
Expliit Constrution of Ramsey-type GraphsVitor Yenwen Chen vitor�s.utexas.eduSupervised by Dr. ZukermanUniversity of Texas at AustinMay 2004AbstratWe survey some reent onstrutions of Ramsey-type graphs, largegraphs with small lique and independent set sizes. Then ontinuingthe works of Grolmusz, we onstrut matries over the ring Zpq, wherep and q are distint primes, suh that the diagonal entries are 0 modulopq and the o� diagonal entries are nonzero modulo pq. These matrieslead to a onstrution of Ramsey graphs. Our work simpli�es Grol-musz's onstrution while still mathing the best known onstrutiveasymptoti bound.1 IntrodutionRandomization is extremely useful in many areas in omputer siene. Manyalgorithms beome muh simpler in both oneption and implementationwith aess to randomness. However, it is not lear whether there are goodrandom soures in nature, and furthermore, omputers do not have aess totruly random bits. It beomes natural to investigate the power of randomness- whether aess to random bits an be removed or redued without loss ofeÆieny.The main fous of this area of study, termed derandomization, is to on-vert an existing randomized algorithm into an eÆient, deterministi one. Apseudorandom generator, a deterministi algorithm that takes a short ran-dom string and strethes its length to fool polynomial time algorithms, is a1



useful tool in derandomization, and its onstrutibility has reeived atten-tion from various researhers. Construtibility is de�ned as the existene ofan eÆient, deterministi algorithm to onstrut the objet. The onstru-tion of pseudorandom generators is losely related to the onstrutions ofmany objets with ombinatorial properties, suh as error-orreting odes,expander graphs, and extrators. Thus, problems in derandomization an of-ten be expressed as problems in expliit onstrutions. These ombinatorialobjets also have many appliations in omputer siene, suh as networking,algorithmi design, and omplexity theory.One famous problem in the area of expliit onstrution is the onstru-tion of Ramsey graphs. A Ramsey graph is a large graph with small liqueand independent set sizes. More formally, the Ramsey number n = R(k; t)is de�ned as the smallest number n suh that any graph on n verties on-tains a lique of size k or an independent set of size t. It is well known thatthis number is �nite and so is well-de�ned [24℄. The problem of determin-ing a lower bound for the number is equivalent to proving that some graphon n verties has no lique of size k and no independent set of size t. Inone of the early uses of the probabilisti method, Erd}os [11℄ showed thatR(k; k) = 
(2k=2). In other words, there exist Ramsey graphs with 
(2k=2)verties having liques and independent sets of size stritly less than k. Hisproof is probabilisti and in fat shows that most graphs on 
(2k=2) vertiesexhibit this random-like property. This implies a very simple randomizedalgorithm to generate a Ramsey graph. The algorithm simply ips a fairoin for eah pair of verties to deide whether they are onneted or not.However, the proof merely demonstrates the existene of suh a graph withhigh probability without providing a onstrution. Our goal in exhibitingRamsey graphs is in a sense a derandomization of the simple randomizedalgorithm. Trivially, we may searh through the sample spae of all graphson n verties and test whether eah graph has a lique or an independent setof size at least 2 logn.However, this brute fore approah is not eÆient. Even if we use a re-dued sample spae, querying whether a graph has a lique or an independentset of a given size is nontrivial. The best known onstrution is due to Frankland Wilson [15℄ who onstruted graphs onk
( log klog log k )verties with the maximum size of a lique and an independent set less than2



k. The onstrutive bound is muh weaker than the probabilisti bound, andit remains open to show expliitly that R(k; k) is exponential in terms of k.In this paper, we survey some reent onstrutions of Ramsey graphs.Then ontinuing the works of Grolmusz, we onstrut matries over the ringZpq, where p and q are distint primes, suh that the diagonal entries are 0modulo pq and the o� diagonal entries are nonzero modulo pq. These matrieslead to a onstrution of Ramsey graphs. Our work simpli�es Grolmusz'sonstrution while still mathing the best known onstrutive asymptotibound.Our paper is organized as follows. In the �rst setion, we survey someknown results on the o� diagonal number R(3; t), and we shall see that thesesmaller Ramsey numbers are also diÆult to estimate expliitly. The restof the paper is devoted to the diagonal number R(k; k). In the next twosetions, we shall disuss the lassial Frankl-Wilson onstrution and thenAlon's work extending their result. Then in the last setion, we shall presentGrolmusz's work and our result.2 The Ramsey Number R(3,t)Various researhers over the years have studied the o� diagonal Ramseynumber R(3; t). Ajtai, Koml�os, and Szemer�edi [1℄ showed that R(3; t) =O(t2= log t). Improving Erd}os's bound [12℄ R(3; t) = 
((t= log t)2), Kim [19℄demonstrated that the upper bound is tight up to a onstant fator, namelyR(3; t) = �(t2= log t). However, these lower bound proofs are probabilisti,and it presents a hallenge to onstrut triangle-free graphs with the sizeof an independent set bounded by t while the number of verties approahnearly quadrati in t.Erd}os [13℄ provided the �rst onstrution with graphs on
(t(2 log 2)=3(log 3�log 2)) = 
(t1:13)verties. Building on the works of Cleve and Dagum [9℄, Chung, Cleve, andDagum [8℄ presented another onstrution with graphs on
(tlog 6= log 4) = 
(t1:29)verties. Alon, using ideas from oding theory, showed a onstrution withgraphs on 
(t4=3) verties in [3℄ and subsequently improved it to 
(t3=2) in3



