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ABSTRACT
When building scalable systems that involve general-purpose
computation and persistent data, object-oriented languages
and relational databases are often essential components. Yet
the impedance mismatch between these technologies has
not been completely overcome by existing integration ap-
proaches. Call level interfaces like ODBC and JDBC are
an unsafe and fragile form of metaprogramming: database
queries are constructed at runtime as strings and executed
as programs against the database engine. Object/relational
mapping and persistent object systems do not support query
shipping, in which complex queries are sent to the database
for execution. This paper presents safe query objects, an in-
tegrated approach to impedance mismatch that allows query
behavior to be defined using statically-typed objects and
methods. In addition, safe query objects support query ship-
ping by automatically generating code to execute queries
remotely in a relational database. A concrete implementa-
tion of this solution is presented using the OpenJava macro
language and Java Data Objects.

1. INTRODUCTION
In 1984, David Maier introduced the term impedance mis-
match to describe the difficulty of integrating programming
languages and databases [16]. In this paper we focus on an
important but specific instance of this problem: how to inte-
grate object-oriented programming languages with relational
databases [3]. In the last 20 years numerous approaches have
been proposed to solve this problem, including call level in-
terfaces [24, 10, 18], object/relational mapping [13, 6, 17],
and persistent object systems [2, 21, 5]; each of these have
been investigated at least a dozen times. Despite steady
progress toward a solution, impedance mismatch is still an
open problem.

The lack of overwhelming success for any of these solutions
suggests a more fundamental question: What exactly is the
problem? Maier offered an important hint: “Whatever the
database programming model, it must allow complex, data-
intensive operations to be picked out of programs for execu-
tion by the storage manager, rather than forcing a record-at-
a-time interface.” A close examination of the benefits and
drawbacks of the range of solutions described above leads to
two principles:

1. The entire program, including queries and other data-
base operations, must be specified within a unified se-

mantic framework. This does not require a single lan-
guage for all aspects of a system, it only requires that
there be no semantic disconnects between the differ-
ent parts. The unifying framework should also enable
a large degree of static type-checking across all parts
of the program.

2. Operations must be executed efficiently by leverag-
ing appropriate optimizations in both compilers and
database engines. In practice this means that parts
of the behavior of a program must be executed in
the database. Unfortunately the behavior that the
database can execute and the behavior that it cannot
are sometimes tightly intertwined; as a result it is not
acceptable for a proposed solution to enforce simplistic
modularity between the two.1

The widely-used solutions to impedance mismatch are par-
tial because they focus on one or the other of these goals, but
not both. Persistent object systems and object/relational
mapping define a unifying semantics of persistent data as
objects, but do not provide a unified mechanism for leverag-
ing the power of databases for optimized search algorithms,
caching, and indexing. Call level interfaces provide direct
access to all the power of a database engine, but introduce
a semantic disconnect between programming language code
and embedded database code.

Recently progress has been made at tighter semantic integra-
tion for call level interfaces [8]. Some object-based systems
[6, 5, 21, 17] include a form of call level interface; however,
the resulting hybrid is a combination of two partial solu-
tions, not a unified solution. Query languages may also be
embedded directly in a programming languages, as in SQLJ
[1], but this requires language changes and also is limited to
static queries. HaskellDB [15], achieves both goals simulta-
neously in the context of a pure functional language and a
subset of SQL.

This analysis suggests that impedance mismatch is caused
by the difficulty of simultaneously meeting both goals. Re-
quirement #2 is particularly difficult because programming
languages do not typically support breaking off large parts of
a program and translating them for execution in a different
environment. This is related to the general problem of mo-
bile code [11], but has the added complication of interfacing
to relational query languages.
1An example is given in Section 4.3.
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This paper presents safe query objects, a new approach to
overcoming impedance mismatch. Safe queries are Java ob-
jects that follow a specific programming pattern to define
the behavioral components of a query. Since safe queries are
Java objects, they are semantically integrated and typed-
checked statically, and can be executed locally within the
Java VM. Safe queries leverage database optimization by
supporting remote execution, in which complex query be-
havior is sent to the database for execution. The methods
for remote execution are generated automatically at compile
time by translating the query behavior into equivalent code
to invoke remote database operations through a call level
interface.

The prototype of safe query objects uses OpenJava [23] for
compile-time meta-programming and generates code to in-
voke the Java Data Objects (JDO) persistence library [21].
Although JDO is a practical target to use because of its
industrial significance, the prototype is limited by the ca-
pabilities of JDO. JDO supports a significant subset of re-
lational query behavior: filtering (including dynamic filters
and filters that involve joins between multiple tables), sort-
ing, parameterization, and existential quantification. It does
not cover multi-table query results or general aggregation.
The prototype of safe query objects presented here inher-
its these capabilities and limitations. While OpenJava and
JDO are used in the prototype implementation, the solution
is not specific to either. This paper is a first step towards
a comprehensive solution to impedance mismatch that will
support relational database functionality in its full general-
ity. Future work will address update operations in addition
to queries involving general joins and aggregation.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews background and motivates the problem. Sec-
tion 3 presents an overview of safe query objects, using filter-
ing as an example. Section 4 elaborates the basic model to
handle sorting, parameterized queries, dynamic filters and
quantification in filters. Section 5 provides details on the
generation of code for remote execution of a query object.
Section 6 evaluates the current results and discusses direc-
tions for future work. Section 7 reviews related work and
Section 8 presents conclusions.

2. BACKGROUND AND MOTIVATION
2.1 Call Level Interfaces
A call level interface (CLI) allows a programming language
to access a database engine through a standardized API [24,
10, 18]. The Java code in Figure 1 uses JDBC [10] to execute
a SQL query and process the results. The sequence of calls
begin a session (getConnection), create an execution con-
text (createStatement), execute queries (executeQuery),
iterate through resulting rows (next) and access result columns
(getString) is typical of CLI, although there are many vari-
ations. For example, some call level interfaces use objects to
represent the abstract syntax tree of a query [5, 4], rather
than strings.

