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Abstract 
 
 
 
 
 
 
 
 
Introducing a new architecture has never been a trouble-free subject for computer architects. 
Growing complexity and compatibility issues often hinder the progress of new architectures even 
though the technological trends demand rapid, wholesome changes. TRIPS, is one such novel 
architecture that targets the problems of wire delays, memory latencies, power consumption and 
saturated parallelism. TRIPS aims to be a scalable, malleable, dynamically adaptive and non-
specialized architecture that supports diverse applications. This thesis analyzes the advantages and 
disadvantages of the TRIPS architecture and its prototype. Because this thesis is the first to 
evaluate the TRIPS architecture, it establishes a foundation based on which the evaluation and 
analysis of the TRIPS architecture can be carried out smoothly in the future. The goals of this 
thesis are three-fold.  The thesis provides details of the tools developed to analyze the TRIPS 
architecture, reports the metrics that provide data on the effects of the features of the TRIPS 
architecture on the program output, and evaluates the efficiency of the TRIPS model by comparing 
it with the Alpha 21264 (RISC) machine for a set of common source programs. 
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1    Introduction 
 
 
 
 
 
 
 
 
Introducing a new architecture has never been a trouble-free subject for computer architects. 
Growing complexity and compatibility issues often hinder the progress of new architectures even 
though the technological trends demand rapid, wholesome changes. The post-RISC era today 
where clock speeds and pipeline depths are saturating is an example of the times that require a shift 
from the current ideas. TRIPS is one such novel architecture that targets the problems of wire 
delays, memory latencies, power consumption and saturated parallelism by providing an on-chip 
communication dominated, power-efficient execution model that exposes fine-grained 
concurrency. 
 
 

1.1 Introduction to the TRIPS Architecture 
 
The TRIPS (Tera-Op, Reliable, Intelligently adaptive Processing System) architecture is a multi-
disciplinary project being conducted at the Department of Computer Science, The University of 
Texas at Austin. Its goal is to design and develop a single-chip computing system with multiple 
functional units that provide Tera-op performance over a wide range of applications. TRIPS aims 
to be a scalable, malleable, dynamically adaptive and non-specialized architecture that supports 
diverse applications. The TRIPS design counters the problems of pipeline stage saturation and 
clock speed limits by providing a large grid of execution nodes that distribute the critical execution 
time and expose latencies throughout the components of the system [1, 4]. 
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The TRIPS processor consists of a three dimensional array of ALU nodes connected in a network 
where each ALU contains local instruction and data storage buffers. Banks of partitioned 
instruction and data caches are placed around the ALUs. The system follows a block-atomic model 
of execution where an entire block of instructions is fetched and mapped onto the execution nodes 
in the array. Similar to a dataflow style ISA, the TRIPS compiler and scheduler encode each 
instruction’s placement and its consumers, i.e. they allow a statically placed but dynamically 
issued (SPDI) execution model.  
 
TRIPS resembles a dataflow style architecture especially within the intra-block level where the 
instructions represent nodes of a dataflow graph and are executed once their operands are 
available. However, at the inter-block level, the control flow mechanism of the TRIPS architecture 
differs from a dataflow machine and behaves exactly like a conventional processor with sequential 
memory semantics. TRIPS can also be related to a VLIW machine by comparing the 3-D array of 
execution nodes to a VLIW instruction. TRIPS also solves the power and centralization problems 
being faced by the superscalar computers. As seen from the above discussion, TRIPS combines 
many features of earlier models. The goal of this thesis is to create a foundation for analyzing and 
determining how well TRIPS has succeeded in achieving its goals. 
 
 

1.2 Nomenclature 
 
The following section defines some of the terms that are commonly associated with the TRIPS 
architecture and also lists terms that will be frequently used henceforward in this thesis. 
  
GPA: A Grid Processor Architecture consists of an array of ALUs connected in a network fashion. 
Different blocks of scheduled instructions are mapped to these ALUs, which are executed in a 
dataflow order. This model allows more scalability by decentralization and distribution of larger 
structures and reducing their effect on the critical path [2]. 
 
SPDI: Static Placement Dynamic Issue is the architecture model where the compiler statically 
maps each instruction to its execution unit, but the instructions are issued dynamically at run-time. 
 
EDGE: Explicit Data Graph Execution model is a new, post-RISC architectural model that allows 
SPDI and is ideally suited for GPAs by using a block-atomic execution model and direct on-chip 
communication between the instructions [3]. 
 
Block-atomic execution model: This execution model groups a fixed number of instructions into 
a block (similar to a basic block or hyperblock) that is statically made by the compiler and is 
fetched, executed and committed as a single, atomic entity by the ALUs. 
 
TRIPS Block: A TRIPS block refers to a single atomic block that is the basic unit of the block-
atomic execution model of TRIPS. 
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Static Blocks: Static Blocks refer to the compile-time TRIPS blocks that are generated by the 
compiler for a given program. Each static block has a distinct block name. 
 
Dynamic Blocks: Dynamic Blocks refer to all the TRIPS blocks that are executed at run-time for a 
given program. The total number of dynamic blocks in a program is the sum of products of the 
static blocks and the number of times each static block is executed in the program. 
 
Critical Path Instructions: Critical path instructions refer to the longest chain of instructions in 
the dataflow graph that represents a TRIPS block. The operands for these instructions wait for the 
values from the earlier instructions in the chain and hence are critical to the performance of the 
model.   
 
Fan-Out Effect: The fan-out effect refers to the effect of moving the same piece of datum between 
the execution nodes in the grid of processors when a TRIPS block is mapped to it. A GPA like the 
TRIPS model increases on-chip communication between the execution nodes by transferring 
values between them instead of accessing the register file each time. However, moving the same 
datum to many nodes also requires extra overhead (move) instructions [5]. 
 
 

1.3 Motivation  
 
The goal of this thesis report is to analyze the advantages and disadvantages of the TRIPS 
architecture and the prototype. I present details on the tools developed to generate code metrics 
that provide results used to analyze the outputs of a wide set of toy benchmarks and programs on 
the TRIPS prototype, and relate their behavior to the design of the TRIPS architecture. I also 
compare the efficiency of the TRIPS ISA with a conventional, Alpha (RISC) machine so that the 
relative efficiency and performance of the TRIPS ISA can be measured. The ultimate goal in the 
future would be to conduct a comprehensive analysis of the TRIPS ISA and be able to determine 
how well the TRIPS architecture meets its goals.  
 
