant Bq

is the long-term public key of qe. The long-term keys of each process are

106

· · ·
begin

initialize → act sendrqst in 0; initialize := false
[] timeout sendrqst → sq[1] := NEWSCR();

rqst.e := NCR(Bq, 2, sq[0], sq[1]);
send rqst to qe;
log(“sent rqst (%d, %d)”, sq[0], sq[1]);
act resend in tr;
act sendrqst in te

[] rcv rqst from qe → d, e := DCR(Bq, 0, rqst.e), DCR(Bq, 1, rqst.e);
log(“received rqst (%d, %d)”, d, e);
if (sp = d) ∨ (sp = e) → sp := e;

reply.e := NCR(Bq, 1, sp);
send reply to qe;
log(“sent reply (%d)”, sp);

[] (sp 6= d) ∧ (sp 6= e) → log(“detect adversary: bad rqst”)
fi

· · ·

Figure 7.2: The secret exchange protocol, part 2.

inputs to the protocol, and should be set by the network administrator.

In the prototype described here, the values are arbitrary.

• The constant te is the interval between secret key changes. This interval

should be relatively short, on the order of a few minutes. The constant

tr is the timeout for retransmitting key change requests. This timeout

should be an upper bound on the round-trip delay between the two

routers, on the order of a few seconds.

• The constant qe is the address of the process qe.

• The variable sp is the secret key currently used when sending messages

to qe.

107

· · ·
[] rcv reply from qe → d := DCR(Rp, 0, reply.e);

log(“received reply (%d)”, d);
if sq[1] = d → sq[0] := sq[1]
[] sq[1] 6= d → log(“detect adversary: bad rply”)
fi

[] timeout resend → if sq[0] 6= sq[1] → rqst.e := NCR(Bq, 2, sq[0], sq[1]);
send rqst to qe;
log(“resent rqst (%d, %d)”, sq[0], sq[1]);
act resend in tr

[] sq[0] = sq[1] → skip
fi

end

Figure 7.3: The secret exchange protocol, part 3.

message rqst
begin

type : 8 bits = 1,
e : 8 bytes

end

message reply
begin

type : 8 bits = 2,
e : 4 bytes

end

Figure 7.4: Messages from the secret exchange protocol.

• The variable sq is an array containing the old and new secret keys used

when receiving messages from qe.

• The variables d and e are two temporary values.

• The variable initialize is a flag used to enable the action initializing the

process. This action, the first in process pe, is executed once when the

process begins and sets in motion the first key change.

Finally, pe uses the following C functions for encryption, decryption,

108

and generating keys. Since the implementation discussed here is a prototype,

simple encryption algorithms are used. These algorithms are not strong enough

for production use.

• NEWSCR generates and returns a new secret key. NEWSCR uses the

rand() C library function; a production implementation should use a

more secure random number generator.

unsigned long NEWSCR(void)

• NCR accepts at least two arguments, and encrypts the subsequent count

unsigned long arguments with key, returning the resulting buffer. NCR

uses simple XOR encryption; a production implementation should use a

much stronger algorithm.

char *NCR(unsigned long key, unsigned long count, ...)

• DCR decrypts the unsigned long value at offset of buffer using key. Like

NCR, DCR uses XOR encryption.

unsigned long DCR(unsigned long key,

unsigned long offset,

char *buffer)

• Finally, log announces important messages; the current version prints the

message to the process’ standard output. Other options include logging

the message remotely, using syslog, for example.

void log(char *message)

109

These C functions are implemented in two separate modules each made

up of a source file and a header file. The TAP file containing the definition

of pe has include directives which bring the header files into the generated C

code for the process.

For pe to change its secret sq, four steps need to be performed. Each

of these four steps is represented by an action in pe and qe:

1. First, pe generates a new key, sq[1], and encrypts the concatenation of

the old key, sq[0], and the new key using qe’s long-term public key, Bq.

The resulting request message is sent to qe. This step is handled by the

sendrqst timeout action in Figure 7.2.

2. Second, when qe receives the request message, it decrypts the contents

using its long-term private key, Rq, and obtains the old key and new

key. Then qe checks that its current sq equals the old key from the

request message, installs the new key as its current key, and sends a

reply message containing the encryption of the new key using pe’s long-

term public key Bp. This step is handled by the action guarded by “rcv

rqst” in Figure 7.2.

3. Third, pe waits until it receives a reply message from qe containing the

new key encrypted using Bp. This indicates that qe has accepted the

new key. This step is handled by the action guarded by “rcv rply” in

Figure 7.3.

4. If pe sends the request to qe but does not receive a reply for tr millisec-

onds, the request message or the reply message has been lost. In this

case, pe resends the request message to qe. This step is handled by the

110

pe state t state;
pe process t process;

log(”start”);
UDP initialize engine(atoi(argv[1]));
process pe(“pe”, &state, &process);
APC set address((APC process t) &process,

“qe”,
APC lowlevel address,
argv[2]);

APC engine();

Figure 7.5: C statements executing process pe. The program in
this example accepts two command line arguments. The first,
argv[1], is the numeric UDP port number on which process pe
should listen for messages. The second, argv[2], is the address of
process qe, including the hostname and port number.

resend timeout in Figure 7.3.

At all times, the secret key used for the integrity protocol message digest

for messages sent from p to q is sp. The secret key used for messages sent from

q to p is either sq[0] or sq[1]; sq[0] is normally used, but if the keys are in the

process of being changed, sq[1] may be necessary. The two integrity protocols

try the two keys in that order.

The definition for pe along with the definition of the rqst and rply

messages and the include directives for the C functions described previously

make up the source code of the protocol itself. Given the TAP source, the

Austin Protocol Compiler generates a C module, made up of a source file

and a header file, containing the translated code and data structures for the

protocol. This module is then combined with a program skeleton to create the

111

executable implementation.

Figure 7.1.2 presents the program skeleton, the code used to set up

and execute pe from the C main() function. The first argument to the pro-

gram, argv[1], is the UDP port number on which pe should listen for incoming

messages and the second argument, argv[2], has the hostname and UDP port

number of qe.

Since the reliability of the secret exchange protocol is paramount, it

has been verified[28], and the code generated by the compiler was compared

with the specification. As seen in Chapter 6, the Austin Protocol Compiler

maintains the guarantees necessary for the correctness of the protocol. As

a result, the execution of the protocol matches the expected behavior of the

specification, avoiding the intrinsic problems of network protocol development.

7.1.3 Behavior of the secret exchange protocol

apcc pe.ap
gcc -IAPC-runtime-directory -I../commona -g -O2 pe-main.c
gcc -IAPC-runtime-directory -I../common -g -O2 sep.cb

gcc -IAPC-runtime-directory -I../common -g -O2 pe.c
gcc -g -O2 -o key-exchange pe-main.o sep.o pe.o \

-LAPC-runtime-directory -lAPCc ../common/libcommon.a

aThe common library contains the log function.
bThe sep module contains the encryption functions.
cThe APC library contains the runtime engine.

Figure 7.6: Compiling the key exchange process.

The C code for the process described in Figure 7.1, Figure 7.2, Figure 7.3

and the messages in Figure 7.4 was generated and linked with a main() function

described in Figure 7.1.2 and the logging and encryption functions described

112

Log messages
Seconds pe qe
0.000000 start
0.000327 send rqst (0, 57606676)
1.001112 resend rqst (0, 57606676)a

1.259442 start
1.259777 recv rqst (0, 1899027511)b

1.259803 send reply (1899027511)
1.259838 send rqst (0, 1899027511)
1.259872 recv reply (1899027511)
2.001939 resend rqst (0, 57606676)
2.002043 recv rqst (0, 57606676)
2.002067 send reply (57606676)
2.002122 recv reply (57606676)
20.001195 send rqst (57606676, 1126385251)c

20.001308 recv rqst (57606676, 1126385251)
20.001334 send reply (1126385251)
20.001377 recv reply (1126385251)
21.260038 recv rqst (1899027511, 2004821925)
21.260101 send reply (2004821925)
21.260136 send rqst (1899027511, 2004821925)
21.260173 recv reply (2004821925)

aProcess qe sent its first request before pe was started.
bThis request matches the trace entry by pe at 1.259838 seconds; it

appears a context switch occurred between sending the message and call-
ing the log function. Misordered entries such as this appear several times
in this example.

cThis entry begins the first periodic key change.

Figure 7.7: Normal execution trace of the key exchange protocol.

previously as well as the APC runtime library. The sequence of commands

performing these steps is shown in Figure 7.6. The result was an executable

file called key-exchange, which was used to create the execution traces in

Figure 7.7 and Figure 7.8. In both traces, key-exchange was executed twice,

as processes pe and qe. Both processes executed on the same machine, to

ensure that the trace timestamps remained correct.

Figure 7.7 shows the beginning of an execution trace of the normal

113

Log messages
Seconds attacker pe
0.000000 start
· · ·
1.054219 start
· · ·
11.055430 send rqst attack (787824220, 2092571940)a

11.055562 recv rqst (1384642625, 13163321)b

11.055588 detect adversary: bad rqstc

· · ·
21.055868 send rply attack (1194734761)
21.056046 recv reply (1040998259)
21.056072 detect adversary: bad rplyd

aThis rqst contains the current key used by the integrity protocol be-
tween q and p, as a worst-case scenario, and new, randomly generated
key known by the attacker. It is not encrypted with the long-term keys
known to pe and qe.

bSince the wrong long-term key was used to encrypt the rqst, the
decrypted current key does not match what pe expects.

cThe attacker has been detected.
dAs above, since the wrong key was used to encrypt the forged rply, it

does not match what pe expects and the attacker is detected.

Figure 7.8: Execution trace of the key exchange protocol under attack.

behavior of the secret exchange protocol. Each line in the trace represents a

single line of output produced by the log function, with a timestamp of the

event at the left. Each request includes the old and new secrets, and each

reply identifies the new secrets being acknowledged.

Notice that requests to change secrets are generated approximately

20 seconds after the last secret change, and that message retransmissions are

sent after approximately 1 second. Both of these delays are specified in Fig-

ure 7.1, by the constant values of 20000 for te and 1000 for tr. The two

constants are used in activation statements in Figure 7.2 and Figure 7.3.

