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tWe survey some re
ent 
onstru
tions of Ramsey-type graphs, largegraphs with small 
lique and independent set sizes. Then 
ontinuingthe works of Grolmusz, we 
onstru
t matri
es over the ring Zpq, wherep and q are distin
t primes, su
h that the diagonal entries are 0 modulopq and the o� diagonal entries are nonzero modulo pq. These matri
eslead to a 
onstru
tion of Ramsey graphs. Our work simpli�es Grol-musz's 
onstru
tion while still mat
hing the best known 
onstru
tiveasymptoti
 bound.1 Introdu
tionRandomization is extremely useful in many areas in 
omputer s
ien
e. Manyalgorithms be
ome mu
h simpler in both 
on
eption and implementationwith a

ess to randomness. However, it is not 
lear whether there are goodrandom sour
es in nature, and furthermore, 
omputers do not have a

ess totruly random bits. It be
omes natural to investigate the power of randomness- whether a

ess to random bits 
an be removed or redu
ed without loss ofeÆ
ien
y.The main fo
us of this area of study, termed derandomization, is to 
on-vert an existing randomized algorithm into an eÆ
ient, deterministi
 one. Apseudorandom generator, a deterministi
 algorithm that takes a short ran-dom string and stret
hes its length to fool polynomial time algorithms, is a1



useful tool in derandomization, and its 
onstru
tibility has re
eived atten-tion from various resear
hers. Constru
tibility is de�ned as the existen
e ofan eÆ
ient, deterministi
 algorithm to 
onstru
t the obje
t. The 
onstru
-tion of pseudorandom generators is 
losely related to the 
onstru
tions ofmany obje
ts with 
ombinatorial properties, su
h as error-
orre
ting 
odes,expander graphs, and extra
tors. Thus, problems in derandomization 
an of-ten be expressed as problems in expli
it 
onstru
tions. These 
ombinatorialobje
ts also have many appli
ations in 
omputer s
ien
e, su
h as networking,algorithmi
 design, and 
omplexity theory.One famous problem in the area of expli
it 
onstru
tion is the 
onstru
-tion of Ramsey graphs. A Ramsey graph is a large graph with small 
liqueand independent set sizes. More formally, the Ramsey number n = R(k; t)is de�ned as the smallest number n su
h that any graph on n verti
es 
on-tains a 
lique of size k or an independent set of size t. It is well known thatthis number is �nite and so is well-de�ned [24℄. The problem of determin-ing a lower bound for the number is equivalent to proving that some graphon n verti
es has no 
lique of size k and no independent set of size t. Inone of the early uses of the probabilisti
 method, Erd}os [11℄ showed thatR(k; k) = 
(2k=2). In other words, there exist Ramsey graphs with 
(2k=2)verti
es having 
liques and independent sets of size stri
tly less than k. Hisproof is probabilisti
 and in fa
t shows that most graphs on 
(2k=2) verti
esexhibit this random-like property. This implies a very simple randomizedalgorithm to generate a Ramsey graph. The algorithm simply 
ips a fair
oin for ea
h pair of verti
es to de
ide whether they are 
onne
ted or not.However, the proof merely demonstrates the existen
e of su
h a graph withhigh probability without providing a 
onstru
tion. Our goal in exhibitingRamsey graphs is in a sense a derandomization of the simple randomizedalgorithm. Trivially, we may sear
h through the sample spa
e of all graphson n verti
es and test whether ea
h graph has a 
lique or an independent setof size at least 2 logn.However, this brute for
e approa
h is not eÆ
ient. Even if we use a re-du
ed sample spa
e, querying whether a graph has a 
lique or an independentset of a given size is nontrivial. The best known 
onstru
tion is due to Frankland Wilson [15℄ who 
onstru
ted graphs onk
( log klog log k )verti
es with the maximum size of a 
lique and an independent set less than2



k. The 
onstru
tive bound is mu
h weaker than the probabilisti
 bound, andit remains open to show expli
itly that R(k; k) is exponential in terms of k.In this paper, we survey some re
ent 
onstru
tions of Ramsey graphs.Then 
ontinuing the works of Grolmusz, we 
onstru
t matri
es over the ringZpq, where p and q are distin
t primes, su
h that the diagonal entries are 0modulo pq and the o� diagonal entries are nonzero modulo pq. These matri
eslead to a 
onstru
tion of Ramsey graphs. Our work simpli�es Grolmusz's
onstru
tion while still mat
hing the best known 
onstru
tive asymptoti
bound.Our paper is organized as follows. In the �rst se
tion, we survey someknown results on the o� diagonal number R(3; t), and we shall see that thesesmaller Ramsey numbers are also diÆ
ult to estimate expli
itly. The restof the paper is devoted to the diagonal number R(k; k). In the next twose
tions, we shall dis
uss the 
lassi
al Frankl-Wilson 
onstru
tion and thenAlon's work extending their result. Then in the last se
tion, we shall presentGrolmusz's work and our result.2 The Ramsey Number R(3,t)Various resear
hers over the years have studied the o� diagonal Ramseynumber R(3; t). Ajtai, Koml�os, and Szemer�edi [1℄ showed that R(3; t) =O(t2= log t). Improving Erd}os's bound [12℄ R(3; t) = 
((t= log t)2), Kim [19℄demonstrated that the upper bound is tight up to a 
onstant fa
tor, namelyR(3; t) = �(t2= log t). However, these lower bound proofs are probabilisti
,and it presents a 
hallenge to 
onstru
t triangle-free graphs with the sizeof an independent set bounded by t while the number of verti
es approa
hnearly quadrati
 in t.Erd}os [13℄ provided the �rst 
onstru
tion with graphs on
(t(2 log 2)=3(log 3�log 2)) = 
(t1:13)verti
es. Building on the works of Cleve and Dagum [9℄, Chung, Cleve, andDagum [8℄ presented another 
onstru
tion with graphs on
(tlog 6= log 4) = 
(t1:29)verti
es. Alon, using ideas from 
oding theory, showed a 
onstru
tion withgraphs on 
(t4=3) verti
es in [3℄ and subsequently improved it to 
(t3=2) in3



