

Stamping Out Spam

Aashin Gautam
Department of Computer Science

University of Texas at Austin

Advisors: Mohamed Gouda and Benjamin Kuipers
Department of Computer Science

University of Texas at Austin

10 May, 2004

Abstract
We describe a new service of spam control in this paper. This service starts by

providing some k e-pennies to each user of a mail server enabling this user to send k
emails. Every time an email is sent or received, the balance of e-pennies in the user’s

account is decremented or incremented respectively. Extra e-pennies can be attained from
participating e-banks, which allow users to buy or sell e-pennies.

 2

Table of Contents

1. Introduction …… …… …… …… …… …… …… …… 3
2. Related Work …… …… …… …… …… …… …… …… 3
3. Architecture …… …… …… …… …… …… …… …… 5
 3.1 Overview 5
 3.2 Motivation 5
 3.3 Properties 5
 3.4 The Bank 9
 3.5 Assumptions 10
4. Protocol …… …… …… …… …… …… …… …… …… 11
 4.1 The mail Message 18
5. Security …… …… …… …… …… …… …… …… …… 19
6. Conclusion …… …… …… …… …… …… …… …… …… 20
7. Acknowledgements …… …… …… …… …… …… …… …… 21
8. References …… …… …… …… …… …… …… …… …… 21

 3

1. Introduction

In today’s fast-paced environment, email has become the most dominant form of
communication. Huge amount of money is spent each year to make the email system
faster, more secure and more reliable. This rapid growth of email has been stumbled by
the fact that most of today’s email servers are getting overloaded with spam. Spam, also
known as Unsolicited Commercial Email, has become a big nuisance to Internet
providers and users. According to anti-spam vendor Brightmail, over sixty percent of all
email traffic in April 2004 was spam. This number was only eight percent in 2001. Thus,
spam has grown considerably and congested Internet traffic and bandwidth over the last
few years. Current spam solutions are working hard to address the issue, but just as fast
as solutions are reached, spammers find new ways to deliver the spam to us.

Spam has also often proved to be offensive in nature. About 15% of all spam is in regard
with adult material. This is a big problem in society even though it is involuntary. Other
than being a nuisance, spam also has various costs associated with it. These costs include
the costs of bandwidth, email servers and people’s time. A lot of money also goes into
research to fight spam. Most of these costs are borne by the Internet Service Providers
(ISPs). This is why, in early April 2003, AOL filed lawsuits against five spammers, who
collectively pushed a billion junk email messages through AOL’s system. Various state
and federal laws have also been passed in order to stop this activity. However, the ease
with which an email identity can be attained and changed reduces the chances of finding
the individual performing this fraudulent activity.

Spamming is an activity with no incremental cost to the spammer. The spammer can send
one million email copies at the same cost as he would send one. Thus, the only way to cut
down spamming is to turn around the economic strategy such that the burden of costs
falls onto the spammer. There are a lot of questions that arise when you think of this idea.
What about everyday users of email – should they pay for email? If so, how much will it
cost to send an email?

2. Related Work

Various techniques have previously been used to cut down spam [SCT, OV, F,
ABBDW03]. These techniques range from simple filters and email lists to complex
algorithms used to decide the credibility of an email. Numerous anti-spam vendors
market various sophisticated tools for individual users, ISPs and businesses. However,
spammers always find ways to get around each of these.

Spam filters [SCT] are the most common form of protection. The complexities of the
filters also range from simple subject line matching filters to highly complex Bayesian
filters [OV]. The simple filters are easily tackled by spammers who have tailored their
emails to get past them with little effort. Complex Bayesian filters are self learning filters

 4

based on input from users. Spammers, however, are constantly changing their spam
content thereby making it difficult for such filters to be a step ahead of their adversaries.

Spam filters are also not always correct [F]. Marking a spam email as not spam is surely
bad, but marking a non-spam email as spam is worse. This uncertainty of spam filters
causes the users to constantly look at messages marked as spam for mistakes. This makes
the spam filters useless from the end users perspective.

Another defense against spam is the use of “blacklists”. This involves the checking of the
sender’s ‘reputation’ with a central database. If a user is blacklisted in a certain domain, it
cannot send email to that domain. This is a very harsh approach to controlling spam since
what is spam to one user might not be spam to another.