The motivation behind this thesis report was to conduct an initial analysis of the TRIPS 
Architecture. Evaluating an on-going research project has often not received its due attention 
because of numerous hindrances and difficulties. This thesis covers some areas where the current 
infrastructure and tools allow comparison and evaluation of the TRIPS architecture. I hope to 
establish a foundation based on which the evaluation and analysis of the TRIPS architecture can be 
carried out smoothly in the future. By providing results of some of the metrics, I will also create a 
way for future researchers to map the progress of the TRIPS project and relate specific 
modifications in the model to the changes in the code behavior.  
 
This thesis presents the infrastructure available to evaluate the TRIPS architecture. However, the 
results presented in the thesis only reflect a mid-stream analysis and in no way represent the final 
evaluation of the TRIPS processor. The results have been provided only as a guideline for refining 
the performance of the TRIPS architecture. 
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1.4 Project Goals 

The goals of this thesis are to present to the reader, information and results that are helpful in 
analyzing various features and aspects of the TRIPS architecture. The thesis provides in-depth 
information regarding the following aspects in particular: 
 

1. Details of the tools developed to analyze the TRIPS architecture. 
2. Metrics that provide data on the effects of the TRIPS architecture on program output. 
3. Comparison of the TRIPS output with an Alpha 21264 (RISC) machine. 

 
These goals are achieved by developing and running a group of software-based metrics on the 
TRIPS output for certain programs and comparing them to the Alpha output. The metrics are used 
to observe the correct functionality of certain components of the TRIPS tool-chain like the 
compiler optimizations, observe differences in the program output due to the two different 
architectures, and attribute specific output behavior to certain specific features in the TRIPS 
model. 

I consider my contribution to the analysis of the TRIPS architecture to have three main axes that 
correspond directly to the three project goals mentioned above. 

1. Development of the testing scripts and code metrics: I have created tools and scripts that 
make it feasible to generate metrics and results used to analyze the architecture.  

 
2. Results of metrics that outline TRIPS specific behavior: The metrics when compiled over a 

group of source programs reveal results that give us some insight into the TRIPS specific 
features and aspects.  

 
3. Results of metrics that compare TRIPS to another architecture: Lastly, the metrics also 

provide a way to compare the overall efficiency of the TRIPS output for a given program 
with the Alpha output of the same program. This also provides a way to compare the two 
different architectures.  

This thesis is targeted towards two groups of audience. It serves specific information to the 
members of the TRIPS research group interested in the performance analysis of the TRIPS 
architecture, as well as provides general information to the public interested in knowing about the 
TRIPS project. 
 
 

1.5 Background 
 
The advent of any new architecture calls for a thorough analysis of the model and comparison with 
already existing models. Any new idea will have both its supporters as well as the opposing camp. 
With every change in the technology, ideas have come and been debated thoroughly. The RISC 
versus CISC machine comparisons are perhaps the most well known of these debates [12, 13]. All 
new architecture including VLIW, SuperScalar models have gone through the phase of analysis 
and comparison. Individual work has also been done in the area of determining the metric of such 
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comparisons [7, 8]. The usual metrics used in comparing architectures have been the static and 
dynamic information [8], usage of addressing mode and instructions [7], instruction mix, code 
sizes, etc.    
 
TRIPS, being the first of its kind architecture, also presents its own problems when being 
compared to the existing models. Relating the block execution model and the effect of instructions 
like move that are present exclusively in TRIPS, to other architectures is particularly difficult. This 
thesis compares TRIPS with other models. The hope is for future researchers to notice the work 
and make further progress. 
 
The remainder of the report is organized as follows. Chapter 2 describes the various features of the 
TRIPS architecture and describes the methodology of the scripts and tools that were written to 
generate the metrics.  Chapter 3 reports the results of the metrics that were ran for different 
configurations of the TRIPS prototype and some TRIPS-specific features.  Chapter 4 concentrates 
on comparing the TRIPS output with the Alpha machine output and lists the advantages and 
disadvantages of the two machines over one another. It compares the code sizes and instruction 
mixes of certain common source code, on the two machines. Chapter 5 discusses and analyses the 
results of the metrics and provides further insight into area of future work. 
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2 Evaluating the TRIPS 
model 

 
 
 
 
 
 
 
 
 
 
 
2.1 The TRIPS Architecture 
 
The goal of TRIPS is to design a single-chip computing system with multiple functional units that 
provide Tera-op performance over a wide range of applications.  TRIPS aims to be a scalable, 
malleable, dynamically adaptive and non-specialized architecture that supports diverse 
applications. The TRIPS design counters the problems of pipeline stage saturation and clock speed 
limits by providing a large grid of execution nodes that distribute the critical execution time and 
expose latencies throughout the components of the system [1]. 
 
The TRIPS processor consists of a three dimensional array of ALU nodes connected in a network 
where each ALU contains local instruction and data storage buffers. For the prototype the grid 
consists of a 4 x 4 network of execution nodes. Banks of partitioned instruction and data caches are 
placed around the ALUs as shown in Figure 1 below. The system follows a block-atomic model of 
execution where an entire block of instructions is fetched and mapped onto the execution nodes in 
the array. The TRIPS compiler and scheduler statically encode 128-instruction blocks onto the grid 
giving 8 instructions to each node. 
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2.2 Methodology 
 
The basic idea of the tools created is to examine a TRIPS assembly file (in TIL or TASL [11]) and 
executable outputs for a given program file and provide software-based metrics.  The metrics were 
the result of the output of some wrapper scripts written in Perl that parsed through the TRIPS code 
of the source program.  Thus the implementation of a given source program could be analyzed on 
the TRIPS machine by studying the metrics. These metrics can be broadly categorized into (a) 
static metrics and (b) dynamic metrics. 
 