[2℄. The latter is the best known 
onstru
tive lower bound for R(3; t). Morere
ently, Codenotti, Pudl�ak, and Resta [10℄ gave a simpler 
onstru
tion thatmat
hes Alon's bound. Both 
onstru
tions are presented in this se
tion.2.1 Proje
tive Plane Approa
hThe 
onstru
tion due to Codenotti, Pudl�ak, and Resta [10℄ involves �niteproje
tive planes (see e.g. page 157 in [21℄ or Chapter 19 in [25℄). For aprime power q, a proje
tive plane of order q 
onsists of a set of q2 + q + 1points and a set of q2 + q + 1 lines. Ea
h line has exa
tly q + 1 points, ea
hpoint is on exa
tly q + 1 lines, and two points uniquely determine a line.Theorem 1. For every m, there is an expli
itly 
onstru
tible square matrixM of size O(m3=2) whi
h has ones on the diagonal, rank(M) � m, and theasso
iated graph of nonzero entries does not 
ontain a transitive triangle(edges a to b, b to 
, and a to 
).Before presenting the proof, we �rst show how Theorem 1 
an providea 
onstru
tive lower bound for R(3; t). Constru
t a matrix M of size n asspe
i�ed in Theorem 1. Make it symmetri
 by 
opying the entries above thediagonal into their 
orresponding entries below the diagonal. Call the newmatrix M 0 and its asso
iated graph H 0. Sin
e H has no transitive triangle,H 0 
annot have a triangle. If H 0 has an independent set S of size k, it will
orrespond to a k by k minor in M 0, whi
h is Ik. In M , the 
orrespondingminor will have zeros above the the diagonal of ones, so the minor has rankk, whi
h is bounded by O(n2=3). This shows R(3; t) = 
(t3=2) 
onstru
tively.Proof. (of Theorem 1) The idea is to 
onstru
t a graph G with a superlinearnumber of edges su
h that G has no 
y
le of length less than 6. Then from G,
onstru
t an oriented graph H so that its verti
es 
orrespond to edges of G.The absen
e of small 
y
les in G should prohibit a transitive triangle (edgesa to b, b to 
, and a to 
) from o

urring in H, and then we 
an asso
iate amatrix M with H su
h that M has low rank.One su
h G with the desired properties is the in
iden
e graph of a pro-je
tive plane (a bipartite graph whose verti
es 
orrespond to the points andlines of the plane, and ea
h edge 
onne
ts a line to an in
ident point). Letm := jV (G)j = O(n2). jE(G)j = O(m3=2), and G has no 
y
le of length lessthan 6 (else, we have two lines sharing two points, a 
ontradi
tion).4



For the oriented graph H, letV (H) = E(G) = f(P; L) : point P on line Lg, and((P1; L1); (P2; L2)) 2 E(H) i� P1 6= P2; L1 6= L2, and P1 is on L2.H 
annot have a transitive triangle. Otherwise, for some points P1; P2; P3and lines L1; L2; L3, we have edges ((P1; L1); (P2; L2)), ((P2; L2); (P3; L3)),and ((P1; L1); (P3; L3)). This implies that in graph G, there exists a 4-
y
le,namely P1 � L2 � P2 � L3 � P1, whi
h is a 
ontradi
tion.Asso
iate a matrix M with H as follows. Index both rows and 
olumnsof M by V (H). For row (P; L), assign a ve
tor whose 
oordinates are inV (G) and has a �1 on the 
oordinate P , 1 on the 
oordinate L, and 0 ev-erywhere else. For 
olumn (P; L), assign a ve
tor whose 
oordinates are inV (G) and has a 1 on ea
h in
ident point of L (ex
ept P ), 1 on L, and 0everywhere else. De�ne Mij to be the inner produ
t of v and w, where v isthe ve
tor asso
iated with row i and w is the ve
tor asso
iated with 
olumn j.Claim: Mii = 1, and for o�-diagonal entries, Mij is �1 on entries 
orre-sponding to edges of H and 0 otherwise.Proof. Let v be the asso
iated ve
tor of row (P; L) and w be the asso
iatedve
tor of 
olumn (P 0; L0). v has two nonzero 
oordinates at P and L. Ifi = j, w has a 0 at P and a 1 at L, so Mij = hv; wi = 1. Suppose i 6= j.We have Mij = �1 i� w has a 1 at 
oordinate P and a 0 at 
oordinate L.This is true i� L0 6= L, P 6= P 0, and P is on line L0, whi
h is the de�nitionof an edge in H. We have Mij = 0 i� the 
oordinates P and L in w are both0 or 1, and neither 
ase 
an o

ur if H has the edge ((P; L); (P 0; L0)). Thisimplies that H is the asso
iated graph of M with nonzero elements.It remains to show that the rank of M is bounded by m. The key obser-vation is that any linear 
ombination of the ve
tors asso
iated to the rowsof M gives rise to a linear 
ombination of the 
orresponding rows. To seethis, let x be a linear relation of some ve
tors fzg asso
iated to the rows, i.e.,x =Pz �zz. Suppose y is a ve
tor asso
iated to a 
olumn of M . The entryMxy is equal to hx; yi =Pz �zhz; yi. Hen
e, the rows 
orresponding to fzgare also dependent.The ve
tors have length m, so at most m of them 
an be linearly in-dependent, and therefore at most m rows are linearly independent. Sin
e5