Figure 7.8 shows a partial execution trace of pe under attack. The

process labelled “attacker” simulates an attacking host located between q and

114

p. This attacking host does not know the long-term keys used between q and

p and is attempting to forge secret change requests and replies. In the two

attacks shown, the forgery was detected because the decrypted secrets did not

match what process pe was expecting.

While the correctness of the secret exchange protocol has been verified

and the implementation described here appears to function correctly, further

work is necessary. For example, experimentation with the implementation is

needed for the following extrinsic aspects of the secret exchange protocol:

• The proper values for the timeout delays, te and tr, of the protocol.

• The appropriate sizes for the encryption keys used by the protocol

and the appropriate encryption algorithms to use for NCR, DCR, and

NEWSCR.

These parameters depend on the security of the encryption algorithms as well

as their performance, particularly the message digest algorithm used by the

integrity protocols. The prototype of the secret exchange protocol created

with the Austin Protocol Compiler is a first step for these experiments.

115

7.2 The accelerated heartbeat protocol

A fundamental construct for tolerating faults in computer networks is a heart-

beat protocol. A heartbeat protocol allows processes in a network to peri-

odically exchange beat messages. As long as a process p keeps receiving beat

messages from a process q, p recognizes that q and the communication medium

from q to p are both up. If p does not receive any beat messages from q for a

long time, p recognizes that q has terminated or failed or that the communica-

tion medium from q to p has failed. In this case, p itself terminates. Therefore,

a heartbeat protocol ensures that if one or more processes in a program fail or

terminate, then every other process in the program terminates.

There are three contradictory objectives for a heartbeat protocol:

1. In order to reduce the overhead of the protocol, as few beat messages as

possible should be sent.

2. In order to increase protocol responsiveness, the detection delay (which

is the longest period that can pass after one process terminates and

before the heartbeat protocol causes all processes to terminate) should

be small.

3. In order to improve reliability, the probability of premature termination

(which is the probability that the heartbeat protocol causes all processes

to terminate due to the loss of beat messages and not due to the termi-

nation of a process or the permanent failure of the network) should be

small.

It is possible to make a compromise between the objectives and con-

struct a heartbeat protocol which is configurable for different requirements

116

and network conditions. This protocol is called the accelerated heartbeat

protocol[29]. It minimizes the protocol overhead while providing an acceptable

tradeoff between detection delay and the probability of premature termination.

Consider the case where the network that has only two processes, p[0]

and p[1]. The communication between p[0] and p[1] can be partitioned into

successive time periods. In each period, p[0] sends a beat message to p[1] then

waits to receive back a beat message from p[1]. The length of each period

depends on the events that occurred in the preceding period according to the

following three rules:

1. If in a period, p[0] sends a beat message to p[1] and receives a beat

message from p[1], then p[0] makes the length of the next period a large

value tmax (irrespective of the length of the current period). The value

of tmax is determined by the acceptable detection delay and by the

probability of premature termination.

2. If in a period, p[0] sends a beat message to p[1] but does not receive a

beat message from p[1], then p[0] makes the length of the next period

half that of the current period.

3. If the length of the next period ever becomes less than tmin, an upper

bound on the round trip delay for beat messages between p[0] and p[1],

then p[0] terminates and stops sending beat messages to p[1].

Rule 1 is adopted to ensure that when p[0] and p[1] and the commu-

nication medium between them are all up (a typical situation), the rate of

sending beat messages is kept small. Rules 2 and 3 are adopted so that when

p[0] suspects a failure or termination, p[0] tries to refute this suspicion several

117

times in a short span before it finally accepts its suspicion and terminates.

Thus, these two rules ensure that both the detection delay and the probability

of premature termination are kept small.

From these three rules, if p[0] does not receive any beat message for

a period of 2tmax, then p[0] terminates. Moreover, if p[1] does not receive

any beat message for a period of 3tmax − tmin (and so it does not send any

beat messages for the same period), then p[1] recognizes that p[0] has already

terminated and p[1] itself terminates.

To understand the period 3tmax− tmin, consider the following scenario:

1. p[0] sends and receives beat messages. The period is tmax .

2. The network fails; all further messages are lost.

3. After a period of tmax , p[0] sends a beat message.

4. After another period of tmax , p[0] has received no beat message. It sends

a beat message and makes the next period tmax/2.

5. p[0] continues to halve the period until it terminates.

The time between steps 1 and 3 is tmax , between steps 3 and 4 is tmax , and

between steps 4 and 5 is bounded by tmax− tmin. Thus, the period between

steps 1 and 5 is bounded by 3tmax− tmin.

The two-process heartbeat protocol can be extended to a protocol that

involves n + 1 processes, p[0] to p[n]. In this extended version of the accel-

erated heartbeat protocol, p[0] executes a acts as p[0] above, except that it

communicates with every other process. The communication between p[0] and

the processes p[i], 1 ≤ i ≤ n, can be partitioned into periods. In each pe-

riod, process p[0] sends a beat message to every p[i] process and then waits

118

to receive a beat message from every p[i] process. When p[0] receives a beat

message from any p[i], p[0] records this fact.

At the end of each period, process p[0] computes the length of the next

period as follows: First, p[0] computes the length of the next period for each

process p[i] as described previously. Second, p[0] selects the smallest delay to

be the length of the next period.

The analysis of how values for the acceptable detection delay, the prob-

ability that a beat message will be lost by a single error, and the upper bound

on the round trip delay combine to set the values of tmax and the probability

of premature termination is described elsewhere[29] for both the two process

and n process accelerated heartbeat protocol. The remainder of this section

discusses the implementation of a three-process accelerated heartbeat protocol.

7.2.1 Implementation of the accelerated heartbeat pro-

tocol

message beat
begin

type : 8 bits = 1,
id : 8 bits

end

Figure 7.9: Message definition for the accelerated heartbeat protocol.

The beat message exchanged by the processes of the accelerated heart-

beat protocol is defined in Figure 7.9. In this message, the type field indicates

a beat message and the id field provides a number identifying the p[1] and p[2]

to p[0].

119

process p0
const tmin : integer = 1000;

tmax : integer = 10000;
pn : array [2] of address

var rcvd : array [2] of boolean = true;
tm : array [2] of integer;
t : integer = 10000;
k : 0..2;
p : address;
initialize : boolean = true

begin
initialize → k := 0;

do k < 2 → tm[k], beat.id := tmax, k;
send beat to pn[k]; k := k + 1

od;
act tick in t;
initialize := false

· · ·

Figure 7.10: The accelerated heartbeat protocol, process p[0], part 1.

The first process definition in the protocol, p0, is the “root” process.

The definition of p0 is shown in Figure 7.10 and Figure 7.11. The second

process definition, pn, is executed twice, as the child processes p[1] and p[2].

The definition of pn is shown in Figure 7.12.

The definition of p0 in Figure 7.10 uses the following constants and

variables:

• The constant tmin is an upper bound on the round trip delay between

the process in the protocol, to be used as a lower bound on the timeout

delay for the heartbeat period. For this prototype implementation, this

constant is set to 1 second.

• The constant tmax is the normal period for sending beat messages. The

120

· · ·
[] timeout tick → log(“tick);

k := 0;
do k < 2 → if rcvd[k] → tm[k] := tmax

[] ¬rcvd[k] → tm[k] := tm[k] / 2
fi; k := k + 1

od;
if tm[0] <= tm[1] → t := tm[0]
[] tm[0] > tm[1] → t := tm[1]
fi;
if t < tmin → log(“exit”);

exit(2)
[] t ≥ tmin → k := 0;

do k < 2 → beat.id, rcvd[k] := k, false;
send beat to pn[k]; k := k + 1

od
fi;
act tick in t

[] rcv beat from p → log(“rcv beat(%d)”, beat.id);
rcvd[beat.id] := true

end

Figure 7.11: The accelerated heartbeat protocol, process p[0], part 2.

detection delay for failures is 3tmax. For this implementation, it is set

to 10 seconds.

• The constant pn is an array containing the addresses of the child pro-

cesses. Since this array is constant, the values of these addresses must be

set by the program using APC set address before executing the protocol

engine.

• The variable rcvd is an array of boolean values indicating whether a beat

message has been received from the corresponding child process in the

current round.

121

process pn
const tmin : integer = 1000;

tmax : integer = 10000;
p0 : address

var initialize : boolean = true
begin

initialize → act inactive in 3*tmax - tmin;
initialize := false

[] rcv beat from p0 → log(“rcv beat(%d)”, beat.id);
send beat to p0;
act inactive in 3*tmax - tmin

[] timeout inactive → log(“exit”);
exit (2)

end

Figure 7.12: The accelerated heartbeat protocol, process p[1] and p[2].

• The variable tm is an array containing the heartbeat period for the

protocol between p[0] and the corresponding child process.

• The variable t is The minimum value from tm, to be used as the delay

for the next round. Initially, t is set to tmax.

• The variables k and p are two temporary variables; k is used as an index

into the various arrays and p is used when receiving messages from a

child process.

• The variable initialize guards the first action of the process; it is initially

true but set to false after the first action is executed.

The first action of p0 in Figure 7.10, sends an initial beat message to the

children and sets up the delay for the first round. Each beat message contains

an id field which identifies the child process to which the message is sent.

122

The second action of p0 in Figure 7.11 computes the delay for the next

round according to the rules from page 117 and whether or not a beat message

has been received in the current round from each child. This action potentially

either:

• Terminates the program, if t < tmin, or

• Sends a new round of beat messages and activates the timeout for the

next round, if t ≥ tmin.

The third action of p0 in Figure 7.11 simply receives a beat message

from a child and marks the element of the rcvd array based on the id field in

the message.

The definition of pn in Figure 7.12 uses only a single initialize variable,

to enable the initial action which sets the initial delay after which pn will

execute the third action. The second action of pn receives the beat message

from p0, returns it, and resets the delay for the third action. The third action,

enabled only when pn has not received a beat message in the 3tmax − tmin

time period, terminates the process.

7.2.2 Behavior of the accelerated heartbeat protocol

The TAP processes described in Figure 7.10, Figure 7.11 and Figure 7.12 and

the message in Figure 7.9 were compiled and linked with driver programs, the

APC runtime library, and the logging function. The processes of the protocol

were executed on the same machine, in order to generate an accurate trace of

the activities of the processes. The behavior of the protocol when executed

normally is demonstrated in the trace in Figure 7.13. In this trace, beat

messages are exchanged every tmax milliseconds.