Call level interfaces are successful because they are the sim-
plest way to achieve query shipping [7], which is often consid-
ered essential to the performance of practical systems built
around relational databases. Query shipping refers to the
practice of transferring high-level operations, like filtering,

float limit = 50000;

Connection con = DriverManager.getConnection(...);

Statement stmt = con.createStatement();

String sql = "SELECT * FROM Employee "

+ "WHERE salary > " + Float.toString(limit);

ResultSet rs = stmt.executeQuery(sql);

while (rs.next()) {

String name = rs.getString("Name");

float salary = rs.getFloat("Salary");

print(name + ": " + Float.toString(salary));

}

Figure 1: Query execution with JDBC

joining, sorting, and aggregation, to the database when this
improves performance. The alternative strategy, data ship-
ping, uses simpler queries to return data to the client for
processing. In what follows, performing high-level opera-
tions by data shipping is called local execution, and query
shipping is called remote execution.

Despite their usefulness, call level interfaces have a number
of significant problems. First, the embedded database pro-
grams are not checked until they are passed to the CLI at
runtime. As a result, the syntax and types of database pro-
grams are not checked statically, but instead result in run-
time errors. This is true despite the fact that the database
structure is almost always static and known when the client
program is compiled.

Second, programs that use call level interfaces are difficult to
write and maintain. There are important classes of queries
that must be constructed dynamically at runtime. Manipu-
lating programs as strings is complex and error-prone due to
the complex rules for nesting expressions, quoting constants,
and the interplay between embedded and host languages.
Concepts that are relatively straightforward to express in a
language, like query parameters, are awkward to specify and
invoke via an API. Query results are represented as untyped
objects that are accessed by string names. There are many
subtle but unchecked dependencies between the query being
executed and the code that decodes its results.

Finally, call level interfaces make it difficult to reuse queries;
doing so involves complex manipulation of programs at run-
time, while avoiding name conflicts and ensuring consistency
of the resulting query.

These problems lead to fragile systems that are difficult to
build and maintain. A tremendous amount of effort is ex-
pended in industry every year in trying to solve these prob-
lem and deal with the limitations of existing solutions.

2.2 Metaprogramming and OpenJava
A metaprogram is a program whose input or output is an-
other program. There are many forms of metaprogramming,
depending on whether programs are being analyzed or gen-
erated (or both), whether the process happens at runtime
or compile-time, and the degree of type checking performed
[22].

Call level interfaces are a form of runtime metaprogram-
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class A instantiates M {

int a;

}

(a) Sample program using metaclass M

class M extends OJClass {

public void translateDefinition() {

OJField[] fields = getFields();

for (int i=0; i< fields.length; i++) {

addField(new OJField(this,

OJModifier.forModifier(OJModifier.PUBLIC),

OJClass.forName("java.lang.String"),

fields[i].getName() + "_str"));

}

}

}

(b) Definition of metaclass M

class A {

int a;

String a_str;

}

(c) Java Class generated by OpenJava

Figure 2: OpenJava Example

ming. The Java code in Figure 1 is constructing and exe-
cuting a database program, in this case a SQL query. Sys-
tems for object-relational mapping and persistence also fre-
quently use metaprogramming to generate or modify classes
that load and store persistent data. Runtime metaprogram-
ming has also been applied to generating code for generalized
joins [14].

The current prototype of safe query objects uses the Open-
Java [23] macro system to translate from the safe query class
to a database access class. The translation from safe query
class to database access class is done using compile-time
meta-programming.

In OpenJava a compile-time transformation is specified by
a metaclass. OpenJava extends the Java language so that a
class definition can specify a metaclass using the instantiates
keyword. The class A in Figure 2.2 instantiates the meta-
class M, which is shown in Figure 2(b). The metaclass M

adds a public field x str of type java.lang.String for ev-
ery field x in class A. The generated java class is shown in
Figure 2(c). The method translateDefinition in meta-
class M contains the code to translate from the source to the
destination. In this example, the method calls getField()

and fields[i].getName() are used for reflection and the
method call addField is used to add new fields in the desti-
nation class.

Macros in OpenJava are compile-time transformations on
class definitions and expressions that reference them. Like

interface javax.jdo.PersistenceManager {
Object getObjectById(Object id);

javax.jdo.Query newQuery(Class class);

// methods for transactions not listed

}

interface javax.jdo.Query {
void setFilter(String filter);

void setOrdering(String ordering);

void declareImports(String imports);

void declareParameters(String params);

void declareVariables(String vars);

Object execute();

Object executeWithMap(Map map);

// bookkeeping methods not listed

}

Figure 3: Selections from the JDO API

Lisp macros, OpenJava macros operate on the abstract syn-
tax tree of class definitions and expressions. Unlike Lisp,
they cannot specify arbitrary input languages embedded in
a generic syntax. OpenJava macros run after initial type
analysis, but before complete type-checking has been per-
formed.

2.3 Object-Relational Mapping and Persistence
Object-relational mapping [13, 6, 21] and persistent object
systems [2, 21, 5] allow programmers to manipulate objects
that are bound to persistent storage. This approach pro-
vides a uniform semantic view of all data as objects; persis-
tent objects are loaded by data shipping as needed. These
systems solve almost all of the problems of call level inter-
faces, but they have not displaced CLI because they do not
support the one essential benefit of a call level interface: re-
mote execution of high-level operations. Some systems [6,
5, 21] do support remote execution, but do so via a form of
CLI.

Java Data Objects (JDO) is a new standard for interfacing
Java with persistent data in relational and non-relational
data stores [21]. JDO is a hybrid that supports both object-
relational mapping and a call level interface. JDO uses a
bytecode enhancer as a post-compilation step to transform
ordinary classes into persistence-capable classes. The en-
hancer also adds code to track navigation and modifications
to instances so that they can be loaded from and written to
the persistent store as needed.