prime powers o

ur frequently, we 
on
lude su
h M is 
onstru
tible for everysuÆ
iently large m.The 
onstru
tion requires a graph with a superlinear number of edgesand has no 
y
le of length 4. If a graph G has no 4-
y
le, it has no K2;2 asa bipartite subgraph. Then by Zarankiewi
z's problem (see [20℄ or page 25in [21℄), jE(G)j = O(jV (G)j3=2). So our 
hoi
e of the in
iden
e graph of aproje
tive plane is best possible.2.2 Dual of a BCH CodeA Cayley graph G = (V;E) 
onsists of a �nite group H and a generating setS � H su
h that V = H and E = f(h; h + s) : h 2 H; s 2 Sg. We imposethe additional requirement that s 2 S i� s�1 2 S for G to be undire
ted.It is not known if there are Cayley graphs that are good diagonal Ramseygraphs, but Cayley graphs 
an be used to prove 
onstru
tive lower bound forthe number R(3; t) [2℄.Alon's idea is to take a parity 
he
k matrix of a linear 
ode with suÆ
ientminimum distan
e to obtain the triangle-free property in the graph. For apositive integer k, let Fk = GF (2k) denote the �nite �eld with 2k elements,and the elements are represented as binary ve
tors. Let � be a primitiveelement in Fk . Consider the following 3k by 2k � 1 matrix over F2 :A = 0� 1 � �2 � � � �2k�21 �3 (�2)3 � � � (�2k�2)31 �5 (�2)5 � � � (�2k�2)5 1A ;whi
h is the parity 
he
k matrix of a binary BCH 
ode C of designed distan
e7 (see e.g., Chapter 9 in [22℄).Now we de�ne a Cayley graph G = (V;E). Let n = jV j = 23k where 3does not divide k. Let V = H be the additive group F3k2 : De�ne W0 to bethe set of all nonzero elements � 2 Fk su
h that the leftmost bit of �7 is 0,and let W1 be the set of all nonzero elements � 2 Fk su
h that the leftmostbit of �7 is 1. Let (a; b; 
) denote the 
on
atenation of the three ve
tors a, b,and 
. The generating set S is U0+U1 = fuo+ u1 : u0 2 U0; u1 2 U1g, whereUi = f(wi; w3i ; w5i ) : wi 2 Wig for i = 0; 1.Note that sin
e 3 does not divide k and ord72 = 3, 7 
annot divide 2k�1.So for all � 6= 1 2 Fk; �7 6= 1. This implies that the map x! x7 is inje
tive,and therefore, W0 and W1 form a partition of Fk. As a 
onsequen
e, the set6



of all 
olumns of A is the union of U0 and U1. Now we prove some propertiesof G using ideas from 
oding theory.Proposition 1. G is d := 2k�1(2k�1 � 1) regular.Proof. The BCH 
ode C has minimum distan
e at least 7, so every set of six
olumns of A is linearly independent over GF (2) (BCH 
ode is linear, and theminimum distan
e of a linear 
ode is the minimum weight of the 
odewordsin the 
ode). This implies that all the sums (u0 + u1), where u0 2 U0 andu1 2 U1, are distin
t. Hen
e, d = jSj = jU0jjU1j = 2k�1(2k�1 � 1).Note that C only needs to have minimum distan
e at least 5 for theprevious proposition. We need C to have minimum distan
e at least 7 forthe following lemma.Lemma 1. G is triangle-free.Proof. Suppose G has a triangle, whi
h is also a 3-
y
le. Sin
e G is Cayley,there exists g 2 H and distin
t s1; s2; s3 2 S su
h that (g; g+s1; g+s1+s2) isa 3-
y
le with s1+s2+s3 = 0:Write s1 = a0+a1; s2 = b0+b1; and s3 = 
0+
1,where a0; b0; 
0 2 U0 and a1; b1; 
1 2 U1. Then a0 + a1 + b0 + b1 + 
0 + 
1 = 0.These are also 
olumn ve
tors of A. Sin
e the 
ode C has minimum distan
eat least 7, these six ve
tors must be linearly independent, 
ontradi
ting thattheir sum is 0.To bound the maximum size of an independent set in G, we employspe
tral te
hniques to analyze the eigenvalues of the adja
en
y matrix AG ofG. We �rst state a known result (see e.g. page 435 in [25℄ for a proof).Fa
t 1. For a d-regular graph G, the maximum size of an independent setin G is bounded above by �n�n�1 � �n ;where n = jV (G)j and d = �1 � �2 � : : : � �n are the eigenvalues.It suÆ
es to bound the smallest eigenvalue of our graph G.Theorem 2. For every eigenvalue � of AG,�9 � 2k � 3 � 2k=2 � 1=4 � �:7



Proof. It is known that the eigenvalues of a Cayley graph of an Abeliangroup 
an be 
omputed in terms of the 
hara
ters of the group. To seethis, for r; a 2 F3k2 , r �xed, let �r(a) = (�1)r�a, whi
h is multipli
ative, i.e.,�r(a + b) = �r(a)�r(b). Let v 2 f�1; 1g23k be su
h that vi is equal to �rapplied to the ith string in F3k2 . Then(AGv)i = Xb:(i;b)2E(G)�r(b) = Xs2S �r(i + s)= Xs2S �r(i)�r(s)=  Xs2S �r(s)! vi:Hen
e, v is an eigenve
tor with eigenvalue�r =Xs2S �r(s) = (Xuo2U0 �r(uo))(Xu12U1 �r(u1));sin
e S = U0 + U1.Now re
all that A is the parity 
he
k matrix of 
ode C. Consider w :=r � A: For j = 0; 1, de�ne ve
tors wUj to be the restri
tion of w to Uj. Let#0(w) be the number of 0 in the ve
tor w and #1(w) to be the number of 1in w. Then Xuj2Uj �r(uj) = Xuj2Uj(�1)r�uj = #0(wUj)�#1(wUj)Write wt(wU0) = x and wt(wU1) = y. Then �r = (2k�1� 1� 2x)(2k�1 � 2y):Now we prove a lower bound for �r. Sin
e w is a linear 
ombination ofthe rows of A, whi
h 
orresponds to a 
odeword in the dual 
ode of C, thisprovides a way to bound the eigenvalue in terms of the Hamming weight of w.The AM-GM Inequality asserts that for real numbers a and b, ab � (a+b)2=4.Substituting a = (2k�1 � 1� 2x) and b = �(2k�1 � 2y), we have�r � �(1 + 2(x� y))2=4:We will use the Carlitz-U
hiyama bound (see e.g. page 280 in [22℄) to boundx� y. 8