[2℄. The latter is the best known onstrutive lower bound for R(3; t). Morereently, Codenotti, Pudl�ak, and Resta [10℄ gave a simpler onstrution thatmathes Alon's bound. Both onstrutions are presented in this setion.2.1 Projetive Plane ApproahThe onstrution due to Codenotti, Pudl�ak, and Resta [10℄ involves �niteprojetive planes (see e.g. page 157 in [21℄ or Chapter 19 in [25℄). For aprime power q, a projetive plane of order q onsists of a set of q2 + q + 1points and a set of q2 + q + 1 lines. Eah line has exatly q + 1 points, eahpoint is on exatly q + 1 lines, and two points uniquely determine a line.Theorem 1. For every m, there is an expliitly onstrutible square matrixM of size O(m3=2) whih has ones on the diagonal, rank(M) � m, and theassoiated graph of nonzero entries does not ontain a transitive triangle(edges a to b, b to , and a to ).Before presenting the proof, we �rst show how Theorem 1 an providea onstrutive lower bound for R(3; t). Construt a matrix M of size n asspei�ed in Theorem 1. Make it symmetri by opying the entries above thediagonal into their orresponding entries below the diagonal. Call the newmatrix M 0 and its assoiated graph H 0. Sine H has no transitive triangle,H 0 annot have a triangle. If H 0 has an independent set S of size k, it willorrespond to a k by k minor in M 0, whih is Ik. In M , the orrespondingminor will have zeros above the the diagonal of ones, so the minor has rankk, whih is bounded by O(n2=3). This shows R(3; t) = 
(t3=2) onstrutively.Proof. (of Theorem 1) The idea is to onstrut a graph G with a superlinearnumber of edges suh that G has no yle of length less than 6. Then from G,onstrut an oriented graph H so that its verties orrespond to edges of G.The absene of small yles in G should prohibit a transitive triangle (edgesa to b, b to , and a to ) from ourring in H, and then we an assoiate amatrix M with H suh that M has low rank.One suh G with the desired properties is the inidene graph of a pro-jetive plane (a bipartite graph whose verties orrespond to the points andlines of the plane, and eah edge onnets a line to an inident point). Letm := jV (G)j = O(n2). jE(G)j = O(m3=2), and G has no yle of length lessthan 6 (else, we have two lines sharing two points, a ontradition).4



For the oriented graph H, letV (H) = E(G) = f(P; L) : point P on line Lg, and((P1; L1); (P2; L2)) 2 E(H) i� P1 6= P2; L1 6= L2, and P1 is on L2.H annot have a transitive triangle. Otherwise, for some points P1; P2; P3and lines L1; L2; L3, we have edges ((P1; L1); (P2; L2)), ((P2; L2); (P3; L3)),and ((P1; L1); (P3; L3)). This implies that in graph G, there exists a 4-yle,namely P1 � L2 � P2 � L3 � P1, whih is a ontradition.Assoiate a matrix M with H as follows. Index both rows and olumnsof M by V (H). For row (P; L), assign a vetor whose oordinates are inV (G) and has a �1 on the oordinate P , 1 on the oordinate L, and 0 ev-erywhere else. For olumn (P; L), assign a vetor whose oordinates are inV (G) and has a 1 on eah inident point of L (exept P ), 1 on L, and 0everywhere else. De�ne Mij to be the inner produt of v and w, where v isthe vetor assoiated with row i and w is the vetor assoiated with olumn j.Claim: Mii = 1, and for o�-diagonal entries, Mij is �1 on entries orre-sponding to edges of H and 0 otherwise.Proof. Let v be the assoiated vetor of row (P; L) and w be the assoiatedvetor of olumn (P 0; L0). v has two nonzero oordinates at P and L. Ifi = j, w has a 0 at P and a 1 at L, so Mij = hv; wi = 1. Suppose i 6= j.We have Mij = �1 i� w has a 1 at oordinate P and a 0 at oordinate L.This is true i� L0 6= L, P 6= P 0, and P is on line L0, whih is the de�nitionof an edge in H. We have Mij = 0 i� the oordinates P and L in w are both0 or 1, and neither ase an our if H has the edge ((P; L); (P 0; L0)). Thisimplies that H is the assoiated graph of M with nonzero elements.It remains to show that the rank of M is bounded by m. The key obser-vation is that any linear ombination of the vetors assoiated to the rowsof M gives rise to a linear ombination of the orresponding rows. To seethis, let x be a linear relation of some vetors fzg assoiated to the rows, i.e.,x =Pz �zz. Suppose y is a vetor assoiated to a olumn of M . The entryMxy is equal to hx; yi =Pz �zhz; yi. Hene, the rows orresponding to fzgare also dependent.The vetors have length m, so at most m of them an be linearly in-dependent, and therefore at most m rows are linearly independent. Sine5