These metrics fit in nicely within the already existing TRIPS toolchain. The TRIPS toolchain 
consists of the tools that take in a source program in high-level language at one extreme end, 
generate intermediate code that feed the other tools in the chain and finally produce the executable 
output at the other end. The TRIPS compiler produces the TRIPS intermediate language (TIL) for 
a given C source program. The scheduler maps the intermediate code into the executable nodes by 
producing the TRIPS assembly language (TASL) file. The assembler then generates the object 

Figure 1. TRIPS architecture model 
The figure describes a 4x4 grid of execution nodes where blocks of 128 instructions are 
mapped.  Figure adapted from [3]. 
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Trace file                 
(tsim_arch.tt) 

C source code (.c) tcc 
Scale Compiler 

tsch 
3D Scheduler 

tas 
assembler 

tld 
linker 

trips_arch 
simulator 

TRIPS 
intermediate 
language (.til) *  

Assembly language (.s)* 

Object code (.o) 

Executable file 
(t.out) 

Program output 
(“Hello, world!”) 

Static.pl 

Dynamic.pl 
Figure 2. The TRIPS Toolchain and the Code Metrics 

The above figure shows the TRIPS toolchain and the places where the scripts for the code 
metrics fit in. The scripts static.pl and dynamic.pl were written  to generate the code 
metrics. * The TIL and TASL files can also be hand-generated and fed to the scripts. 

code for the TASL file, which is then linked and loaded to produce the executable. Finally the 
TRIPS architectural simulator runs the executable and also has the capability to produce a trace of 
the execution of the program. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Static metrics refer to the data and information gathered by studying the static assembly file. These 
metrics include information such as the static code size, number of TRIPS block, number of reads 
and writes per block and other metrics that are generated by the compiler. These metrics were 
generated by the file called static.pl that takes as input the TASL assembly language file (*.s) for a 
given program. The TASL file can be hand-written or generated from the compiler and scheduler 
for a C source program. 
 
 Dynamic metrics refer to the data and information gathered by studying the trace file of the 
architectural simulator. These metrics include information such as the dynamic code size, total 
instruction mix, flow of critical instructions and fan-outs per block. These metrics were generated 
by the file called dynamic.pl that takes as inputs the TASL assembly language file (*.s) and the 
architectural simulator’s trace file (tsim_arch.tt). The dynamic metrics script combines the static 
information of the assembly file to the dynamic execution trace of the simulator. 
 
In general, the dynamic metrics weights each TRIPS block according to the number of times it was 
actually executed and hence is a better guideline for analyzing the TRIPS toolchain for a given 
source program. The static metrics have still been provided as they serve as a good way to study 
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the compiler outputs, compare the TRIPS atomic-block format to the Alpha output and serve as an 
input to the dynamic metrics.  
 
 
2.3 Static and Dynamic Metrics 
 
The metrics generated by the scripts include both static as well as dynamic information. These 
metrics are useful in analyzing the TRIPS toolchain and in comparing the TRIPS output to that of 
the Alpha machine. There are some metrics that give details about very TRIPS-specific data such 
as reads and writes in a block, while others like the overall code size and instruction mix, compare 
the TRIPS and Alpha machine outputs. Table 1 below gives a list of all the static and dynamic 
metrics that the scripts can generate. All of the metrics that have been provided here are also 
discussed in further detail.   

 
2.3.1 List of Static Metrics 
 
Static Code Sizes for different compiler configurations. 
This metric calculates the variance in the static code size of different programs by adding different 
compiler optimizations. It is used to verify the compiler optimizations and to observe the result of 
applying different optimizations. The static code size provides a measure of the complexity of the 
source programs, which must be kept in mind while observing the dynamic information.   
 
Number of Static TRIPS Blocks for different compiler configurations. 
This metric is used to relate a given TRIPS block to the program code and the effect of compiler 
optimizations on the number and size of TRIPS block per program. This metric is in many ways 
analogous to the static code size and when combined with it gives a measure of the average length 
of TRIPS blocks created by the compiler for a given source code. 
 

Comparing Static Metrics Dynamic Metrics 

TRIPS  
(Chapter 2) 

•  Code size for different 
compiler  optimizations 

•  Number of block for different 
compiler optimizations 

•  Reads and writes per block 

•  Reads and writes per block 
•  Useful instructions  and NOPs per 

block 
•  Moves per block 
•  Length of critical path instructions  
•  Length of maximum fan-out of a 

value per block 
TRIPS 
versus 
Alpha 

(Chapter 3) 

•  Static code size 
•  Static Instruction mix 
 

•  Dynamic code size 
•  Dynamic Instruction mix 

Table 1. Summary of Static and Dynamic Metrics and what they compare 
 The table lists out the metrics that the scripts generate according to the type of data (static 
or dynamic) and according to whether they compare TRIPS alone or TRIPS and Alpha. 
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Average number of static reads and writes per TRIPS block 
This metric calculates the number of times we access the read and write instructions per TRIPS 
static block.  The read and write instructions are used to retrieve an existing value from a register 
and write a new value to a register respectively. This metric gives a measure of the usage of the 
Read and Write Queues for a given block. 
 
TRIPS versus Alpha Static Code Size and Instruction Mix  
These metrics compare the size of the scheduled TRIPS code to the Alpha code and point out the 
differences in the way the same code is scheduled. The different types of instructions representing 
the same program in the two machines are also compared. These metrics are a measure of the 
efficiency of the two instruction set architectures and can be useful references for calculating the 
progress of the TRIPS toolchain.   
 
 
2.3.2 List of Dynamic Metrics 
 
Average number of dynamic reads and writes per TRIPS block 
This metric is used to calculate the actual number of times we access the Read and Write Queues 
for a given program. It directly corresponds to the starting points (read) and ending leaves (writes) 
of all the instruction trees representing the TRIPS block.  This metric gives the measure of the 
usage of the Read and Write Queues for a given program. 
 
Average number of useful Instructions and NOPs per TRIPS block 
This metric tells us what fraction of the 4x4x8 TRIPS block (i.e. how many of the 128 execution 
nodes) is being used and what fraction of the capacity of the TRIPS block is currently unused. It 
can be useful in studying the compiling and scheduling powers and will become an important 
metric in evaluating the success of hyperblock formation.     
 
Average number of moves per TRIPS block 
The GPA model of TRIPS requires a lot of moving of data between the execution nodes using the 
move instruction. This metric evaluates the usage of move instruction over all the TRIPS block in 
a program and calculates its fraction out of the total instruction mix. 
 
Analysis of the Critical Path lengths in TRIPS blocks 
This metric is a measure of the total amount of instruction level parallelism present per TRIPS 
block by indicating the longest chain of dependent instructions in a given TRIPS block. By 
comparing the length of the critical path to the size of the block, we can measure the degree of 
instruction level parallelism. This metric traces the data dependency tree that represents every 
TRIPS block and returns the length of the longest path from a root (entry point of the block) to any 
leaf (exit point of the block).  
 