Theorem 3. Suppose C is a binary BCH 
ode of length 2m�1 with designeddistan
e 2t+1, where 2t�1 < 2dm=2e+1: Then for all nonzero ve
tors 
 2 C?;2m�1 � (t� 1)2m=2 � wt(
) � 2m�1 + (t� 1)2m=2:Consider the following matrix in binary,A0 = 0BBB� 1 � �2 � � � �2k�21 �3 (�2)3 � � � (�2k�2)31 �5 (�2)5 � � � (�2k�2)51 �7 (�2)7 � � � (�2k�2)7 1CCCA ;where � is a primitive element of Fk . Similar to A, A0 is also the parity 
he
kmatrix of a BCH 
ode C 0 with designed distan
e 9.Let p be the 
hara
teristi
 ve
tor of W1. Now let r0 2 f0; 1g4k be theve
tor r appended by the ve
tor [1,0,. . . ,0℄. Then r0 �A0 = w + p, and w + pis a 
odeword in the dual of C 0 with Hamming weight x + 2k�1 � y, whi
his nonzero. By the Carlitz-U
hiyama bound, 2k�1 � 3 � 2k=2 � x + 2k�1 � y;whi
h implies �r � �9 �2k�3 �2k=2�1=4; and thus 
ompleting the proof.With the lower bound on the smallest eigenvalue, we 
on
lude that thegraph G has independent sets of size at mostn 36 � 2k + 12 � 2k=2 + 12k(2k � 2) + 36 � 2k + 12 � 2k=2 + 1 = O(n2=3):Our graph is also triangle-free. Hen
e, this shows R(3; t) = 
(t3=2) expli
itly.3 Frankl-Wilson Constru
tionWe now 
onsider the diagonal Ramsey number R(k; k) and survey severalknown 
onstru
tive lower bound. For years, the only 
onstru
tion known istrivial { 
onstru
t k� 1 disjoint 
liques of size k� 1, whi
h yields R(k; k) =
(k2). In [23℄, Nagy showed R(k; k) = 
(k3). Building on the works of Frankl[14℄, Frankl and Wilson [15℄ made a breakthrough and 
onstru
ted graphswith a superpolynomial number of verti
es with respe
t to k. The followingtheorem regarding the size of a set system with restri
ted interse
tion modulo9



a prime p is the main tool involved. The original proof used higher in
iden
ematri
es, but Alon, Babai, and Suzuki [5℄ employed multivariate polynomialsin a ve
tor spa
e with small dimension to bound the size. We state a weakerresult without proof sin
e the essential proof 
on
ept is illustrated in thenext se
tion.Theorem 4. Suppose u0, u1, . . . ,us are distin
t residues modulo a prime p.Let F be a family of k-element subsets of f1; 2; : : : ; ng. Suppose k � u0 modp, and for every distin
t A, B 2 F , jA \Bj � ui mod p for some 1 � i � s.Then jFj �Psi=0 �ni�.Frankl and Wilson also showed a stronger bound jFj � �ns� if F is k-uniform, but this makes no di�eren
e in the asymptoti
 bound in the follow-ing theorem.Theorem 5. There exists an expli
itly 
onstru
tible family of graphs fGng,where Gn is a graph on n verti
es su
h that the 
liques and the independentsets have size less than 2O(plog n log log n):Proof. Let p be a prime and 
onsider the set S = f1; 2; : : : ; p3g. De�ne agraph G su
h that its verti
es are subsets of S with size p2� 1, and (A;B) 2E(G) i� jA\Bj 6� �1 (mod p). A 
lique 
orresponds to a family fA1; : : : ; A`gsu
h that for all i 6= j, jAi \ Ajj 6� �1 (mod p). Sin
e ea
h subset has size
ongruent to �1 modulo p, ` is bounded byp�1Xi=0 �p3i � = pO(p):An independent set of size t 
orresponds to a family fB1; : : : ; Btg su
hthat for all i 6= j, jBi \Bjj 2 fp� 1; 2p� 1; : : : ; p(p� 1)� 1g. Pi
k a prime qlarger than p2� 1. Then p� 1; 2p� 1; : : : ; p(p� 1)� 1; p2� 1 are all distin
tresidues modulo q. By Theorem 4, t �Pp�1i=0 �p3i � = pO(p).Note that n = jV (G)j = � p3p2�1� = pO(p2). By the density of primes, forevery n, we 
an 
hoose up to 
onstants p so that n < � p3p2�1�. Then we 
an
onstru
t a graph on � p3p2�1� verti
es and then obtain a subgraph of G with nverti
es. Hen
e, the size of a 
lique or an independent set in G is bounded by2O(plog n log log n). Simple 
omputation shows that this is equivalent to statingthat G has t
(log t= log log t) verti
es while 
liques and independent sets have sizeless than t. 10