A similar, but less aggressive, approach is the “whitelist”. This means that each user
specifies who it wants to receive email from. Based on its preferences, those emails from
whitelisted senders are delivered without scrutiny. All other email may be analyzed in
many ways like filtering.

The key commonality in all the above ideas is the separation of email into two distinct
categories: spam and not spam. Any email that is flagged off as spam is treated in a
different way than one that is not. Thus, spammers have a specific goal to reach: make
their email not look like spam. If they achieve that, they can break all defenses and make
their way to the user.

Various economic ideas have also been suggested to make spammers think twice before
sending bulk email. Ideas like the Ticket Server [ABBDW03] and Barry Shein’s
proposal. The Ticker Server proposes to charge a tiny amount for each network service
requested, whether it be surfing the Internet or checking email. This is definitely an
unreasonable idea from two stand points. Firstly, the indirect cost of assigning a stamp to
each and every network service will surely slow down the Internet; and secondly, the
direct cost to each user for surfing the Internet.

Another idea to turn the economics of email comes from Barry Shein from The World
magazine, who suggested that if every email was charged a fractional cost a solution
might be reached. This tiny cost would not mean a lot to the everyday users of the
Internet who only send a nominal number of emails everyday, but this would largely
affect spammers who send out thousands of emails everyday. Although this idea seems
workable, it has not been accepted. After all, why would anybody want to pay money for
a service that has been free thus far with no benefit to them? Acceptance of ideas usually
requires benefits to the acceptor, and this is what this scheme does not offer.

 5

3. Architecture

3.1 Overview
Our architecture for solving the spam problem revolves around direct benefit to end
users. We achieve this by charging users for sending and rewarding them for receiving
email. The money earned by the user can be used to send email or can be exchanged for
money from a participating bank. Thus, the reward for receiving spam would outweigh
the cost of sending email for a normal Internet user.

3.2 Motivation
To make a proposal for any change in a system acceptable, it has to have a two fold
benefit. Firstly, it should tackle the problem at hand; and secondly, it should provide an
incentive for the end user to make the change.

In this paper, we discuss such a solution for the spam problem. Spam is a common enemy
to two parties: the ISPs and the end users. To satisfy both these parties, we must look at
the problem from the view point of each of these separately. The ISPs are spending
millions of dollars in making the Internet faster and annoyed at the spammers for
clogging their networks. End users are irritated because spammers are filling their email
boxes to an unbearable extent. We need to satisfy both these parties with our solution in
order to make it acceptable.

ISPs would have a direct benefit if the number of spammers decreased. This would free
up a lot of bandwidth and reduce a bulk of their costs. End users also need a direct benefit
from receiving spam. To an end user, receiving one spam message or ten is just as
annoying. Thus, simply blocking out a percentage of the messages is not a feasible
solution. Instead, if users are paid to receive this email, they would happily accept email
from these spammers.

Thus, our motivation is to put a burden on the spammers thereby being advantageous to
the ISPs and end users.

3.3 Properties
We describe a new service of spam control in this paper. This service starts by providing
some k e-pennies to each user of a mail server enabling this user to send k emails. Every
time an email is sent or received, the balance of e-pennies in the user’s account is
decremented or incremented respectively. Extra e-pennies can be attained from
participating e-banks, which allow users to buy or sell e-pennies. This basic scheme has
the following core properties:

Zero-sum:
Any complete transaction in this model is zero-sum i.e. the number of e-pennies
decremented on one side is equal to the number of e-pennies incremented on the
other. Each transaction involves two sides.

 6

1. When an email is sent, n e-pennies are decremented from the sender’s
balance and n e-pennies are incremented in the receiver’s balance.

2. When e-pennies are bought or sold to an e-bank, then for every n dollars
paid to the bank, you receive n e-pennies and for every n e-pennies
redeemed, you receive n dollars.

Returnable e-pennies:
When an email is received, the receiver’s balance of e-pennies is incremented and
the sender’s balance is decremented. The receiver then has the option of returning
the e-penny if the sender is ‘trusted’, by sending a reply to the original sender
thereby restoring the original balance of e-pennies.

