
An API for Manipulating Matrices Stored by Blocks ∗

Tze Meng Low

Robert A. van de Geijn

Department of Computer Sciences

The University of Texas at Austin

1 University Station, C0500

Austin, TX 78712

{ltm,rvdg}@cs.utexas.edu

FLAME Working Note #12

May 11, 2004

Abstract

We discuss an API that simplifies the specification of a data structure for storing hierarchical matrices
(matrices stored recursively by blocks) and the manipulation of such matrices. This work addresses a
recent demand for libraries that support such storage of matrices for performance reasons. We believe a
move towards such libraries has been slow largely because of the difficulty that has been encountered when
implementing them using more traditional coding styles. The impact on ease of coding and performance
is demonstrated in examples and experiments. The applicability of the approach for sparse matrices is
also discussed.

1 Introduction

We propose an Application Programming Interface (API) for expressing and manipulating hierarchical ma-
trices (matrices that have been stored recursively, by blocks). Specifically, this API simplifies the difficult
index manipulation that is required when these more complex schemes are used to store matrices. We show
that not only can code be written in a relatively straightforward manner, but the approach supports the
higher performance that is the driving force behind the interest in these storage schemes.

With the advent of processors with multiple layers of cache, a number of projects have started to re-
examine how matrices should be stored in memory (a thorough review of these projects can be found in [10]).
The primary goal is to improve performance of basic linear algebra kernels like the level-3 Basic Linear
Algebra Subprograms (BLAS) [9], a set of matrix-matrix operations that perform O(n3) computations on
O(n2) data, as well as higher level linear algebra libraries like LAPACK [2]. The idea is that by storing blocks
at different levels of granularity packed in memory, costly memory-to-memory copies and/or transpositions
that are required to provide contiguous access when accessing memory and/or reduce cache and TLB misses
can be avoided. While conceptually the proposed solutions are simple and often elegant, complex indexing
has so far prevented general acceptance. An additional complication comes from the fact that the filling of
such data structures tends to put a considerable indexing burden on the application. Since the literature in
this area was recently reviewed in great detail [10], we will not go into great detail here.

∗This work was supported in part by NSF contracts ACI-0305163 and CCF-0342369 and an equipment donation from

Hewlett-Packard.
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The simple observation that underlies our approach is that storage by resursive blocks is typically ex-
plained as a tree structure with matrix blocks that are stored contiguously as leaves, and inductively blocks
of matrix blocks at each other level of the tree. Thus, a data structure that reflects this tree and an API
that obeys this tree is perhaps the more natural way of expressing what we will refer to as hierarchical ma-
trices, and of manipulating such matrices. Similarly, algorithms over these trees are expressed as recursive
algorithms. Thus, an API for implementing recursive algorithms that obey this tree seems a natural solution.

The primary contribution of this paper lies with the demonstration that by raising the level of abstraction
at which we think about hierarchical matrices and the way they are stored, we simplify the code which
implements algorithms that perform operations on such matrices. Notice that we are not proposing a
standard for the API and resulting library. Much will need to be learned about this new approach to coding
before standardization is in order. Neither are we claiming optimal performance. Rather, we are illustrating
with a concrete example the issues and benefits of abandoning traditional approaches to coding linear algebra
libraries and the possible performance benefits that motivate this new approach.

The remainder of this paper is organized as follows: Section 2 reviews the notation and background
related to hierarchical matrices. An API for describing hierarchical matrices and coding algorithms is given
in Section 3. Experiments are described in Section 4. Conclusions are given in Section 5. In that section,
we also discuss future directions. Performance results are given in Appendix A. An implementation of
algorithms for the solution of the triangular Sylvester equation is given in Appendix B.

2 Notation and Background

We first introduce some basic notation and review fundamental insights that motivate the recent shift towards
storage by blocks.

2.1 Notation

In this paper, we use the common convention that matrices are denoted by capital letters, vectors by lower
case letters, and scalars by Greek letters. Given a matrix X , the functions m(X) and n(X) return the row
and column dimensions of X , respectively.

Consider the operation C = AB + C. It must be the case that m(C) = m(A), n(C) = n(B), and
n(A) = m(B). The elements of C, {γij}, are updated with the elements of A, {αip}, and B, {βpj} by the
algorithm

for i = 1 : m(C)
for j = 1 : n(C)

for p = 1 : n(A)
γij = γij + αipβpj

endfor
endfor

endfor

Notice that the order of the loops can be arranged in 3! = 6 different ways.
It is common in the description of high-performance algorithms to partition matrices into blocks of

matrices:

C =









C11 C12 · · · C1N

C21 C22 · · · C2N

.

.

.
.
.
.

.

.

.

CM1 CM2 · · · CMN









, A =









A11 A12 · · · A1K

A21 A22 · · · A2K

.

.

.
.
.
.

.

.

.