4 Alon's ExtensionSuppose the edges of a 
omplete graph are either red or blue. Theorem 4asserts that it is possible to 
olor the edges su
h that the size of a mono
hro-mati
 (either red or blue) 
lique is small (think of the blue edges in the
omplete graph as non-edges before the 
oloring transformation). Then we
an investigate the 
ase when 
omplete graphs are 
olored with ` 
olors andhope for similar results. Using more than one prime, Alon in [4℄ extendedFrankl and Wilson's results.De�nition 1. Let G=(V,E) be a graph and F be a subspa
e of the spa
e ofpolynomial in r variables over a �eld F. We say that G has a representationover F if for ea
h v 2 V , we 
an assign a polynomial fv 2 F and 
v 2 F rsu
h that the following 
onditions hold:(1) For all v 2 V , fv(
v) 6= 0.(2) For all distin
t, nonadja
ent u; v 2 V , fv(
u) = 0.Lemma 2. If a graph G=(V,E) has a representation over F , then the sizeof an independent set in G is bounded above by dim(F).Proof. Let ffv(x1; : : : ; xr) : v 2 V g and f
v : v 2 V g be a representation,and let S be an independent set in G. Then the polynomials in ffv : v 2 Sgare linearly independent. To see this, suppose Pv2S �vfv = 0. If u 2 S,evaluate this sum of polynomials on u, and we 
an 
on
lude that �u = 0.Hen
e, jSj is bounded by the dimension of F .Note that the representation of a graph is de�ned with bounding the di-mension of the spa
e F in mind. This will then bound the size of a mono
hro-mati
 
lique in a graph from above.Theorem 6. For every �xed integer ` � 2, we 
an 
onstru
t a family of`-
olored graphs on k (1+o(1))(log k)`�1``(log log k)`�1verti
es with no mono
hromati
 
liques of size k.Proof. Extending Frankl and Wilson's 
onstru
tion, let P = fp1; : : : ; p`g be aset of ` 
onse
utive large primes. De�ne s := p1p2 : : : p`�1 and let r = pp`+1` .Constru
t a 
omplete graph G whose verti
es are subsets of f1; : : : ; rg withsize s. De�ne the 
olor of edge (A;B) asminfi 2 f1; : : : ; `g : jA \ Bj 6� �1(mod pi)g:11



Sin
e jA \ Bj < p1 : : : p` � 1, jA \ Bj 6� �1 (mod pi) for some i. So our
oloring is well-de�ned.Let Gi be the subgraph of G by removing the edges with 
olor i. Amono
hromati
 
lique of 
olor i in G 
orresponds to an independent set ofGi. Now we show that Gi has a representation over the spa
e of multilinearpolynomials of degree at most pi � 1 in r variables over GF (pi). For ea
hvertex A, assign the polynomialPA(x1; : : : ; xr) = pi�2Yi=0 [Xj2A xj � i℄;and let its 
hara
teristi
 ve
tor 
A 2 f0; 1gr � (GF (pi))r. Then PA(
A) =Qpi�2i=0 [jAj � i℄, whi
h is not 
ongruent to 0 modulo pi sin
e jAj � �1 modpi. For nonadja
ent verti
es A and B, PA(
B) = Qpi�2i=0 [jA \ Bj � i℄, whi
his 
ongruent to 0 modulo pi sin
e jA \ Bj 6� �1 modulo pi by 
onstru
tion.These polynomials are multilinear; we 
an use the relations x2i = xi and makeappropriate substitutions sin
e the 
hara
teristi
 ve
tors are binary.A basis of the spa
e these polynomials reside in 
onsists of monomialsof degree at most pi � 1, so the dimension is pre
isely Ppi�1i=0 �ri�. By thepre
eding lemma, this implies that a mono
hromati
 
lique in G has size lessthan k = rO(p`). We have the parameters r = pp`+1` and s = p1 : : : p` � 1.And by dire
t 
al
ulation and the density of primes, the number of verti
esin G is �rs� = k (1+o(1))(log k)`�1``(log log k)`�1 ;
ompleting the proof.Re
all that in Frankl and Wilson's 
onstru
tion, two verti
es A and B inG are 
onne
ted i� jA\Bj 6� �1 (mod p). We sket
h how the proof above 
anbe modi�ed to obtain Frankl and Wilson's 
onstru
tion. Set r = p3 � 1 ands = p2� 1. G has a representation over the spa
e of multilinear polynomialsof degree at most p � 1 with r variables over the reals. For ea
h vertex A,assign the polynomialQA(x1; : : : ; xr) = p�1Yi=1[(Xj2A xj)� (p2 � 1� ip)℄and its 
hara
teristi
 ve
tor 
A. Then QA(
A) =Qp�1i=1 6= 0. Sin
e jA \ Bj 2fp�1; 2p�1; : : : ; p(p�1)�1g, there must be an i 2 f1; : : : ; p�1g su
h that12



jA\Bj � (p2� 1� ip) = 0. The dimension of the spa
e of these polynomialsbounds the size of an independent set in G. Similarly, the 
omplement ofG has a representation over the �eld GF (p) as des
ribed in the pre
edingproof, and the dimension of this spa
e bounds the size of a 
lique in G.5 Grolmusz's Work and Our ResultIn Theorem 4, Frankl and Wilson showed that when m is a �xed prime, a setsystem with pairwise interse
tion modulo m has a polynomial upper bound,viewing m as a 
onstant. In the same paper, they also proved that the upperbound holds when m is a �xed prime power and s = m � 1 (the number ofdistin
t interse
tion size residues). They asked whether a polynomial upperbound exists if m is a �xed non-prime power or when s = m� 1. Grolmuszin [16℄ demonstrated an expli
it family of superpolynomial size set system ifm is a �xed non-prime power and s = m� 1. His set systems also provideda novel 
onstru
tion of Ramsey graphs mat
hing the asymptoti
 bound byFrankl and Wilson, and his 
onstru
tion 
an be generalized to multi
olorsthat mat
hes Alon's bound.Grolmusz's works involved 
ertain low degree polynomials (
all themBBR, due to Barrington, Beigel, and Rudi
h [7℄). He used these polyno-mials to 
onstru
t 
o-diagonal matri
es (de�ned below) over the ring Z6.These matri
es in turn lead to the 
onstru
tion of his superpolynomial setsystems. In [17℄, Grolmusz 
onstru
ted good Ramsey graphs dire
tly fromlow rank 
o-diagonal matri
es over Z6, and in [18℄, he provided another proofthat these matri
es have small rank. We shall des
ribe the 
onne
tion be-tween Ramsey graphs and these matri
es, but �rst let us de�ne some basi
terminologies.5.1De�nition 2. Let R be a ring and n be a positive integer. A = faijg is a
o-diagonal matrix over R if for i; j 2 f1; 2; : : : ; ng; aij is nonzero in R ifi 6= j and zero if i = j.We say that matrix A is upper 
o-triangular over R if the diagonal entriesare zero and the entries above the diagonal are nonzero in R. A lower 
o-triangular matrix is similarly de�ned. A matrix is 
o-triangular if it is eitherlower or upper 
o-triangular. 13



