Explicit Construction of Ramsey-type Graphs

Victor Yenwen Chen victor@cs.utexas.edu
Supervised by Dr. Zuckerman
University of Texas at Austin

May 2004

Abstract

We survey some recent constructions of Ramsey-type graphs, large
graphs with small clique and independent set sizes. Then continuing
the works of Grolmusz, we construct matrices over the ring Z,4, where
p and q are distinct primes, such that the diagonal entries are 0 modulo
pq and the off diagonal entries are nonzero modulo pgq. These matrices
lead to a construction of Ramsey graphs. Our work simplifies Grol-
musz’s construction while still matching the best known constructive
asymptotic bound.

1 Introduction

Randomization is extremely useful in many areas in computer science. Many
algorithms become much simpler in both conception and implementation
with access to randomness. However, it is not clear whether there are good
random sources in nature, and furthermore, computers do not have access to
truly random bits. It becomes natural to investigate the power of randomness
- whether access to random bits can be removed or reduced without loss of
efficiency.

The main focus of this area of study, termed derandomization, is to con-
vert an existing randomized algorithm into an efficient, deterministic one. A
pseudorandom generator, a deterministic algorithm that takes a short ran-
dom string and stretches its length to fool polynomial time algorithms, is a



useful tool in derandomization, and its constructibility has received atten-
tion from various researchers. Constructibility is defined as the existence of
an efficient, deterministic algorithm to construct the object. The construc-
tion of pseudorandom generators is closely related to the constructions of
many objects with combinatorial properties, such as error-correcting codes,
expander graphs, and extractors. Thus, problems in derandomization can of-
ten be expressed as problems in explicit constructions. These combinatorial
objects also have many applications in computer science, such as networking,
algorithmic design, and complexity theory.

One famous problem in the area of explicit construction is the construc-
tion of Ramsey graphs. A Ramsey graph is a large graph with small clique
and independent set sizes. More formally, the Ramsey number n = R(k,t)
is defined as the smallest number n such that any graph on n vertices con-
tains a clique of size k or an independent set of size t. It is well known that
this number is finite and so is well-defined [24]. The problem of determin-
ing a lower bound for the number is equivalent to proving that some graph
on n vertices has no clique of size £ and no independent set of size ¢t. In
one of the early uses of the probabilistic method, Erdds [11] showed that
R(k,k) = Q(2%/?). In other words, there exist Ramsey graphs with (2%/2)
vertices having cliques and independent sets of size strictly less than k. His
proof is probabilistic and in fact shows that most graphs on Q(2*/2) vertices
exhibit this random-like property. This implies a very simple randomized
algorithm to generate a Ramsey graph. The algorithm simply flips a fair
coin for each pair of vertices to decide whether they are connected or not.
However, the proof merely demonstrates the existence of such a graph with
high probability without providing a construction. Our goal in exhibiting
Ramsey graphs is in a sense a derandomization of the simple randomized
algorithm. Trivially, we may search through the sample space of all graphs
on n vertices and test whether each graph has a clique or an independent set
of size at least 2logn.

However, this brute force approach is not efficient. Even if we use a re-
duced sample space, querying whether a graph has a clique or an independent
set of a given size is nontrivial. The best known construction is due to Frankl
and Wilson [15] who constructed graphs on

log k
kQ(loglogk)

vertices with the maximum size of a clique and an independent set less than



k. The constructive bound is much weaker than the probabilistic bound, and
it remains open to show explicitly that R(k, k) is exponential in terms of k.

In this paper, we survey some recent constructions of Ramsey graphs.
Then continuing the works of Grolmusz, we construct matrices over the ring
Zpq, Where p and ¢ are distinct primes, such that the diagonal entries are 0
modulo pq and the off diagonal entries are nonzero modulo pg. These matrices
lead to a construction of Ramsey graphs. Our work simplifies Grolmusz’s
construction while still matching the best known constructive asymptotic
bound.

Our paper is organized as follows. In the first section, we survey some
known results on the off diagonal number R(3,t), and we shall see that these
smaller Ramsey numbers are also difficult to estimate explicitly. The rest
of the paper is devoted to the diagonal number R(k,k). In the next two
sections, we shall discuss the classical Frankl-Wilson construction and then
Alon’s work extending their result. Then in the last section, we shall present
Grolmusz’s work and our result.

2 The Ramsey Number R(3,t)

Various researchers over the years have studied the off diagonal Ramsey
number R(3,t). Ajtai, Komlés, and Szemerédi [1] showed that R(3,t) =
O(t?/logt). Improving Erdés’s bound [12] R(3,t) = Q((t/logt)?), Kim [19]
demonstrated that the upper bound is tight up to a constant factor, namely
R(3,t) = O(t*/logt). However, these lower bound proofs are probabilistic,
and it presents a challenge to construct triangle-free graphs with the size
of an independent set bounded by ¢ while the number of vertices approach
nearly quadratic in t.
Erdés [13] provided the first construction with graphs on

Q(t(2 log 2)/3(log 3—log 2)) — Q(t1'13)

vertices. Building on the works of Cleve and Dagum [9], Chung, Cleve, and
Dagum [8] presented another construction with graphs on

Q(thg 6/ log 4) — Q(t1.29)

vertices. Alon, using ideas from coding theory, showed a construction with
graphs on Q(t*/3) vertices in [3] and subsequently improved it to (¢3/2) in



[2]. The latter is the best known constructive lower bound for R(3,t). More
recently, Codenotti, Pudlédk, and Resta [10] gave a simpler construction that
matches Alon’s bound. Both constructions are presented in this section.