AM1 AM2 · · · AMK









, and B =









B11 B11 · · · B1N

B21 B21 · · · B2N

.

.

.
.
.
.

.

.

.

BK1 BK1 · · · BKN









,

where m(Cij) = m(Aip), n(Cij) = n(Bpj), n(Aip) = m(Bpj). Then matrix-matrix multiplication, in terms
of these blocks, can be implemented by the algorithm
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Figure 1: The hierarchical memories viewed as a pyramid.

for i = 1 : M
for j = 1 : N

for p = 1 : K
Cij = Cij + AipBpj

endfor
endfor

endfor

Again, the order of the loops can be arranged in 3! = 6 different ways.
Multiple layers of blocking can be imposed upon matrices by further partitioning the blocks Cij , Aip,

and Bpj into finer blocks.

2.2 Architectures with multi-level memory

With the advent of cache-based processors, a major concern became how to amortize the cost of moving
data between memory layers. Let us consider a typical multi-level memory as depicted in Fig. 1. Inherently,
data must be moved from memory layers lower in this pyramid into, ultimately, the registers in order for
the CPU to perform floating point operations on those data. Since such movement represents unproductive
overhead, it becomes important to reuse data that is up the memory pyramid many times before allowing it
to slide back down.

One of the most ideal operations that allows such amortization of data movement is the matrix-matrix
multiplication. In the most simple terms, this operation performs O(n3) operations on O(n2) data. Since
this operation can be decomposed into smaller blocks that fit a given target memory layer, there is the clear
opportunity of amortizing the cost of the data movement over many operations. It has been shown that
most dense linear algebra operations can be cast in terms of matrix-matrix multiplication, which then allows
portable high performance to be achieved.

2.3 High-performance implementation of matrix-matrix multiplication

Let us briefly review the anatomy of a typical high-performance implementation of matrix-matrix multipli-
cation.

The fastest implementations [1, 12, 15, 23, 6] of matrix-matrix multiplication C = AB+C use algorithms
similar to:

for p = 1, . . . , K
for i = 1, . . . , M

T = AT
ip

for j = 1, . . . , M
Cij = T T Bpj + Cij

endfor
endfor

endfor
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We recognize this as a simple permutation of the loops. Details of why the loops are structured in this
specific order go beyond the scope of this paper. Also, when matrices are stored by columns (column-major
order) as in Fortran, in order to reduce TLB misses and other unwanted cache behavior, Aip is typically
transposed and copied into a contiguous buffer, T . This reduces the number of TLB entries required to
address this block and allows inner-products of columns of T and Bpj to be used, which access memory
mostly contiguously, for the computation of elements of Cij . The block size of Aip is chosen so that one such
submatrix fills most of the L2 cache (unless the amount memory addressible by the TLB is less that the size
of the L2 cache, in which case this becomes the limiting factor)1. Since often C = AT B +C, C = ABT + C,
and/or C = AT BT + C are also encountered in applications, blocks of B and/or C may also need to be
packed and/or transposed.

The simple observation now is that if matrices are stored by blocks, then this packing is no longer required.
Morever, within this storage scheme, transposition can be made cheaper, for example by transposing in-
place. A second observation is that with the introduction of more and more memory layers, multiple levels
of blocking may become required in order to optimally implement matrix-matrix multiplication [15].

2.4 Notation related to hierarchical matrices

In order to facilitate discussion, we introduce the following definitions to describe hierarchically partitioned
matrices:

• A flat matrix is a logical representation of how a matrix would look if we were to write it out on a
piece of paper. It is a storage and partition independent idea of a matrix, a mathematical description.

• The depth of a matrix, X , is the maximum number of times the flat matrix of X has been partitioned
into smaller sub-matrices. A non-partitioned matrix has a depth of 0. Matrices that have been
partitioned into sub-matrices would have a depth of 1 plus the maximum of the depths of its sub-
matrices. We denote the depth of X as d(X).

• Leaf matrices are matrices whose elements are scalars and are not further partitioned into smaller
sub-matrices. The depth of a leaf matrix is 0.

• A hierarchical matrix, X , is a either a leaf matrix or a matrix such that all its elements are all
hierarchical matrices of depth at most one less than the depth of X .

2.5 Necessary conditions for operations on hierarchical matrices

Consider the operation C = AB + C where all three matrices are hierarchical matrices. In order for the
multiplication to be conveniently implemented as a recursive algorithms in a level-by-level fashion, certain
conditions must be imposed on the dimensions of level matrices that must be multiplied as subproblems. We
do not here give a full discussion of this (for space reasons). Rather, we will restrict ourselves to the case
where matrices are hierarchically partitioned in a conformal manner, without formally specifying what this
means. Clearly, in future papers on the subject, this will need to be more precisely treated.