prime powers our frequently, we onlude suh M is onstrutible for everysuÆiently large m.The onstrution requires a graph with a superlinear number of edgesand has no yle of length 4. If a graph G has no 4-yle, it has no K2;2 asa bipartite subgraph. Then by Zarankiewiz's problem (see [20℄ or page 25in [21℄), jE(G)j = O(jV (G)j3=2). So our hoie of the inidene graph of aprojetive plane is best possible.2.2 Dual of a BCH CodeA Cayley graph G = (V;E) onsists of a �nite group H and a generating setS � H suh that V = H and E = f(h; h + s) : h 2 H; s 2 Sg. We imposethe additional requirement that s 2 S i� s�1 2 S for G to be undireted.It is not known if there are Cayley graphs that are good diagonal Ramseygraphs, but Cayley graphs an be used to prove onstrutive lower bound forthe number R(3; t) [2℄.Alon's idea is to take a parity hek matrix of a linear ode with suÆientminimum distane to obtain the triangle-free property in the graph. For apositive integer k, let Fk = GF (2k) denote the �nite �eld with 2k elements,and the elements are represented as binary vetors. Let � be a primitiveelement in Fk . Consider the following 3k by 2k � 1 matrix over F2 :A = 0� 1 � �2 � � � �2k�21 �3 (�2)3 � � � (�2k�2)31 �5 (�2)5 � � � (�2k�2)5 1A ;whih is the parity hek matrix of a binary BCH ode C of designed distane7 (see e.g., Chapter 9 in [22℄).Now we de�ne a Cayley graph G = (V;E). Let n = jV j = 23k where 3does not divide k. Let V = H be the additive group F3k2 : De�ne W0 to bethe set of all nonzero elements � 2 Fk suh that the leftmost bit of �7 is 0,and let W1 be the set of all nonzero elements � 2 Fk suh that the leftmostbit of �7 is 1. Let (a; b; ) denote the onatenation of the three vetors a, b,and . The generating set S is U0+U1 = fuo+ u1 : u0 2 U0; u1 2 U1g, whereUi = f(wi; w3i ; w5i ) : wi 2 Wig for i = 0; 1.Note that sine 3 does not divide k and ord72 = 3, 7 annot divide 2k�1.So for all � 6= 1 2 Fk; �7 6= 1. This implies that the map x! x7 is injetive,and therefore, W0 and W1 form a partition of Fk. As a onsequene, the set6



of all olumns of A is the union of U0 and U1. Now we prove some propertiesof G using ideas from oding theory.Proposition 1. G is d := 2k�1(2k�1 � 1) regular.Proof. The BCH ode C has minimum distane at least 7, so every set of sixolumns of A is linearly independent over GF (2) (BCH ode is linear, and theminimum distane of a linear ode is the minimum weight of the odewordsin the ode). This implies that all the sums (u0 + u1), where u0 2 U0 andu1 2 U1, are distint. Hene, d = jSj = jU0jjU1j = 2k�1(2k�1 � 1).Note that C only needs to have minimum distane at least 5 for theprevious proposition. We need C to have minimum distane at least 7 forthe following lemma.Lemma 1. G is triangle-free.Proof. Suppose G has a triangle, whih is also a 3-yle. Sine G is Cayley,there exists g 2 H and distint s1; s2; s3 2 S suh that (g; g+s1; g+s1+s2) isa 3-yle with s1+s2+s3 = 0:Write s1 = a0+a1; s2 = b0+b1; and s3 = 0+1,where a0; b0; 0 2 U0 and a1; b1; 1 2 U1. Then a0 + a1 + b0 + b1 + 0 + 1 = 0.These are also olumn vetors of A. Sine the ode C has minimum distaneat least 7, these six vetors must be linearly independent, ontraditing thattheir sum is 0.To bound the maximum size of an independent set in G, we employspetral tehniques to analyze the eigenvalues of the adjaeny matrix AG ofG. We �rst state a known result (see e.g. page 435 in [25℄ for a proof).Fat 1. For a d-regular graph G, the maximum size of an independent setin G is bounded above by �n�n�1 � �n ;where n = jV (G)j and d = �1 � �2 � : : : � �n are the eigenvalues.It suÆes to bound the smallest eigenvalue of our graph G.Theorem 2. For every eigenvalue � of AG,�9 � 2k � 3 � 2k=2 � 1=4 � �:7



Proof. It is known that the eigenvalues of a Cayley graph of an Abeliangroup an be omputed in terms of the haraters of the group. To seethis, for r; a 2 F3k2 , r �xed, let �r(a) = (�1)r�a, whih is multipliative, i.e.,�r(a + b) = �r(a)�r(b). Let v 2 f�1; 1g23k be suh that vi is equal to �rapplied to the ith string in F3k2 . Then(AGv)i = Xb:(i;b)2E(G)�r(b) = Xs2S �r(i + s)= Xs2S �r(i)�r(s)=  Xs2S �r(s)! vi:Hene, v is an eigenvetor with eigenvalue�r =Xs2S �r(s) = (Xuo2U0 �r(uo))(Xu12U1 �r(u1));sine S = U0 + U1.Now reall that A is the parity hek matrix of ode C. Consider w :=r � A: For j = 0; 1, de�ne vetors wUj to be the restrition of w to Uj. Let#0(w) be the number of 0 in the vetor w and #1(w) to be the number of 1in w. Then Xuj2Uj �r(uj) = Xuj2Uj(�1)r�uj = #0(wUj)�#1(wUj)Write wt(wU0) = x and wt(wU1) = y. Then �r = (2k�1� 1� 2x)(2k�1 � 2y):Now we prove a lower bound for �r. Sine w is a linear ombination ofthe rows of A, whih orresponds to a odeword in the dual ode of C, thisprovides a way to bound the eigenvalue in terms of the Hamming weight of w.The AM-GM Inequality asserts that for real numbers a and b, ab � (a+b)2=4.Substituting a = (2k�1 � 1� 2x) and b = �(2k�1 � 2y), we have�r � �(1 + 2(x� y))2=4:We will use the Carlitz-Uhiyama bound (see e.g. page 280 in [22℄) to boundx� y. 8