2.1 Projective Plane Approach

The construction due to Codenotti, Pudldk, and Resta [10] involves finite
projective planes (see e.g. page 157 in [21] or Chapter 19 in [25]). For a
prime power g, a projective plane of order ¢ consists of a set of ¢ + ¢ + 1
points and a set of ¢ + ¢ + 1 lines. Each line has exactly ¢ + 1 points, each
point is on exactly ¢ + 1 lines, and two points uniquely determine a line.

Theorem 1. For every m, there is an explicitly constructible square matriz
M of size O(m3/?) which has ones on the diagonal, rank(M) < m, and the
associated graph of nonzero entries does not contain a transitive triangle
(edges a to b, b to ¢, and a to c).

Before presenting the proof, we first show how Theorem 1 can provide
a constructive lower bound for R(3,t). Construct a matrix M of size n as
specified in Theorem 1. Make it symmetric by copying the entries above the
diagonal into their corresponding entries below the diagonal. Call the new
matrix M’ and its associated graph H'. Since H has no transitive triangle,
H' cannot have a triangle. If H' has an independent set S of size k, it will
correspond to a k by k minor in M’ which is I. In M, the corresponding
minor will have zeros above the the diagonal of ones, so the minor has rank
k, which is bounded by O(n?/®). This shows R(3,t) = Q(t*?) constructively.

Proof. (of Theorem 1) The idea is to construct a graph G with a superlinear
number of edges such that GG has no cycle of length less than 6. Then from G,
construct an oriented graph H so that its vertices correspond to edges of G.
The absence of small cycles in G should prohibit a transitive triangle (edges
a to b, b to ¢, and a to ¢) from occurring in H, and then we can associate a
matrix M with H such that M has low rank.

One such G with the desired properties is the incidence graph of a pro-
jective plane (a bipartite graph whose vertices correspond to the points and
lines of the plane, and each edge connects a line to an incident point). Let
m = |V(G)| = O(n?). |E(G)| = O(m??), and G has no cycle of length less
than 6 (else, we have two lines sharing two points, a contradiction).



For the oriented graph H, let
V(H)=E(G)={(P,L) : point P on line L}, and

((Pl,Ll)a (PQ,L2)) S E(H) iff Pl ?é P2,L1 7£ LQ, and Pl is on LQ.

H cannot have a transitive triangle. Otherwise, for some points Py, P, Ps
and lines Ll, Lg, L3, we have edges ((Pl, Ll), (Pz, Lg)), ((Pg, Lz), (P3, Lg)),
and ((Py, L), (Ps, L3)). This implies that in graph G, there exists a 4-cycle,
namely Py — Ly — P, — L3 — Py, which is a contradiction.

Associate a matrix M with H as follows. Index both rows and columns
of M by V(H). For row (P, L), assign a vector whose coordinates are in
V(G) and has a —1 on the coordinate P, 1 on the coordinate L, and 0 ev-
erywhere else. For column (P, L), assign a vector whose coordinates are in
V(G) and has a 1 on each incident point of L (except P), 1 on L, and 0
everywhere else. Define M;; to be the inner product of v and w, where v is
the vector associated with row ¢ and w is the vector associated with column j.

Claim: M;; = 1, and for off-diagonal entries, M;; is —1 on entries corre-
sponding to edges of H and 0 otherwise.

Proof. Let v be the associated vector of row (P, L) and w be the associated
vector of column (P’,L'). v has two nonzero coordinates at P and L. If
i=j,whasa0at PandalatL,soM;;=(v,w) =1 Supposei # j.
We have M;; = —1 iff w has a 1 at coordinate P and a 0 at coordinate L.
This is true iff L' # L, P # P', and P is on line L', which is the definition
of an edge in H. We have M;; = 0 iff the coordinates P and L in w are both
0 or 1, and neither case can occur if H has the edge ((P, L), (P',L")). This
implies that H is the associated graph of M with nonzero elements. O

It remains to show that the rank of M is bounded by m. The key obser-
vation is that any linear combination of the vectors associated to the rows
of M gives rise to a linear combination of the corresponding rows. To see
this, let  be a linear relation of some vectors {z} associated to the rows, i.e.,
=), a,z. Suppose y is a vector associated to a column of M. The entry
M,y is equal to (z,y) = ). a.(z,y). Hence, the rows corresponding to {z}
are also dependent.

The vectors have length m, so at most m of them can be linearly in-
dependent, and therefore at most m rows are linearly independent. Since



prime powers occur frequently, we conclude such M is constructible for every
sufficiently large m. O

The construction requires a graph with a superlinear number of edges
and has no cycle of length 4. If a graph G has no 4-cycle, it has no K, as
a bipartite subgraph. Then by Zarankiewicz’s problem (see [20] or page 25
n [21]), |E(G)| = O(|[V(G)[*/?). So our choice of the incidence graph of a
projective plane is best possible.