JDO provides access to persistent objects through an in-
stance of the PersistenceManager interface shown in Fig-
ure 3. Individual objects can be loaded with getObjectById,
while newQuery creates a JDO Query object, which is a call
level interface. In JDO the call level interface has been
broken into methods for filtering, ordering and declarations
of query parameters, imports and variables. Filter condi-
tions are written in the JDOQL language. The grammar
of JDOQL is a subset of the Java grammar for expres-
sions. However, the semantics of JDOQL are different from
Java: JDOQL allows more automatic conversions between
types, overloads < and > for boxed values including dates
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class Employee {

String name;

float salary;

Department department;

Employee manager;

}

class Department {

String name;

Collection<Employee> employees;

}

Figure 4: Example classes

and strings, and interprets the contains method in a non-
standard way to support existential quantification. The spe-
cific usage of each method is discussed as needed in the body
of the paper.

3. FROM FILTER STRINGS TO SAFE
QUERY OBJECTS

This section introduces the concept of safe query objects
through a discussion of filter queries. The solution is moti-
vated by an example filter query in JDO. A safe query object
is then defined and the notions of local execution and remote
database execution introduced.

Consider a simple database of employees and departments,
whose schema is represented by the Java classes in Figure 4.
A JDO query to select all employees whose salary is greater
than their manager’s salary is defined in Figure 5(a). This
program is syntactically correct Java code, but there is a
problem in the embedded code: manager is misspelled as
maneger. The problem will not be discovered until run-time
[9].

Every query has a candidate type that defines the class of
objects returned by the query. For JDO, the candidate type
is specified in the call to newQuery. The filter specification
is evaluated for each instance of the candidate type: ref-
erences to salary and manager access the members of the
instance. JDO uses joins to implement navigation through
object-valued fields, as in manager.salary. JDO ignores the
access control restrictions on class members; in this paper
all members are assumed to be public. The net effect of the
query is to return the subset of all candidate instances in
the database for which the filter is true.

JDO handles the translation of database rows into Java
objects. Although the static return type of the execute

method is Object, at runtime the return value is a read-
only Collection containing instances of the candidate type.
Although the current JDO specification does not make use
of generic types in Java 1.5, the backward compatibility of
generics allows JDO to work with generic classes. Generic
types are used throughout this paper to increase precision
of static typing for queries.

3.1 Safe Query Objects
This section introduces safe query objects, our solution to the
impedance mismatch problem. Safe query objects support

Collection executePayCheck(

javax.jdo.PersistenceManager pm)

{

javax.jdo.Query payCheck =

pm.newQuery(Employee.class);

payCheck.setFilter("salary > maneger.salary");

Object result = payCheck.execute();

return (Collection) result;

}

(a) Filtering in JDO (with runtime error)

class PayCheckQuery extends SafeQuery<Employee> {
boolean filter(Employee emp) {

return emp.salary > emp.manager.salary;

}
}

(b) Safe query object

Figure 5: Filtering example

static typing and remote execution of database queries. The
approach uses local execution as a reference semantics to
define the behavior of queries operating entirely within the
Java language model.

In its simplest form, a safe query object is just an object
containing a boolean method that can be used to filter a
collection of candidate objects. A safe query implementing
the PayCheck query is given in Figure 5(b). Because this
filter is normal Java code, syntax and types are checked at
compile time: if manager is misspelled, a compile time error
is produced. The behavior of a query object is characterized
by the SafeQuery base class:

class SafeQuery<T> {
boolean filter(T item) { return true; }

}

The generic type parameter T is the candidate type of the
query. The default implementation of filter returns true to
include all candidate objects in the result set. Safe query ob-
jects are instances of safe query classes, which must extend
SafeQuery<T>. In addition safe query classes must satisfy
several behavior restrictions. For example, the filter method
must be free of side-effects: they must not modify any state
or call any methods that modify state. The full list of re-
strictions on safe query classes is given in Section 5.

3.2 Local Execution
Since queries are Java classes, they can be executed locally
to filter any collection of objects, including objects shipped
from a database. Local execution of a filter query is pro-
vided by the execute method in the class Local defined in
Figure 6(a). This class assumes that all objects are local
Java instances, and that the members of the candidate type
are stored in a Collection.
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class Local {
<T> Collection<T> execute(SafeQuery<T> query,

Collection<T> candidates)

{
Collection<T> result = new ArrayList<T>();

for (T item : candidates)

if ( query.filter(item) )

result.add(item);

return result;

}
}

(a) Class implementing local execution

Local local = ...; // load local database

Collection<Employee> emps = local.getEmployees();

PayCheckQuery query = new PayCheckQuery();

Collection<Employee> r = local.execute(query, emps);

(b) Executing a query locally

Figure 6: Local execution

The local execution of a query object is illustrated in Fig-
ure 6(b). The method for loading the set of employees is
not defined. They could be stored in memory or loaded by
shipping data from a database. Given that set, it executes
the query to create a filtered list of employees.

Defining a query as a filter method is natural: it is a simple
and effective Java programming pattern. There is no magic
or special syntax involved. The pattern may be simple, but
it modularizes query behavior into methods that have ex-
actly the right form to be translated for remote execution
in a relational database.

3.3 Remote Execution
The key to safe query objects is the mechanism for trans-
lating them into relational queries. To do so, the behavior
specified in the filter method must be translated into an
equivalent relational query.

For remote execution, compile-time metaprogramming is used
to generate additional methods and attributes that enable
the query to be shipped to a database for execution. The be-
havior for compile-time metaprogramming is encapsulated
in the metaclass RemoteQueryJDO. This metaclass is applied
to the safe query using the instantiates keyword of Open-
Java as shown in Figure 7(a). OpenJava runs the metaclass
at compile time, supplying the definition of the PayCheck

class as an input. The metaclass can examine the partially-
compiled definition of a class and modify or extend the class.