123

Log messages
Seconds p[0] p[1] p[2]
0.000000 start
0.961388 start
2.240651 start
2.241132 rcv beat(0)
2.241243 rcv beat(1)
2.241308 rcv beat(0)
2.241334 rcv beat(1)
12.242256 tick
12.242458 rcv beat(0)
12.242529 rcv beat(1)
12.242581 rcv beat(0)
12.242602 rcv beat(1)
22.242736 tick
22.242927 rcv beat(0)
22.242997 rcv beat(1)
22.243049 rcv beat(0)
22.243070 rcv beat(1)

Figure 7.13: Normal execution trace of 3-process accelerated heartbeat proto-
col.

More complex behavior from the accelerated heartbeat protocol is

shown in Figure 7.14. In this trace, p[1] was terminated after a few seconds

of execution and then restarted, allowing the heartbeat protocol to recover.

Process p[1] was down for approximately 13 seconds, missing two rounds.

Finally, Figure 7.15 shows the behavior of the accelerated heartbeat

protocol when p[1] permanently fails after a few seconds of execution. As

designed, p[0] terminates within 3tmax milliseconds or 30 seconds, and p[2]

terminates within a further 3tmax milliseconds after the final beat message is

sent.

One use of the accelerated heartbeat protocol is in monitoring existing

protocols which do not have flexible heartbeat mechanisms, as described in

Gouda and McGuire[30]. The system described in that paper uses a hand-

124

coded version of the accelerated heartbeat to monitor traffic over a TCP con-

nection with a minimal impact on the protocol using the TCP connection. An

earlier TAP specification of the accelerated heartbeat was integral in develop-

ing the hand-coded implementation.

125

Log messages
Seconds p[0] p[1] p[2]
0.000000 start
1.766863 start
2.564945 start
2.565327 rcv beat(1)
2.565401 rcv beat(1)
2.565553 rcv beat(0)
2.565611 rcv beat(0)
9.797133 terminatea

12.565980 tick
12.566285 rcv beat(1)
12.566341 rcv beat(1)
22.566407 tickb

22.566636 rcv beat(1)
22.566696 rcv beat(1)
22.847763 startc

27.566703 tickd

27.569405 rcv beat(0)e

27.569481 rcv beat(1)
27.569533 rcv beat(0)
27.569554 rcv beat(1)
30.070266 tickf

30.070464 rcv beat(0)
30.070530 rcv beat(1)
30.070582 rcv beat(0)
30.070603 rcv beat(1)
40.070759 tick
40.070970 rcv beat(0)
40.071043 rcv beat(1)
40.071095 rcv beat(0)
40.071116 rcv beat(1)g

ap[1] is terminated.
bp[0] discovers that p[1] is not responding and reduces next period to

5 seconds.
cp[1] is restarted, but after the beat message is lost.
dp[0] discovers that p[1] did not respond to the last round and reduces

the next period to 2.5 seconds.
ep[1] responds to the first beat message after restarting.
fp[0] discovers that p[1] is responding and sets next period to 10 sec-

onds.
gThe heartbeat has returned to normal.

Figure 7.14: Execution trace of accelerated heartbeat protocol with temporary
failure of p[1].

126

Log messages
Seconds p[0] p[1] p[2]
0.000000 start
1.045771 start
3.033189 start
3.033687 rcv beat(0)
3.033777 rcv beat(1)
3.033841 rcv beat(0)
3.033866 rcv beat(1)
13.034061 tick
13.034259 rcv beat(0)
13.034329 rcv beat(1)
13.034382 rcv beat(0)
13.034404 rcv beat(1)
13.412154 terminatea

23.034541 tick
23.034775 rcv beat(1)
23.034838 rcv beat(1)
33.035020 tickb

33.035239 rcv beat(1)
33.035300 rcv beat(1)
38.035266 tick
38.035482 rcv beat(1)
38.035542 rcv beat(1)
40.535881 tick
40.536090 rcv beat(1)
40.536152 rcv beat(1)
41.786962 tick
41.787040 exitc

69.536472 exitd

ap[1] terminated.
bp[0] discovers that p[1] is not responding and reduces the next period.
cp[0] terminated.
dp[2] terminated.

Figure 7.15: Execution trace of accelerated heartbeat protocol with permanent
failure of p[1].

127

Chapter 8

A DNS Server

The Domain Name System[52, 53, 4], or DNS, is a distributed database map-

ping hierarchical keys, or names, to extensible, generalized values, or resources.

The key features of the DNS are:

• The database is distributed among a large number of independently ad-

ministered servers. This is a reliability and scaling feature as well as

an administrative feature: the resources are replicated through several

servers as well as being partitioned between groups of servers, avoiding

any single point of failure for the DNS as a whole. Also, the admin-

istrative domain responsible for a given part of the data typically has

authority over the servers for that part of the data.

• The key space is organized heirarchically, in a tree structure proceeding

from an otherwise nameless root to top-level domains such as “edu,”

“com,” and the two-letter ISO country code domains, and thence to

second and lower-level domains such as “utexas” and “cs.utexas.” This

hierarchy roughly corresponds to the organizational and thus adminis-

128

trative structure of the data. Each name is made up of a sequence of

labels and uniquely identifies a node in the hierarchy by beginning at the

root and choosing a child node identified by the next label in the name.

• The values in the database are described by an extensible set of resource

records, with each kind of resource record containing information useful

for a different application. Each record is identified by a

class, such as IN, the Internet class; and a type such as A, which provides

an IPv4 address for the name of the node, or MX, which identifies the

name and preference value for an Internet e-mail server for the name.

DNS is primarily described in RFC1034[52] and RFC1035[53] although

extensions (particularly for security and internationalization) and new resource

records are described in a large number of further RFCs. For this chapter,

however, RFC1034 and RFC1035 are the only primary sources. In particular,

DNSSEC[25] is not covered.

According to RFC1034, the DNS consists of three components:

1. The tree-structured domain name space and the resource records for

data associated with the names. The name space is administratively

organized into zones, each consisting of a subtree of the name space.

The root of each zone subtree is a node associated with a SOA (Start

Of Authority) resource record and each zone contains the descendent

nodes down to, but not including, any lower-level nodes with another

SOA record. Since the descendent zones may be contained in a different

DNS server, the parent zone needs to have enough information, called

glue, for a client to contact the server for the child zone.

129

2. The name servers. A name server is a program holding information

about the domain name space. Name servers perform two different, but

related, roles:

• An authoritative name server contains complete information about

one or more zones, including all of the names in each zone, all of

the records for those names, and the glue needed by sub-zones. Au-

thoritative servers are divided into master servers and slave servers.

A master server contains, by definition, up to date authoritative in-

formation about a zone. A slave server, on the other hand, contains

authoritative information which may be out of date; slave servers

get their information about zones by means of a zone transfer from

the master server for the zone.

• A caching name server contains incomplete information about any

number of zones. For performance reasons, not every request for

DNS information should result in a request to an authoritative

server; since multiple requests are frequently made for the same

information, requests from DNS clients may be satisfied from a lo-

cal, caching server. To support caching, every record in a response

from a DNS server contains a time-to-live, or TTL, field describing

how long the record may be cached.

Some DNS server programs, such as the Berkeley Internet Name Domain,

or BIND, are capable of performing both roles at the same time, but such

usage is deprecated. Most other DNS server packages separate the two

roles into two different programs and even BIND recommends that the

two roles be separated into two hosts.

130

3. Resolvers. A resolver is a program which extracts information from

the DNS for a client. A resolver is typically a library function such as

gethostbyname called by a client program.

The DNS network protocol is very simple, normally consisting of a

request and response. One complication is CNAME records, which provide

aliases for domain names and which the server must follow in generating the

response. Another complication is that a DNS query has four possible re-

sponses:

• An authoritative response that the given name does not exist.

• An authoritative response that, although the name exists, no record of

the requested type for the given name exists.

• The resource record or records that were requested.

• A pointer to a sub-zone, indicating that, while the server is not capable

of answering the query, a server for the indicated sub-zone may be able

to.

The final possibility results in two possible further behaviors for the server:

• A server noting that it cannot answer a query may itself forward the

query to a server for the sub-zone. This behavior is called a recursive

query, and is the normal behavior for a caching server—it only responds

to a client with the final answer, which is one of the first three possibil-

ities.

• A server that cannot answer a query may respond with an indication

that it cannot do so. This response will include the glue information

131

needed by the requester to further track down the answer. This is the

normal behavior of a non-caching, authoritative server.

The DNS network protocol for TCP/IP networks is capable of using

two transport protocols, TCP or UDP. Typically, TCP is used only for large

messages that will not fit into a single UDP datagram. These large messages

are usually zone transfers; almost all other DNS requests and responses use

UDP.

While performance is not a key requirement for the DNS system, it is

a very important attribute for a DNS server, since the DNS is an important

part of the Internet infrastructure, the databases needed for some zones are

very large, and many servers must respond to a large volume of requests.[22,

37, 50, 40]

The remainder of this chapter presents an implementation of an author-

itative DNS server process, called aserv, based around a protocol specification

given in TAP. The specifications and code for this implementation is available

as part of the apdns package from the Austin Protocol Compiler home page.1

8.1 The authoritative DNS server

The TAP definition of a DNS query message is shown in Figure 8.1. The format

of a response message is the same, except the type field is set to 1. These

messages consist of two parts: a header and a body. In the TAP definition, all

but the last field make up the header part. Header fields are used as follows:

• The id field is a unique number identifying the request.

1http://www.cs.utexas.edu/users/mcguire/software/apc/

132

http://www.cs.utexas.edu/users/mcguire/software/apc/

message query
begin

id : 16 bits,
type : 1 bit = 0,
opcode : 4 bits,
aa : 1 bit,
tc : 1 bit,
rd : 1 bit,
ra : 1 bit,
z : 3 bits,
rcode : 4 bits,
qdcount : 16 bits,
ancount : 16 bits,
nscount : 16 bits,
arcount : 16 bits,
body : size - 12 bytes

end

Figure 8.1: A DNS query message. The DNS response message,
named “resp” in the TAP definition, is the same except that the
type field is a constant 1.