2.2 Dual of a BCH Code

A Cayley graph G = (V, E) consists of a finite group H and a generating set
S C H such that V = H and E = {(h,h+s): h € H,s € S}. We impose
the additional requirement that s € S iff s~ € S for G to be undirected.
It is not known if there are Cayley graphs that are good diagonal Ramsey
graphs, but Cayley graphs can be used to prove constructive lower bound for
the number R(3,t) [2].

Alon’s idea is to take a parity check matrix of a linear code with sufficient
minimum distance to obtain the triangle-free property in the graph. For a
positive integer k, let F), = GF(2¥) denote the finite field with 2* elements,
and the elements are represented as binary vectors. Let a be a primitive
element in [F,. Consider the following 3k by 2¥ — 1 matrix over Fy:

1 a o - ¥
A= 1 ol (a2)3 . (a2k72)3 ’
1 o (a2)5 (a2k*2)5

which is the parity check matrix of a binary BCH code C' of designed distance
7 (see e.g., Chapter 9 in [22]).

Now we define a Cayley graph G = (V, E). Let n = |V| = 23 where 3
does not divide k. Let V = H be the additive group F3*. Define W, to be
the set of all nonzero elements o € Fj, such that the leftmost bit of o is 0,
and let W; be the set of all nonzero elements o € F}, such that the leftmost
bit of a” is 1. Let (a, b, c) denote the concatenation of the three vectors a, b,
and c. The generating set S is Uy + Uy = {u, +u; : ug € Uy, uy € Uy}, where
U; = {(w;, w3, w?) : w; € Wy} for i =0, 1.

Note that since 3 does not divide k and ord;2 = 3, 7 cannot divide 2% — 1.
So for all a # 1 € Fy, " # 1. This implies that the map = — 27 is injective,
and therefore, W, and W; form a partition of F},. As a consequence, the set

6



of all columns of A is the union of Uy and U;. Now we prove some properties
of G using ideas from coding theory.

Proposition 1. G is d := 2¥71(2=1 — 1) regular.

Proof. The BCH code C has minimum distance at least 7, so every set of six
columns of A is linearly independent over GF'(2) (BCH code is linear, and the
minimum distance of a linear code is the minimum weight of the codewords
in the code). This implies that all the sums (ug + u;), where uy € Uy and
uy € Uy, are distinct. Hence, d = |S| = |Up||Uy| = 21 (21 —1). O

Note that C' only needs to have minimum distance at least 5 for the
previous proposition. We need C' to have minimum distance at least 7 for
the following lemma.

Lemma 1. G is triangle-free.

Proof. Suppose G has a triangle, which is also a 3-cycle. Since G is Cayley,
there exists g € H and distinct sy, s9, s3 € S such that (g, g+s1, g+ s1+52) is
a 3-cycle with s, +s,+s3 = 0. Write s; = ag+ay, So = bg+0b1, and s3 = co+cy,
where ag, by, cg € Uy and a1, by,c; € Uy. Then a9+ ay +bg+ b1 +co+c¢1 = 0.
These are also column vectors of A. Since the code C' has minimum distance
at least 7, these six vectors must be linearly independent, contradicting that
their sum is 0. O

To bound the maximum size of an independent set in GG, we employ
spectral techniques to analyze the eigenvalues of the adjacency matrix Ag of
G. We first state a known result (see e.g. page 435 in [25] for a proof).

Fact 1. For a d-regular graph G, the maximum size of an independent set

in G is bounded above by
—nA\,

A=A\
where n = |V(G)| and d = Ay > As > ... > A, are the eigenvalues.

It suffices to bound the smallest eigenvalue of our graph G.

Theorem 2. For every eigenvalue \ of Ag,

—9.2F _3.2F2 _1/4 <\



Proof. Tt is known that the eigenvalues of a Cayley graph of an Abelian
group can be computed in terms of the characters of the group. To see
this, for r,a € FS*, r fixed, let x,(a) = (—1)"?, which is multiplicative, i.e.,
xr(a 4+ b) = xr(a)x-(b). Let v € {—1,1}2" be such that v; is equal to x,
applied to the ith string in F5*. Then

(Aev)i= Y x() = > xi(i+s)

b:(¢,b)€E(G) sesS

= Z Xr (4)xr(8)

seS

(5w

s€S

Hence, v is an eigenvector with eigenvalue

A= 30 %) = (3 (@)Y xe(w)

seS uo €Uy u1 €Uy

since S = Uy + Us.

Now recall that A is the parity check matrix of code C. Consider w :=
r- A. For j = 0,1, define vectors wy, to be the restriction of w to U;. Let
#o(w) be the number of 0 in the vector w and #;(w) to be the number of 1
in w. Then

Z Xr(uj) = Z ()" = #O(wUJ) - #l(ij)

u; €U; u; €U;

Write wt(wy,) = « and wt(wy,) =y. Then A\, = (2F1 — 1 — 22)(2F 1 — 2y).
Now we prove a lower bound for A,. Since w is a linear combination of
the rows of A, which corresponds to a codeword in the dual code of C, this
provides a way to bound the eigenvalue in terms of the Hamming weight of w.
The AM-GM Inequality asserts that for real numbers a and b, ab < (a+b)?/4.
Substituting a = (2¥! — 1 — 2z) and b = — (2! — 2y), we have

A > —(142(z — y))?/4.