Analysis of the maximum length of fan-out in TRIPS blocks 
This metric gives us an approximation of overhead used to transfer data between execution nodes 
per TRIPS block. It returns the maximum number of times any data is moved between the 
execution nodes in a given TRIPS block. The metric is not the total measure of all the moves in a 
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block but only the measure of one datum that is moved the most number of times in a block. This 
metric represents the overhead of moving data between the nodes in a GPA model like TRIPS. 
 
 
TRIPS versus Alpha Dynamic Code Size and Instruction Mix 
These metrics perhaps combine to be the most important measure of evaluating the overall 
efficiency of the TRIPS model. They compare the weighted, dynamic number of instructions that 
are executed for the same program in the two machines and the weighted, dynamic list of 
instruction types present in the program code. These metrics give us an idea of the amount of work 
being done by both the machines and in the future will be the single-most important metric to track 
the efficiency and progress of the TRIPS model.  
 
 
2.4 Source Code and Tools used 
 
In order to run the scripts and generate results for evaluating the TRIPS model, a test suite of toy 
programs and frequently executed functions from some SPEC 2000 benchmarks are used. These 
programs are written in C and have also been validated and compiled on the gcc version 3.3.2 
compiler. Most of the C source files are either loop-centric or recursive. They are as follows: 
 

File Name Description 
Matrixmultiply Integer multiplication of 10x10 matrices 
Ackermann Fastest growing primitive recursive function 
Binary search O(log n) search algorithm 
FFT Fast fourier transform 
Factorial Recursive computation of 120! 
Fibonacci Recursive computation of 20th Fibonacci number 
a_number() Loop from ammp 
longest_match() Loop from gzip 

Table 2. List of C source code 
 
The inputs to the scripts require a TRIPS assembly language (TASL) file for a given program, 
which can either be hand-generated or compiled on the TRIPS toolchain components like the Scale 
compiler and scheduler. One can also generate a TASL file from a hand-coded TRIPS intermediate 
(TIL) file that is run on the scheduler. The TASL file is then linked and executed on the TRIPS 
architectural simulator to generate the trace file. These scripts were also run on some hand-
generated TIL and TASL versions and other source files of microbenchmarks, the results of which 
are shown in Appendix D.   
 
All the C source programs used in this thesis were successfully compiled and executed on the 
following versions of the tools listed below. 
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Tools Description Version Info. 
tcc Wrapper script 1.109 
scale Scale Compiler Sun May 25 00:15:07 CDT 2004 
tsch Scheduler 1.45 
tas Assembler 1.147 2004/04/26 20:20:26 
tld Linker GNU v2.12.90 2002/04/29 
tsim_arch Simulator 0.29+ 
Table 3. List of tools used and version number information 

 
The above information might be useful for readers interested in reproducing the results or tracking 
the changes in the results with newer versions of the tools. 
 
Having established the methodology, procedure and the tools used to generate the results, the 
following section and the following chapter will now present the results generated from the 
running the static and dynamic scripts on the above mentioned C source files. The following 
section will list the metrics that apply only to the TRIPS architecture model while the next chapter 
details the metrics (dynamic code size and instruction mix) used to compare the TRIPS and Alpha 
machine. 
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3 TRIPS-Specific Results 
 
 
 
 
 
 
 
 
 
 
The TRIPS architectural model has many unique features that differ from conventional RISC and 
sequential semantics machines. Having already established the methodology of the tools and 
scripts written to produce the analysis metrics, this chapter focuses on the second goal of the 
thesis, i.e. discussing the results of the metrics that correspond to the specific features and details 
of the TRIPS architecture.  
 
Both static and dynamic information is gathered to produce the output of the metrics that discuss 
the results shown below. The TRIPS specific results have been broken into four separate categories 
that cover the areas of static and dynamic code sizes, metrics on the static and dynamic usage of 
reads and writes, length of critical path instructions, maximum fan-out effect, moves in a TRIPS 
block and average number of useful instructions in the TRIPS block. 
  
 
3.1 Code Size 
 
The most unique and striking feature of the TRIPS architectural model is the block-atomic 
execution model, hence it is natural that the first metrics that was generated was related to the 
TRIPS block [Figure 3]. The first metric counts the number of TRIPS blocks used to represent a 
given source program by parsing through the static information from the TASL assembly file [11].  
 
The decrease in the number of the static TRIPS block generated by the compiler is observed by 
turning on increasing levels of optimizations (-O flag). Adding slight optimizations and loop 
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unrolling, loop-flattening optimizations to the code usually causes a slight decrease in the total 
number of TRIPS block. In addition, with the successful implementation of the hyperblock 
formation we will be able to see an even greater decrease in the number of TRIPS block. I decided 
to use the default (-O3) optimization level as a standard for all the other metrics and not the 
hyperblock (–O4) optimization level because of the on-going work on the hyperblock 
implementation is not complete and verifiable as of this writing.  The hyper block optimization 
could be used as the standard in the future upon obtaining enough confidence on its successful 
implementation. 
 
 
 
 
 

Number of Static Blocks (TRIPS)
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No Optimizations -O0

Some Optimizations -O2
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+ Hyperblock Formation -O4

 
 
Figure 3 represents the number of blocks that were generated by the compiler for a given source 
code. However, this is only half the story told as it does tell us anything about the size of the 
blocks, the other half involves measuring the total number of instructions that were created. Figure 
4 below shows us the total static code size for the given programs. It lists the total number of 
instructions generated by the compiler for the different optimization levels. 
 
 
 
 

Figure 3. Number of Static TRIPS block 
 The static blocks are generated by the different compiler optimization levels. The four 
different categories correspond to the –O0, -O2, -O3 (default) and –O4 optimization 
levels of the tcc compiler respectively. 
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Figure 4. Static Code Size 
 This graph shows the change in the static code size (total number of instructions generated) 
generated by the compiler for different optimization levels. 
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On combining the results of Figures 3 and 4, I obtain the average size of the TRIPS static block 
generated by the compiler for the given programs. Table 4 below lists the average number of 
instructions generated per TRIPS block by the compiler. The numbers show that the TRIPS 
block’s capacity is mostly unused and strictly demands the use of hyperblock formations. This 
table present data, which is a perfect example of the reference, future TRIPS researchers can use to 
evaluate the effectiveness of the hyperblocks when its implementation is complete. 
 