3 An API for Storing and Manipulating Hierarchical Matrices

Many papers describe the concept of hierarchically stored matrices, as mentioned in the introduction. What
is absent from these papers tends to be any example of how to instantiate such data structures in code and
how to code operations over such data structures. One exception is those efforts that utilize the ability
of C++ to hide indexing details [21]. Even there, much complexity is required under the covers in order
to index into the data structures. In this section, we show how an API that mirrors the way hierarchical
matrices are naturally explained allows many of these indexing intricacies to disappear.

1In some implementations, Aip is chosen to fill most of the L1 cache instead.
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We will next show that a very simple approach allows the specifics of the mapping of data memory
locations to be hidden, keeping the indexing problems to a minimum. We do so by discussing a simple
extension to the FLAME API for the C programming language, FLAME/C, as a concrete example of an
instantiation of this idea [14, 4, 5].

3.1 Describing matrices in FLAME/C

The FLAME/C API hides details like storage method and matrix dimensions from the user by utilizing
object based programming techniques much like the Message-Passing Interface (MPI) and other software
packages [13, 20, 3, 22]. These details are stored in a descriptor and hidden from the programmer. They
can be accessed through inquiry routines. In its current implementation, it is assumed that all matrices are
stored using column-major storage as prescribed by Fortran.

FLAME/C provides the following call to create a descriptor and storage for an m × n matrix of type
double, where integers m and n indicate the matrix row and column dimensions, respectively:

FLA_Obj C;

FLA_Obj_create( FLA_DOUBLE, m, n, &C );

Given that now C is a descriptor for a FLAME object (declared to be of type FLA Obj), the following calls
then extract the various attributes:

datatype_C = FLA_Obj_datatype( C );

m_C = FLA_Obj_length( C );

n_C = FLA_Obj_width ( C );

ldim_C = FLA_Obj_ldim ( C );

buf_C = ( double * ) FLA_Obj_buffer ( C );

Notice that the last call will set buf C to the address of where the elements of the matrix are stored, so that
the (i, j) element can be set by the assignment

buf_C[ j*ldim_C + i ] = < value of (i,j) element >

3.2 Supporting hierarchical matrices in FLAME/C

The logical extension to the above API call that will allow the support of hierarchical matrices is to allow
each element of a matrix created by FLA Obj create to itself be a matrix. Thus the call

FLA_Obj_create( FLA_MATRIX, m, n, &C );

creates an m×n matrix where each element of the C is a descriptor for a (not yet created) matrix Cij . We will
refer to the FLAME/C API augmented with this as FLASH: Formal Linear Algebra Scalable Hierarchical
API.

Given arrays ms and ns where each element, Cij , is to be of size ms[i] by ns[j], the following loop then
creates the descriptors for the elements.

ldim_C = FLA_Obj_ldim( C );

buf_C = ( FLA_Obj * ) FLA_Obj_buffer( C );

for (j=0; j<n; j++ )

for ( i=0; i<m; i++ )

/* Create a matrix C_ij of size m[ i ] x n[ j ] */

FLA_Obj_create( FLA_DOUBLE, ms[ i ], ns[ j ],

&buf_C[ j*lda_C + i ] );
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Figure 2: Graphical representation of hierachy using “seives”.

Naturally, by taking some or all submatrices Cij of type FLA MATRIX, further layers of a hierarchical matrix
can be created.

It is beneficial to have one subroutine call that creates all the layers of the hierarchy. More importantly,
having a single subroutine call to create the hierarchy allows us to ensure that the hierarchy created will
possess the properties related to conformity to which we allude in Section 2.5. One such hierarchy is created
by the call

FLASH_Obj_create( int datatype, int order, int m, int n, int depth,

int *Blksizes, FLA_Obj &C );

This call requires considerable explanation: The datatype of the elements in the leaf matrices is given by
datatype. The order in which blocks are ordered is given by order. The flat matrix to be created is to be
of size m×n, where m and n are passed as arguments m and n, respectively. The argument depth takes the
value of d(C) where C is the hierarchical matrix to be created. Blksizes takes as input an array of integers
that indicates the size of the matrix at each level.

A more intuitive way of thinking about creating the hierarchy may be to think of partitioning the matrix
with increasingly finer seives while maintaining the constraint that the size of the current seive must be a
multiple of the size of the next smaller seive. Figure 2 is a diagram of how the hierarchy is created with
“seives. That figure illustrates a hierarchical matrix created with the call

FLASH Obj create( datatype, FLASH GENERALIZED MORTON, 18, 23, 2, Blksizes, &C )

where
int Blksizes[ 2 ] = { 2, 5 };

In this particular example, the top matrix is a d18/(2× 5)e× d23/(2× 5)e = 2× 3 matrix of matrices. Each
of those matrices is a 2×2 matrix, except the last column. At the leaves are matrices of dimension (at most)
5 × 5. This description is captured in a possible implementation for FLASH Obj create given in Fig. 4.