We will use the Carlitz-Uchiyama bound (see e.g. page 280 in [22]) to bound
T —y.



Theorem 3. Suppose C is a binary BCH code of length 2™~ with designed
distance 2t+1, where 2t—1 < 2I™/21 1. Then for all nonzero vectors ¢ € C*+,

2™t — (t—1)2™2 < wit(e) < 2™+ (£ - 1)2™2

Consider the following matrix in binary,

1 a o a2 2
s 1 aob (az)s (azk—z)s
- 1 o (a2)5 (042’6*2)5 )
1 af (042)7 (042h 2)7

where « is a primitive element of . Similar to A, A’ is also the parity check
matrix of a BCH code C' with designed distance 9.

Let p be the characteristic vector of W;. Now let 7' € {0,1}* be the
vector r appended by the vector [1,0,...,0]. Then ' - A’ = w+ p, and w +p
is a codeword in the dual of C' with Hamming weight = + 2¥~! — 4, which
is nonzero. By the Carlitz-Uchiyama bound, 2¥1 —3.2F/2 < g 4 2k"1 — ¢
which implies A, > —9-2F —3.2¥/2-1/4, and thus completing the proof. [

With the lower bound on the smallest eigenvalue, we conclude that the
graph G has independent sets of size at most

36-2F412.2F2 41
n i i = 0(n*?),
2k(2F —2) +36-2F +12-2k/2 + 1

Our graph is also triangle-free. Hence, this shows R(3,t) = Q(t3/2) explicitly.

3 Frankl-Wilson Construction

We now consider the diagonal Ramsey number R(k, k) and survey several
known constructive lower bound. For years, the only construction known is
trivial — construct k£ — 1 disjoint cliques of size k — 1, which yields R(k, k) =
Q(k?). In [23], Nagy showed R(k, k) = Q(k*). Building on the works of Frankl
[14], Frankl and Wilson [15] made a breakthrough and constructed graphs
with a superpolynomial number of vertices with respect to k. The following
theorem regarding the size of a set system with restricted intersection modulo



a prime p is the main tool involved. The original proof used higher incidence
matrices, but Alon, Babai, and Suzuki [5] employed multivariate polynomials
in a vector space with small dimension to bound the size. We state a weaker
result without proof since the essential proof concept is illustrated in the
next section.

Theorem 4. Suppose ug, uy, ...,us are distinct residues modulo a prime p.
Let F be a family of k-element subsets of {1,2,...,n}. Suppose k = uy mod
p, and for every distinct A, B € F, |AN B| = u; mod p for some 1 < i <s.
Then |F| < 375, (7)

Frankl and Wilson also showed a stronger bound |F| < (7) if F is k-
uniform, but this makes no difference in the asymptotic bound in the follow-
ing theorem.

Theorem 5. There exists an explicitly constructible family of graphs {G,},
where G, is a graph on n vertices such that the cliqgues and the independent

sets have size less than
20(\/10gnloglogn)

Proof. Let p be a prime and consider the set S = {1,2,...,p*}. Define a
graph G such that its vertices are subsets of S with size p*> — 1, and (A4, B) €
E(G) iff |ANB| # —1 (mod p). A clique corresponds to a family {4, ..., A}
such that for all 4 # j, |4; N A;j] # —1 (mod p). Since each subset has size
congruent to —1 modulo p, ¢ is bounded by

p—1 3
<P'> — pO0®),
, i
=0

An independent set of size t corresponds to a family {B, ..., B;} such
that for alli # j, |B;NB;| € {p—1,2p—1,...,p(p—1) — 1}. Pick a prime ¢
larger than p> — 1. Then p—1,2p—1,...,p(p—1) — 1,p* — 1 are all distinct
residues modulo gq. By Theorem 34, t < Ef:;)l (”:) = pOW),

Note that n = |V(G)| = (pg’_l) = p°®°). By the density of primes, for
every n, we can choose up to constants p so that n < (pfil). Then we can

construct a graph on (pg’fl) vertices and then obtain a subgraph of G with n
vertices. Hence, the size of a clique or an independent set in G is bounded by
20(vlegnloglogn) -~ Gimple computation shows that this is equivalent to stating
that G has t®(logt/loglog?) yertices while cliques and independent sets have size

less than ¢. O
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4 Alon’s Extension

Suppose the edges of a complete graph are either red or blue. Theorem 4
asserts that it is possible to color the edges such that the size of a monochro-
matic (either red or blue) clique is small (think of the blue edges in the
complete graph as non-edges before the coloring transformation). Then we
can investigate the case when complete graphs are colored with ¢ colors and
hope for similar results. Using more than one prime, Alon in [4] extended
Frankl and Wilson’s results.