Program Avg. # of Instructions scheduled/ Block 
Matrixmultiply 8.59 
Ackermann 6.88 
Binary search 6.85 
FFT 13.93 
Factorial 7.71 
Fibonacci 7.1 
A_number() 7.27 
longest_match() 9.69 

Table 4. Average number of Instructions per static TRIPS block 
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3.2 Reads and Writes 
 
The next group of metrics deal with the static and dynamic number of reads and writes instructions 
observed in the TRIPS blocks. The reads and writes are the way of accessing and updating values 
in the register file. TRIPS has a GPA model with a grid of executing nodes moving values between 
them, hence one expects fewer access to the register file and more move instructions in the TRIPS 
model when compared to a RISC machine like Alpha. Thus, observing the frequency of accesses 
to the read and write queues is an important measure in validating the correctness of the TRIPS 
model.  
 
Figure 5 below represents the static average of the number of reads and writes scheduled per 
TRIPS block. Figure 6 represents the same information over a dynamic execution scale where the 
TRIPS blocks are weighted according to the number of times they are actually executed. Hence, 
Figure 6 describes a more accurate picture of the frequency of accesses to the read and write 
queues for a given program. 
 

Figure 5 and 6. Static and Dynamic average reads and writes per block 
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Figure 7. Length of Critical Path Instructions 
 This graph shows the average length of the critical chain of dependent instructions per 
TRIPS block.  

3.3 Critical Path and Fan-Out 
 
Another interesting metric to study is that of the length of critical path of dependent instructions in 
a TRIPS block. The next metric whose results are given below in Figure 7, represents the length of 
the longest chain of dependent instructions that pass on data to each other in a TRIPS block.  Each 
TRIPS block can be represented in the form of a data dependency graph. This metric calculates the 
longest path from a root of such a tree to any of its leaves. By comparing the length of the critical 
path instructions to the size of the block, it becomes possible to measure the amount of instruction 
level parallelism in the given block.  
 
For example in the matrixmultiply program, the average size of the TRIPS block is 18.8 while the 
average length of critical path instructions is about 8. Hence on the average we can approximate 
the instruction level parallelism (ILP) to be about: 18.8/8 ~ 3. The ILP approximation is based on 
the assumption that on average all the non-critical instructions in the block also group into a 
dependency chain with the same length as the critical path. However, in reality many non-critical 
instructions may not lie in such long dependent chains. Hence, the ILP approximation gives us a 
good lower bound into the ILP available within a TRIPS block.  

Average of the length of Critical Instructions over all Dynamic Blocks
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Measuring the overhead of moving data between the execution nodes in a GPA model like that of 
TRIPS is another important issue. TRIPS uses the move instruction to transfer data between the 
nodes in a block. Thus, one expects frequent use of the move instruction and fewer accesses to the 
register file. The next metric measures the maximum number of nodes (fan-out) to which a single 
datum is transferred in a given block. The average of the maximum fan-out per block is taken over 
all the dynamic blocks and has been shown in the graph in Figure 9. The caveat however, is that 
this result does not cover the entire fan-out effect of all data that are moved in a block but only 
calculates the fan-out of the datum that is transferred to the most number of target nodes in a given 
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Figure 9. Length of maximum fan-out 

block. This metric only analyses the move instructions in a block and traces the target nodes of the 
moves. It returns the number of internal and leaf nodes a datum is transferred to, for only the 
datum that is transferred to the most of number of nodes in a block. Figure 8 below shows the 
mechanism of how this metric computes its results. 
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A. TRIPS Block 
.bbegin main$4 
;;;;;;;;;;; Begin read preamble 
R[1] read G[1] N[1,0] N[4,0] 
;;;;;;;;;;; End read preamble 
N[1] <0> addi 88 N[5,0] 
N[5] <1> mov N[9,0] N[12,0] 
N[0] <2> genu 488 N[4,1] 
N[4] <3> add N[16,0] 
N[9] <4> mov W[3] 
N[12] <5> mov W[0] 
N[16] <6> mov W[1] 
N[32] <7> genu %lo(main$5) N[8,0] 
N[8] <8> app %bottom(main$5) W[2] 
N[2] <9> callo I[0] MatrixMultiply 
;;;;;;;;;;; Begin write epilogue 
W[2] write G[2] 
W[0] write G[4] 
W[3] write G[3] 
W[1] write G[5] 
;;;;;;;;;;; End write epilogue 
.bend 

 W[3]            W[0] 

  N[9]            N[12]        W[1] 

     N[5]                   N[16] 

B. Move Tree 

C. Metric Output for Block main$4 
 
No. of Instructions : 10 
No. of reads           : 1 
No. of writes          : 4 
Max. Fan-Out        : 4

Figure 8. An Example of the Maximum Fan-out Metric Calculation 
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Figure 10. Dynamic average of moves per block 

 
By looking at the above result, we observe that on average over all the dynamic blocks, the largest 
amount of transfer of a datum is up to 2 target nodes per block. A better measure of the total fan-
out of data in a block is the number of move instructions executed in a block. The move 
instructions are used to transfer data between nodes and hence correspond to the fan-out of all the 
data in a block. The graph in Figure 10 generated by the next metric represents average number of 
move instructions per dynamic block.   
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3.4 Useful Instructions and NOPs 
 
Lastly, there is also a need to measure the overall quantity of useful instructions executed per 
TRIPS block. This metric measures the average number of non-NOP, useful instructions fetched in 
a TRIPS dynamic block. This result can be matched with the capacity of the TRIPS block to see 
the fraction of the execution nodes that are utilized and calculate the number of NOPs present in a 
block. This metric will also act as an important guideline in measuring the efficiency of the 
implementation of hyperblock formation in the future. One can expect to see a far greater usage of 
the TRIPS block’s capacity with hyperblock formation. Figure 11 below shows the average 
number of useful instructions and NOPs present per dynamic block. Finally, the result of Figures 
6-11 are summarized in table 5 below. 
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Figure 11. Dynamic average of useful instructions and NOPs per block 

Average of the useful Number of Instructions over all Dynamic Blocks

18.88

7.89

7

10.53

7.98

8.16

5.86

6.67

109.12

120.11

121

117.47

120.02

119.84

122.14

121.33

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MatrixMultiply

Ackermann

Binary Search

FFT

Factorial

Fibonacci

a_number()

longest_match()