• The opcode field indicates the type of the query, normally a standard

query. Other options include an inverse query and a server status request,

neither of which are addressed here.

• The aa field is used in a response message, indicating that the server

responding is authoritative for the name in the query.

• The tc field is used in a response messages to indicate that the response

is too large to fit in the message and has been truncated.

• The rd field is set in the query message when the requester wants the

server to pursue the query recursively; a normal client might set this

while a caching server making a query might not.

133

• The ra field is used in a response message to indicate whether or not

the server is willing to recursively pursue queries; an authoritative server

may not be.

• The z field is reserved for future use and should be set to 0.

• The rcode field is used in a response message to indicate the results of

the query as follows:

0 No error condition.

1 The name server was unable to interpret the query.

2 The name server was unable to process this query due to a problem

with the name server.

3 The domain name referenced in the query does not exist.

4 The name server does not support the requested kind of query.

5 The name server refuses to perform the specified operation for pol-

icy reasons.

The remaining fields refer to sections in the message body and are discussed

later.

The body part of a DNS message, either a query or a response, is made

up of four sections:

• A query section containing the request being made. The query consists

of a name, a type and a class. The number of entries in the query section

is given by the qdcount field in the header; it is normally one. For query

messages, the remaining sections of the body are empty. For response

134

messages, the query section is copied over and the remaining sections

contain the response information.

• An answer section containing the resource records answering the query.

The ancount field of the header gives the number of records in the answer

section.

• An authority section containing NS (name server) resource records.

Some servers add these records to describe the authority for any an-

swer, which aids caching for future requests. However, the contents of

this section are only needed when the server is not capable of answering

the query and is not willing to pursue it recursively. The NS records are

part of the glue telling the requester where to go next. The nscount field

gives the number of records in this section.

• An additional information section. When the responding server cannot

answer the query and is returning glue information, it normally puts

address records into the additional information section. These address

records match the NS records in the authority section, and are also part

of the glue information telling the requester where to go next. The

arcount field gives the number of records in this section.

Common parts of the body sections of a DNS message are names. Since

DNS messages may contain many names or many copies of the same name (as

part of multiple resource records, for example), the names use a compression

scheme. Each name is made up of one or more labels, and in a message each

label is represented by a length byte followed by the corresponding number of

bytes making up the label. However, since each label is limited to 64 bytes,

135

the two high bits of the length must be zero. The compression scheme uses

these two bits differently: if instead the two high bits are one, the remaining

six bits of the length byte plus the next byte are taken as an offset in the

message. The label found at that offset, plus any following labels, are used as

the remainder of the current name.

Because the sizes and formats of the four body sections are variable,

they cannot be described in TAP. Instead, the body of the message must be

parsed by external C code during the processing of the message, as seen in

Figure 8.3.

Figure 8.2 and Figure 8.3 present the authoritative DNS server process,

aserv. This process has a single action, which receives a DNS query message.

Upon receiving the query, the action begins building a response by copying

fields from the query and setting the recursion available flag to zero and the

authoritative answer flag to one. Then it calls the C function parse query.

The parse query function checks the query for unsupported options such as a

zone transfer request or multiple query records in the query section, converts

the query to an internal form, and begins to prepare a response message by

storing the query record in the query section of the response buffer. Finally,

parse query returns a flag indicating whether the query message is valid or

not.

If the query is invalid, the response’s rcode field is set appropriately and

the remainder of the response is copied from the query message.

If the query is valid, the action in aserv calls the C function query da-

tabase, attempts to locate one or more records satisfying the query. Figure 8.4

presents the algorithm used by the query database function. The return value

of the query database function determines the contents of the response mes-

136

process aserv
var c : address;

fnd, invld : integer
begin

rcv query from c →
resp.id := query.id; resp.opcode := query.opcode;
resp.rd := query.rd; resp.ra := 0;
resp.aa := 1;
resp.qdcount := query.qdcount;
invld := parse query(query.qdcount, query.body);
if invld → resp.rcode := response code(); /* rcode = error code */

resp.ancount := query.ancount;
resp.nscount := query.nscount;
resp.arcount := query.arcount;
resp.tc := query.tc;
resp.body := query.body;
resp.size := query.size

[] ¬invld → ... /* See Figure 8.3. */
resp.tc := response oversize();
resp.body := response body();
resp.size := response size() + 12

fi;
send resp to c

end

Figure 8.2: The authoritative DNS server process, part 1.

sage:

• If query response returns 0, records matching the query have been found

and must be copied into the response buffer, as well as setting the re-

maining fields of the header such as ancount.

• If query response returns 1, records representing glue information must

be copied into the response buffer. In this case, however, the response is

not authoritative.

137

fnd := query database();
resp.rcode := response code(); /* either NXDOMAIN or NOERROR */
if fnd = 0 → resp.ancount := response ancount(); /* name and record found */

resp.nscount := response nscount();
resp.arcount := response arcount()

[] fnd = 1 → resp.aa := 0; /* response points to subdomain */
resp.ancount := response ancount();
resp.nscount := response nscount();
resp.arcount := response arcount()

[] fnd = 2 → resp.ancount := 0; /* rcode = NXDOMAIN: no name */
resp.nscount := 0;
resp.arcount := 0

[] fnd = 3 → resp.ancount := 0; /* rcode = NOERROR: no record */
resp.nscount := 0;
resp.arcount := 0

fi;

Figure 8.3: The authoritative DNS server process, part 2.

• If query response returns 2 or 3, no further records need to be copied

since the rcode field contains the distinguishing information.

The buffer containing the stored records for the response is returned by the

response body function.

Behind the parse query and query database functions lie almost all of

the complexity of the DNS server. This complexity comes from the difficulty

in parsing the query body, supporting the database, and generating the re-

sponse body. When managing this complexity, a key advantage of the Austin

Protocol Compiler design becomes vital: Since the compiler generates C code,

any tools available to C programs are also available when implementing pro-

tocols. In this case, the DNS server implementation uses the Flex and Bison

parser generator tools and the Boehm-Demers-Weiser conservative garbage

collector[12, 13]. Flex and Bison are used to parse the DNS database informa-

138

1. Locate resources records matching the name from the query.

2. If matching records are found,

(a) Select records matching the type and class of the query.

(b) If such records are found, save them to be stored in the
response. In this case, query database returns 0.

(c) If no such records are found, nothing will be stored in the
response and query database returns 1.

In either case, the rcode field of the response will indicate
success.

3. If no records matching the name from the query are found,

(a) Attempt to locate nameserver records for a sub-zone con-
taining the name from the query.

(b) If no suitable NS records are found, nothing will be stored
in the response and query database returns 2. The rcode
field of the response will be set to NXDOMAIN, indicating
no name exists.

(c) If an NS record is found, store it and the related glue
information for use in the response. In this case,
query database returns 3. The rcode field of the response
will indicate success.

Figure 8.4: Algorithm for query database.

tion, from the RFC1035-formatted master files. The garbage collector provides

memory management for the database and for DNS message handling.

The current implementation described here has a number of limitations.

In addition to not dealing with extensions to the basic DNS protocol, it also

uses a very simplistic database which limits the contents of the database to

a single zone, along with the glue needed for sub-zones. The database is

also inefficient for large domains. Also, no guarantees are made about the

correctness of the implementation—the specification is complex and not always

139

clear and this implementation has undergone only minimal interoperability

testing.

8.2 Implementation performance

As mentioned previously, the performance of a DNS server is important. In

order to analyze the performance of protocols implemented with the Austin

Protocol Compiler, we compared the implementation of the DNS server de-

scribed in this chapter with two other commonly used server implementations.

The Berkeley Internet Name Domain[39], or BIND, software is de facto

standard DNS software implementation. It includes a name resolver library

and tools for querying and administering the DNS as well as a DNS server. The

BIND DNS server, named, is capable of acting as both an authoritative server

and a caching server although the Internet Systems Consortium, the produc-

ers of BIND, recommend administratively separating the two functions. The

named server also implements essentially every option for the DNS protocols,

including supporting TCP connections, zone transfers, and the DNSSEC secu-

rity extensions. Finally, the database of DNS information stored by the named

server is kept in the server’s memory.

D. J. Bernstein produces djbdns[9], another DNS software implemen-

tation. In contrast to BIND, djbdns divides server functionality between a

number of programs, including an authoritative name server, tinydns, and

a caching name server, dnscache. An additional program, axfrdns, supports

TCP connections for zone transfers; tinydns, for example, only supports UDP

queries. The primary requirements for the djbdns software are correctness and

security; one result is that the database of DNS information is stored in the

140

server’s filesystem.

The server described in this chapter, aserv, shares some features with

both named and tinydns. Like named, it reads zone information from an

RFC1035-formatted master file and keeps the database in memory; djbdns

supplies another program which parses zone information from a configuration

file in a non-RFC1035 format and writes it to a binary database file used by

tinydns. On the other hand, aserv is designed to behave more like tinydns in

not handling zone transfers or a caching service.

We used BIND version 9.2.3, apdns version 0.9, and djbdns version 1.05

in these measurements. The client programs for each test are part of the

apdns package and use the Poslib[71] DNS library version 1.0.2. The default

optimization and code generation configurations were used for all packages.2

The server host is an AMD Athlon XP 2200+ running at 1800MHz

with 512MB of memory, using Linux kernel version 2.6.0. The client host for

the remote measurements is a 1333MHz Intel Celeron with 256MB of memory,

using Linux kernel version 2.4.18. Both machines were in single user mode dur-

ing the measurements, with only required system processes running. The two

machines are connected via a 100Mb/s ethernet, with a measured throughput

(via nttcp[6]) of 7.2MB/s.

Since the quality of the database is not relevant to the protocol imple-

2It is interesting to note that these measurements provide an extreme example of the
compatibility problems of network protocol development. The comparison is between three
unrelated implementations of the authoritative server process of the DNS protocol, made
using an implementation of the client process that is itself unrelated to any of the servers.
One of the servers, named, implements essentially every enhancement and extension made
since the original development of the DNS protocol; another, tinydns, only implements a
chosen, production-quality subset of them; and the third, aserv, does not implement any
and is not complete with regard to the features of the original DNS specification. Yet in
the end, all must work compatibly to make the measurements.