Definition 1. Let G=(V,E) be a graph and F be a subspace of the space of
polynomaal in r variables over a field F. We say that G has a representation
over F if for each v € V', we can assign a polynomial f, € F and ¢, € F"
such that the following conditions hold:

(1) For allv eV, f,(c,) #0.

(2) For all distinct, nonadjacent u,v € V, f,(cy) = 0.

Lemma 2. If a graph G=(V,E) has a representation over F, then the size
of an independent set in G is bounded above by dim(F ).

Proof. Let {f,(z1,...,2,) : v € V} and {c, : v € V} be a representation,
and let S be an independent set in G. Then the polynomialsin {f, : v € S}
are linearly independent. To see this, suppose > .canf, = 0. If u € S,
evaluate this sum of polynomials on u, and we can conclude that o, = 0.
Hence, |S| is bounded by the dimension of F. O

Note that the representation of a graph is defined with bounding the di-
mension of the space F in mind. This will then bound the size of a monochro-
matic clique in a graph from above.

Theorem 6. For every fized integer { > 2, we can construct a family of

{-colored graphs on
(1+0(1))(log k)t 1
Lk tfoglogk)t—1

vertices with mo monochromatic cliques of size k.

Proof. Extending Frankl and Wilson’s construction, let P = {py,...,p;} be a
set of £ consecutive large primes. Define s := p1py...p,—1 and let r = pf‘“.
Construct a complete graph G whose vertices are subsets of {1,...,r} with
size s. Define the color of edge (A, B) as

min{i € {1,...,¢}: |ANB| # —1(mod p;) }.

11



Since [ANB| < py...p¢ — 1, |JAN B| # —1 (mod p;) for some i. So our
coloring is well-defined.

Let G; be the subgraph of G by removing the edges with color 7. A
monochromatic clique of color ¢ in GG corresponds to an independent set of
G;. Now we show that GG; has a representation over the space of multilinear
polynomials of degree at most p; — 1 in r variables over GF(p;). For each
vertex A, assign the polynomial

pi—2
Pa(wy,...,2) = [T ay -1,
=0 jeA
and let its characteristic vector c4 € {0,1}" C (GF(p;))". Then P4(ca) =
f;_oz[|A| — @], which is not congruent to 0 modulo p; since |A| = —1 mod

p;. For nonadjacent vertices A and B, Pa(cg) = [[%,*[|A N B| — i], which
is congruent to 0 modulo p; since |A N B| # —1 modulo p; by construction.
These polynomials are multilinear; we can use the relations 7 = z; and make
appropriate substitutions since the characteristic vectors are binary.

A basis of the space these polynomials reside in consists of monomials
of degree at most p; — 1, so the dimension is precisely 5501 (:) By the
preceding lemma, this implies that a monochromatic clique in G has size less
than k = 7°®). We have the parameters r = pﬁ"’“ and s = p;...p¢ — 1.
And by direct calculation and the density of primes, the number of vertices

in G is
r (1+0(1))(tog k)“ =1
. — Lk tf(oglogk)t—1 ,

completing the proof. O

Recall that in Frankl and Wilson’s construction, two vertices A and B in
G are connected iff [ANB| # —1 (mod p). We sketch how the proof above can
be modified to obtain Frankl and Wilson’s construction. Set r = p3> — 1 and
s = p? — 1. G has a representation over the space of multilinear polynomials
of degree at most p — 1 with r variables over the reals. For each vertex A,
assign the polynomial

p—1

Qa(1,...,z) = [ [IO =) — (0 — 1 - ip)]

i=1 jcA

and its characteristic vector c4. Then Q4(c4) = [[*-; # 0. Since |[AN B| €
{p—1,2p—1,...,p(p—1)—1}, there must be ani € {1,...,p— 1} such that

12



|ANB|— (p* —1—1p) = 0. The dimension of the space of these polynomials
bounds the size of an independent set in G. Similarly, the complement of
G has a representation over the field GF(p) as described in the preceding
proof, and the dimension of this space bounds the size of a clique in G.

5 Grolmusz’s Work and Our Result

In Theorem 4, Frankl and Wilson showed that when m is a fixed prime, a set
system with pairwise intersection modulo m has a polynomial upper bound,
viewing m as a constant. In the same paper, they also proved that the upper
bound holds when m is a fixed prime power and s = m — 1 (the number of
distinct intersection size residues). They asked whether a polynomial upper
bound exists if m is a fixed non-prime power or when s = m — 1. Grolmusz
in [16] demonstrated an explicit family of superpolynomial size set system if
m is a fixed non-prime power and s = m — 1. His set systems also provided
a novel construction of Ramsey graphs matching the asymptotic bound by
Frankl and Wilson, and his construction can be generalized to multicolors
that matches Alon’s bound.

Grolmusz’s works involved certain low degree polynomials (call them
BBR, due to Barrington, Beigel, and Rudich [7]). He used these polyno-
mials to construct co-diagonal matrices (defined below) over the ring Z.
These matrices in turn lead to the construction of his superpolynomial set
systems. In [17], Grolmusz constructed good Ramsey graphs directly from
low rank co-diagonal matrices over Zs, and in [18], he provided another proof
that these matrices have small rank. We shall describe the connection be-
tween Ramsey graphs and these matrices, but first let us define some basic
terminologies.