When applied to PayCheck, the RemoteQueryJDO metaclass
generates the execute shown in Figure 7(b). This method
implements a remote version of the PayCheck filter method
by passing appropriate strings to the JDO interface. The
generated method is the same as the original unsafe code in
Figure 5(a). However, because the code is generated auto-
matically from a type-checked Java method, the safe query

class PayCheck instantiates RemoteQueryJDO

extends SafeQuery<Employee>

{
boolean filter( Employee emp ) {

return emp.salary > emp.manager.salary;

}
}

(a) Safe query class that invokes remote metaclass

Collection<Employee> execute(

javax.jdo.PersistenceManager pm )

{
javax.jdo.Query q = pm.newQuery(Employee.class);

q.setFilter( "salary > manager.salary" );

return (Collection<Employee>) q.execute();

}

(b) Automatically generated method for PayCheck

javax.jdo.PersistenceManager pm;

PayCheck query = new PayCheck();

Collection<Employee> r = query.execute(pm);

(c) Using a query for remote execution

Figure 7: Remote execution

version is type safe. The details of how OpenJava is used to
perform the translation are given in Section 5

Execution of a remote query is shown in Figure 7(c). The
safe query provides a statically-typed interface to the JDO
implementation.

The relationship between local execution and remote execu-
tion is central to the definition of safe query objects. Ide-
ally the semantics of these two execution strategies should
be identical; however, this is not absolutely essential – if
at least the semantics of remote execution is precisely de-
fined. The key requirement is that the queries be type-
checked statically while still supporting remote execution in
the database engine. This is a particular issue with Java
and SQL, because they have very different interpretations
of NULL values. This issue is discussed in more detail in
Section 6.

4. ADDITIONAL FEATURES OF
SAFE QUERY OBJECTS

The previous section described the simplest kind of queries
that have a boolean method to filter objects from the extent
of a class. Real-world applications require more features
for the creation and specification of queries. The following
sections discuss sorting, parameterization, dynamic queries,
and existential quantification.

4.1 Sorting Results
Queries often specify a sort order for the results that match
a filter. Relational query languages define sort order by
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deriving a list of sortable values from each element of the
candidate type. The list of values is annotated to indicate
whether the sort should be in ascending or descending order.
For example, in SQL the list of values is given in the ORDER

BY clause. A similar approach is used in JDO, as shown in
Figure 8(a). The first value in the list defines the primary
order; only when the first values are equal are subsequent
values considered.

Note that this approach to sorting is different from the one
used in most data structure libraries, including the Java Col-
lection classes. Data structure libraries usually define sort
order by a comparison function. One advantage of a com-
parison function is that avoids generating a list of sortable
values, which immediately become garbage after being used.
One disadvantage is that a compiler cannot ensure that a
general-purpose boolean function is a comparison function
that defines a partial order; so comparison functions may
be unsafe. The issue of extra garbage is only significant for
query objects when executed locally.

To specify sorting, a safe query must associate a list of
sortable values with each object in the result set. This is
done by adding a order method to the query that takes a
candidate element and returns a list of sortable values. The
list of sortable values is represented as a linked list of Sort
objects, each of which contains a value, a flag indicating
ascending or descending order, and an optional secondary
Sort value. An example safe query that specifies a sort or-
der is given in Figure 8(b). The methods in the Sort class
are:

class Sort implements Comparable<Sort> {
Comparable v; // sortable value

Direction dir; // direction

Sort next; // optional secondary sort

enum Direction {ASCENDING, DESCENDING};
Sort(Comparable v, Direction dir)...

Sort(Comparable v, Direction dir, Sort next)...

int compareTo(Sort other)...

}

It is possible to write an order method that is not well-
behaved. For example, it might return lists with different
lengths or containing different types of Comparable values.
There does not appear to be any simple typing for this ex-
ample in Java that prevents the possibility of runtime errors.
The OpenJava metaclass can use conservative static analysis
to reject such methods and signal a compile-time error.

Local execution is performed by using a SortedSet for the
result collection and an appropriate SortComparator object
to compute the lexicographic sorting of two objects’ sort val-
ues. To support sorting, the execute method in Figure 6(a)
is modified to use a sorted set for the result collection by re-
placing ArrayList<T>() with TreeSet<T>(SortComparator).
The sort comparator implements compare(a, b) by calling
order on a and b and then comparing the resulting Sort

objects.

Remote execution with sorting is similar to remote execution
with filtering. Compile-time metaprogramming is used to

javax.jdo.Query q = pm.newQuery(Employee.class);

q.setOrdering("department.name ascending,"

+ "salary descending");

Collection r = (Collection) q.execute();

(a) Hand-coded sorting with JDO

class SortQuery instantiates RemoteQueryJDO

extends SafeQuery<Employee>

{
Sort order(Employee emp) {

return new Sort(emp.department.name,

Sort.Direction.ASCENDING,

new Sort(emp.salary,

Sort.Direction.DESCENDING));

}
}

(b) Safe query specifying sort order

Collection<Department> execute(

javax.jdo.PersistenceManager pm)

{
javax.jdo.Query q = pm.newQuery(Employee.class);

q.setOrdering("department.name ascending, "

+ "salary descending");

return (Collection<Employee>) q.execute();

}

(c) Automatically generated remote execution with sort
order

Figure 8: Sorting results
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translate the sorting specification in the order method into
the syntax accepted by JDO, as shown in Figure 8(c). The
resulting code is nearly identical to the hand-written code,
but because it is generated automatically from the statically-
checked order method, it is type-safe. Of course, sorting and
filtering can be used together in a query.

4.2 Parameterized Queries
Parameterized queries are needed when a query’s behavior
depends upon one or more input values. Executing param-
eterized queries with a call level interface is awkward be-
cause the essential semantic connections between the decla-
ration, use, and binding of a parameter are broken up by
the disjoint API calls in a call level interface. Figure 9(a)
illustrates this situation in a JDO query to find employees
whose salary is above a given limit. The parameter is used
in the setFilter call, declared in the declareParameters

call, and bound in execute. These calls can be made in any
order, and the complex semantic constraints between them
are not checked at compile time. There are many ways that
this code can go wrong at runtime. For example, the call to
declareParameters may be omitted, or the wrong type of
value can be passed to execute. Again, these problems will
only be discovered at run-time.