Note: In our above explanation we do not “pad” the matrix to become of a dimension that is a multiple
of the largest seive. However, the interface doesn’t necessarily prescribe the implementation. Additional
memory can always be used to pad the matrices if there is some advantage to doing so.

3.3 Storage schemes

Having described how to build the hierarchy, we, next, need to consider how to store the elements of the
matrix. Here what really matters is the order in which the data in the leaf matrices is stored and the order
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Figure 3: Generalized Morton order: The lowest level blocks are 5 × 5 matrices stored in column-major
order. The next level consists of 3× 3 blocked matrices, stored in column-major order. Finally, those blocks
are stored in column-major order themselves. Notice that the traditional Morton order can be achieved by
picking the blocking at each level to be 2 × 2 for log

2
(n) levels, storing each level in row-major order.

in which these blocks are stored relative to each other. Street wisdom is that the better the locality of the
data at the various levels, the better different layers of the memory hierarchy can be used.

3.3.1 Recursive Block Storage - Morton(Z) Ordering

A Morton (Z) ordering [11, 21] (with blocks at the leaves) can be achieved as follows:

• Store the b× b leave matrices in some format, where the b2 elements are stored in contiguous memory.

• Form 2×2 matrices of such blocks at the next level, storing these blocks in contiguous memory ordering
them in row-major order.

• Continue like this, building 2 × 2 matrices at each level.

The approach illustrated in Fig. 3 is a variant of this. Given an n×n matrix, it can be described as follows:

• An n × n item buffer of continuous memory is allocated.

• Given a set of blocking sizes {b0, b1, . . . , bL−1}, the flat matrix is partitioned into B =
∏

bi blocks.

• Assuming for simplicity that n is an integer multiple of B, these top-level blocks are assigned B × B
items of contiguous memory, in a column-major order.

• Each such B × B block is now further subdivided using blocking sizes {b0, b1, . . . , bL−2}.

• Leave matrices, of size b0 × b0, are stored in column-major order.

It is not hard to see that this is modification of the Morton (Z) ordering, in that it uses column-major
ordering and at each level the blocked matrices need not to be 2 × 2.

3.3.2 Canonical Storage

In order to compare with current existing means of storing matrices in row or column major order, we have
also included the following calls which allow us to attach a conventional column major ordered matrix to a
existing hierarchy. This creates a hierarchy in which the leaf matrices act as views into different parts of the
original matrices.

FLASH_Obj_create_without_buffer( datatype, m, n, depth, *Blksizes, &C );

FLASH_Obj_attach_buffer( *buf, ldim, &C );
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1 #include "FLAME.h"

2 #define Cij(i,j) C[ (j)*ldim_C + (i) ]

3
4 void FLASH_Obj_create( int datatype, int order, int m, int n,

5 int depth, int *Blksizes, FLA_Obj *C )

6 {

7 char *buffer; int typesize;

8
9 typesize = FLA_Type_size( datatype );

10 buffer = ( char * ) malloc( m * n * typesize );

11
12 switch( order ){

13 case FLASH_GENERALIZED_MORTON:

14 FLA_Obj_create_gen_Morton( datatype, m, n, depth, Blksizes, C, buffer );

15 break;

16 default:

17 FLA_Abort( "Order not yet implemented", __LINE__, __FILE__ );

18 }

19 }

20
21 void FLASH_Obj_create_gen_Morton( int datatype, int m, int n,

22 int depth, int *Blksizes, FLA_Obj *C, char *buffer )

23 {

24 int b, i, ii, j, jj, m_cur, n_cur, mb, nb, typesize;

25
26 if ( depth == 0 ){ /* leaf matrix */

27 FLA_Obj_create_without_buffer( datatype, m, n, C );

28 FLA_Obj_attach_buffer( buffer, C );

29 }

30 else{

31 typesize = FLA_Type_size( datatype );

32 /* Extract current seive size = Blksizes[0] * Blksizes[1] * ... */

33 b = 1;

34 for ( i=0; i<depth; i++ ) b *= Blksizes[ i ];

35 /* Determine row and column dimension of level matrix */

36 m_cur = m / b + ( m % b == 0 ? 0 : 1 ); /* m_cur = ceil( m / b ) */

37 n_cur = n / b + ( n % b == 0 ? 0 : 1 ); /* n_cur = ceil( n / b ) */

38 /* Create a level matrix and extract leading dimension */

39 FLA_Obj_create( FLA_MATRIX, m_cur, n_cur, C );

40 ldim_C = FLA_Obj_ldim( *C );

41 /* Loop over the columns of the level matrix */

42 j = 0;

43 for ( jj=0; jj<n; jj+=b ){

44 /* nb = column size of current hierarchical submatrix */

45 nb = min( n-jj, b );

46 /* Loop over the rows of the level matrix */

47 i = 0;