De�nition 3. The rank over the ring R of matrix A is the smallest numberr, su
h that A 
an be written as A = BC over R, where B is an n� r and Cis an r � n matrix. If all entries in A are zero, it has rank 0.When R is a �eld, this is a well-known equivalent de�nition of the rank ofa matrix. Grolmusz suggested using this de�nition for a ring sin
e inversesdo not ne
essarily exist. The following easy property still holds under thisde�nition of rank.Proposition 2. rkR(A+ A0) � rkR(A) + rkR(A0).Proof. Suppose A = BC and A0 = B0C 0, where B is an n� r, C is an r� n,B0 is an n� r0, and C 0 is an r0 � n matrix. De�ne new matri
es B00 and C 00where the 
olumns of B00 are formed from the union of the 
olumns of B andB0, and the rows of C 00 are from the union of the rows of C and C 0. ThenA+ A0 = B00C 00, and rkR(A+ A0) � r + r0.Sin
e we need to 
onstru
t 
o-triangular matri
es with small rank, it isuseful to have a lower bound in mind.Proposition 3. If A is an n�n 
o-triangular matrix over R, then rkR(A) �logm n, where jRj = m.Proof. Write A = BC, where B is an n� r matrix and C is a r� n matrix.A is 
o-triangular implies that all 
olumns in A are di�erent. Therefore, all
olumns in C are di�erent. Consequently, n � mr.There is a stronger lower bound modulo a prime. The following theoremimplies that a 
o-triangular matrix has large rank over GFp, more spe
i�
ally,r � n1=(p�1) � p.Theorem 7. Let p be a prime and A be an n � n 
o-triangular matrix overGFp. Let r = rkGFp(A). Then n � �r+p�2p�1 �+ 1.Proof. If we have a set of polynomials fi and points xi su
h that fi(xi) 6= 0and fi(xj) = 0 for i > j, then the polynomials are linearly independent.(see e.g. page 176 in [21℄, and the argument is also similar to the proof ofLemma 2). Then the number of polynomials is bounded by the dimensionof the ve
tor spa
e in whi
h they reside. Note that if we de�ne a matrixsu
h that entry (i; j) is equal to fi(xj), then the matrix is triangular, the14



"
omplement" of a 
o-triangular matrix. So our goal is use a 
o-triangularmatrix to de�ne polynomials satisfying the above mentioned 
riterion.Suppose A is lower 
o-triangular, and A = BC, where B = fbijg is an nby r matrix and C = f
ijg an r by n matrix over GFp. For i 2 [n℄, de�nefun
tions Pi(x1; : : : ; xr) =Prk=1 bikxk. ThenPi(
1j; : : : ; 
rj) = � 0 mod p i = j1; : : : ; p� 1 mod p i > j:Consider the polynomials Qi(x1; : : : ; xr) = 1�P p�1i (x1; : : : ; xr). By Fermat'sLittle Theorem, Qi(
1j; : : : ; 
rj) = � 1 mod p if i = j0 mod p if i > j:The Qi are linearly independent. Ea
h Qi is a degree p� 1, r-variable poly-nomial. Sin
e Qi � 1 is homogeneous, a basis for the ve
tor spa
e these npolynomials reside in isf1g [ fx�11 : : : x�rr : rXi=1 �i = p� 1; �i � 0g:Hen
e, n � �r+p�2p�1 �+ 1.In 
ontrast to the prime 
ase, a 
o-triangular matrix over Zm where m is
omposite 
an have low rank. We are interested in the 
onstru
tion of su
ha matrix as the following theorem demonstrates the relation between goodRamsey graphs with low rank 
o-diagonal matrix over the ring Z6.Theorem 8. Let A be an n by n 
o-diagonal matrix over R = Z6 withr = rkR(A). Then there exists an expli
it graph on n verti
es su
h that a
lique has size at most r+1 and an independent set has size at most �r+12 �+1.Proof. Substitute p = 2 and q = 3 in Theorem 9.Theorem 9. Let p and q be two distin
t primes, and let A be an n by n
o-diagonal matrix over R = Zpq with r = rkR(A). Then there exists anexpli
it graph on n verti
es su
h that a 
lique has size at most �r+p�2p�1 � + 1and an independent set has size at most �r+q�2q�1 �+ 1.15