Reusable e -pennies:
The e-pennies attained by receiving email can be reused to send email. Thus,
users can set up a small initial balance of pennies and have no need to recharge
this balance if they receive enough email.

Convertibility to cash:
The e-pennies attained by receiving email can be converted to cash by trading
them at an e-bank. Thus, users are paid directly for their time wasted in dealing
with spam.

Invisibility to Users :
Everyday users of email should not see a substantial change in the email system.
Thus, we provide f free emails to each user everyday. This allows the user to send
f emails without affecting its balance. This f does not carry forward to the next
day, thus you cannot save your free emails over time. If the user receives a ‘free’
email from someone (out of the f free emails the sender has), it does not receive
any credit for it.

Using these properties, we design a system involving three entities: the sender, the
receiver and the bank. The sender and the receiver are compliant email servers agreeable
by the bank.

[Figure 1: The 3 entities]

 7

The sender server maintains a deposit which he attains from the bank and which each of
its users can use. When this deposit runs out, the server can buy more from the bank.
Users are provided some free emails at the start of each day. The server keeps track of the
number of emails sent by each user and starts charging the user for every email sent after
the limit has been crossed. The server also keeps track of the balance of each user. This
balance is attained by the user by buying e-pennies from the server’s deposit. Whenever
this balance runs out, the user can purchase more from his server. Thus, the
communications in the sender server look like Figure 2.

The receiver on the other hand maintains its income. The server keeps track of the
number of paid emails received from the sender. When an email is received for a
particular user of the server, the following two actions take place:

1. The e-penny attained from the email is added to the income of the server.
2. The server pays the intended receiver (the user) an e-penny from its deposit.

Thus, the zero-sum property is still maintained. Since one e-penny was also reduced from
the senders balance.
Whenever the receiving server wants to exchange the deposit for money, it can do so with
the bank. Also, whenever a user’s balance is high, the user can exchange it with the
server for money. Thus, the communications in the receiver server look like Figure 3.

[Figure 2: Communications of the sender server]

 8

[Figure 3: Communications of the receiver server]

Looking at the sender server in more detail, we have a look at the data it has to manage.
The sender needs to keep track of the number of emails sent by its user’s everyday and
the balance of each user. It also has to maintain a sufficient deposit to allow its users to
send email whenever needed. These three variables determine the user’s ability to free or
paid email. When a user wants to send an email, first the server checks the number of
emails sent by that user on that day. If the user is still within its free email limit (f), the
email is sent without any changes to its balance. Otherwise, the server checks if the user’s
balance will allow it to send the email. If the user has sufficient balance, one e-penny is
decremented from the user’s balance and the email is sent. Also, the server’s expense is
incremented and its deposit is decremented. Whenever a user’s balance is zero, it can
obtain e-pennies from its server. When the server wants to increase its balance, it can do
so by buying e-pennies from the bank and increasing its deposit. We can see this clearly
in Figure 4.

[Figure 4: Sender server in detail]

 9

The receiver server also has a set of data it must manage. The receiver needs to keep
track of the number of emails it receives from the sender server, the balance of each user
and the amount of money the server has earned from receiving email. These variables put
together decide the ability of a user to earn money. Whenever an email is received, the
server checks whether it was a free or a paid email. If it was a free email, no action is
taken and the email is delivered to the intended user. If the email is paid, the e-penny
earned from that email is added to the income of the server. Now the server needs to pay
the intended user an e-penny from its deposit. Thus the user earns an e-penny and the
email is delivered to it. The user can exchange these earned e-pennies for money from the
server. The server can also exchange its deposit for money from the bank. We can see
this clearly in Figure 5.

[Figure 5: Receiver server in detail]

Each server in the protocol is also provided with a certificate by the bank. This certificate
is encrypted with the private key of the bank and it has the public key of the server and
the server’s identity. This certificate can only be attained by compliant servers. Thus, a
spammer program would not have such a certificate and thus would be unable to send
messages to servers using this protocol. The way in which this certificate is used in
sending the mail message is discussed in section 4.1.