Percentage of Instructions
fetched/Block
Percentage of NOPs /Block

 
 
 

 
 

Table 5. Summary of the average results over all dynamic blocks  
Averages  (per Block) 

Programs Read
s Writes Critical path 

length 
Max. fan-
out Moves Instructions NOPs 

Matrixmultiply 5.45 1.40 8.29 1.72 2.30 18.88 109.12 
Ackermann 2.39 2.20 2.99 2.10 2.29 7.89 120.11 
Binary search 2.21 1.26 4.99 1.04 1.56 7.00 121.00 
FFT 3.86 2.84 2.40 0.67 0.76 10.53 117.47 
Factorial 2.24 2.25 3.00 2.25 2.22 7.98 120.02 
Fibonacci 2.14 2.18 3.10 2.62 2.56 8.16 119.84 
a_number() 1.14 1.57 2.86 1.86 1.57 5.86 122.14 
longest_match() 1.58 1.43 3.71 1.43 1.79 6.67 121.33 
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4 TRIPS versus Alpha 
 
 
 
 
 
 
 
 
With the advent of every new architectural model comes the necessity to analyze and compare it 
with existing models. For a novel, architecture such as TRIPS, it becomes even more important to 
evaluate it effectiveness. This process of evaluation requires not only defining the advantages and 
disadvantages of the architecture but also comparing its efficiency with respect to an already 
existing architecture. Having already described the various features and specific configurations of 
the TRIPS model, this section will focus on comparing the outputs of the TRIPS architecture to 
that of an Alpha 21264 RISC architecture.   
 
 
4.1 Why the Alpha 21264? 
 
The Alpha 21264 is 64-bit, load/store RISC architecture machine that mainly increases 
performance via clock speed, multiple instruction issue and multiple processors [9]. The Alpha 
21264 is a superscalar microprocessor with multiple fetch capability, out of order execution and 
speculative execution to maximize performance [10].  
 
The Alpha machine has received widespread acceptance and recognition in the research 
community along with its commercial success. The bias towards the Alpha machine in this thesis 
can also be credited to the availability of tools and resources like the SimpleScalar toolset [6]. The 
SimpleScalar toolset is a system software infrastructure that can emulate the alpha platform and is 
used in building modeling applications for program performance analysis.  
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The results on the Alpha side of this thesis have been generated with the help of the SimpleScalar 
toolset, in particular the sim-profile program (which is a program profiling simulator) [6] and a 
parsing script. The script parses through the Alpha assembly language file to gather static 
information, just like the static.pl script on the TRIPS side. The source programs have been 
compiled using the default configurations of the same Scale compiler on the Alpha machine.   
 
 
4.2 Expectations 
 
The results of the comparisons of outputs on the two machines are discussed later. But before 
discussing the results, it becomes imperative to discuss the expected behavior of the source 
program on the two machines. Establishing the expected behavior will also gives us a better 
foresight while analyzing the results of the metrics. 
 
Firstly, let’s describe the metrics of comparison. I compare the efficiency of the TRIPS 
architectural model to Alpha model based on two factors, (1) code size, and (2) instruction mixes. 
Comparing the total number of instructions and the type of instructions executed on the two 
machines for a given program will give us a fair idea of the efficiency of the TRIPS model 
normalized to the Alpha machine. 
 
Keeping the grid processor architecture and the block-atomic execution of the TRIPS model in 
mind, we can assume that the TRIPS output will result in having fewer accesses to the register files 
and more transfer of data between the execution nodes. We can certainly expect to see a greater 
number of move instructions on the TRIPS execution side. The transfer of data between the 
execution nodes in the blocks also introduces the cost of extra overhead instructions. These 
overhead instructions coupled with the room for necessary improvements in the Scale compiler 
and scheduler and the future implementation of hyperblocks will cause the TRIPS code size to be 
generally bigger than the Alpha code size. We can also expect the current version of the TRIPS 
code to have more conditional branches since each TRIPS block ends with a branch offset 
instruction that branches to the next executable block. Again, with the formation of hyperblocks, 
we can expect this effect to reduce as predication will eliminate theses conditional branches. We 
should also expect to see a better and fairer representation with the dynamic code size and 
instruction mix.  
 
4.3 Static and Dynamic Code Sizes 
 
The first metric of comparing the TRIPS and Alpha machine simply deals with looking at the code 
size generated for the source programs by the two machines. The code size can be measured both 
statically (code generated by the compiler) and dynamically (code executed by the simulator). The 
static code size gives us some insight into the overhead instructions and block-atomic execution 
model whereas the dynamic code size directly deals with the efficiency of the architectural model. 
 
The graph comparing the static code size of the source programs has been shown in Figure 12 
below. As expected, we see the TRIPS code size to be slightly bigger than the Alpha code size 
except in the case of the FFT program in which the TRIPS code size is about 70% of the Alpha 
code size.  
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Figure 12.  Static code sizes on the TRIPS and Alpha machines 

TRIPS vs Alpha Static Code Size

0

200

400

600

800

1000

1200

MatrixMultiply Ackermann Binary Search FFT Factorial Fibonacci ammp gzip

# 
of

 In
st

rn
s.

TRIPS 

Alpha

 
 
 
 
Figure 13 below represents the TRIPS versus Alpha dynamic code sizes for the given source 
programs. The results would indicate that the Alpha machine seems to be more efficient than the 
TRIPS model. However, it must be kept in mind that the TRIPS model is still in development and 
with progress in the future its efficiency is bound to increase.  
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Figure 13. Dynamic code sizes on the TRIPS and Alpha machines 
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Looking at the dynamic code size in Figure 13, we again observe the TRIPS code to be bigger than 
the Alpha code size. Running the complete program on the simulator gives us a fairer idea of the 
execution code size. The results seem to match our expectation except for the case of the 
longest_match () function from gzip, where the TRIPS dynamic code size is bigger than the Alpha 
dynamic code size. I have so far been unable to explain the reason for this anomaly. Considering 
all the other programs, the TRIPS code size seems to vary between 20% and 150% bigger than the 
size of the Alpha code. Table 6 below lists out the percentage by which the TRIPS code is bigger 
than the Alpha code for the given programs. 
 