Proof. Note the rank of A over GFp and GFq is still bounded by the rank ofA over Zpq. Let V (G) = fv1; : : : ; vng. For i > j, f(vi; vj)g 2 E(G) i� aij 6= 0mod p.A t-
lique 
orresponds to a t � t minor of A, whi
h is 
o-triangular overGFp. Hen
e, t � �r+p�2p�1 � + 1. A k-independent set 
orresponds to a k � kminor of A, whose o� diagonal entries are 0 mod p. They 
an be p, 2p,. . . ,(q�1)p (
annot be 0 sin
e A is 
o-triangular), and none of them is 
ongruent to0 modulo q. Hen
e, the 
orresponding minor is 
o-triangular over GFq, andk � �r+q�2q�1 �+ 1.It suÆ
es to 
onstru
t a 
o-diagonal matrix over Z6 with low rank.Theorem 10. For all n > 0, there exists an expli
itly 
onstru
tible n � n
o-diagonal matrix A = faijg over R = Z6 withr = rkZ6(A) = 2O(plog n log log n):Proof. Grolmusz's 
onstru
tion relies on results due to Barrington, Beigel,and Rudi
h [7℄, whi
h we state without proof here.Theorem 11. Given m = p�11 : : : p�`` with ` > 1, where the pi are dis-tin
t primes, there exists an expli
itly 
onstru
tible multilinear polynomialP with integer 
oeÆ
ients, k variables, degree O(k1=`), su
h that for all~x 2 f0; 1gk; P (~x) = 0 over Zm i� ~x = ~0.Choose the smallest integer k su
h that n � kk. Constru
t a BBR poly-nomial P with m = 6 and ` = 2 and with degree O(pk). Now de�ne akk � kk matrix A as follows. Asso
iate ea
h row u and 
olumn u with ave
tor of length k representing u in base k. For row u = (u1; : : : ; uk) and
olumn v = (v1; : : : ; vk), where ui and vj are elements in f0; 1; : : : ; k � 1g,de�ne auv = P (1� Æ(u1; v1); : : : ; 1� Æ(uk; vk));where Æ(ui; vj) = � 1 if ui = vj0 otherwise.If u = v, then auv = P (0; : : : ; 0) � 0 (mod 6). If u 6= v, then there is some isu
h that ui 6= vi. So auv is the evaluation of P on a nonzero ve
tor, whi
his nonzero modulo 6. Hen
e, A is 
o-diagonal modulo 6.16



To bound r, we write A as the sum of matri
es with smaller rank and useProposition 2. Sin
e P has degree 
pk for some 
onstant 
, P is the sum ofmonomials of the formai1;i2;:::;isÆ(ui1; vi1)Æ(ui2 ; vi2) � � � Æ(uis; vis);where ai1;i2;:::;is 2 f0; 1; : : : ; 5g and s � 
pk.For ea
h monomial Æ(ui1; vi1) � � � Æ(uis; vis) in P , de�ne matrix Ci1;:::;is =f
uvg su
h that 
uv = Æ(ui1; vi1) � � � Æ(uis; vis). ThenA = Xs�
pk;i1;:::;is2[k℄ai1;:::;isCi1;:::;is:The number of monomials in P is at mostP
pki=0 �ki� < k
2pk for some 
onstant
2. Now we need to bound the rank of ea
h matrix Ci1;:::;is.Observe that entries in Ci1;:::;is are either zero or one. Furthermore, thenumber of ones in ea
h row and 
olumn is exa
tly kk�s. To see this, �x arow u. In the expression Æ(ui1; vi1) : : : Æ(uis; vis), the uij are �xed. There arekk�s ways to 
hoose values for the k � s vij not in the expression while theremaining vij must mat
h up with the uij for the expression to be one. Thenit is not hard to see that we 
an permute the rows and 
olumns in Ci1;:::;is sothat it 
an be written in the formai1;:::;is0BBBBB� J 0 0 : : : 00 J 0 : : : 00 0 J : : : 0... ... ... . . . ...0 0 0 : : : J
1CCCCCAwhere ea
h J is a kk�s by kk�s all ones matrix. Then the rank of this matrixover Z6 is equal to the number of J blo
ks, whi
h is ks.Hen
e, putting everything together, we haverkZ6(A) � Xi1;:::;is rkZ6(Ci1;:::;is) < k
2pkks = kO(pk):Now, take the n�n upper leftmost minor of A. This is still 
o-diagonal overZ6, has size n, and has rank 2O(plog n log log n) by our 
hoi
e of k.Grolmusz's 
onstru
tion 
an be generalized to low rank matri
es over Zm.17



Corollary 1. For m = p�`` : : : p�`` and ` > 1, there exists an expli
itly 
on-stru
tible n� n 
o-diagonal matrix A over Zm withr = rkZm(A) = 2O(p̀log n(log log n)`�1):Proof. The proof follows the same steps as above. P has degree O(k1=`),Ci1;:::;is has rank kO(p̀k) over Zm, and A has rank kO(p̀k)Corollary 2. There exists an expli
itly 
onstru
tible family of graphs on nverti
es su
h that the 
liques and independent sets have size at most2O(plog n log log n):Proof. We have 
onstru
ted 
o-diagonal matri
es over Z6 with rank r. ByTheorem 8, graphs on n verti
es have 
liques and independent sets of sizeO(r2). So the statement follows.5.2 Co-Diagonal over ZpqWe des
ribe our result in this se
tion. Grolmusz examined 
o-diagonal ma-tri
es over the ring Z6. We generalize his idea to Zpq, where p and q aredistin
t primes. While Theorem 9 provides a worse bound on the size of amono
hromati
 
lique than Theorem 8, it is mu
h easier to 
onstru
t a lowrank 
o-diagonal matrix over a larger ring. In fa
t, the rank of the matrixis mu
h smaller, and therefore, this tradeo� allows us to obtain the sameasymptoti
 bound for R(k; k). Over the ring Zpq, we 
an simply for
e the o�diagonal entries to be drawn from f1; : : : ; pq � 1g and avoid modulo arith-meti
 and the usage of the BBR polynomials. Our 
onstru
tions are in partinspired by the expli
it matri
es introdu
ed in Theorem 1.Lemma 3. There exists an expli
itly 
onstru
tible family of graphs fGNg,where GN is a graph on N verti
es su
h that the size of 
liques and indepen-dent set is at most 2O(plogN log logN).Proof. Let n be the smallest integer su
h that N � �nk�, where k = bn=2
+1.Let A be a �nk� by �nk�matrix. Asso
iate ea
h row with a unique binary ve
torof length n with weight k, and ea
h 
olumn i is asso
iated with the ve
torasso
iated with row i. De�ne Aij to be the inner produ
t of x and y, wherex is the ve
tor asso
iated with row i, and y is the ve
tor asso
iated with
olumn j. 18