Theorem 3. Suppose C is a binary BCH ode of length 2m�1 with designeddistane 2t+1, where 2t�1 < 2dm=2e+1: Then for all nonzero vetors  2 C?;2m�1 � (t� 1)2m=2 � wt() � 2m�1 + (t� 1)2m=2:Consider the following matrix in binary,A0 = 0BBB� 1 � �2 � � � �2k�21 �3 (�2)3 � � � (�2k�2)31 �5 (�2)5 � � � (�2k�2)51 �7 (�2)7 � � � (�2k�2)7 1CCCA ;where � is a primitive element of Fk . Similar to A, A0 is also the parity hekmatrix of a BCH ode C 0 with designed distane 9.Let p be the harateristi vetor of W1. Now let r0 2 f0; 1g4k be thevetor r appended by the vetor [1,0,. . . ,0℄. Then r0 �A0 = w + p, and w + pis a odeword in the dual of C 0 with Hamming weight x + 2k�1 � y, whihis nonzero. By the Carlitz-Uhiyama bound, 2k�1 � 3 � 2k=2 � x + 2k�1 � y;whih implies �r � �9 �2k�3 �2k=2�1=4; and thus ompleting the proof.With the lower bound on the smallest eigenvalue, we onlude that thegraph G has independent sets of size at mostn 36 � 2k + 12 � 2k=2 + 12k(2k � 2) + 36 � 2k + 12 � 2k=2 + 1 = O(n2=3):Our graph is also triangle-free. Hene, this shows R(3; t) = 
(t3=2) expliitly.3 Frankl-Wilson ConstrutionWe now onsider the diagonal Ramsey number R(k; k) and survey severalknown onstrutive lower bound. For years, the only onstrution known istrivial { onstrut k� 1 disjoint liques of size k� 1, whih yields R(k; k) =
(k2). In [23℄, Nagy showed R(k; k) = 
(k3). Building on the works of Frankl[14℄, Frankl and Wilson [15℄ made a breakthrough and onstruted graphswith a superpolynomial number of verties with respet to k. The followingtheorem regarding the size of a set system with restrited intersetion modulo9



a prime p is the main tool involved. The original proof used higher inidenematries, but Alon, Babai, and Suzuki [5℄ employed multivariate polynomialsin a vetor spae with small dimension to bound the size. We state a weakerresult without proof sine the essential proof onept is illustrated in thenext setion.Theorem 4. Suppose u0, u1, . . . ,us are distint residues modulo a prime p.Let F be a family of k-element subsets of f1; 2; : : : ; ng. Suppose k � u0 modp, and for every distint A, B 2 F , jA \Bj � ui mod p for some 1 � i � s.Then jFj �Psi=0 �ni�.Frankl and Wilson also showed a stronger bound jFj � �ns� if F is k-uniform, but this makes no di�erene in the asymptoti bound in the follow-ing theorem.Theorem 5. There exists an expliitly onstrutible family of graphs fGng,where Gn is a graph on n verties suh that the liques and the independentsets have size less than 2O(plog n log log n):Proof. Let p be a prime and onsider the set S = f1; 2; : : : ; p3g. De�ne agraph G suh that its verties are subsets of S with size p2� 1, and (A;B) 2E(G) i� jA\Bj 6� �1 (mod p). A lique orresponds to a family fA1; : : : ; A`gsuh that for all i 6= j, jAi \ Ajj 6� �1 (mod p). Sine eah subset has sizeongruent to �1 modulo p, ` is bounded byp�1Xi=0 �p3i � = pO(p):An independent set of size t orresponds to a family fB1; : : : ; Btg suhthat for all i 6= j, jBi \Bjj 2 fp� 1; 2p� 1; : : : ; p(p� 1)� 1g. Pik a prime qlarger than p2� 1. Then p� 1; 2p� 1; : : : ; p(p� 1)� 1; p2� 1 are all distintresidues modulo q. By Theorem 4, t �Pp�1i=0 �p3i � = pO(p).Note that n = jV (G)j = � p3p2�1� = pO(p2). By the density of primes, forevery n, we an hoose up to onstants p so that n < � p3p2�1�. Then we anonstrut a graph on � p3p2�1� verties and then obtain a subgraph of G with nverties. Hene, the size of a lique or an independent set in G is bounded by2O(plog n log log n). Simple omputation shows that this is equivalent to statingthat G has t
(log t= log log t) verties while liques and independent sets have sizeless than t. 10