Safe queries could use a variety of Java features to imple-
ment query parameters. Query parameters are values that
can affect the filtering and ordering of query results. One
way to make them accessible from the filter and order

methods is to include them as instance variables in the query
object. Parameters on the class constructor are used to ini-
tialize the variables. Figure 9(b) defines a parameterized
safe query class to find employees with salary greater than a
limit. Because parameters are normal Java variables, their
declaration, use, and binding are all checked for consistency
at compile time.

The RemoteQueryJDO metaclass translates the query param-
eters into appropriate calls to JDO. The result, shown in
Figure 9(c), is very similar to the hand-coded version dis-
cussed above. The way in which parameters are specified
varies somewhat between different call level interfaces, but
the overall pattern is similar. The dynamically generated
version uses the JDO executeMap method to pass a dictio-
nary containing all variable bindings. Because the transla-
tion is automated, there are guaranteed to be no syntax or
type errors in the strings passed to CLI.

Both local and remote execution of a parameterized query
are similar to execution of a simple query, except that pa-
rameters are supplied when the query is constructed. An
example of remote execution is given below:

SafeQuery<Employee> q = new SalaryLimit(50000);

Collection<Employee> result = q.execute(pm);

4.3 Dynamic Queries
Dynamic queries involve filters, parameters, or sort orders
that are constructed at runtime. They are used when differ-
ent filter criteria must be combined to form a complete filter.
For example, if a user interface allows a set of optional search
criteria to be specified, the filters that result from different

javax.jdo.Query q = pm.newQuery(Employee.class);

q.setFilter("salary > limit");

q.declareParameters("Double limit");

Collection r = (Collection) q.execute(50000);

(a) Hand-coded parameterized query (with errors)

class SalaryLimit instantiates RemoteQueryJDO

extends SafeQuery<Employee>

{
double limit; /* parameter */

SalaryLimit(double limit) {
this.limit = limit;

}

boolean filter(Employee employee) {
return employee.salary > limit;

}
}

(b) Safe query object with parameterization

Collection<Employee> execute(

javax.jdo.PersistenceManager pm)

{
javax.jdo.Query q = pm.newQuery(Employee.class);

q.setFilter("salary > limit" );

q.declareParameters("double limit");

Map paramMap = new HashMap();

paramMap.put("limit", limit); // boxed

Object result = q.executeWithMap(paramMap);

return (Collection<Employee>) result;

}

(c) Automatically generated code

Figure 9: Parameterized queries
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combinations of criteria will be different. Since the differ-
ence between the filters is structural, parameterized queries
alone are not sufficient.

Dynamic filters are commonly created by concatenating por-
tions of a filter string together to create the complete filter.
If the different filter components have parameters, then the
set of parameters to the combined query is also dynamic.
Figure 10(a) illustrates creation of dynamic filters and pa-
rameters using JDO. In this example, a user can search for
employees by name, salary range, or both. Different filters
are constructed depending on which criteria the user speci-
fies.

Safe query objects implement dynamic filters as a special
case of normal filters. A dynamic filter can be expressed as
a filter method in Java through the use of conditionals or
short-circuit evaluation: parts of the overall filter are only
evaluated if certain conditions are met. Figure 10(b) illus-
trates this technique for the dynamic query given in Fig-
ure 10(a). Short-circuit evaluation of || is required to avoid
null-pointer exceptions. Local execution of a dynamic query
is the same as a normal parameterized query. This query can
be used to find employees whose name begins with “F”, but
with no limit on salary:

GenericQuery q = new GenericQuery("F", null)

Collection<Employee> = q.execute(pm);

Dynamic filters are sometimes used to replace explicit pa-
rameters. The parameter values are embedded into the
query expression using string concatenation. This approach
was illustrated in Figure 1 for a double value, but can also
be used for string parameters, although proper quoting be-
comes a serious issue. Creating a filter by concatenation,
as in "name=\"" + testName + "\"" is notoriously unsafe
and fragile. If the variable testName contains a quote, the
query will fail at runtime, or open the possibility for execut-
ing arbitrary code on the database server. Using dynamic
filters can lower performance because the database query
optimizer can reuse a query plan if the submitted query is
identical to a previous query.

Although Figure 10(b) looks like an ordinary parameterized
query class, it cannot be translated to a single JDO filter
for remote execution using the techniques given above. One
reason for this is that call level interfaces and databases do
not typically support null parameters; for example, JDBC
does not. In addition, the SQL standard does not require
short-circuit evaluation of boolean connectives, so the query
may generate incorrect results.

The key issue is that parts of the filter condition depend only
on local data, and so can be evaluated before being sent to
the database. For example, the expression namePrefix ==

null depends only upon a parameter value, while emp.salary
>= minSalary depends upon remote data. Abstract partial
evaluation is used to find the cases where a null argument
triggers short-circuit evaluation. These cases are then gen-
erated separately. Ternary if expressions c ? t : f are
also handled, although due to limitations in JDO the condi-
tional expression must only refer to local data (parameters).

Collection search(String namePrefix,

Double minSalary)

{
String filter = null;

String paramDecl = "";

HashMap paramMap = new HashMap();

if (namePrefix != null) {
q.declareParameters("String namePrefix");

paramMap.put("namePrefix", namePrefix);

filter = and(filter,

"(name.startsWith(namePrefix))");

}

if (minSalary != null) {
q.declareParameters("double minSalary");

paramMap.put("minSalary", minSalary);

filter = and(filter,

"(salary >= minSalary)");

}

javax.jdo.Query q = makeQuery(Employee.class);

q.setFilter(filter);

return q.executeWithMap(paramMap);

}

String and(String a, String b) {
return (a == null) ? b : (a + " && " + b);

}

(a) Construction of a dynamic filter in JDO

class DynQuery instantiates RemoteQueryJDO

extends SafeQuery<Employee>

{
private String namePrefix; // may be null

private Double minSalary; // may be null

DynQuery(String namePrefix, Double minSalary) {
this.namePrefix = namePrefix;

this.minSalary = minSalary;

}

boolean filter(Employee item) {
return (namePrefix == null

|| item.name.startsWith(namePrefix))

&& (minSalary == null

|| item.salary >= minSalary);

}
}

(b) Safe query using dynamic filter

Figure 10: Dynamic filters
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Currently the analysis only supports dynamic queries based
on tests for null. The resulting code is very similar to the
hand-written program given in Figure 10(a). Details of the
implementation are given in Section 5.