3.4 The Bank

The bank acts as a governing body over the email servers. It keeps track of the e-pennies
bought and sold by servers. Whenever a server buys e-pennies from the bank, the bank
makes a record of the purchase for future review. When a server sells e-pennies back to
the bank, it also sends to the bank how it got its income, which is recorded by the bank.
Any fraudulent activity performed by a server can be tracked down using this information
since the bank can now see who has sent emails to a particular mail server and narrow
down any misconduct to those two mail servers.

 10

Assume servers x, y, z initially purchase i e-pennies from the bank. Thus, the bank knows
that each of the servers’ balances is at least i. Now the server x receives j paid emails
from server y. Thus, their balances are now i+j and i-j respectively. Then, server x sends
i+j paid emails to server z. Balances of the three servers now are 0, i-j and 2i+j
respectively. If server z exchanges its e-pennies with the bank, the bank sees its income
and notices that z received i+j e-pennies from x. If the banks suspects fraud, it can ask x
for its income and balance and check if they, along with the original balance of x, add up
to at least i+j. It can also ask for x’s expense if needed. If this does not hold, one of the
two servers is lying. This is illustrated in Figure 5.

[Figure 5: Fraud Protection]

Thus, the bank acts much like a real bank would in the case of deceitful activity. Instead
of pointing a finger at an individual, it narrows down its suspects using the data available
and past reputation.

3.5 Assumptions

As mentioned earlier, the sender and receiver servers are compliant with the bank. This
means that based on past behavior, servers are divided as either truthful or not truthful.
Servers that are not truthful cannot communicate with the truthful servers and vice versa.
The bank scrutinizes the servers’ behavior and regularly designates servers as truthful or
not truthful. Thus, it is in the servers’ benefit to behave and obey the rules of the protocol.
Any errant behavior causes the server to be flagged as not truthful by the bank thereby
removing its privileges to send email to other truthful servers. Also, we assume that the
channels of communication between the servers and the bank are fault free. Thus, we
discard the possibility of message loss, corruption and replay.

 11

Putting these assumptions together, we can see that the only attacks possible are through
adversaries outside of the truthful servers and the bank. Defenses against these attacks are
addressed in Section 5.

4. Protocol

We now formalize our ideas using the Abstract Protocol (AP) Notation. First, we look at
a simple system with only one server sending email, one server receiving email and the
bank. Each of these processes has distinct functions. The sender knows only how to send
mail and the receiver knows only how to receive mail. Thus, we separate the two
properties of an email server for simplicity and understanding.

Consider a network which has three processes s, r and b. These correspond to the sender,
the receiver and the bank respectively. Process s and r both have m users on their server.
The processes also have some data used for security purposes. Each process has certain
keys used for encryption.

1. Sender and Receiver: bkb and rk which are the public key of the bank and the
server’s own private key

2. Bank: rkb, bks and bkr which are the private key of the bank, the public key of the
sender and the public key of the receiver.

Other than these, the servers also have variables for nonces which are used to prevent
message replay. These variables are nc and nd in the sender and receiver; and ncs, nds,
ncr and ndr in the bank.

Each user on the sender’s server is allowed to send f free emails everyday. Since users are
allowed to send these free emails, the sender has an integer array sent[0..m-1] which
counts the number of emails sent by each user on a given day. The sender also has
another integer array bal[0..m-1], which keeps track of the balance of each user and an
integer exp which keeps track of the servers expenses towards sending email to the other
server. Other than maintain the users’ data, the sender also maintains an integer dpst
which is the amount of deposit the server has attained from the bank. When the server
requests more e-pennies from the bank, it flags off a boolean variable rqstd so that it
knows not to ask the bank for more e-pennies until it receives the bank’s reply.

process s

const m, {number of users on each server}
 f {free emails per day}

inp bkb : integer {public key of bank}
 rk : integer {private key of s}

var x, y : 0..m-1 {x: receiver ID, y: sender ID}
 bal : array [0..m-1] of integer {balance of each user: init 0}
 exp : integer {number of pennies sent to each server: init 0}