4 Alon's ExtensionSuppose the edges of a omplete graph are either red or blue. Theorem 4asserts that it is possible to olor the edges suh that the size of a monohro-mati (either red or blue) lique is small (think of the blue edges in theomplete graph as non-edges before the oloring transformation). Then wean investigate the ase when omplete graphs are olored with ` olors andhope for similar results. Using more than one prime, Alon in [4℄ extendedFrankl and Wilson's results.De�nition 1. Let G=(V,E) be a graph and F be a subspae of the spae ofpolynomial in r variables over a �eld F. We say that G has a representationover F if for eah v 2 V , we an assign a polynomial fv 2 F and v 2 F rsuh that the following onditions hold:(1) For all v 2 V , fv(v) 6= 0.(2) For all distint, nonadjaent u; v 2 V , fv(u) = 0.Lemma 2. If a graph G=(V,E) has a representation over F , then the sizeof an independent set in G is bounded above by dim(F).Proof. Let ffv(x1; : : : ; xr) : v 2 V g and fv : v 2 V g be a representation,and let S be an independent set in G. Then the polynomials in ffv : v 2 Sgare linearly independent. To see this, suppose Pv2S �vfv = 0. If u 2 S,evaluate this sum of polynomials on u, and we an onlude that �u = 0.Hene, jSj is bounded by the dimension of F .Note that the representation of a graph is de�ned with bounding the di-mension of the spae F in mind. This will then bound the size of a monohro-mati lique in a graph from above.Theorem 6. For every �xed integer ` � 2, we an onstrut a family of`-olored graphs on k (1+o(1))(log k)`�1``(log log k)`�1verties with no monohromati liques of size k.Proof. Extending Frankl and Wilson's onstrution, let P = fp1; : : : ; p`g be aset of ` onseutive large primes. De�ne s := p1p2 : : : p`�1 and let r = pp`+1` .Construt a omplete graph G whose verties are subsets of f1; : : : ; rg withsize s. De�ne the olor of edge (A;B) asminfi 2 f1; : : : ; `g : jA \ Bj 6� �1(mod pi)g:11



Sine jA \ Bj < p1 : : : p` � 1, jA \ Bj 6� �1 (mod pi) for some i. So ouroloring is well-de�ned.Let Gi be the subgraph of G by removing the edges with olor i. Amonohromati lique of olor i in G orresponds to an independent set ofGi. Now we show that Gi has a representation over the spae of multilinearpolynomials of degree at most pi � 1 in r variables over GF (pi). For eahvertex A, assign the polynomialPA(x1; : : : ; xr) = pi�2Yi=0 [Xj2A xj � i℄;and let its harateristi vetor A 2 f0; 1gr � (GF (pi))r. Then PA(A) =Qpi�2i=0 [jAj � i℄, whih is not ongruent to 0 modulo pi sine jAj � �1 modpi. For nonadjaent verties A and B, PA(B) = Qpi�2i=0 [jA \ Bj � i℄, whihis ongruent to 0 modulo pi sine jA \ Bj 6� �1 modulo pi by onstrution.These polynomials are multilinear; we an use the relations x2i = xi and makeappropriate substitutions sine the harateristi vetors are binary.A basis of the spae these polynomials reside in onsists of monomialsof degree at most pi � 1, so the dimension is preisely Ppi�1i=0 �ri�. By thepreeding lemma, this implies that a monohromati lique in G has size lessthan k = rO(p`). We have the parameters r = pp`+1` and s = p1 : : : p` � 1.And by diret alulation and the density of primes, the number of vertiesin G is �rs� = k (1+o(1))(log k)`�1``(log log k)`�1 ;ompleting the proof.Reall that in Frankl and Wilson's onstrution, two verties A and B inG are onneted i� jA\Bj 6� �1 (mod p). We sketh how the proof above anbe modi�ed to obtain Frankl and Wilson's onstrution. Set r = p3 � 1 ands = p2� 1. G has a representation over the spae of multilinear polynomialsof degree at most p � 1 with r variables over the reals. For eah vertex A,assign the polynomialQA(x1; : : : ; xr) = p�1Yi=1[(Xj2A xj)� (p2 � 1� ip)℄and its harateristi vetor A. Then QA(A) =Qp�1i=1 6= 0. Sine jA \ Bj 2fp�1; 2p�1; : : : ; p(p�1)�1g, there must be an i 2 f1; : : : ; p�1g suh that12



jA\Bj � (p2� 1� ip) = 0. The dimension of the spae of these polynomialsbounds the size of an independent set in G. Similarly, the omplement ofG has a representation over the �eld GF (p) as desribed in the preedingproof, and the dimension of this spae bounds the size of a lique in G.5 Grolmusz's Work and Our ResultIn Theorem 4, Frankl and Wilson showed that when m is a �xed prime, a setsystem with pairwise intersetion modulo m has a polynomial upper bound,viewing m as a onstant. In the same paper, they also proved that the upperbound holds when m is a �xed prime power and s = m � 1 (the number ofdistint intersetion size residues). They asked whether a polynomial upperbound exists if m is a �xed non-prime power or when s = m� 1. Grolmuszin [16℄ demonstrated an expliit family of superpolynomial size set system ifm is a �xed non-prime power and s = m� 1. His set systems also provideda novel onstrution of Ramsey graphs mathing the asymptoti bound byFrankl and Wilson, and his onstrution an be generalized to multiolorsthat mathes Alon's bound.Grolmusz's works involved ertain low degree polynomials (all themBBR, due to Barrington, Beigel, and Rudih [7℄). He used these polyno-mials to onstrut o-diagonal matries (de�ned below) over the ring Z6.These matries in turn lead to the onstrution of his superpolynomial setsystems. In [17℄, Grolmusz onstruted good Ramsey graphs diretly fromlow rank o-diagonal matries over Z6, and in [18℄, he provided another proofthat these matries have small rank. We shall desribe the onnetion be-tween Ramsey graphs and these matries, but �rst let us de�ne some basiterminologies.5.1De�nition 2. Let R be a ring and n be a positive integer. A = faijg is ao-diagonal matrix over R if for i; j 2 f1; 2; : : : ; ng; aij is nonzero in R ifi 6= j and zero if i = j.We say that matrix A is upper o-triangular over R if the diagonal entriesare zero and the entries above the diagonal are nonzero in R. A lower o-triangular matrix is similarly de�ned. A matrix is o-triangular if it is eitherlower or upper o-triangular. 13