48 for ( ii=0; ii<m; ii+=b ){

49 mb = min( m-ii, b ); /* column size of current hierarchical submatrix */

50 /* create (hierarchical) matrix i,j */

51 FLASH_Obj_create_gen_Morton( datatype, mb, nb,

52 depth-1, &Blksizes[ 1 ], &Cij( i,j ), buffer );

53 buffer += mb * nb * typesize;

54 i++;

55 }

56 j++;

57 }

58 }

59 }

Figure 4: Sample implementation of FLASH Obj create.
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More precisely, the flat matrix is stored in column major order. At each level, the submatrices are simply
submatrices of this matrix. The net effect is that the leaf matrices are stored in column-major order, with
a leading dimension that equals the leading dimension of the flat matrix.

3.4 Filling the matrix

An easy argument for not accepting alternative data structures is to point out that filling such matrices with
data is simply too complex for applications. This would appear to favor the use of C++ since it would allow
indexing to be hidden from the user. We propose an alternative solution.

Notice that for small matrices, it is always possible to create the matrix using a more traditional storage,
and to then rearrange the data into the our alternative approach. For larger matrices, this is not acceptable,
since it would require a considerable amount of additional space (unless it can be done in-place, which would
become quite complex.) Fortunately, very large dense matrices do not appear often in applications. More
importantly, frequently matrices are conveniently created as smaller submatrices that represent contributions
to the total (global) matrix. Thus, we propose the following call:

FLASH_Axpy_matrix_to_global( m, n, alpha, B, ldb, A, i, j );

This call will add m × n matrix B, scaled by α, to the submatrix of A that has as its top-left element the
(i, j) element of A. In (MATLAB) Mscript notation this operation is given by

A( i:i+m-1, j:j+n-1 ) = alpha * B + A( i:i+m-1, j:j+n-1 );

A similar routine allows submatrices to be extracted. Notice that now the user needs not know
how the matrix A is actually stored.

This approach has be highly successful for interface applications to our Parallel Linear Algebra Package
(PLAPACK) library for distributed memory architectures [22] where filling distributed matrices poses a
similar challenge.

3.5 FLAME Algorithms for Hierarchical Matrices

An example of how simple code becomes when matrices are stored hierarchical using the proposed API,
consider the matrix-matrix multiplicaiton presented in Fig. 5. Notice that apart from providing an API
that reduces the complexity arising from indexing, FLAME provides a methodology for deriving dense linear
algebra algorithms. Using the same methodology, algorithms that operate on hierarchical matrices can also
be systematically derived. In addition, we advocate a coding style that avoids intricate indexing, unlike
the code shown in Fig. 5 (which we present as nested loops for those not familiar with FLAME, and for
conciseness). Unfortunately further details go beyond the scope of this paper.

4 Experiments

In this section, we concentrate on the ease of programming available when an API like the one we propose
is adopted. We also briefly discuss performance. However, we note that no conclusions should yet be drawn
from the performance experiments. So as not to distract from the main focus of the paper, we report
performance in Appendix A.

A nontrivial operation for which high-performance implementation that has been studied over the last
few years is the triangular Sylvester equation

UX + XR = C

where U and R are (square) uppertriangular matrices and X and C are rectangular matrices. Notice that if
U is m × m and R is n × n, then C and X are both m × n. In this equation, U , R, and C are inputs, and
X is an output. It is customary that the solution X overwrites input matrix C.

9



A few recent papers discuss algorithms for computing the solution of this equation, as well as their
implementation. In [18], we show how a family of algorithms can be derived using the FLAME approach to
deriving algorithms. Also in that paper, we show how the FLAME/C API can be used to implement them.
While the derived algorithms are loop-based, the paper also points out how recursion and loops (iteration)
can be combined. In a more recent paper [10], a recursive algorithm (also discussed in [16]) is discussed.
In that paper, the authors also discuss the benefits of storage by blocks, but do not show implementations
using this alternative mapping of matrices to memory.

To evaluate how easily the proposed API can facilitate the implementation of these kinds of algorithms,
we coded both the recursive algorithm in [10] and the best algorithm (which combines iteration and re-
cursion) in [18] (Algorithm C3 in that paper). In a matter of less than an hour, both these algorithms
were implemented and tested for correctness. We use this as an indication that the API facilitates rapid
prototyping of recursive algorithms for matrices that are stored as hierarchical matrices.

It is worth noting that in addition to the implementations of matrix-matrix multiplication and the solution
of the triangular Sylvester equation, the proposed API has also been used to implement a number of level-3
BLAS operations. It is our belief that most of the functionality of the BLAS and LAPACK can be supported
with the proposed techniques and API.

5 Conclusion and Future Work

In this paper, we have shown that by storing hierarchical matrices and utilizing an API that can express
them as matrices of matrices greatly simplifies the more complex indexing. We believe this overcomes a
major obstacle to widespread acceptance of these alternative approaches to storage.