4.4 Existential Quantification
The SQL query language supports existential quantification
to test if any member of a set meets a condition. For exam-
ple, a query may find all departments that have an employee
who meets some criteria. This requires the employee crite-
ria to be added to an existential clause in the department
filter. It is desirable to reuse the code that creates filter cri-
teria. However, using JDO this could only be done by string
concatenation.

Most object-oriented programming languages do not have
standard syntax for existential quantification, but some col-
lection libraries include methods to test if any member of
a collection satisfies a condition. In Smalltalk the method
is called detect:ifNone:. This behavior is added to the
SafeQuery class as an exists method, as defined in Fig-
ure 11(b).

Note that this definition of exists is based on reuse of other
query objects as subqueries. A filter using existential quan-
tification is given in Figure 11(a). It finds departments
whose name begins with a given prefix and have an em-
ployee whose salary is above a given minimum. The query
reuses the SalaryLimit query defined in Figure 9(b).

A translation of this query into JDO is given in Figure 11(c).
This translation is a simplified version of the full transla-
tion presented in the next section. JDO expresses existen-
tial quantification by interpreting the contains method as a
binding operator for free variables, which must be declared
in a call to declareVariables. The filter is true if there is a
substitution of the free variables for objects that satisfies the
filter expression. The query in Figure 11(c) is a reasonable
illustration of the kind of complexity that programmers face
in writing even fairly simple queries. The two levels of in-
terpretation are clearly visible: Java code that manipulates
JDO expressions as strings.

5. IMPLEMENTATION DETAILS
In the prototype implementation of safe query objects, Open-
Java is used as a framework for compile-time metaprogram-
ming and method generation. Reflection in java is the ability
for a program to gain access to its own code. The system
is implemented as a metaclass, which uses reflection to ex-
amine the query class and generate methods for remote ex-
ecution. Figures 12(a) and 12(b) show a high-level view of
the derivation of the execute method from a query class.
Figure 12(a) specifies a pattern that identifies the compo-
nents of the query class used in the derivation. Repeated
elements are identified by 〈 . . . 〉 together with an index.
Figure 12(b) defines the template for generating the remote
execute method, based on the bindings of variables in the
pattern.

Most of the template is a direct translation of the Java code
into corresponding embedded code. However, the treatment
of subqueries is more complex. When compiling a complete
program, it would be possible to build a static string repre-

class DeptQuery instantiates RemoteQueryJDO

extends SafeQuery<Department>

{
double min;

String deptPrefix;

DeptQuery(double min, String deptPrefix) {
this.min = min;

this.deptPrefix = deptPrefix;

}

boolean filter(Department dept)

{
SafeQuery<Employee> sub = new SalaryLimit(min);

return dept.name.startsWith(deptPrefix)

&& exists(dept.employees, sub);

}
}

(a) Existential quantification in a safe query class

class SafeQuery<T> {
boolean filter(T item) { return true; }
Sort order(T item) { return null; }
boolean exists(Collection<T> candidates,

SafeQuery<T> query) {
for (T item : candidates) {

if ( query.filter(item) )

return true;

}
return false;

}

(b) Complete definition of SafeQuery with exists

Collection<Employee> execute(

javax.jdo.PersistenceManager pm )

{
javax.jdo.Query q = pm.newQuery(Employee.class);

HashMap paramMap = new HashMap();

paramMap.put("min", min);

paramMap.put("namePrefix", namePrefix);

q.declareParameters("double min");

q.declareParameters("String namePrefix");

q.declareVariables("Employee e");

String filter = "name.startsWith(deptPrefix)"

+ " && (employees.contains(e)"

+ " && e.salary > min)");

q.setFilter(filter);

Object r = q.executeWithMap(paramMap);

return (Collection<Employee>) r;

}

(c) JDO version of existential quantification and pa-
rameters

Figure 11: Existential quantification
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〈 import importm; 〉m
class QueryName instantiates RemoteQueryJDO

extends SafeQuery<ResultType>
{

// all members are parameters:

〈 ParamTypei parami; 〉i

boolean filter(ResultType elem) {
return filter;

}
Sort order(ResultType orderVar) {
return new Sort(orderj,

Sort.Direction.dirj,

sortj+1 );

}
}

(a) Pattern matched against class definition

// constructor for QueryName class

QueryName(〈 ParamTypei parami; 〉i) {
〈 this.parami = parami; 〉i
}

// remote execution method

Collection<ResultType> execute(

javax.jdo.PersistenceManager pm)

{
javax.jdo.Query q =

pm.newQuery(ResultType.class);
Map paramMap = new HashMap();

〈 paramMap.put("parami", parami ); 〉i
〈 q.declareParameters("ParamTypei parami"); 〉i

q.setFilter( Φ(elem, filter) );

q.setOrdering(〈Φ(elem, orderj) + " dirj,"〉j);

Object result = q.executeWithMap(paramMap);

return (Collection<ResultType>) result;

}

// subquery with variable substitutions

static String subquery(String elem,

〈 String parami, 〉i) {
return Θ( { elem, 〈 parami 〉i }, filter );

}

// exists query and JDO declarations

static String makeExists(javax.jdo.Query q,

〈 String parami, 〉i) {
String elem = CreateUniqueName();

String decl = "ResultType " + elem;

q.declareVariables(decl);

q.declareImports("〈 import importm; 〉m");

return "contains(" + elem + ") && "

+ subquery(elem, 〈 parami 〉i) );

}

(b) Template for generated methods

Figure 12: Outline of translation

senting the elaboration of all subquery behavior. However,
this would preclude the possibility of separate compilation
and reuse of query libraries. As a result, the translation
given here requires dynamic construction of JDO expres-
sions that involve subqueries. If no subqueries are used,
then the filter strings are all static.