De�nition 3. The rank over the ring R of matrix A is the smallest numberr, suh that A an be written as A = BC over R, where B is an n� r and Cis an r � n matrix. If all entries in A are zero, it has rank 0.When R is a �eld, this is a well-known equivalent de�nition of the rank ofa matrix. Grolmusz suggested using this de�nition for a ring sine inversesdo not neessarily exist. The following easy property still holds under thisde�nition of rank.Proposition 2. rkR(A+ A0) � rkR(A) + rkR(A0).Proof. Suppose A = BC and A0 = B0C 0, where B is an n� r, C is an r� n,B0 is an n� r0, and C 0 is an r0 � n matrix. De�ne new matries B00 and C 00where the olumns of B00 are formed from the union of the olumns of B andB0, and the rows of C 00 are from the union of the rows of C and C 0. ThenA+ A0 = B00C 00, and rkR(A+ A0) � r + r0.Sine we need to onstrut o-triangular matries with small rank, it isuseful to have a lower bound in mind.Proposition 3. If A is an n�n o-triangular matrix over R, then rkR(A) �logm n, where jRj = m.Proof. Write A = BC, where B is an n� r matrix and C is a r� n matrix.A is o-triangular implies that all olumns in A are di�erent. Therefore, allolumns in C are di�erent. Consequently, n � mr.There is a stronger lower bound modulo a prime. The following theoremimplies that a o-triangular matrix has large rank over GFp, more spei�ally,r � n1=(p�1) � p.Theorem 7. Let p be a prime and A be an n � n o-triangular matrix overGFp. Let r = rkGFp(A). Then n � �r+p�2p�1 �+ 1.Proof. If we have a set of polynomials fi and points xi suh that fi(xi) 6= 0and fi(xj) = 0 for i > j, then the polynomials are linearly independent.(see e.g. page 176 in [21℄, and the argument is also similar to the proof ofLemma 2). Then the number of polynomials is bounded by the dimensionof the vetor spae in whih they reside. Note that if we de�ne a matrixsuh that entry (i; j) is equal to fi(xj), then the matrix is triangular, the14



"omplement" of a o-triangular matrix. So our goal is use a o-triangularmatrix to de�ne polynomials satisfying the above mentioned riterion.Suppose A is lower o-triangular, and A = BC, where B = fbijg is an nby r matrix and C = fijg an r by n matrix over GFp. For i 2 [n℄, de�nefuntions Pi(x1; : : : ; xr) =Prk=1 bikxk. ThenPi(1j; : : : ; rj) = � 0 mod p i = j1; : : : ; p� 1 mod p i > j:Consider the polynomials Qi(x1; : : : ; xr) = 1�P p�1i (x1; : : : ; xr). By Fermat'sLittle Theorem, Qi(1j; : : : ; rj) = � 1 mod p if i = j0 mod p if i > j:The Qi are linearly independent. Eah Qi is a degree p� 1, r-variable poly-nomial. Sine Qi � 1 is homogeneous, a basis for the vetor spae these npolynomials reside in isf1g [ fx�11 : : : x�rr : rXi=1 �i = p� 1; �i � 0g:Hene, n � �r+p�2p�1 �+ 1.In ontrast to the prime ase, a o-triangular matrix over Zm where m isomposite an have low rank. We are interested in the onstrution of suha matrix as the following theorem demonstrates the relation between goodRamsey graphs with low rank o-diagonal matrix over the ring Z6.Theorem 8. Let A be an n by n o-diagonal matrix over R = Z6 withr = rkR(A). Then there exists an expliit graph on n verties suh that alique has size at most r+1 and an independent set has size at most �r+12 �+1.Proof. Substitute p = 2 and q = 3 in Theorem 9.Theorem 9. Let p and q be two distint primes, and let A be an n by no-diagonal matrix over R = Zpq with r = rkR(A). Then there exists anexpliit graph on n verties suh that a lique has size at most �r+p�2p�1 � + 1and an independent set has size at most �r+q�2q�1 �+ 1.15



Proof. Note the rank of A over GFp and GFq is still bounded by the rank ofA over Zpq. Let V (G) = fv1; : : : ; vng. For i > j, f(vi; vj)g 2 E(G) i� aij 6= 0mod p.A t-lique orresponds to a t � t minor of A, whih is o-triangular overGFp. Hene, t � �r+p�2p�1 � + 1. A k-independent set orresponds to a k � kminor of A, whose o� diagonal entries are 0 mod p. They an be p, 2p,. . . ,(q�1)p (annot be 0 sine A is o-triangular), and none of them is ongruent to0 modulo q. Hene, the orresponding minor is o-triangular over GFq, andk � �r+q�2q�1 �+ 1.It suÆes to onstrut a o-diagonal matrix over Z6 with low rank.Theorem 10. For all n > 0, there exists an expliitly onstrutible n � no-diagonal matrix A = faijg over R = Z6 withr = rkZ6(A) = 2O(plog n log log n):Proof. Grolmusz's onstrution relies on results due to Barrington, Beigel,and Rudih [7℄, whih we state without proof here.Theorem 11. Given m = p�11 : : : p�`` with ` > 1, where the pi are dis-tint primes, there exists an expliitly onstrutible multilinear polynomialP with integer oeÆients, k variables, degree O(k1=`), suh that for all~x 2 f0; 1gk; P (~x) = 0 over Zm i� ~x = ~0.Choose the smallest integer k suh that n � kk. Construt a BBR poly-nomial P with m = 6 and ` = 2 and with degree O(pk). Now de�ne akk � kk matrix A as follows. Assoiate eah row u and olumn u with avetor of length k representing u in base k. For row u = (u1; : : : ; uk) andolumn v = (v1; : : : ; vk), where ui and vj are elements in f0; 1; : : : ; k � 1g,de�ne auv = P (1� Æ(u1; v1); : : : ; 1� Æ(uk; vk));where Æ(ui; vj) = � 1 if ui = vj0 otherwise.If u = v, then auv = P (0; : : : ; 0) � 0 (mod 6). If u 6= v, then there is some isuh that ui 6= vi. So auv is the evaluation of P on a nonzero vetor, whihis nonzero modulo 6. Hene, A is o-diagonal modulo 6.16