Program % Bigger than Alpha 
Matrixmultiply 155.91% 
Ackermann 78.62% 
Binary search 24.27% 
FFT 49.61% 
Factorial 21.14% 
Fibonacci 120.20% 
a_number() 18.60% 
longest_match() -16.5% 

Table 6. Percentage by which TRIPS dynamic code is bigger than the Alpha code 
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Figure 14. Dynamic instruction mixes for the TRIPS and Alpha machines 

4.4 Instruction Mixes 
 
The second metric used for comparing the two architectural models measures the various types of 
instructions that are executed on the two machines. Comparing the dynamic instruction mixes of 
the two platforms seems more logical and relevant; hence, the data for the static instruction mixes 
have been skipped. The dynamic instruction mix classifies the instructions executed by the 
simulator into six different categories depending on their function.  
 
For the TRIPS side, the instruction mix is divided into the following categories:  
(a) Arithmetic/Logical, (b) Load, (c) Store, (d) Conditional branch, (e) Move and (f) Others. 
 
For the Alpha machine, the instruction mix is generated for the following categories by sim-
profile: 
(a) Arithmetic/Logical, (b) Load, (c) Store, (d) Conditional branch, (e) Unconditional branch and 
(f) Others. 
 
Thus, the only difference in the categories is the move (TRIPS) and unconditional branches 
(Alpha). Since the move instruction plays an important role in the TRIPS architecture, it seems 
logical to display it as a separate category for the TRIPS instruction mix.  

 
 
By looking at the results from Figure 14, it becomes noticeable that the results are as we expected. 
For most of the programs, the percentage of moves in the TRIPS instruction mix is nearly twice 
that of the unconditional branches in the Alpha side. The percentage of arithmetic, logical 
instructions, loads and stores seems to be about the same for both the models whereas the TRIPS 
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Figure 15. Dynamic instruction mixes with total code size 

side seems to have a little bigger percentage of conditional branches than the Alpha instruction 
mix. The TRIPS code also has a higher percentage of other instructions like (genu, app) constants, 
which are used to generate unsigned constants etc. that are not present in the Alpha ISA. With 
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in the TRIPS instruction mixes. 
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be observed. Figure 15 below represents the instruction mixes along with the total code size for 
four of the biggest programs that were run on the TRIPS and Alpha side. 
  

 
 
 
 
It becomes clearer from the above graphs that the number of loads, arithmetic and logical 
instructions executed, are about the same in both the machines. The TRIPS side executes 
marginally more conditional branches and stores. And, the move instructions on the TRIPS side 
are at least twice the number of unconditional branches executed in the Alpha side.
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5 Conclusions 
 
 
 
 
 
 
 
 
 
 
5.1 Conclusion  
 
This thesis introduces the methodology of the tools and scripts (static.pl, dynamic.pl) that were 
developed to analyze the TRIPS architecture. It then reports the results of the metrics that were 
specific to TRIPS features (such as the average length of critical path instructions, fan-out effect 
and average size of a TRIPS block, etc). Finally, the thesis compares the output of the TRIPS 
model with the Alpha 21264 for a set of common source code. The comparisons of the size of the 
code (code produced by the compiler as well the code executed) and the instruction mixes for the 
source programs are reported for the two machines. 
 
The results in this thesis for the TRIPS-specific features, and the comparisons of the two machines 
are shown below. The specific numbers reported in the thesis should not be used as a source to 
determine the final efficiency of the TRIPS architecture. The results are shown only because they 
will help create a foundation based on which future analysis of the TRIPS architecture would be 
possible. The scripts and the results also act as the initial setup and values that will guide future 
researchers in the TRIPS group.  
 
The table below summarizes the TRIPS-specific metrics: 
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Averages  (per Dynamic Block) 
Filename 

Read Write Critical path 
length 

Max. fan-
out move Instruction 

Matrixmultiply 5.45 1.40 8.29 1.72 2.30 18.88 
Ackermann 2.39 2.20 2.99 2.10 2.29 7.89 
Binary search 2.21 1.26 4.99 1.04 1.56 7.00 
Fft 3.86 2.84 2.40 0.67 0.76 10.53 
Factorial 2.24 2.25 3.00 2.25 2.22 7.98 
Fibonacci 2.14 2.18 3.10 2.62 2.56 8.16 
A_number() 1.14 1.57 2.86 1.86 1.57 5.86 
longest_match() 1.58 1.43 3.71 1.43 1.79 6.67 

 
The tables lists the average numbers of read and write accesses in a TRIPS block, average length 
of the critical path of instructions in a TRIPS block, average number of nodes to which fan-out of a 
value occurs in a TRIPS block as well as the average number of moves and useful instructions in a 
TRIPS block. These results are not meant to criticize or praise the TRIPS work in progress but 
simply represent the output of the framework for analysis that I have created. These results will 
become more important in the future when the TRIPS project reaches its completion. The thesis 
must only be considered as an intermediate checkpoint in the analysis of the TRIPS architecture. 
The tools introduced in the thesis provide an infrastructure to the architecture analysis process 
whereas the results shown in the thesis are references for future researchers to compare and 
calculate the effectiveness of their implementations and optimizations to the TRIPS architecture. 
 
The comparison of code size and instruction mixes between TRIPS and Alpha, also follow the 
same principle. The initial results note that the TRIPS dynamic code size is expectedly larger than 
the Alpha code size and the TRIPS instruction mixes include nearly twice the number of moves as 
compared to the unconditional branches in the Alpha mix. The numbers of arithmetic, logical 
instructions, loads and stores are proportional and TRIPS has slightly greater number of 
conditional branches and other instructions (such as constant instructions [5]). 
 
 
5.2 Future Work 
 
Since this thesis was the first attempt at analyzing and marking the efficiency of the TRIPS 
architecture, a huge scope for future development is possible. With further progress in the 
implementation of the TRIPS architecture to the prototype, the scripts have to be developed to 
include more specific features of the TRIPS model. The output of the scripts has to be modified to 
return user-friendly and specific pieces of information.  Most importantly, as the development of 
the TRIPS toolchain progresses, heavier workloads like the SPEC benchmarks should be used with 
the metrics to obtain new results that span a larger source domain. The scripts should also be 
periodically modified and maintained up to date with the changes in the TRIPS architecture, for 
e.g.: the scripts had to be modified to parse the new (tsim_arch) architectural simulator’s output 
correctly when it replaced the earlier (tem) TRIPS toolchain emulator.  
 