Much work remains. Most research in this area has focused on the efficient implementation of the kernels
that allow high performance to be attained. Our work now needs to be combined with the results
of that research in order to demonstrate the performance benefits that will come from abandoning

1 #include "FLAME.h"

2
3 #define AA(i,j) buf_A[ (j)*ldim_A+(i) ]

4 #define BB(i,j) buf_B[ (j)*ldim_B+(i) ]

5 #define CC(i,j) buf_C[ (j)*ldim_C+(i) ]

6
7 void FLASH_AB_plus_C( FLA_Obj A, FLA_Obj B, FLA_Obj C )

8 /* Compute C = A * B + C

9 Simplifying assumption: all matrices have the same depth and are stored conformally. */

10 {

11 int m, n, k, ldim_A, ldim_B, ldim_C, i, j, p, datatype;

12 FLA_Obj *buf_A, *buf_B, *buf_C;

13
14 datatype = FLA_Obj_datatype( A );

15
16 if ( datatype != FLA_MATRIX ) /* A, B, and C, are all leaf matrices */

17 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, ONE, A, B, ONE, C );

18 else {

19 buf_C = ( FLA_Obj * ) FLA_Obj_buffer( C ); ldim_C = FLA_Obj_ldim( C ); m = FLA_Obj_length( C );

20 buf_A = ( FLA_Obj * ) FLA_Obj_buffer( A ); ldim_A = FLA_Obj_ldim( A ); n = FLA_Obj_length( A );

21 buf_B = ( FLA_Obj * ) FLA_Obj_buffer( B ); ldim_B = FLA_Obj_ldim( B ); k = FLA_Obj_length( B );

22
23 for ( p=0; p<k; p++ )

24 for ( j=0; j<n; j++ )

25 for ( i=0; i<m; i++ )

26 FLASH_AB_plus_C( AA( p,i ), BB( p,j ), CC( i,j ) );

27 }

28 }

Figure 5: Matrix-matrix multiplication implemented using FLAME/C with hierarchical matrices.
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traditional storage methods for matrices like column-major storage used by linear algebra packages like
LAPACK [2].

Perhaps an even greater impact will come from exploiting the API for problems that give rise to sparse
linear systems. For most engineering applications, the degrees of freedom are inherently hierarchically orga-
nized as domains and subdomains, which is often referred to as successive substructuring [17]. The matrices
that capture the coupling between these hierarchically organized components are themselves hierarchical.
Our API allows these kinds of matrices to be naturally captured as hierarchical matrices that have pruned
branches (where submatrices at some level are tagged as containing only zeroes rather than explicitly stored).
By writing so-called sparse direct methods as dense direct methods, with operations on pruned branch ma-
trices being detected and pruned at the time of the computation, dense linear algebra libraries could operate
efficiently on sparse problems. Whenever fill-in occurs, branches can be added to the hierarchy. Other
structural and numerical properties of branches could similarly be expressed and exploited. This vision can
be made reality with minor extensions to our proposed API.

A simple application of this last observation lies with the compact storage of triangular, symmetric,
and/or banded matrices, a topic of recent research [10]. While others propose complex storage schemes
that take, for example, triangular matrices and store them in a single dense array by partitioning and
folding, our approach would allow blocks that are known to contain only zeroes to be marked and not stored.
While the storage is not as compact as other approaches, it attains almost all of the benefits with while
simplifying the coding effort tremendously. This idea was already explored for block tridiagonal matrices in
a parallel implementation of the Cholesky factorization [7]. That paper stored the blocks on the diagonal
and subdiagonal as vectors, without an API to elegantly support the idea, but illustrates the benefits.

We conclude by pointing out that the idea of storing matrices as matrices of matrices was already explored
in the early 1970s [19], and later revisited for distribution of matrices to distributed memory architectures [8].
It is an old idea that perhaps should have become the norm long ago.

Additional Information

Please visit www.cs.utexas.edu/users/flame/.
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Figure 6: Performance of the various implementations. Notice that the scale of the y-axis is such that the top
of the graph corresponds to 50% of peak performance on the respective machines. Unlike my other linear
algebra operations, near-peak performance is difficult to attain for the solution of the triangular Sylvester
equation since not as much of the computation can be cast in terms of large matrix-matrix multiplications [18].
We, again, warn the reader not to attach too much value to the qualitative or quantitative differences (or,
more importantly, the lack thereof) that are observed: until inner kernels are rewritten to take advantage of
the new mappings, performance results are not indicative of the benefits of the new mappings.

A Preliminary Performance Results

We re-emphasize that this is not a paper about performance: Much work is still required before conclusions
can be drawn regarding the performance impact of storing matrices hierarchically by blocks. In particular,
when matrices are stored by blocks, the kernels that perform matrix-matrix multiplication once data reaches
the level 1 and 2 caches will likely need to be rewritten. The conclusion that we believe can be drawn
from the results of the experiments that we report is that the API, when combined with research on how to
implement low level kernels (not discussed in this paper), can be used to evaluate the (possible) benefits of
storing matrices as hierchical matrices.