To bound r, we write A as the sum of matries with smaller rank and useProposition 2. Sine P has degree pk for some onstant , P is the sum ofmonomials of the formai1;i2;:::;isÆ(ui1; vi1)Æ(ui2 ; vi2) � � � Æ(uis; vis);where ai1;i2;:::;is 2 f0; 1; : : : ; 5g and s � pk.For eah monomial Æ(ui1; vi1) � � � Æ(uis; vis) in P , de�ne matrix Ci1;:::;is =fuvg suh that uv = Æ(ui1; vi1) � � � Æ(uis; vis). ThenA = Xs�pk;i1;:::;is2[k℄ai1;:::;isCi1;:::;is:The number of monomials in P is at mostPpki=0 �ki� < k2pk for some onstant2. Now we need to bound the rank of eah matrix Ci1;:::;is.Observe that entries in Ci1;:::;is are either zero or one. Furthermore, thenumber of ones in eah row and olumn is exatly kk�s. To see this, �x arow u. In the expression Æ(ui1; vi1) : : : Æ(uis; vis), the uij are �xed. There arekk�s ways to hoose values for the k � s vij not in the expression while theremaining vij must math up with the uij for the expression to be one. Thenit is not hard to see that we an permute the rows and olumns in Ci1;:::;is sothat it an be written in the formai1;:::;is0BBBBB� J 0 0 : : : 00 J 0 : : : 00 0 J : : : 0... ... ... . . . ...0 0 0 : : : J
1CCCCCAwhere eah J is a kk�s by kk�s all ones matrix. Then the rank of this matrixover Z6 is equal to the number of J bloks, whih is ks.Hene, putting everything together, we haverkZ6(A) � Xi1;:::;is rkZ6(Ci1;:::;is) < k2pkks = kO(pk):Now, take the n�n upper leftmost minor of A. This is still o-diagonal overZ6, has size n, and has rank 2O(plog n log log n) by our hoie of k.Grolmusz's onstrution an be generalized to low rank matries over Zm.17



Corollary 1. For m = p�`` : : : p�`` and ` > 1, there exists an expliitly on-strutible n� n o-diagonal matrix A over Zm withr = rkZm(A) = 2O(p̀log n(log log n)`�1):Proof. The proof follows the same steps as above. P has degree O(k1=`),Ci1;:::;is has rank kO(p̀k) over Zm, and A has rank kO(p̀k)Corollary 2. There exists an expliitly onstrutible family of graphs on nverties suh that the liques and independent sets have size at most2O(plog n log log n):Proof. We have onstruted o-diagonal matries over Z6 with rank r. ByTheorem 8, graphs on n verties have liques and independent sets of sizeO(r2). So the statement follows.5.2 Co-Diagonal over ZpqWe desribe our result in this setion. Grolmusz examined o-diagonal ma-tries over the ring Z6. We generalize his idea to Zpq, where p and q aredistint primes. While Theorem 9 provides a worse bound on the size of amonohromati lique than Theorem 8, it is muh easier to onstrut a lowrank o-diagonal matrix over a larger ring. In fat, the rank of the matrixis muh smaller, and therefore, this tradeo� allows us to obtain the sameasymptoti bound for R(k; k). Over the ring Zpq, we an simply fore the o�diagonal entries to be drawn from f1; : : : ; pq � 1g and avoid modulo arith-meti and the usage of the BBR polynomials. Our onstrutions are in partinspired by the expliit matries introdued in Theorem 1.Lemma 3. There exists an expliitly onstrutible family of graphs fGNg,where GN is a graph on N verties suh that the size of liques and indepen-dent set is at most 2O(plogN log logN).Proof. Let n be the smallest integer suh that N � �nk�, where k = bn=2+1.Let A be a �nk� by �nk�matrix. Assoiate eah row with a unique binary vetorof length n with weight k, and eah olumn i is assoiated with the vetorassoiated with row i. De�ne Aij to be the inner produt of x and y, wherex is the vetor assoiated with row i, and y is the vetor assoiated witholumn j. 18