5.1

Definition 2. Let R be a ring and n be a positive integer. A = {a;;} is a
co-diagonal matriz over R if for i,j € {1,2,...,n},a; is nonzero in R if
i # j and zero if 1 = j.

We say that matriz A is upper co-triangular over R if the diagonal entries
are zero and the entries above the diagonal are monzero in R. A lower co-
triangular matrix s similarly defined. A matriz is co-triangular if it is either
lower or upper co-triangular.

13



Definition 3. The rank over the ring R of matriz A is the smallest number
r, such that A can be written as A = BC over R, where B is ann xr and C
is an r X n matriz. If all entries in A are zero, it has rank 0.

When R is a field, this is a well-known equivalent definition of the rank of
a matrix. Grolmusz suggested using this definition for a ring since inverses
do not necessarily exist. The following easy property still holds under this
definition of rank.

Proposition 2. rkg(A+ A') < rkg(A) + rkg(A’).

Proof. Suppose A = BC and A’ = B'C’, where Bisann xr, C'is an r X n,
B'is an n x 7', and C' is an r' X n matrix. Define new matrices B"” and C”
where the columns of B” are formed from the union of the columns of B and
B', and the rows of C" are from the union of the rows of C' and C'. Then
A+ A'=B"C", and rkr(A+ A") <r+1r. O

Since we need to construct co-triangular matrices with small rank, it is
useful to have a lower bound in mind.

Proposition 3. If A is an n xn co-triangular matriz over R, then rkg(A) >
log,, n, where |R| = m.

Proof. Write A = BC, where B is an n X r matrix and C' is a r X n matrix.
A is co-triangular implies that all columns in A are different. Therefore, all
columns in C are different. Consequently, n < m’. O

There is a stronger lower bound modulo a prime. The following theorem
implies that a co-triangular matrix has large rank over G F},, more specifically,
T Z nl/(pfl) — p

Theorem 7. Let p be a prime and A be an n X n co-triangular matriz over

GF,. Let r = rkgp,(A). Then n < (T:ﬁz) +1.

Proof. If we have a set of polynomials f; and points x; such that f;(z;) # 0
and fi(z;) = 0 for 7 > j, then the polynomials are linearly independent.
(see e.g. page 176 in [21], and the argument is also similar to the proof of
Lemma 2). Then the number of polynomials is bounded by the dimension
of the vector space in which they reside. Note that if we define a matrix
such that entry (7,7) is equal to f;(x;), then the matrix is triangular, the
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"complement” of a co-triangular matrix. So our goal is use a co-triangular
matrix to define polynomials satisfying the above mentioned criterion.

Suppose A is lower co-triangular, and A = BC, where B = {b;;} isan n
by 7 matrix and C = {¢;;} an r by n matrix over GF,. For i € [n], define
functions Pj(x1,...,2,) =Y ;_, bipxg. Then

~ [ 0mod p 1=
Pi(Clg,---aCrJ)—{ 1,...,.p0—1modp >3

Consider the polynomials Q;(z1,...,z,) =1 —Pip_l(:cl, ..., 2,). By Fermat’s
Little Theorem,

lmodp ifi=y
0 mod p if¢>j.

Qi(cij, ..., ¢rj) = {

The @; are linearly independent. Each @); is a degree p — 1, r-variable poly-
nomial. Since ); — 1 is homogeneous, a basis for the vector space these n
polynomials reside in is

{l}U{xfl...w;’T:Zai:p—l,aiEO}.
i=1

Hence, n < (T+p )+ 1. O

In contrast to the prime case, a co-triangular matrix over Z,, where m is
composite can have low rank. We are interested in the construction of such
a matrix as the following theorem demonstrates the relation between good
Ramsey graphs with low rank co-diagonal matrix over the ring Zs.

Theorem 8. Let A be an n by n co-diagonal matriz over R = Zg with
r = rkgr(A). Then there exists an explicit graph on n vertices such that a
clique has size at most r+1 and an independent set has size at most (Hz'l) +1.

Proof. Substitute p = 2 and ¢ = 3 in Theorem 9. O

Theorem 9. Let p and q be two distinct primes, and let A be an n by n
co-diagonal matriz over R = Z,, with r = rkgr(A). Then there exists an
explicit graph on n vertices such that a clique has size at most (T+p 2) +1

and an independent set has size at most (H'q 2) +1.
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Proof. Note the rank of A over GF, and G'Fj is still bounded by the rank of
A over Zy,. Let V(G) = {v1,...,v,}. Fori > j, {(v;,v;)} € E(G) iff a;; # 0
mod p.

A t-clique corresponds to a t X ¢t minor of A, which is co-triangular over
GF,. Hence, t < (T;’_’f) + 1. A k-independent set corresponds to a k X k
minor of A, whose off diagonal entries are 0 mod p. They can be p, 2p,...,(¢—
1)p (cannot be 0 since A is co-triangular), and none of them is congruent to
0 modulo g. Hence, the corresponding minor is co-triangular over GFj, and

k< (%) + 1 O

It suffices to construct a co-diagonal matrix over Zs with low rank.