141

example.com. IN 86400 SOA a.example.com. hostmaster.example.com. (
2 ; Serial
10800 ; Refresh: 3 hours
3600 ; Retry: 1 hour
86400 ; Expire: 1 day
3600 ; Negative caching TTL: 1 hour)

example.com. IN 86400 NS a.example.com.
a.example.com. IN 86400 A 172.16.0.1
1.0.16.172.in-addr.arpa. IN 86400 PTR a.example.com.
b.example.com. IN 86400 A 172.16.0.2
2.0.16.172.in-addr.arpa. IN 86400 PTR b.example.com.
below.example.com. IN 1024 NS c.below.example.com.
c.below.example.com. IN 1024 A 172.16.0.3

Figure 8.5: Master file used by the BIND and apdns servers.

mentation, a small database containing only a few records was created for each

server. The master file used by BIND’s named and apdns’s aserv is shown in

Figure 8.5; an equivalent configuration was created for djbdns’s tinydns.

There are three components to a network protocol implementation’s

temporal performance:

1. Latency, or the time a single request or transfer takes,

2. Throughput, or the number of requests (or the amount of data trans-

ferred) that the implementation can handle in a unit time period, and

3. Overhead, or the processing time per request that the implementation

takes outside of that to directly satisfy the request.

These three components are clearly related; latency and throughput are ap-

proximately inverses. The overhead, however, alters that basic relationship.

For example, it is possible to optimize for reduced latency by moving compu-

142

tations that are needed by the protocol but unnecessary to a current request

outside of a “critical path” for the request. The result is an implementation

with improved latency but unchanged throughput (or perhaps worse through-

put, if shifting the overhead computation has costs). In any case, the three

components are separately important, since a protocol implementation should

be capable of responding to a request quickly, be capable of responding to a

large number of requests, and avoid consuming resources needed elsewhere by

the server.

8.2.1 Latency

Latency (µsec)
Remote

Miss rate aserv named tinydns
0% mean 354 398 399

std. dev. 74.4 47.9 45.4
25% mean 341 407 391

std. dev. 75.6 53.8 46.0
50% mean 341 402 394

std. dev. 72.7 45.2 64.2
Local

Miss rate aserv named tinydns
0% mean 98 187 109

std. dev. 73.9 14.7 8.3
25% mean 97 192 111

std. dev. 69.9 12.6 9.2
50% mean 92 188 108

std. dev. 64.9 14.7 11.6

Figure 8.6: DNS server request latency. A lower value is better.

The latency and throughput measurements were taken in two configu-

143

rations:

• A remote configuration with the DNS client processes executing on a

client host and the server executing on a server host and

• A local configuration with the client and the server both executing on

the server host.

The first configuration gives a view of the performance in a network setting

while the second removes the costs of network communication, which have a

tendency to conceal the differences between the systems.

The latency of DNS queries is measured by recording the start time,

making a query, waiting for a response, and reporting the length of the in-

terval between the start time and the completion time. The program which

performed this measurement reads 100,000 queries from a file sequentially.

Three input files were generated for the measurements:

1. A list containing only queries in the database; all of the queries matched

records in the server’s database.

2. A list with a 25% miss rate: 25% of the queries are not in the database,

with an even mix of missing domain names and missing records.

3. A list with a 50% miss rate.

Figure 8.2.1 shows the results of the latency measurements, including

the mean latency for the 100,000 queries and the standard deviation of the

latencies. Two features are clear: the aserv server has less consistency in its

latency, leading to the larger standard deviations, and the aserv has a lower

latency, although not significantly lower than tinydns.

144

The differences in latency are not necessarily meaningful; the aserv

server has less functionality than tinydns and much less than named, so the

comparison is not wholly valid. However, the performance of the Austin Pro-

tocol Compiler-generated server is not completely out of reach.

8.2.2 Throughput

1000

2000

3000

4000

5000

6000

1 2 3 4

Q
ue

ri
es

 p
er

 s
ec

on
d

Client processes

local aserv
local tinydns
local named

remote aserv
remote tinydns
remote named

Figure 8.7: DNS server request throughput. A higher value is
better.

The basic throughput measurements use a program which make 100,000

queries and reports the length of the interval between starting the queries and

completing them. Since there was only a minimal difference between the three

different database miss rates in the latency measurement, only the 0% miss

rate file was used for the throughput and overhead measurements.

Since each query requires a certain amount of turn-around time, while

145

the client is parsing the previous response and preparing the next query, the

basic throughput measurement does not adequately show the server through-

put. To close in on the potential throughput, several client processes were

executed simultaneously, making requests from the same server. The poten-

tial throughput is conceptually the asymptote of the curve described by the

throughput of the server as the number of client processes increases.

Figure 8.2.2 shows these curves, for both configurations of each of the

three servers. The remote configurations cluster at the bottom of the graph—

this shows the effects of the network communication costs in concealing the

difference between the servers. In both configurations, however, the BIND

named server has the lowest throughput; presumably because it is the largest,

most complex of the programs. The tinydns server and the aserv server are

again fairly close together, with a perhaps meaningless advantage to aserv.

8.2.3 Overhead

CPU time (sec)
User time System time Total

named 3.44 3.22 6.66
tinydns 1.52 3.43 4.95

aserv 1.19 2.09 3.28

Figure 8.8: DNS server CPU overhead. A lower value is better.

The final measurement is the overhead of the server, taken while the

server responds to 100,000 queries from the latency client in the remote con-

figuration. The measurements were taken using the program time, a tool to

summarize system resources usage. The two portions of the CPU overhead

146

are user time, showing the CPU time spent by the process itself, and system

time, showing CPU time spent by the operating system kernel on behalf of

the process—performing I/O, for example.

Again in this figure, aserv shows the lowest total cost as well as the

lowest independent system and user times. Again, this is presumably because

named is a large, complex program, while tinydns takes the approach of open-

ing, accessing, and closing its database file on each query—hence the larger

system time for it.

8.3 Performance of the Austin Protocol Com-

piler

The measurements in this chapter are not meant to attempt to show that

apdns’s aserv is in any way better than either named or tinydns. The aserv

implementation is deficient in many ways. However, the measurements do

demonstrate that the performance of an Austin Protocol Compiler-based sys-

tem is entirely reasonable.

Performance, measured as either throughput, latency, or overhead, has

not been a major driver for the design of the Austin Protocol Compiler. So far,

though, the performance of the simple implementation has been entirely ade-

quate. If performance does become a limiting factor, the design of the Austin

Protocol Compiler has some openings for possible performance improvement.

• In the current system, message recognition is integrated with message

parsing. The recognition/parsing process is attempted for each receive

action without favoring any action. However, it should be clear from the

147

discussion of the message handling functions on page 89 that message

recognition in the Austin Protocol Compiler is easily translatable to a

packet filter approach[74]. With a packet filter system built into the pro-

tocol engine, the runtime system could directly dispatch the appropriate

receive action.

• In a similar situation, the current system does not favor any action when

attempting to execute the local actions. An approach to limiting the

search for enabled local actions would be to have the compiler identify

two sets of variables for each action:

1. The set of variables used in the guard of the action. This set will

be empty for receive and timeout actions, but will be non-empty

for reasonable local actions. This set is called the guard set.

2. The set of variables possibly modified by statements of the action.

This set is called the watched set.

Using the guard and modified sets, it is possible to deduce the chaining

behavior of the process’s actions by finding the set of local actions which

may have been enabled by the execution of another the of actions.

Beginning in a state where all of the local actions are disabled, the only

possible step in the process is the receipt of a message or the expiration

of a timeout delay. Following one of those events, the runtime system

can maintain a set of possibly enabled local actions, called trial actions,

built from the watched set of the action handling the event and the guard

sets of the local actions. The trial actions would then be attempted in

turn. When a local action is attempted and found to be enabled, the

148

other local actions which may be chained from it are also added to the

trial actions. (An executed action must also be re-added to the set, since

it may not have disabled itself.) Actions are removed from the trial set

when they are attempted and found to be disabled. Although there are

degenerate cases, when implementing a reasonable protocol this scheme

should result in fewer attempted actions. For example, it correctly covers

the cases of the two examples from Chapter 7, where the initial action

is executed once and need never be examined again.

Both of these enhancements would introduce considerable complexity

into the Austin Protocol Compiler. So far, neither seems worthwhile, since

they address scaling issues in the protocol specification (the first for larger

numbers of receivable messages and the second for larger numbers of local

actions).

149

Chapter 9

Concluding Remarks

9.1 Summary

In Chapter 1, we identified three classes of problems that, in combination,

uniquely apply to network protocol development:

1. Intrinsic problems, made up of the problems of safety and liveness, errors

and security associated with any distributed or parallel program.

2. Extrinsic problems, made up of the problems presented by the environ-

ment of the network protocol, and

3. Compatibility problems, made up of the difficulties of protocol interop-

erability, protocol extensions, and future protocol enhancements.

In the intervening chapters, we presented the Timed Abstract Protocol

notation, a small, formal language intended for describing asynchronous, mes-

sage passing network protocols. We also presented two execution models for

TAP: an abstract execution model suited for protocol design, comprehension,

150

and verification, and a concrete execution model suited for easy implemen-

tation. We then argued that the two models are equivalent: that a protocol

under the concrete model preserves the intended behavior of the protocol given

under the abstract model.

The equivalence between the abstract execution model and the concrete

execution model yields two further points:

• The practice of using high-level abstractions to specify and verify network

protocols is entirely valid, as long as the abstractions can be preserved

by lower-level constructs.

• The practice of using low-level constructs to implement network pro-

tocols is also valid, as long as these constructs preserve the abstract

behavior of the protocl.

We also described the Austin Protocol Compiler, a system that trans-

forms a TAP specification of a protocol process into executable C code and

that provides an runtime environment for that code. We finally showed several

examples of protocols implemented using APC.

The final question is how the Timed Abstract Protocol notation and

Austin Protocol Compiler satisfy the three classes of problems from the first

chapter.

• TAP, under the abstract model, is a powerful tool for describing, com-

prehension, and verifying network protocols. As such, it is well suited

for handling the intrinsic problems, since such problems exist within the

protocol itself and are capable of being formally described.