We report performance results on two different platforms: workstations based on the Intel Pentium4 (R)
processor (2.4 GHz) and the Intel Itanium2 (R) processor (900 MHz). On both systems, implementations
were linked to the BLAS library of Kazushige Goto [12], which are among the fastest available for these
architectures.

We report performance for what was found to be the best algorithm in [18] (Algorithm C3). In all our
implementations, subproblems of dimension 104 or less were solved with the same unblocked algorithm.
Performance for four versions are reported:

• FLAME 104: The algorithm as reported in [18] with matrices stored in the traditional column-major
order. Only one level of blocking, with a block size of 104, is employed.

• FLASH 104, 2: This algorithm employs two levels of blocking: 104 × 104 for the leaf matrices and
208 × 208 for the next level. The hierarchical matrix is stored using the generalized Morton order
with these same dimensions. Thus, the leaf matrices are contiguous in memory, as is the next level of
matrices.

• FLASH 104, 2, 2: This algorithm employs three levels of blocking: 104 × 104 for the leaf matrices
and 208 × 208 for the next level, and 416 × 416 for the top level. The hierarchical matrix is stored
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using the generalized Morton order with these same dimensions.

Performance is reported in Fig. 6. On the Pentium 4 platform, a substantial improvement in performance
is observed when the leaf matrices are stored as contigous blocks. Additional coarser levels of blocking do not
appear to help. The results are quite different on the Itanium2 platform. There, the benefits from storing
the leaf matrices contiguously is not as dramatic, and additional coarser levels appear to adversely affect
performance.

One conclusion that perhaps can be drawn from the graphs is that there appears to be merrit to storing
leaf matrices contiguous in memory, but managing the storage of those blocks at higher levels does not seem
to impact performance substantially. In other words, complex storage schemes that enforce a Morton order
at many levels may not warrant the additional complexity.

B Code

In Figs. 7–9 we show the actual FLASH code for the solution of the triangular Sylvester equation.

1 #include "FLAME.h"

2
3 int FLASH_TriSylv_colC3(FLA_Obj A, FLA_Obj B, FLA_Obj C){

4
5 FLA_Obj A11, A12, C1, C2;

6 A21, A22;

7
8 FLA_Obj

9
10 FLA_Part_2x2( A, &A11, &A12,

11 &A21, &A22, 1, 1, FLA_TL );

12
13 FLA_Part_2x1(C, &C1,

14 &C2, 1, FLA_TOP);

15
16 FLASH_TriSylv_C3(A22, B, C2);

17 FLASH_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,

18 MINUS_ONE, A12, C2, ONE, C1);

19 FLASH_TriSylv_C3(A11, B, C1);

20
21
22 return FLA_SUCCESS;

23 }

24
25 int FLASH_TriSylv_rowC3(FLA_Obj A, FLA_Obj B, FLA_Obj C){

26
27 FLA_Obj B11, B12, C1, C2,

28 B21, B22;

29
30 FLA_Part_2x2( B, &B11, &B12,

31 &B21, &B22, 1, 1, FLA_TL );

32
33 FLA_Part_1x2( C, &C1, &C2, 1, FLA_LEFT);

34
35 FLASH_TriSylv_C3(A, B11, C1);

36 FLASH_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,

37 MINUS_ONE, C1, B12, ONE, C2);

38 FLASH_TriSylv_C3(A, B22, C2);

39
40 return FLA_SUCCESS;

41 }

Figure 7: FLASH code for the solution of the triangular Sylvester equation.
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43 int FLASH_TriSylv_C3( FLA_Obj A, FLA_Obj B, FLA_Obj C)

44 {

45 FLA_Obj

46 ATL, ATR, A00, A01, A02,

47 ABL, ABR, A10, A11, A12,

48 A20, A21, A22,

49 BTL, BTR, B00, B01, B02,

50 BBL, BBR, B10, B11, B12,

51 B20, B21, B22,

52 CTL, CTR, C00, C01, C02,

53 CBL, CBR, C10, C11, C12,

54 C20, C21, C22;

55
56 if( ( FLA_Obj_width( C ) == 0 )||( FLA_Obj_length( C ) == 0 ))

57 return FLA_SUCCESS;

58
59 if ( FLA_Obj_datatype(C) != FLA_MATRIX ){

60 FLA_TriSylv(A, B, C);

61 return FLA_SUCCESS;

62 }

63
64 if ( FLA_Obj_length(C) == 1 ){

65 if (FLA_Obj_width(C) == 1 ) {

66 FLASH_TriSylv_C3(*((FLA_Obj*)FLA_Obj_buffer(A)),

67 *((FLA_Obj*)FLA_Obj_buffer(B)),

68 *((FLA_Obj*)FLA_Obj_buffer(C)));