Theorem 10. For all n > 0, there exists an explicitly constructible n X n
co-diagonal matrizc A = {a;;} over R = Zg with

r = g (A) = 20(VioEnloglogn)

Proof. Grolmusz’s construction relies on results due to Barrington, Beigel,
and Rudich [7], which we state without proof here.

Theorem 11. Given m = pi*...p;"* with { > 1, where the p; are dis-
tinct primes, there exists an explicitly constructible multilinear polynomial
P with integer coefficients, k variables, degree O(k'/%), such that for all
Z € {0,1}* P(Z) = 0 over Z,, iff Z = 0.

Choose the smallest integer k such that n < k*¥. Construct a BBR poly-
nomial P with m = 6 and ¢ = 2 and with degree O(v/k). Now define a
k* x k¥ matrix A as follows. Associate each row u and column u with a

vector of length k representing w in base k. For row u = (uy,...,u;) and
column v = (vy,...,v;), where u; and v; are elements in {0,1,...,k — 1},
define

ayy = P(1 = 6(ug,vq),...,1 = 8(ug, vp)),
where
1 if U; = Uy
0 otherwise.

5(“1';1}]') == {
If u = v, then ay, = P(0,...,0) =0 (mod 6). If u # v, then there is some i

such that u; # v;. So ay, is the evaluation of P on a nonzero vector, which
is nonzero modulo 6. Hence, A is co-diagonal modulo 6.
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To bound r, we write A as the sum of matrices with smaller rank and use
Proposition 2. Since P has degree cv/k for some constant ¢, P is the sum of
monomials of the form

ail,iz,...,isd(uila vil)d(uiza /Ui2) o 6(”13, Uis))

where a;, ;, i, €4{0,1,...,5} and s < vk,
For each monomial §(u;,,v;,) - - - 0(ui,, v;,) in P, define matrix C;, _;, =
{cuv} such that c,, = §(u;,,vi,) -+ -0(u;,, v;,). Then

A= E ail,...,isCil,...,is-

5<eVE,i1,.yis€[K]

’?) < keVE for some constant

The number of monomials in P is at most ch;/é; (5
c2. Now we need to bound the rank of each matrix Cj, ;..

Observe that entries in Cj, ;. are either zero or one. Furthermore, the
number of ones in each row and column is exactly k*~*. To see this, fix a
row u. In the expression 6(u;,,vs,) . ..0(u;,, v;,), the u;; are fixed. There are
k¥ ways to choose values for the k — s vi; not in the expression while the
remaining v;; must match up with the u;, for the expression to be one. Then
it is not hard to see that we can permute the rows and columns in C;, ;. so

that it can be written in the form

J 0 0 0
0 J 0 0
iy, i 00 J 0
000 ... J

where each J is a k*~* by k*~* all ones matrix. Then the rank of this matrix
over Zg is equal to the number of J blocks, which is k*.
Hence, putting everything together, we have

rkz(A) < D 1hzy(Chy,.i) < keVEES = EOVE),

115 0yls

Now, take the n x n upper leftmost minor of A. This is still co-diagonal over
Zs, has size n, and has rank 20(vlegnloglogn) Ly oyr choice of k. O

Grolmusz’s construction can be generalized to low rank matrices over Z,,.
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Corollary 1. For m = pjy*...p;* and £ > 1, there exists an explicitly con-

structible n x n co-diagonal matriz A over Z,, with
r = ’l‘kZ (A) — 20( I logn(loglogn)l—l)'

Proof. The proof follows the same steps as above. P has degree O(k/?),
Ci,, i, has rank kOR) over Zm, and A has rank kO(VH) O

Corollary 2. There exists an explicitly constructible family of graphs on n
vertices such that the cliques and independent sets have size at most

20(\/10gn10g logn)

Proof. We have constructed co-diagonal matrices over Zg with rank r. By
Theorem 8, graphs on n vertices have cliques and independent sets of size
O(r?). So the statement follows. O

5.2 Co-Diagonal over 7,

We describe our result in this section. Grolmusz examined co-diagonal ma-
trices over the ring Zs. We generalize his idea to Z,,, where p and ¢ are
distinct primes. While Theorem 9 provides a worse bound on the size of a
monochromatic clique than Theorem 8, it is much easier to construct a low
rank co-diagonal matrix over a larger ring. In fact, the rank of the matrix
is much smaller, and therefore, this tradeoff allows us to obtain the same
asymptotic bound for R(k, k). Over the ring Z,,, we can simply force the off
diagonal entries to be drawn from {1,...,pg — 1} and avoid modulo arith-
metic and the usage of the BBR polynomials. Our constructions are in part
inspired by the explicit matrices introduced in Theorem 1.