• APC, in combination with TAP, is a powerful tool for implementing

151

network protocols. By allowing a protocol to be written, modified, and

made executable quickly and easily, TAP and APC allow extrinsic prob-

lems to be identified experimentally and allow various approaches for

handling them to be explored.

• TAP combined with APC is a powerful tool for specifying network pro-

tocols. By allowing the protocol to be understood in isolation from the

application around it and by easily providing a reference implementa-

tion, the combination eases interoperability problems. Also, since the

combination exposes the protocol as a separate entity, it better shows

openings for protocol extensions and enhancements.

9.2 Future research directions

The development of the Timed Abstract Protocol notation and the Austin

Protocol Compiler, as described here, is fundamentally complete. However, a

number of interesting questions remain open and a number of research avenues

are unexplored.

9.2.1 Enhancements

The Timed Abstract Protocol notation, along with the abstract and concrete

execution models, is quite effective at describing asynchronous, message pass-

ing network protocols. The limitations placed on the execution models, in

particular, support the development of most network protocols by limiting the

potential effects of faults to the most common problems.

However, a worthwhile direction for research is to investigate changes to

152

the language and to the abstract and concrete execution models to remove the

limitations described on page 55. There are many network protocols which

must tolerate some, if not all, of the extended errors. Also, security is an

increasing concern, and the handling of vulnerabilities is a vital consideration

of future protocols.

Some of these limitations do not appear to introduce significant difficul-

ties for the execution models. For example, unrecognized message faults and

the message-oriented security vulnerabilities do not introduce complications

into the execution models. Others, such as process termination and simple

process crashes do not appear to be greatly problematic on the surface. How-

ever, process crashes during the execution of an action, Byzantine failures,

process state modification and process replacement do appear to have signifi-

cant effects on the execution models. Finally, timing errors offer the potential

of significant disruptions to both the execution models and to the relationship

between them, if only because the timeout semantics are the most complex

portions of the models and the relationship.

What is needed is a precise definition of the effects of each additional

feature, in both execution models, and an investigation of the changes to the

models and the equivalence relationship needed to accommodate the feature.

9.2.2 Alternative compiler back ends

The Austin Protocol Compiler implementation currently produces portable C.

While it would be fairly trivial to create other modules to produce code in

different programming languages, more interesting alternatives involve gener-

ating code or specifications for special purposes:

153

• A model checker such as SPIN[34, 35], MurΦ[23], or TLC[47]. While

TAP provides strong assumptions in order to ease verification and finite-

state model checking has serious limits, model checkers have proved

useful[19]. An alternative back end that produces input for a model

checker would easily provide mechanical validation of some protocols.

Such a back end would also require changes to TAP, which currently

has no way of specifying the properties that the model checker should

validate.

• A network simulator such as ns[72]. Some properties of network proto-

cols, such as congestion behavior and interaction with other protocols,

are not easily amenable to verification. Frequently, these network pro-

tocols are also difficult or expensive to implement. In these instances, a

network simulator provides feedback to the protocol designer and con-

crete information to potential protocol implementors.

9.2.3 Alternative runtime systems

Currently, the only available basis network protocol is UDP. However, the im-

plementation separates the runtime library into the generic runtime engine and

support functions, and the basis network protocol interface. Providing addi-

tional basis network protocols, such as IP or any other asynchronous message-

passing protocol, would be a simple extension. The only major requirement is

that the protocol be supported by the BSD socket interface and this require-

ment could be removed with some work.

It would also be possible, although not necessarily as simple, to use

a non-message-passing protocol, such as the stream-oriented TCP, as a base

154

protocol. While we have not investigated the necessary changes, it is clear

that the message recognition approach would need to be modified since TCP

does not preserve message boundaries.

A third exciting possibility would be the use of APC in entirely different

environments, such as resource-constrained embedded systems like networked

sensors[33]. The constraints on these systems, both in terms of computation

and in terms of the network architecture created when the sensors are deployed

put most common network protocols out of reach. Yet the same constraints re-

quire more out from the network protocol used among the sensors and between

the sensors and a base station.

155

156

Bibliography

[1] CERT advisory CA-1996-21: TCP SYN flooding and IP spoofing

attacks, September 1996.

http://www.cert.org/advisories/CA-1996-21.html.

[2] CERT advisory CA-1998-01: Smurf IP denial-of-service attacks, January

1998. http://www.cert.org/advisories/CA-1998-01.html.

[3] Mark B. Abbot and Larry L. Peterson. A language-based approach to

protocol implementation. IEEE/ACM Transactions on Networking,

1(1), September 1993.

[4] Paul Albitz and Cricket Liu. DNS and BIND. O’Reilly and Associates,

fourth edition, 2001.

[5] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, Mark

Stemm, and Randy H. Katz. TCP behavior of a busy internet server:

Analysis and improvements. In INFOCOM (1), March 1998.

[6] Elmar Bartel. New TTCP program. http://www.leo.org/∼elmar/nttcp/,

March 2004.

[7] A. Basu, G. Morrisett, and T. von Eicken. Promela++: A language for

157

http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.leo.org/~elmar/nttcp/

constructing correct and efficient protocols. In Proceedings of the

Conference on Computer Communications (IEEE Infocom), San

Francisco, CA, March/April 1998.

[8] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen.

Hypertext transfer protocol – HTTP/1.0. Internet Engineering Task

Force RFC1945, May 1996.

[9] D. J. Bernstein. djbdns. http://cr.yp.to/djbdns.html, March 2004.

[10] Gérard Berry. The foundations of Esterel. In G. Plotkin, C. Stirling,

and M. Tofte, editors, Proof, Language and Interaction: Essays in

Honour of Robin Milner. MIT Press, 1998.

[11] Ken Birman, Robert Constable, Mark Hayden, Christopher Kreitz,

Ohad Rodeh, Robbert van Renesse, and Werner Vogels. The Horus and

Ensemble projects: Accomplishments and limitations. In Proceedings of

the DARPA Information Survivability Conference & Exposition

(DISCEX ’00), January 2000.

[12] H. Boehm and M. Weiser. Garbage collection in an uncooperative

environment. Software Practice and Experience, September 1988.

[13] Hans Boehm. A garbage collector for C and C++.

http://www.hpl.hp.com/personal/Hans Boehm/gc/, March 2004.

[14] Bob Braden, Ted Faber, and Mark Handley. From protocol stack to

protocol heap – role-based architecture (RBA). Presentation, ACM

HotNets I, October 2002. http://www.isi.edu/newarch/.

158

http://cr.yp.to/djbdns.html
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.isi.edu/newarch/

[15] R. T. Braden. Requirements for internet hosts—communication layers.

Internet Engineering Task Force RFC1122, October 1989.

[16] Robert Braden, Ted Faber, and Mark Handley. From protocol stack to

protocol heap—role-based architecture. In First Workshop on Hot

Topics in Networks, October 2002.

[17] Scott Bradner. The internet standards process — revision 3. Internet

Engineering Task Force RFC2026, October 1996.

[18] Claude Castelluccia, Walid Dabbous, and Sean O’Malley. Generating

efficient protocol code from an abstract specification. IEEE/ACM

Transactions on Networking, 5(4), 1997.

[19] S. Chandra, J. R. Larus, M. Dahlin, B. Richards, R. Y. Wang, and T. E.

Anderson. Experience with a language for writing coherence protocols.

In Proc. of the USENIX Conference on Domain-Specific Languages

(DSL), 1997.

[20] Satish Chandra, Brad Richards, and James R. Larus. Teapot: Language

support for writing memory coherence protocols. In Proceedings of the

SIGPLAN conference on Programming Language Design and

Implementation (PLDI), May 1996. Also appears in ACM SIGPLAN

Notices, 31(5), 1996.

[21] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A

Foundation. Addison-Wesley, May 1989.

[22] Peter B. Danzig, Katia Obraczka, and Anant Kumar. An analysis of

159

wide-area name server traffic: A study of the internet domain name

system. In Proceedings of ACM SIGCOMM, January 1992.

[23] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang.

Protocol verification as a hardware design aid. In International

Conference on Computer Design, 1992.

[24] Olivier Dubuisson. ASN.1: Communication Between Heterogeneous

Systems. Morgan Kaufmann, 2001. Translated by Philippe Fouquart.

[25] D. Eastlake. Domain name system security extensions. Internet

Engineering Task Force RFC2535, March 1999.

[26] Paul Ferguson and Daniel Senie. Network ingress filtering: Defeating

denial of service attacks which employ ip source address spoofing.

Internet Engineering Task Force RFC2827, May 2000.

[27] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol – HTTP/1.1. Internet

Engineering Task Force RFC2616, June 1999.

[28] M.G. Gouda, E.N. Elnozahy, C.-T. Huang, and T.M. McGuire. Hop

integrity in computer networks. IEEE/ACM Transactions on

Networking, 10(3), June 2002.

[29] M.G. Gouda and Tommy M. McGuire. Accelerated heartbeat protocols.

In Proceedings of the 18th International Conference on Distributed

Computing Systems, May 1998.

[30] M.G. Gouda and Tommy M. McGuire. Alert communication primitives

in TCP. Journal of High Speed Networks, 9(2), 2000.

160

[31] Mohamed G. Gouda. Elements of Network Protocol Design. John Wiley

and Sons, 1998.

[32] Mark G. Hayden. The Ensemble System. PhD thesis, Cornell University,

January 1998.

[33] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister. System architecture directions for network sensors. In

ASPLOS 2000, November 2000.

[34] Gerard J. Holzmann. Design and Validation of Computer Protocols.

Prentice Hall, 1991.

[35] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on

Software Engineering, 23(5), May 1997.

[36] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference

Manual. Addison-Wesley, 2004.

[37] Christian Huitema and Sam Weerahandi. Internet measurements: the

rising tide and the DNS snag. In ITC Specialist Seminar, IP Traffic

Measurement, Modeling and Management, September 2000.

[38] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: An

architecture for implementing network protocols. IEEE Transactions on

Software Engineering, 17(1), January 1991.

[39] Internet Systems Consortium, Inc. ISC BIND.

http://www.isc.org/index.pl?/sw/bind/, March 2004.