I hope that TRIPS researchers will find these tools and metrics useful and frequently use it to 
generate results to evaluate the progress of the TRIPS project and develop better analysis tools.
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Appendix 
 
 
 
 
 
 
 
 
 
 
A. Location of the code metrics 
 
The scripts for the code metrics (static.pl, dynamic.pl) and all the other source files and tools used 
in this thesis report along with their outputs have been saved in the CVS repository. They are 
available for all TRIPS research group members to use by checking out from the repository. The 
files are stored under the following directory: tsrc/CodeMetrics/tester in the CVS repository. 
 
Use the following command to check out the files from the CVS repository: 
 

> cvs  –d  /projects/trips/cvs  checkout  tsrc/CodeMetrics/tester 
 
Note: In order to run the Alpha side of the metrics, the user must also have access to the sim-
profile tool under the SimpleScalar toolset. 
 
 
B. Usage of the code metrics 
 
The script for static code metrics, static.pl, requires a TASL assembly file (*.s) as an input file 
while the dynamic metrics script, dynamic.pl, requires the TASL assembly file and the TRIPS 
architectural simulator’s trace file (tsim_arch.tt) as inputs. Given below are the steps to use the 
code metrics on a given C source file, once they have been checked out of the CVS repository. 
One can also apply similar steps to collect metrics for hand-generated TIL or TASL code. 
 

•  Step 1: Run the C source on the TRIPS toolchain 
> tcc –save-temps [compiler options] matrixmultiply.c –o mm.out 
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•  Step 2: Simulate the executable and create a trace file 
> tsim_arch –tt mm.out 

 
•  Step 3: Run the script 
> perl dynamic.p l  –f matrixmultiply.s –t tsim_arch.tt 

 
 
C. Sample Output 
 
For a given C file, 10x10matrixmultiply.c , the output of the dynamic.pl script would look like the 
following: 
 
$  perl  dynamic.pl  –f matrixmultiply.s –t tsim_arch.tt 
        **** Overall result in Verbose Mode **** 

Block Name Instructions Frequency Read Write Critical Path Max. Fan-Out 
MatrixMultiply$7 24 1000 7 1 11 2 
Main 19 1 2 5 8 8 
MatrixMultiply 12 1 4 5 4 4 
MatrixMultiply$2 11 100 3 1 5 2 
_start 10 1 1 1 3 0 
main$4 10 1 1 4 3 4 
main$5 10 1 1 3 4 2 
main$3 7 100 4 3 2 0 
main$2 7 1 1 4 2 0 
main$1 7 100 4 3 2 0 
MatrixMultiply$9 6 10 1 1 5 2 
MatrixMultiply$3 6 10 1 1 5 2 
MatrixMultiply$8 6 100 1 1 5 2 
MatrixMultiply$6 5  100 2 3 3 2 
MatrixMultiply$1 3  10 1 2 1 0 
MatrixMultiply$10 2 1 2 1 1 0 
MatrixMultiply$5 2 10 0 1 1 0 
MatrixMultiply$4 2 1 0 1 1 0 
_exit 2 1 0 1 1 0 

    0-  9 instructions in    444 blocks 
  10- 19 instructions in    105 blocks 
  20- 29 instructions in   1000 blocks 
  30- 39 instructions in      0 blocks 
  40- 49 instructions in      0 blocks 
  50- 59 instructions in      0 blocks 
  60- 69 instructions in      0 blocks 
  70- 79 instructions in      0 blocks 
  80- 89 instructions in      0 blocks 
  90- 99 instructions in      0 blocks 
100-109 instructions in      0 blocks 
110-119 instructions in      0 blocks 
120-129 instructions in      0 blocks 
 
Number of Distinct Blocks      : 19 
Total No. of Blocks executed  : 1549 
Total No. of Reads                   : 8442 
Total No. of Writes                  : 2175 
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Total Dynam Instrctns fetched : 29252 
Total Dynam Instrctns executd: 27844 
Total no. of NOPs                    : 170428 
Avg. Reads/Block                    : 5.45 
Avg. Writes/Block                   : 1.40 
Avg. Instructions/Block           : 18.88 
Avg. CriticalPath lngth/block  : 8.29 
Avg. Crit.fan-out lngth/blk      : 1.72 
Avg. NOPs/Block                    : 110.02 
 
add 6302 22.63% 
mov 3557 12.77% 
extsw 3221 11.57% 
slli 3100 11.13% 
lws 3000 10.77% 
addi 1832 6.58% 
bro 1545 5.55% 
sw 1300 4.67% 
tlti 1220 4.38% 
muli 1110 3.99% 
mul 1000 3.59% 
movi 229 0.82% 
lw 200 0.72% 
tltu 200 0.72% 
genu 10 0.04% 
sd 7 0.03% 
app 6 0.02% 
scall 3 0.01% 
ret 2 0.01% 
callo 1 0.00% 
ld 1 0.00% 
Total:   27844 Instructions 
 
 
 
D. Micro-benchmarks Metrics 
 
The TRIPS-specific metric scripts were also run on micro-benchmarks, most of which included 
hand-generated TIL or TASL code. The results below represent a summary of these metrics. Only 
the benchmarks that executed to completion with normal exit status were used for this experiment. 
They are as follows: 

Benchmarks Source Type 
ammp Hand-generated TIL code 
dct C source code 
dhrystone C source code 
doppler C source code 
equake Hand-generated TIL code 
forward C source code 
gzip C source code 
matrix Hand-generated TIL code 
twolf Hand-generated TIL code 
vadd Hand-generated TASL code 
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Dynamic # of Blocks
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Static Code size
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Avg. # of Reads and Writes over all Dynamic Blocks
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Average of the length of Critical Instructions over all Dynamic Blocks
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Average of the maximum fan-out over all dynamic blocks

4.02 5.15
0.60 2.80

9.92
3.81

0.63

9.63
5.80

0.25

58.20 57.77

5.09

33.71

73.99

33.04

10.69

56.99

117.18

1.69

12 10 9
6

14 13

5

12
6 5

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

ammp dct dhrystone doppler equake forward gzip matrix twolf vadd

Average of the max. fan-out /block
Average # of Instructions/Block
Worst block with maximum fan-out

 
 

Average number of Moves over all Dynamic Blocks
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Average of the useful Number of Instructions over all Dynamic Blocks
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