5.1 Translating Expressions
The function Φ converts a Java expression e into a Java ex-
pression that creates a string representation of e in JDOQL.
The reason that Φ must return a Java expression instead of
a string is any subqueries require calls to appropriate meth-
ods of the subquery object to assemble a full expression.
The first argument of Φ is the name of the element variable
(the formal parameter of the filter method). In JDOQL the
current element being filtered is implicit, so Φ must strip off
uses of this variable from the Java code. The second argu-
ment is the Java expression syntax being translated. The
function Φ is defined as follows.

Φ : V ariable × JavaExpr → JavaExpr
Φ(v, v) → ""

Φ(v, x) → "x"
Φ(v, e.f) → Φ(e, e) + ".f "
Φ(v, exists(e, new Q(〈 ai, 〉i))) →

Φ(v, e) + "." + Q.makeExists(q, 〈Φ(v, ai)〉i)

For the most part, the syntax of JDOQL resembles Java
syntax, so most expressions are unchanged. JDO uses < and
> for date comparison instead of before and after methods.
Existentials are converted to JDO syntax.

The variable elem can only appear in a field access expres-
sion. Φ returns a string constant except when the expression
contains a call to exists. In that case Φ generates a call to
the static makeExists method of the subquery Q, passing
the local JDO query q and translation of the expressions ai

used to initialize the subquery.

5.2 Translating Existentials
The static makeExists method is defined in the template in
Figure 12(b). It creates a new variable name to represent the
quantified variable (similar to a skolem constant). It then
calls the query q to declare the new variable and any query
imports. Finally it returns a new contains expression and
generates the query text by calling the subquery method.

The static subquery method creates a version of the filter ex-
pression with parameters substituted by the actual param-
eter expressions from the main query. The transformation
Θ, which performs this renaming, is a variation on Φ:

Θ : Set(V ariable) × JavaExpr → JavaExpr
Θ(s, x) → if x ∈ s then x else "x"
Θ(s, e.f) → Θ(s, e) + ".f "
Θ(s, exists(e, new Q(〈 ai, 〉i))) →

Θ(s, e) + "." + Q.makeExists(q, 〈Θ(s, ai)〉i)

Only the first rule of Θ differs significantly from Φ. It spec-
ifies that all query variables x contained in the set s are
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replaced by the dynamic contents of the Java variable x,
while all other variables are replaced by a string constant
containing the variable name. The set of variables passed
to Θ includes the element variable and all parameters of
the query. In the subquery and makeExists methods, these
variables are redefined as String variables whose contents
are concatenated to create the subquery. As an example,
here is the translation of the SalaryLimit class:

static String subquery(String emp, String limit)

{
return emp + ".salary > " + limit;

}

static String makeExists(javax.jdo.query q,

String limit)

{
String emp = CreateUniqueName();

String decl = "Employee " + emp;

q.declareVariables(decl);

return "contains(" + emp + ") && "

+ subquery(emp, limit);

}

Figure 11(a) used SalaryLimit as a subquery in the form
exists( d.employees, new SalaryLimit(min)). An ap-
proximate translation was given in Figure 11(c), but a cor-
rect modular translation can now be given:

"(employees."+ SalaryLimit.makeExists("min") +")"

At runtime this call will generate a new variable name v and
return this expression:

(employees.contains(v) && v.salary > min)"

The current transformation does not support remote execu-
tion of queries whose parameters are objects, although such
queries can be used in existential quantification. Future
work will extend the prototype to support object param-
eters by substituting each expression containing an object
parameter with a synthetic parameter representing the value
of the expression.

5.3 Translating Dynamic Queries
Dynamic queries discussed in Section 4.3 require an addi-
tional step during translation. The problem is that the query
condition is not a strict boolean expression, instead it uses
conditional logic expressed by short-circuit evaluation of ||.
The conditional logic tests whether parameters to the query
are null. We use the following approach for interpreting null
values – if the expression being evaluated can be simplified
given the subset of the parameters that are null, then the
original expression is replaced by its simplified form. For ex-
ample, in java the expression ( d == null ) || (d.salary

> 50) simplifies to true when d is null and d.salary > 50

when d is not null. Similarly the return expression in ex-
ample of Figure 10(b) can be simplified as follows.

namePrefix == null, minSalary == null

→ true

namePrefix != null, minSalary == null

→ item.name.startsWith(namePrefix)

namePrefix == null, minSalary != null

→ item.salary >= minSalary

namePrefix != null, minSalary != null

→ item.name.startsWith(namePrefix) &&

item.salary >= minSalary

Simplification of queries is done using abstract partial eval-
uation [19], an evaluation strategy which can partially eval-
uate an expression given some abstract property of the vari-
ables used in the expression. The abstract property we are
interested in is whether a variable is null. Given this ab-
stract property, boolean expressions such as x == y, x !=

y, x && y and x || y can be simplified. Since the return
value of a filter is a boolean expression this level of abstrac-
tion is sufficient.

The query that is shipped to the database is parameterized
by the subset of parameters in the safe query class that are
not null. The set of actual parameters to the query which are
specified in the call q.declareParameters() is the subset of
non-null values in the parameter set of the safe query object.

We use abstract partial evaluation to simplify the expres-
sion being used in the filter method. The expression Φ(elem,
filter) is simplified for each subset of the parameters that can
be null. We use a switch statement at run-time, switching on
the subset of parameters that are null, to choose the appro-
priate expression. For ease of exposition the code templates
shown in this section do not contain details about abstract
partial evaluation.

6. EVALUATION AND FUTURE WORK
The current design of safe query objects is based on a set of
principles

• Query objects must be standard Java objects. It must
be possible to compile and execute them locally with-
out any support by compile-time metaprogramming.

• To the degree possible, a statically-typed query object
should execute locally and remotely without runtime
errors.

• If necessary, compile-time metaprogramming can place
restrictions on the range of code allowed in a query
object. For example, metaclasses can prevent the use
of assignment statements, but should not alter their
meaning.