Aii = hx; xi = k. Now 
onsider Aij, where i 6= j, and let x and y bethe asso
iated ve
tors for row i and 
olumn j, respe
tively. Clearly Aij < k,sin
e there must be a 
oordinate where x and y di�er. Furthermore, by thePigeonhole Prin
iple, there must be a 
oordinate where x and y both have a1, so Aij > 0.Now 
onsider the top N � N upper leftmost minor of A and 
all it A0.Take the ring R = Zpq, where p and q are distin
t primes and pq = k. ThenA0 is 
o-diagonal over R. rkZpq(A0) � n sin
e A 
an be written as A = BC,where the rows of B are the ve
tors asso
iated with the rows of A0, and the
olumns of C are the ve
tors asso
iated with the 
olumns of A0. B is N byn and C is n by N . Hen
e, A0 has size N = � nn=2+1� = O(2n=pn) and rankr = O(logN) over R.From Theorem 9, matrix A gives rise to a graph with 
lique and indepen-dent sets of size at most t < (r + q)q, assuming p < q. Our 
onstru
tion hasthe parameters pq = n and n = O(logN). Taking p and q 
lose, we havet = (logN +plogN)O(plogN) = (logN)O(plogN) = 2O(plogN log logN):The matrix has size N . Ea
h 
oeÆ
ient requires logn = log logN bits. Ea
hdot produ
t takes n = logN operations, and examining ea
h entry modulop or q is also eÆ
ient. So our 
onstru
tion takes time polynomial in N .This provides an alternate 
onstru
tion of these 
o-diagonal matri
esthough the asymptoti
 bound is worse than the best known result. How-ever, we 
an improve the bound by in
reasing the range of the asso
iatedrow and 
olumn ve
tors.De�ne U = U1 � U2 � : : :� Uk, where ea
h Ui is a set of n elements, andthe Ui are disjoint. Consider a matrix A su
h that its rows and 
olumns areindexed by elements in U . For row or 
olumn (u1; : : : ; uk), let x 2 f0; 1gknbe its 
hara
teristi
 ve
tor, i.e.,xa = � 1 if a = u1 or u2 . . . or uk0 otherwiseDe�ne Aij = hx; 1 � yi, where x is the 
hara
teristi
 ve
tor of row i and yis the 
hara
teristi
 ve
tor of 
olumn j. Note that Aii =< x; 1 � x >= 0.For i 6= j, there exists a 
oordinate where x and y di�er, so without lossof generality, x has a 1 in 
oordinate u1 whereas y has a 0. Sin
e thereare no zero 
hara
teristi
 ve
tors, we 
an 
on
lude Aij > 0. Note for ea
h
hara
teristi
 ve
tor x, it has exa
tly k ones, so Aij � k.19



Let k = pq� 1, where p and q are distin
t primes. Then A is 
o-diagonalover R = Zpq. A has size nk and rank r = kn over the ring R. From thisexpli
it family of matri
es, we have the following:Theorem 12. The 
o-diagonal matrix A implies an expli
it graph on Nverti
es with 
lique and independent set sizes bounded by 2O(plogN log logN):Proof. From Theorem 9 and assuming p < q; we have t < (r + q)q, where tis the size of the largest 
lique or independent set. Our 
onstru
tion has theparameters r = kn, pq � 1 = k, and N = nk. Choosing k = n; we havet = (kn+pk)O(pk) = (n2 +pn)O(pn) = 2O(pn log n) = 2O(plogN log logN):A theorem by Bollob�as in extremal set theory illustrates why our 
hoi
eof k is best possible. The theorem asserts that if A1; : : : ; Am are sets of sizea and B1; : : : ; Bm are sets of size b su
h that Ai \ Bj = � i� i = j, thenm � �a+ba �. (Numerous proofs are known; see e.g. [21℄). In our 
onstru
tion,the row ve
tors xi 
orrespond to sets of size k, and the 
olumn ve
tors 1� yj
orrespond to sets of size kn � k, where the sets 
orresponding to xi and1 � yj satisfy the property des
ribed above. So the size of the matrix is atmost (kn)O(k). On the other hand, the maximum size of a mono
hromati

lique has a fa
tor of pk in the exponent be
ause k is the produ
t of twolarge primes.5.3 multi
olorNaturally, we 
an generalize the previous 
onstru
tion to ` 
olors for a 
om-plete graph on N verti
es over Zm where m has ` prime divisors. Grolmuszdid not des
ribe the easy generalization, but we provide details here for 
om-pleteness.Here is how we 
an modify the 
onstru
tion. Instead of setting k = pq,let k = p1 : : : p`� 1, where pi are 
onse
utive primes su
h that k = O(n
) forsome 
onstant 
. Then the matrix A de�ned in Theorem 12 is 
o-diagonalover R = Zp1:::p` with rank kn. De�ne a graph G su
h that V (G) is the setof rows of A, and for i > j, de�ne the 
olor of the edge f(i; j)g 2 E(G) asminf` : p` does not divide aijg:20



The 
oloring is well de�ned sin
e the o�-diagonal entries in A are not divisibleby p1 : : : p`. A mono
hromati
 
lique of 
olor i of size t 
orresponds to a t byt minor of A. This minor is 
o-triangular over GFpi. So by Theorem 8,t � �r + pi � 2pi � 1 �+ 1< (r + pi)pi= nO(p̀n)= 2O(log np̀n)= 2O(p̀logN(log logN)`�1):This shows thatCorollary 3. We 
an expli
itly 
onstru
t a family of 
omplete graphs fKNg,where KN is a `-
olored 
omplete graph on N verti
es su
h that the mono
hro-mati
 
liques have size at most2O(p̀logN(log logN)`�1):6 A
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