 12

 dpst : integer
 z : integer
 rqstd : boolean {init false}
 sent : array [0..m-1] of integer {init 0 at the start of each day}
 nc, nd : integer {nonces init 0}

par k : 0..m-1 {users}

begin

 ¬rqstd -> z, rqstd, nc := any, false, NNC;
 send rqstm(NCR (bkb, (NCR (rk, z), s , nc))) to b;

 | rcv rplym(z) from b -> z, nd := DCR(bkb, (DCR(rk, z)));
 if nd > nc

nc, dpst, rqstd := nd, dpst + z, true ;
 | nd <= nc
 skip ;
 fi

 | bal[k]=0 -> z := any;
 if z<= dpst
 dpst, bal[k] := dpst - z, z;
 | z > dpst
 skip ;
 fi

 | bal[k]>0 V sent[k]<=f -> if sent[k]> f
 sent[k], bal[x], y := sent[k] + 1, bal[x] - 1, any;
 exp, dpst := exp + 1, dpst - 1;
 send mail(k, y, 1) to r;
 | sent[k]<=f
 sent[k], y := sent[k] + 1, any;
 send mail(k, y, 0) to r;
 fi
end

Process s has four actions. In the first action, s requests the bank for more e-pennies upon
checking that it has not already sent the request. In the second action, s receives the
requested e-pennies from the bank which it adds to its deposit. In the third action, any
user of s with a zero balance requests the sender for e-pennies. Thus, the server provides
the user e-pennies from its deposit. In the forth action, any user of s with a sufficient
balance or pending free emails sends an email to a user of server r. The sender checks
how many emails this user has sent on that day and accordingly sends the mail message
with or without charging the user.

Process r needs to maintain its own set of data too. It maintains its income using integer
variable inc which it increments each time it receives a paid email from s. Process r also

 13

maintains the balance of each of its user using an array of integers bal[0..m-1]. Like the
sender, it also users an integer variable dpst to maintain its deposit and boolean variable
rqstd to remember whether it has already asked the bank for credit.

process r

const m {number of users on each server}

inp bkb : integer {public key of bank}
 rk : integer {private key of r}

var x, y : 0..m-1 {x: receiver ID, y: sender ID}
 inc : integer {number of pennies from each server: init 0}
 bal : array [0..m-1] of integer {balance of each user: init 0}
 dpst : integer
 z : integer
 rqstd : boolean {init false}
 nc, nd : integer {nonces init 0}

par k : 0..m-1 {users}

begin

 | ¬rqstd -> z := any;
 if z<=dpst

rqstd, nc := true , NNC;
 send

rqstc (NCR (bkb, (NCR (rk, (z, inc, dpst-z)), r, nc)))
to b;

 | z > dpst
 skip ;
 fi

 | rcv rplyc(z) from b -> z, nd := DCR(bkb, (DCR(rk, z)));
 if nd > nc

nc, rqstd, dpst := nd, false, dpst - z;
{init inc 0}

 | nd <= nc
 skip ;
 fi

 | true -> z := any;
 if z <= dpst

bal[k], dpst := bal[k] - z, dpst + z;
 {server pays user}
 | z > dpst

 14

 skip ;
 fi

 | rcv mail(x, y, z) from s -> {deliver mail to my user x from user y of server s}
 bal[y], dpst, inc := bal[y] + z, dpst - z, inc + z;

end

Process r also has four actions. In the first action, r requests the bank for credit on its
deposit upon checking that it has not already made this request. In the second action, r
receives a reply from the bank to its request for credit. On receiving this, r decrements its
deposit by the amount requested. In the third action, any user of r exchanges its excess
balance for credit. Thus, the server reduces the user’s balance and increases its deposit. In
the forth action, r receives a mail message from s. Upon checking whether the email is
paid or not, it increments its income from s, decrements its deposit and increments the
intended user’s balance.