• The behavior of local and remote execution of queries
should be identical. The current design does not achieve
this goal because it is very difficult to modify the way
that SQL handles NULL, and this behavior is quite rea-
sonable for use in filters. In the current implementa-
tion the behavior of local and remote execution are
not identical; the best solution is to use compile-time
metaprogramming to modify the local filter method so
that its behavior matches SQL semantics.
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The transformation does not guarantee identical semantics
for local and remote execution. In SQL, comparison with
null values is defined to always be false: null is not less than,
greater than, equal to, or not equal to any value. In addition,
JDO specifies that navigation through a null-valued field,
which would throw NullPointerException, is treated as if
the filter expression returned false. It should be possible
to modify the local filter method to conform to the behavior
of remote execution by wrapping each Boolean-valued term
in the filter expression with a try-catch block that translates
NullPointerException to false.

The query definitions currently require all class members
used in filters to be public. This is reasonable for classes as-
sociated with database tables, based on the value object pat-
tern [12]. Accessor methods could be supported by looking
up the associated field name with compile-time reflection.

JDO is useful because it automates mapping of relational
tables to classes and generates the joins necessary to access
related objects in filters. However JDO has a number of
significant limitations. Although joins can be used for filters,
the result of a JDO query is always a set of objects of a
single type – no related objects can be returned at the same
time. Several aspects of SQL are not supported, including
general aggregation and case expressions. Future work on
safe query objects will remove the dependence on JDO.

The current version of OpenJava does not support generics,
so the generic type erasing has been done manually in the
prototype implementation.

7. RELATED WORK
HaskellDB [15] is a SQL library for Haskell. It defines an
abstract data type for database queries that includes oper-
ations for selections, joins and filtering. Queries are written
as monadic list comprehensions – however, rather than per-
forming the operations on local Haskell data, the monad
instead builds an internal representation of a query. The re-
sulting abstract queries are converted into SQL for remote
execution on a database. To use HaskellDB, the program-
mer must define the structure of the database as a set of
Haskell types. Given these, the HaskellDB queries are all
statically typed. HaskellDB works without any special re-
flective support; instead the query sublanguage is embedded
within Haskell yet is indistinguishable from standard Haskell
operations.

The current version of HaskellDB does not support existen-
tial quantification or sorting. Parameterized queries are eas-
ily defined because HaskellDB is embedded cleanly within
the general-purpose Haskell language. However, the queries
are generated with parameters embedded in the query text
rather than passed via the CLI parameter interfaces. As
mentioned in Section 4.3, this can reduce performance be-
cause dynamic queries must all be processed separately, while
parameterized queries can use a cached query plan. The
query strings are also generated at runtime rather than com-
pile time, although this is likely to have only a small impact
on performance.

SchemeQL [25] is a SQL library for Scheme. It uses macros
to generate data structures representing SQL queries, which

can be nested and composed easily. The macros define
new syntactic forms that resemble SQL queries, rather than
reusing existing language syntax and semantics as in query
classes. SchemeQL does not support existential quantifica-
tion. It does not support parameterized queries, although
they can be created by defining Scheme functions that return
queries; as in HaskellDB, the parameters are embedded in
the resulting SQL code, rather than being explicit query pa-
rameters. As mentioned above, this affects database perfor-
mance; because every query string is different, the database
query optimizer cannot reuse plans created for previous queries.
The design of SchemeQL has a few fairly serious issues. For
example, the macros cannot distinguish symbols represent-
ing strings and constants from variables, so the user of the
library must quote string literals properly using the quoting
conventions of the underlying database, not of Scheme.

Brant and Yoder [4] present patterns for creating database-
reporting applications, which often require complex and dy-
namic queries. Their Composable Query Object pattern spec-
ifies a dynamic object representation of queries. Subclasses
of QueryObject include TableQuery for accessing tables, Join-
Query for merging tables, SelectionQuery for filtering re-
sults, and ProjectQuery for specifying query outputs. Other
subobjects are used to represent the details of a query. For
example, a SelectionQuery contains an object representation
of the selection condition. Query Objects are an object-
oriented representation of the relational calculus with ap-
propriate operations for creating, composing, and execut-
ing queries. The result is a sublanguage embedded within
the target language, Smalltalk, although the sublanguage
has different scope and execution semantics from Smalltalk.
Query Objects are very similar to SchemeQL, although more
work is needed to determine their exact relationship.

Gould, Su and Devanbu [8] take a different approach to
type-checking programs with embedded SQL. They perform
static analysis to identify strings that contain embedded
SQL code. The construction of these strings is tracked so
that they can be checked against the SQL grammar and
typing rules. Their analysis does not currently cover query
parameters or result types. In addition, it generates many
more false positives when separate compilation is used. Type-
checking embedded SQL is a pragmatic solution, given that
many existing program can benefit from more static anal-
ysis. However, the programming model of using call level
interfaces is still complex, and programmers must work with
two different languages at the same time. Safe query objects
provide an alternative that simplifies access to relational de-
velopment, provides a single uniform programming model,
and scales well to separate compilation.

Techniques have also been introduced for optimizing queries
by shipping data or operations to the location where they
can be executed most efficiently [20]. In this case the oper-
ations are already expressed in a relational query language,
while the problem addressed in this paper is separating out
operations specified in object-oriented languages.

8. CONCLUSION
This paper introduces a new way to overcome the impedance
mismatch between object-oriented programming languages
and relational databases. The fundamental problem is how
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to provide a semantically integrated model of persistent ob-
jects and behavior, while still allowing large parts of the
program to be “picked out” for efficient execution within
a database engine. We introduce a natural programming
pattern for expressing queries as objects; methods are used
to express query selection criteria and the sort order of re-
sults. Class members/constructor arguments are query pa-
rameters. Queries can be reused directly or for existential
quantification. We also provide a new analysis of condi-
tional criteria, also known as dynamic queries, and a clean
implementation using abstract partial evaluation.

Safe query objects support query shipping so that they can
be executed efficiently within a database engine. Compile-
time metaprogramming is used to augment safe query ob-
jects with methods that send corresponding queries to a re-
lational database for execution. We have developed a proto-
type implementation using OpenJava and generate code for
JDO, a persistence library for Java.
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