69 return FLA_SUCCESS;

70 }

71 }

72
73 if (FLA_Obj_width(C) > FLA_Obj_length(C)){

74 FLASH_TriSylv_rowC3(A, B, C);

75 return FLA_SUCCESS;

76 }

77
78 if (FLA_Obj_width(C) < FLA_Obj_length(C)){

79 FLASH_TriSylv_colC3(A, B, C);

80 return FLA_SUCCESS;

81 }

82
83 FLA_Part_2x2( A, &ATL, /**/ &ATR,

84 /* ************** */

85 &ABL, /**/ &ABR,

86 /* with */ 0, /* by */ 0, /* submatrix */ FLA_BR );

87
88 FLA_Part_2x2( B, &BTL, /**/ &BTR,

89 /* ************** */

90 &BBL, /**/ &BBR,

91 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL );

92
93 FLA_Part_2x2( C, &CTL, /**/ &CTR,

94 /* ************** */

95 &CBL, /**/ &CBR,

96 /* with */ 0, /* by */ 0, /* submatrix */ FLA_BL );

Figure 8: FLASH code for the solution of the triangular Sylvester equation (continued).
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98 while ( ( FLA_Obj_length( BBR ) != 0 )||( FLA_Obj_length( ATL ) != 0 ) ){

99 FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, &A01, /**/ &A02,

100 /**/ &A10, &A11, /**/ &A12,

101 /* ************* */ /* ************************* */

102 ABL, /**/ ABR, &A20, &A21, /**/ &A22,

103 /* with */ 1, /* by */ 1, /* A11 split from */ FLA_TL );

104 FLA_Repart_2x2_to_3x3( BTL, /**/ BTR, &B00, /**/ &B01, &B02,

105 /* ************* */ /* ************************* */

106 /**/ &B10, /**/ &B11, &B12,

107 BBL, /**/ BBR, &B20, /**/ &B21, &B22,

108 /* with */ 1, /* by */ 1, /* B11 split from */ FLA_BR );

109 FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,

110 /**/ &C10, /**/ &C11, &C12,

111 /* ************* */ /* ************************* */

112 CBL, /**/ CBR, &C20, /**/ &C21, &C22,

113 /* with */ 1, /* by */ 1, /* B11 split from */ FLA_TR );

114 /* ********************************************************************* */

115 /* C10 <- X10 where X10 solves A11 X10 + X10 B00 = C10 */

116 FLASH_TriSylv_C3(A11, B00, C10);

117 /* C21 <- X21 where X21 solves A22 X21 + X21 B11 = C21 */

118 FLASH_TriSylv_C3(A22, B11, C21);

119 /* C11 <- - A12 X21 + C11 */

120 FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A12, C21, ONE, C11 );

121 /* C11 <- - X10 B01 + C11 */

122 FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, C10, B01, ONE, C11 );

123 /* C11 <- X11 where X11 solves A11 X11 + X11 B11 = C11 */

124 FLASH_TriSylv_C3(A11, B11, C11);

125 /* C00 <- - A01 X10 + C00 */

126 FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A01, C10, ONE, C00 );

127 /* C01 <- - A01 X11 + C01 */

128 FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A01, C11, ONE, C01 );

129 /* C01 <- - A02 X21 + C01 */

130 FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A02, C21, ONE, C01 );

131 /* C22 <- - X21 B12 + C22 */

132 FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, C21, B12, ONE, C22 );

133 /* C12 <- - X10 B02 + C12 */

134 FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, C10, B02, ONE, C12 );

135 /* C12 <- - X11 B12 + C12 */

136 FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, C11, B12, ONE, C12 );

137 /* ********************************************************************* */

138 FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, /**/ A01, A02,

139 /* ************** */ /* ************************ */

140 /**/ A10, /**/ A11, A12,

141 &ABL, /**/ &ABR, A20, /**/ A21, A22,

142 /* with A11 added to submatrix */ FLA_BR );

143 FLA_Cont_with_3x3_to_2x2( &BTL, /**/ &BTR, B00, B01, /**/ B02,

144 /**/ B10, B11, /**/ B12,

145 /* ************** */ /* ************************ */

146 &BBL, /**/ &BBR, B20, B21, /**/ B22,

147 /* with B11 added to submatrix */ FLA_TL );

148 FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,

149 /* ************** */ /* ************************ */

150 /**/ C10, C11, /**/ C12,

151 &CBL, /**/ &CBR, C20, C21, /**/ C22,

152 /* with C11 added to submatrix */ FLA_BL );

153 }

154 return FLA_SUCCESS;

155 }

Figure 9: FLASH code for the solution of the triangular Sylvester equation (continued).
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