Lemma 3. There exists an explicitly constructible family of graphs {Gn},

where Gy s a graph on N vertices such that the size of cliques and indepen-
dent set is at most 20(Viog Nloglog N)

Proof. Let n be the smallest integer such that N < (}), where k = [n/2] +1.
Let Abea (7) by (}) matrix. Associate each row with a unique binary vector
of length n with weight &, and each column ¢ is associated with the vector
associated with row ¢. Define A;; to be the inner product of  and y, where
x is the vector associated with row ¢, and y is the vector associated with
column j.
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A;i = (z,z) = k. Now consider A;;, where ¢ # j, and let z and y be
the associated vectors for row ¢ and column j, respectively. Clearly A;; < &,
since there must be a coordinate where x and y differ. Furthermore, by the
Pigeonhole Principle, there must be a coordinate where x and y both have a
1, so Aij > 0.

Now consider the top N x N upper leftmost minor of A and call it A’.
Take the ring R = Z,,, where p and ¢ are distinct primes and pg = k. Then
A" is co-diagonal over R. rkz, (A') < n since A can be written as A = BC,
where the rows of B are the vectors associated with the rows of A’, and the
columns of C' are the vectors associated with the columns of A’. B is N by
n and C is n by N. Hence, A' has size N = (n/;’H) = O(2"/4/n) and rank

= O(log N) over R.

From Theorem 9, matrix A gives rise to a graph with clique and indepen-
dent sets of size at most ¢t < (r + ¢)?, assuming p < ¢. Our construction has
the parameters pg = n and n = O(log N). Taking p and q close, we have

t = (log N + y/log N0 N) — (Jog N)OWVIeN) _ 9O(Viog Nloglog N)

The matrix has size N. Each coefficient requires logn = loglog N bits. Each
dot product takes n = log N operations, and examining each entry modulo
p or q is also efficient. So our construction takes time polynomial in N. [

This provides an alternate construction of these co-diagonal matrices
though the asymptotic bound is worse than the best known result. How-
ever, we can improve the bound by increasing the range of the associated
row and column vectors.

Define U = U; x Uy X ... x Uy, where each U; is a set of n elements, and
the U; are disjoint. Consider a matrix A such that its rows and columns are
indexed by elements in U. For row or column (uy,...,u), let x € {0,1}*"
be its characteristic vector, i.e.,

_J 1 ifa=wujoruy...oru
. 0 otherwise

Define A;; = (z,1 — y), where x is the characteristic vector of row ¢ and y
is the characteristic vector of column j. Note that A; =< z,1 —z >= 0.
For i # j, there exists a coordinate where x and y differ, so without loss
of generality, z has a 1 in coordinate w; whereas y has a 0. Since there
are no zero characteristic vectors, we can conclude A;; > 0. Note for each
characteristic vector z, it has exactly k ones, so A;; < k.
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Let k = pqg — 1, where p and q are distinct primes. Then A is co-diagonal
over R = Z,,. A has size n* and rank r = kn over the ring R. From this
explicit family of matrices, we have the following:

Theorem 12. The co-diagonal matrix A implies an explicit graph on N
vertices with clique and independent set sizes bounded by 20(v1eg Nloglog V)

Proof. From Theorem 9 and assuming p < ¢, we have t < (r + ¢)?, where ¢
is the size of the largest clique or independent set. Our construction has the
parameters r = kn, pg — 1 = k, and N = n*F. Choosing k = n, we have

t = (kn+ \/E)O(\/E) = (n?+ \/ﬁ)o(\/ﬁ) — 90(vnlogn) _ 9O(vlog Nloglog N)

O

A theorem by Bollobas in extremal set theory illustrates why our choice
of k is best possible. The theorem asserts that if A, ..., A,, are sets of size
a and By,..., B, are sets of size b such that A; N B; = ¢ iff i = j, then
m < (***). (Numerous proofs are known; see e.g. [21]). In our construction,
the row vectors x; correspond to sets of size k, and the column vectors 1 — y;
correspond to sets of size kn — k, where the sets corresponding to z; and
1 — y; satisfy the property described above. So the size of the matrix is at
most (kn)°*®). On the other hand, the maximum size of a monochromatic
clique has a factor of v/k in the exponent because k is the product of two
large primes.

5.3 multicolor

Naturally, we can generalize the previous construction to £ colors for a com-
plete graph on N vertices over Z,, where m has ¢ prime divisors. Grolmusz
did not describe the easy generalization, but we provide details here for com-
pleteness.

Here is how we can modify the construction. Instead of setting & = pq,
let k = p;...pe— 1, where p; are consecutive primes such that k = O(n°) for
some constant c. Then the matrix A defined in Theorem 12 is co-diagonal
over R = Z,, ,, with rank kn. Define a graph G such that V(G) is the set
of rows of A, and for ¢ > j, define the color of the edge {(7,7)} € E(G) as

min{¢ : p, does not divide a;;}.
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The coloring is well defined since the off-diagonal entries in A are not divisible
by p1 ...pe. A monochromatic clique of color ¢ of size t corresponds to a t by
t minor of A. This minor is co-triangular over GF),,. So by Theorem 8,

<7’ —I-pz- — 2> 11
pi—1

< (r+p)”

_ 00w

9O(logn{/n)

20( {/log N(loglog N)t-1) )

~
IN

This shows that

Corollary 3. We can explicitly construct a family of complete graphs { Ky},
where K 1s a £-colored complete graph on N vertices such that the monochro-
matic cliques have size at most

90(4/log N(loglog N)!=1).
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