The bank maintains data for both the servers, not the users of these servers. At every
message exchange between the servers and b, the balance of the server is cross checked.
Thus, b maintains the balance of s and r using integers acnts and acntr. It also uses the
security variables mentioned above.

process b

inp rkb : integer {private key of b}
 bks : integer {public key of server s}
 bkr : integer {public key of server r}

var acnts : integer {init 0}
 acntr : integer {init 0}
 inc : integer
 l, m : integer
 ncs,nds: integer {nonces for s}
 ncr,ndr : integer {nonces for r}

par x : 0..p-1
 j : 0..p-1

begin

 rcv rqstm(m) from s -> m, j, nds := DCR(rkb, m);
 if j != x
 {authorization failed}
 | nds <= ncs
 skip ;
 | j = x
 m := DCR(bks, m);

 15

 ncs := nds;
 acnts , ncs := acnts + m, NNC;
 send NCR(bks , (NCR(rkb, rplym(m, ncs)))) to s;
 fi

 | rcv rqstc(m) from r -> m, j, ndr := DCR(rkb, m);
 if j != x
 {authorization failed}
 | ndr <= ncr
 skip ;
 | j = x
 m, inc, l := DCR(bkr, m);
 ncr := ndr;
 {Check for validity of inc}
 acntr, ncr := l, NNC;
 send NCR(bkr, (NCR(rkb, rp lyc(m, ncr)))) to r;
 fi

end

Process b has two actions. In the first action, b receives a request for e-pennies from s. It
validates the message and sends s the requested e-pennies. It tallies this with its acnts
variable. In the second action, b receives a request for credit from r. Again, it validates
this message and sends s the requested credits after tallying r’s acntr.

It only makes sense to put processes s and r together so that a server can send and receive
email. It also makes sense to have more than one such server in the Internet. We achieve
this by using process arrays. Each of the servers on the Internet run on the same protocol
and thus can be described using the process array s[0..n-1] which says that there are n
such servers. For simplicity we assume that all these servers have the same number of
users, m.

process s[i:0..n-1]

const n, {number of servers}
 m, {number of users on each server}
 f {free emails per day}

inp bkb : integer {public key of bank}
 rk : integer {private key of i}

var x, y : 0..m-1 {x: receiver ID, y: sender ID}
 inc : array [0..n-1] of integer {number of pennies from each server: init 0}
 exp : array [0..n-1] of integer {number of pennies from each server: init 0}
 bal : array [0..m-1] of integer {balance of each user: init 0}
 dpst : integer
 z : integer

 16

 rqstd : boolean {init false}
 sent : array [0..m-1] of integer {init 0 at the start of each day}
 nc, nd : integer {nonces init 0}

par j : 0..n-1 {servers}
 k : 0..m-1 {users}

begin

 ¬rqstd -> z, rqstd, nc := any, false. NNC;
 send rqstm(NCR (bkb, (NCR (rk, z), I, nc))) to b;

 | rcv rplym(z) from b -> z, nd := DCR(bkb, (DCR(rk, z)));
 if nd > nc

dpst, rqstd, nc := dpst + z, true , nd;
 | nd <= nc
 skip ;
 fi

 | bal[k]=0 -> z := any;
 if z<= dpst
 dpst, bal[k] := dpst - z, z;
 | z > dpst
 skip ;
 fi

 | bal[k]>0 V sent[k]<=f -> if sent[k]> f
 sent[k], bal[x], y := sent[k] + 1, bal[x] – 1, any;
 exp[k], dpst := exp[k] + 1, dpst - 1;
 send mail(k, y, 1) to s[j];
 | sent[k]<=f
 sent[k], y := sent[k] + 1, any;
 send mail(k, y, 0) to s[j];
 fi

 | ¬rqstd -> z := any;
 if z<=dpst

rqstd, nc := true , NNC;
 send

rqstc(NCR (bkb,(NCR (rk,(z, inc, dpst-z)), j, nc)))
to b;

 | z > dpst
 skip ;
 fi

 | rcv rplyc(z) from b -> z, nd := DCR(bkb, (DCR(rk, z)));
 if nd > nc

rqstd, dpst, nc := false, dpst – z, nd; {init inc 0}
 | nd <= nc

 17

 skip ;
 fi

 | true -> z := any;
 if z <= dpst

bal[k], dpst := bal[k] - z, dpst + z;
 {server pays user}
 | z > dpst
 skip ;
 fi

 | rcv mail(x, y, z) from s[j] -> {deliver mail to my user x from user y of server j}
 bal[y], dpst, inc[j] := bal[y] + z, dpst - z, inc[j] + z;