Aii = hx; xi = k. Now onsider Aij, where i 6= j, and let x and y bethe assoiated vetors for row i and olumn j, respetively. Clearly Aij < k,sine there must be a oordinate where x and y di�er. Furthermore, by thePigeonhole Priniple, there must be a oordinate where x and y both have a1, so Aij > 0.Now onsider the top N � N upper leftmost minor of A and all it A0.Take the ring R = Zpq, where p and q are distint primes and pq = k. ThenA0 is o-diagonal over R. rkZpq(A0) � n sine A an be written as A = BC,where the rows of B are the vetors assoiated with the rows of A0, and theolumns of C are the vetors assoiated with the olumns of A0. B is N byn and C is n by N . Hene, A0 has size N = � nn=2+1� = O(2n=pn) and rankr = O(logN) over R.From Theorem 9, matrix A gives rise to a graph with lique and indepen-dent sets of size at most t < (r + q)q, assuming p < q. Our onstrution hasthe parameters pq = n and n = O(logN). Taking p and q lose, we havet = (logN +plogN)O(plogN) = (logN)O(plogN) = 2O(plogN log logN):The matrix has size N . Eah oeÆient requires logn = log logN bits. Eahdot produt takes n = logN operations, and examining eah entry modulop or q is also eÆient. So our onstrution takes time polynomial in N .This provides an alternate onstrution of these o-diagonal matriesthough the asymptoti bound is worse than the best known result. How-ever, we an improve the bound by inreasing the range of the assoiatedrow and olumn vetors.De�ne U = U1 � U2 � : : :� Uk, where eah Ui is a set of n elements, andthe Ui are disjoint. Consider a matrix A suh that its rows and olumns areindexed by elements in U . For row or olumn (u1; : : : ; uk), let x 2 f0; 1gknbe its harateristi vetor, i.e.,xa = � 1 if a = u1 or u2 . . . or uk0 otherwiseDe�ne Aij = hx; 1 � yi, where x is the harateristi vetor of row i and yis the harateristi vetor of olumn j. Note that Aii =< x; 1 � x >= 0.For i 6= j, there exists a oordinate where x and y di�er, so without lossof generality, x has a 1 in oordinate u1 whereas y has a 0. Sine thereare no zero harateristi vetors, we an onlude Aij > 0. Note for eahharateristi vetor x, it has exatly k ones, so Aij � k.19



Let k = pq� 1, where p and q are distint primes. Then A is o-diagonalover R = Zpq. A has size nk and rank r = kn over the ring R. From thisexpliit family of matries, we have the following:Theorem 12. The o-diagonal matrix A implies an expliit graph on Nverties with lique and independent set sizes bounded by 2O(plogN log logN):Proof. From Theorem 9 and assuming p < q; we have t < (r + q)q, where tis the size of the largest lique or independent set. Our onstrution has theparameters r = kn, pq � 1 = k, and N = nk. Choosing k = n; we havet = (kn+pk)O(pk) = (n2 +pn)O(pn) = 2O(pn log n) = 2O(plogN log logN):A theorem by Bollob�as in extremal set theory illustrates why our hoieof k is best possible. The theorem asserts that if A1; : : : ; Am are sets of sizea and B1; : : : ; Bm are sets of size b suh that Ai \ Bj = � i� i = j, thenm � �a+ba �. (Numerous proofs are known; see e.g. [21℄). In our onstrution,the row vetors xi orrespond to sets of size k, and the olumn vetors 1� yjorrespond to sets of size kn � k, where the sets orresponding to xi and1 � yj satisfy the property desribed above. So the size of the matrix is atmost (kn)O(k). On the other hand, the maximum size of a monohromatilique has a fator of pk in the exponent beause k is the produt of twolarge primes.5.3 multiolorNaturally, we an generalize the previous onstrution to ` olors for a om-plete graph on N verties over Zm where m has ` prime divisors. Grolmuszdid not desribe the easy generalization, but we provide details here for om-pleteness.Here is how we an modify the onstrution. Instead of setting k = pq,let k = p1 : : : p`� 1, where pi are onseutive primes suh that k = O(n) forsome onstant . Then the matrix A de�ned in Theorem 12 is o-diagonalover R = Zp1:::p` with rank kn. De�ne a graph G suh that V (G) is the setof rows of A, and for i > j, de�ne the olor of the edge f(i; j)g 2 E(G) asminf` : p` does not divide aijg:20



The oloring is well de�ned sine the o�-diagonal entries in A are not divisibleby p1 : : : p`. A monohromati lique of olor i of size t orresponds to a t byt minor of A. This minor is o-triangular over GFpi. So by Theorem 8,t � �r + pi � 2pi � 1 �+ 1< (r + pi)pi= nO(p̀n)= 2O(log np̀n)= 2O(p̀logN(log logN)`�1):This shows thatCorollary 3. We an expliitly onstrut a family of omplete graphs fKNg,where KN is a `-olored omplete graph on N verties suh that the monohro-mati liques have size at most2O(p̀logN(log logN)`�1):6 AknowledgmentsI sinerely thank my advisor Prof. Zukerman for his support and enour-agement throughout this researh projet. I have learned greatly from himin both lasses and disussions in his oÆe. I would also like to thank Prof.G�al for valuable omments on the writeup.Referenes[1℄ M. Ajtai, J. Koml�os and E. Szemer�edi, A note on Ramsey numbers, J.Combinatorial Theory Ser. A 29 (1980), 354-360.[2℄ N. Alon, Expliit Ramsey graphs and orthonormal labelings, EletroniJournal of Combinatoris 1 (1994), R12.[3℄ N. Alon, Tough Ramsey graphs without short yles, J. Algebrai Com-binatoris 4 (1995), 189-195. 21
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