161

http://www.isc.org/index.pl?/sw/bind/

[40] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. DNS

performance and the effectiveness of caching. In IEEE/ACM Trans. on

Networking, October 2002.

[41] Eddie Kohler. Prolac, a language for protocol compilation. Master’s

thesis, Massachusetts Institute of Technology, 1997.

[42] Eddie Kohler, M. Frans Kaashoek, and David R. Montgomery. A

readable TCP in the Prolac protocol language. In SIGCOMM, 1999.

[43] Sanjeev Kumar and Kai Li. Performance impact of using ESP to

implement VMMC firmware. In Proceedings of ACM Workshop on

Novel Uses of System Area Networks (SAN), January 2002.

[44] Sanjeev Kumar and Kai Li. Using model checking to debug device

firmware. In Proceedings of USENIX Symposium on Operating Systems

Design and Implementation (OSDI), December 2002.

[45] Sanjeev Kumar, Yitzhak Mandelbaum, Xiang Yu, and Kai Li. ESP: A

language for programmable devices. In Proceedings of ACM Conference

on Programming Language Design and Implementation (PLDI), June

2001.

[46] Leslie Lamport. A theorem on atomicity in distributed systems.

Distributed Computing, 4(2), 1990.

[47] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley, 2002.

[48] Leslie Lamport and Fred B. Schneider. Pretending atomicity. Technical

Report 44, Digital Systems Research Center, May 1989.

162

[49] Richard J. Lipton. Reduction: A method of proving properties of

parallel programs. Communications of the ACM, 6(2), April 1975.

Described in [48].

[50] Richard Liston, Sridhar Srinivasan, and Ellen Zegura. Diversity in DNS

performance measures. In 2nd Internet Measurement Workshop,

November 2002.

[51] Greg Minshall, Yasushi Saito, Jeffrey C. Mogul, and Ben Verghese.

Application performance pitfalls and TCP’s Nagle algorithm. In

Workshop on Internet Server Performance, May 1999.

[52] P. Mockapetris. Domain names - concepts and facilities. Internet

Engineering Task Force RFC1034, November 1987.

[53] P. Mockapetris. Domain names - implementation and specification.

Internet Engineering Task Force RFC1035, November 1987.

[54] J. Mogul and S. Deering. Path MTU discovery. Internet Engineering

Task Force RFC1191, November 1990.

[55] John Nagle. Congestion control in IP/TCP internetworks. Internet

Engineering Task Force RFC896, January 1984.

[56] M. A. Padlipsky. The Elements of Networking Style. iUniverse.com,

2000. Originally published by Prentice-Hall, 1985.

[57] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems

Approach. Morgan Kaufmann, first edition, 1996. (The second edition

removes references to the x-Kernel.).

163

[58] J. Postel. Internet control message protocol. Internet Engineering Task

Force RFC792, September 1981.

[59] J. Postel. Transmission control protocol. Internet Engineering Task

Force RFC793, September 1981.

[60] K. K. Ramakrishnan, Sally Floyd, and David L. Black. The addition of

explicit congestion notification (ECN) to IP. Internet Engineering Task

Force RFC3168, September 2001.

[61] Marshall T. Rose. The blocks extensible exchange protocol core.

Internet Engineering Task Force RFC3080, March 2001.

[62] Marshall T. Rose. On the design of application protocols. Internet

Engineering Task Force RFC3117, November 2001.

[63] Marshall T. Rose. BEEP: The Definitive Guide. O’Reilly and

Associates, March 2002.

[64] Andrei Serjantov, Peter Sewell, and Keith Wansbrough. The UDP

calculus: Rigorous semantics for real networking. In Theoretical Aspects

of Computer Software (TACS), October 2001. Also in Lecture Notes in

Computer Science 2215.

[65] Paolo A. G. Sivilotti. A class of synchronization systems that permit the

use of large atomic blocks. In Proceedings of CASCON ’98, December

1998.

[66] Simon E. Spero. Analysis of HTTP performance problems.

http://www.ibiblio.org/mdma-release/http-prob.html, January 2004.

164

http://www.ibiblio.org/mdma-release/http-prob.html

[67] R. Srinivasan. XDR: External data representation standard. Internet

Engineering Task Force RFC1832, August 1995.

[68] W. Richard Stevens. TCP/IP Illustrated: The Protocols, volume 1.

Addison Wesley, 1994.

[69] W. Richard Stevens. TCP/IP Illustrated: TCP for Transactions,

HTTP, NNTP, and the UNIX Domain Protocols, volume 3. Addison

Wesley, 1996.

[70] Kenneth J. Turner. Using Formal Description Techniques: An

Introduction to Estelle, LOTOS, and SDL. John Wiley & Sons, 1993.

[71] Meilof Veeningen. Poslib DNS library.

http://posadis.sourceforge.net/projects/poslib.php, March 2004.

[72] The VINT Project. The ns Manual, April 2002.

http://www.isi.edu/nsnam/ns/ns-documentation.html.

[73] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated: The

Implementation, volume 2. Addison Wesley, 1995.

[74] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B.

Moss. Efficient packet demultiplexing for multiple endpoints and large

messages. In USENIX Winter, 1994.

165

http://posadis.sourceforge.net/projects/poslib.php
http://www.isi.edu/nsnam/ns/ns-documentation.html

Index

A

abstract execution model, 40, 85, 150

computation, 41, 63, 77

justification, 46

state, 41, 60

state transition, 63

timeout, 44

Abstract Protocol notation, see AP

abstract syntax tree, see AST

accelerated heartbeat

protocol, 102, 116–125

action, 21, 23, 33

body, 23, 33

function, 90, 92–93

guard, 23, 33

notation, 23

translated, 92

action guard, 23, 92

local, 23, 33, 48

receive, 23, 33, 48

timeout, 33, 36, 44, 53

actions, 19

address, 21, 23

base network protocol, 95

identifier, 91, 95

local, 95

address data type, 22, 91, 94

AMD Athlon, 141

AP, 16, 56

guarantees, 17

implementing, 17

timeout, 17

APC, 16, 83, 85–102, 151

architecture, 87, 97

availability, 87

correct operation, 86

design, 138

goals, 85

runtime, 87, 93–98

APC engine, 95

166

APC set address, 95

apdns, 141

array data type, 22, 33

aserv, 136, 141

limitations, 139

ASN.1, 26

AST, 87

atomicity, 79–80

global, 41, 46

local, 52, 55

uninterrupted computation, 70

Austin Protocol

Compiler, see APC

axfrdns, 140

B

base network protocol, 87, 97

BEEP, 12

Berkeley Internet Name

Domain, see BIND

Bernstein, D. J., 140

BIND, 130, 140, 141

Bison, 87, 138

BisonModule, 87

Blocks Extensible Exchange

Protocol, see BEEP

Boehm-Demers-Weiser

garbage collector, 138

boolean data type, 22

BSD socket interface, 154

BSD4.4, 7

buffer management, 86

C

C data structure

message, 24, 29, 88

process, 90–91

state, 90

tag, 90

unsigned char *, 37, 96

unsigned long, 37, 96

void, 37

C functions, 30, 34, 86, 89, 96, 108

action, 90, 92–93, 99

process initialization, 90, 91, 93–

95

C interface, 93

C, programming language, 15, 18, 33,

85–101, 138, 151

channel, 1, 20, 21

abstract execution model, 41

concrete execution model, 48, 52

167

notation, 21

queues, 52, 62

checksum, 30

CNAME record, 131

communication errors, 2

compatibility problems, 5, 150

enhancements, 5

extensions, 5

interoperability, 5

compiler, see APC

compiling, key exchange process, 112

completeness,

implementation, 65, 77–79

computation

abstract, 63

abstract execution model, 41

concrete, 63

equivalence, 65

fair, 81

uninterrupted, 70

whole, 64

concrete execution model, 40, 47, 85,

93, 98, 151

channel, 48

computation, 63, 77

events, 48

execution pointer, 48

justification, 55

simplified, 81

state, 48, 60

state transition, 63, 68

step, 50

timeout, 53, 100

congestion collapse, 7

consistency, implementation, 65–77

constant, 22, 32

notation, 23

correctness verification, 3, 15, 112

critical path, 143

cryptography, 86

D

data types

address, 22, 91

array, 22, 33

boolean, 22

integer, 22

range, 22

data types, TAP, 22, 32

database management, 86

Davie, Bruce S., 9

DCR, C function, 109

168

deadlock, 80

denial-of-service attack, 103

smurf, 103

SYN, 103

development problems

network protocol, 2, 18

parallel and distributed programs,

2

djbdns, 140, 141

DNS, 128–147

authoritative name server, 130

caching name server, 130

CNAME record, 131

glue, 129

iterative query, 131

master file, 142

master name server, 130

message, 132–136

name server, 130

performance, 132

recursive query, 131

resolver, 131

slave name server, 130

SOA record, 129

zone, 129

zone transfer, 130, 132

dnscache, 140

DNSSEC, 129

domain name, 128

compression, 135

label, 129

Domain Name System, see DNS

domain specific language, 14

E

ECN, 10

engine, protocol, 97

Ensemble, 11

environment

faults, 43

of a network protocol, 3

error handling, in APC, 86

errors, 42

process, 56, 153

time, 58, 153

ESP, 15

Estelle, 16

Esterel, 16, 27

events, 48

action choice, 48, 50, 51, 61, 72,

73, 99

activation, 49–51, 61, 72, 73

169

assignment, 49–51, 61, 72, 73

conditional choice, 49–51, 61, 72,

73

extent, 60, 71

fault, 49, 51, 61, 73, 74

independent, 62, 67, 71

send, 49–51, 61, 72, 73

skip, 49–51, 61, 72, 73

timer advance, 49, 52, 53, 61, 73

transmission, 49, 51, 61, 72, 73

execution model, 39

abstract, 17, 40, 150

concrete, 17, 40, 47, 151

equivalence, 18, 59, 151

for TAP, 40

relationship, 59

sequential language, 39

execution pointer, 48, 62

execution trace

accelerated heartbeat, 123, 124

secret exchange protocol, 113, 114

Explicit Congestion

Notification, see ECN

expression, 36

array reference, 36

field reference, 36

function call, 37, 96

message size, 37

operator precedence, 37

operators, 37

string, 36

variables, constants, 36

extent, 71

extent, of an event, 60

external message, 30, 89, 96

extrinsic problems, 3, 150

resource sharing, 4

F

fairness, 81–84

equivalence, 82

global, 41, 47, 82

local, 53, 55, 82, 101

faults, 42, 100

abstract execution model, 43, 47

Byzantine, 57, 153

concrete execution model, 49, 52

process crash, 56, 57

unrecognized, 58, 153

field

data, 31

integer, 31

170

message, 29, 30

message size, 31

size expression, 31

field, message, 20, 24, 88

constant, 20

variable, 20

Flex, 87, 138

FlexModule, 87

formal methods, 3

fragmentation, IP, 10

frameworks, protocol, 11

G

generated code, characteristics, 86

global atomicity, 41

global fairness, 41

Gouda, Mohamed G., 16

grammar, TAP, 27, 87

H

heartbeat protocol, 116

hop integrity, 104

strong, 105

weak, 105

Horus, 11

HTTP, 4, 11

TCP connection overhead, 5

TCP latency, 5

hub state, 62, 78

HyperText Transport

Protocol, see HTTP

I

ICMP, 103

identifier, in TAP, 28

IETF, 6

implementation

completeness, 65, 77–79

consistency, 65–77

relationship, 59

import directive, 29

include directive, 29

incoming queue, of a channel, 48

independent events, 62

input/output, 86

integer data type, 22

Intel Celeron, 141

International Standards

Organization, see ISO

Internet Control Message

Protocol, see ICMP

Internet Drafts (ID), 6

Internet Engineering Task

171

Force, see IETF

Internet model, 8

Internet Protocol (IP), 8

interoperating implementations, 7

intrinsic problems, 2, 150

communication errors, 2

security problems, 3

IP fragmentation, 10

ISO, 8

iterative query, DNS, 131

L

Lamport, Leslie, 80

latency, 142–145

layering violation, 9

layering, network protocol, 8

Lego blocks, 11

Linux, 141

Lipton, Richard J., 79

local action guard, 23, 33

local state, of a process, 21

log, C function, 109

LOTOS, 16

M

message, 1, 20, 26, 29

corruption, 42

duplication, 43

external, 30, 89, 96

faults, 42

field, 20, 24, 29, 30

forged, 104

loss, 42, 46

modified, 104

optional pre- and post-functions,

30

receiving, 21

reordering, 43

replayed, 104

sending, 21

size, 31, 37

transmission, 48, 49, 100

message digest, 105

message propagation

delayed, 49, 52, 55, 100

immediate, 41, 46

message structure, 24, 88

message transmission

in unterrupted computation, 70

miss rate, 144

model checking, 3, 15, 154

modularization, 8

Morpheus, 15

172

MurΦ, 15, 154

N

Nagle’s algorithm, 7

Nagle, John, 7

name, see domain name

name server, 130

authoritative, 130

caching, 130

master, 130

slave, 130

named, 140

NCR, C function, 109

network protocol, 1, 20, 26

base, 87

compatibility problems, 5, 150

development problems, 2, 18, 150

environment, 3

extrinsic problems, 3, 150

intrinsic problems, 2, 150

languages, 13

layering, 8

network protocol style, 25, 80, 83

conditional, 26

loop termination, 25

quiescence, 25, 101

network simulator, 154

networked sensors, 155

NEWSCR, C function, 109

ns, network simulator, 154

number, in TAP, 28

NXDOMAIN, 131

O

object-oriented compiler, 87

Open Systems

Interconnect, see OSI

OSI, 8

outgoing queue, of a channel, 48

overhead, 142, 146–147

P

packet filter, 148

parallel and distributed programs

development problems, 2

parse query, C function, 136

parser, 87

Path MTU discovery, 10

performance

latency, 142–145

local actions, 148

local configuration, 144

message recognition, 147

173

overhead, 142, 146–147

remote configuration, 144

throughput, 142, 145–146

permissive protocol languages, 14

Peterson, Larry L., 9

Poslib, DNS library, 141

process, 1, 20, 23, 26, 32, 90

actions, 21, 26

address, 21

channels, 21

local state, 21, 26

name, 90

process initialization, 91–92

process termination, 57, 153

Prolac, 14

Promela, 15, 16, 27

Promela++, 15

protocol control information, 20

protocol data, 20

protocol engine, 97

protocol frameworks, 11

Python, programming language, 87

Q

query database, C function, 136

R

range data type, 22

receive action guard, 23, 33

recursive query, DNS, 131

reordering, 66, 69, 71

Request For Comments, see RFC

request/reply protocol, 22, 43, 45

execution, 42, 45, 54

messages, 21

resource record, 128

type, 129

resource sharing, extrinsic problems, 4

RFC, 6, 89, 129

role-based architecture, 11

Rose, Marshall T., 12

runtime, for APC, 87

S

safety property, 80

Schneider, Fred B., 80

SDL, 16

secret exchange protocol, 102–115

secret key, 105

security problems, 3, 58, 153

sequence number, 105

serialization, 66–70

174

Sivilotti, Paolo A. G., 79

smurf attack, 103

SOA record, 129

soft state, 105

SPIN, 154

Start Of Authority, see SOA record

state, 60

equivalence, 62

hub, 62, 64, 78

in abstract execution model, 41,

60

in concrete execution model, 48,

60

notation, 60

state data structure, 90

state transition

abstract, 63

concrete, 63

statement, 23, 24, 34, 100

activation, 36, 44, 49, 53

assignment, 24, 34, 49

conditional, 25, 35, 49

function call, 34, 96

iteration, 25, 35, 49

send, 24, 35, 49

skip, 24, 34, 49

step condition

action choice, 50

action execution, 51

message operation, 51, 67

message transmission, 51, 67

process execution, 50, 67

timer advance, 52

step, in concrete execution model, 50

Stevens, W. Richard, 7

strict protocol languages, 15

string, in TAP, 28

SYN attack, 103

synchronization system, 79

T

tag data structure, 90

TAP, 16, 19, 85, 150

as a programming language, 27

data types, 22

execution model, 17

justification, 26

TCP, 4, 7, 9, 11, 17, 132

as base network protocol, 154

heartbeat monitoring, 125

Path MTU discovery, 10

SYN, 103

175

TCP/IP

security, 103

TCP/IP Illustrated, 7

Teapot, 15, 27

termination, 57, 153

throughput, 142, 145–146

time variable, 44, 53, 84

time, program, 146

time-to-live, of a DNS record, 130

Timed Abstract Protocol

notation, see TAP

timeout

abstract execution model, 44, 47

AP, 17

concrete execution model, 53

delay, 44

in unterrupted computation, 70

TAP, 44

timer advance, 49, 84

timeout action guard, 33, 36, 44

tinydns, 140

TLA+, 15

TLC, 154

Transport Control

Protocol, see TCP

U

UDP, 87, 94, 97, 132, 154

UDP Calculus, 16

UDP initialize engine, 94

uninterrupted computation, 70

Unity, 15

User Datagram

Protocol, see UDP

V

variable, 22, 32

abstract execution model, 41

notation, 23

time, 44, 84

W

whole computation, 64

Wright, Gary R., 7

X

x-Kernel, 9

XDR, 26

Y

yacc, 85, 93

176

Vita

Tommy Marcus McGuire was born in Amarillo, Texas, on March 3, 1968. He

is the son of Clois Samuel and Ruth McGuire. After graduating in 1986 from

Tascosa High School in Amarillo, Texas, he entered The University of Texas

at Austin, where he received the Bachelor of Arts degree in 1990 and the

Master of Arts degree in 1994. Between 1990 and 2003, he was employed at

International Business Machines, Austin, and at the Department of Computer

Science of The University of Texas at Austin as a systems and applications

programmer and a system administrator.

Permanent Address: 913 East Village Lane, Austin, TX 78758

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is
a trademark of the American Mathematical Society. The macros used in formatting this
dissertation were written by Dinesh Das, Department of Computer Sciences, The University
of Texas at Austin, and extended by Bert Kay and James A. Bednar.

177

	Acknowledgments
	Abstract
	Chapter Network Protocols
	Protocol development problems
	Existing solutions
	Protocol layering
	Protocol frameworks
	Protocol languages
	The Austin Protocol Compiler

	Chapter The Timed Abstract Protocol Notation
	Messages and channels
	Processes
	Actions
	Statements
	Protocol style
	Justification
	Details of TAP
	Message syntax
	Process syntax
	Action syntax
	Statement syntax
	Expression syntax

	Chapter Execution Models of Network Protocols
	Two Models
	Abstract Execution Model
	Abstract protocol state
	Abstract protocol execution
	Abstract faults
	Abstract timeout behavior
	Abstract execution of the request/reply protocol
	Justification

	Concrete Execution Model
	Concrete protocol state
	Concrete protocol execution
	Delayed message propagation
	Concrete faults
	Concrete timeout behavior
	Local fairness
	Concrete execution of the request/reply protocol
	Justification

	Limitations of the Execution Models

	Chapter Equivalence of Execution Models
	Protocol states
	Equivalent protocol states
	State transitions
	Computations
	Whole computations
	Equivalent computations
	Proof of equivalence
	Implementation consistency
	Event serialization
	Event reordering

	Implementation completeness
	Related work

	Chapter Preserving Fairness
	Global fairness
	Local fairness
	Proof of fairness equivalence
	Fairness and the Austin Protocol Compiler

	Chapter The Austin Protocol Compiler
	Architecture of the compiler
	Message handling
	TAP processes

	APC runtime interfaces
	Initializing and executing the runtime system
	Invoking C functions from TAP
	Message functions

	Architecture of the runtime system
	Implementation of the concrete execution model

	Chapter Two examples
	The secret exchange protocol
	Hop integrity
	Implementation of the secret exchange protocol
	Behavior of the secret exchange protocol

	The accelerated heartbeat protocol
	Implementation of the accelerated heartbeat protocol
	Behavior of the accelerated heartbeat protocol

	Chapter A DNS Server
	The authoritative DNS server
	Implementation performance
	Latency
	Throughput
	Overhead

	Performance of the Austin Protocol Compiler

	Chapter Concluding Remarks
	Summary
	Future research directions
	Enhancements
	Alternative compiler back ends
	Alternative runtime systems

	Bibliography
	Index
	Vita