end

process b

const p, {number of servers}
 r {r-1 is the largest value for a key}

inp rkb : 0..r-1 {private key of b}
 bk : array [0..p-1] of 0..r-1 {public keys of servers}

var acnt : array [0..p-1] of integer {init 0}
 inc : array [0..p-1] of integer
 l, m : integer
 nc, nd : array [0..p-1] of integer {nonces init 0}

par x : 0..p-1
 j : 0..p-1

begin

 rcv rqstm(m) from s[x] -> m, j, nd[x] := DCR(rkb, m);
 if j != x
 {authorization failed}
 | nd[x] <= nc[x]
 skip ;
 | j = x
 m := DCR(bk[j], m);
 nc[x] := nd[x];
 acnt[x], nc[x] := acnt [x] + m, NNC;

 18

 send
NCR(bk[j], (NCR(rkb, rplym(m, nc[x])))) to s[x];

 fi

 | rcv rqstc(m) from s[x] -> m, j, nd[x] := DCR(rkb, m);
 if j != x
 {authorization failed}
 | nd[x] <= nc[x]
 skip ;
 | j = x
 m, inc, l := DCR(bk[j], m);
 nc[x] := nd[x];
 {Check for validity of inc}
 acnts[x], nc[x] := l, NNC;
 send

NCR(bk[j], (NCR(rkb, rplyc(m, nc[x])))) to s[x];
 fi

end

4.1 The mail Message

The mail message sent by the sender to the receiver is different from the current email
protocols. In the mail message the sender needs to:

1. Authenticate itself
2. Tell the receiver whether the email is paid of free

Whenever two servers communicate to send email, the sender first sends the receiver a
HELLO message which has the certificate it obtained from the bank attached to the
message. Then, the receiver server authenticates the sender by decrypting the certificate
using the bank’s public key and checking the server’s public key. The receiver now
creates a shared key for the sender and the receiver and sends it back to the sender in
another HELLO message. All future communication in this transaction will use this
shared key. Now, when the sender sends the data, it does so by appending to the data a
message digest of the same data appended with the shared key and a bit 1 or 0 signifying
whether the email is paid or free respectively. This transaction is shown clearly in Figure
6.

 19

[Figure 6: The mail Message]

5. Security

The above protocol runs on top of the current email protocols. Thus, when one server
sends an email to another, we do not need to worry about those messages getting
delivered correctly. Also, according to our assumptions, the servers and the channels of
communications are fault free and thus we do not need to worry about cheating by
servers or errors in message delivery by the channels. Our biggest enemy in this scheme
would be an adversary who steals, modifies or inserts messages from the channel.

To defend against adversary action between the servers and the bank, we use encryption
using asymmetric keys. Two keys K and L are asymmetric iff K != L. Each server in the
system has a public and private key. The bank has a list of public keys of each email
server. The bank also has a public and private key. Each email server knows the public
key of the bank.

Let b be the bank and s be one email server. Let B.b and R.b be the public and private
keys of the bank. Let B.s and R.s be the public and private keys of the email server. Now,
whenever the server communicates with the bank, it first encrypts the message with its
private key and then with the public key of the bank.

encrypted_message = (NCR (B.b, (NCR (R.s, (message)))))

 In order to decrypt this message, one needs the private key of the bank and the public
key of the email server that sent the message.

message = (DCR (R.b, (DCR (B.s, (encrypted_message)))))

Since an adversary would not know the private key of the bank, this message could not
be intercepted and read. Also, since the adversary does not know the private key of the
email server that sent the message, it cannot insert such a message into the channel.

 20

Another potentially dangerous adversary action is message replay. If the adversary
intercepts a message from an email server to the bank asking for credit and sends that
message to the bank multiple number of times, the server will be paid more than it had
asked for.

In order to protect the system from this attack we use nonces. Nonces are constantly
increasing positive integers which we attach with each message. Every message received
from a particular email server must have a nonce attached with it which has a value
higher than the previous nonce. If not, the message is discarded. Thus, in the above
example of encrypting messages, the format for the message would include a positive
integer (nonce) attached by the server and the bank whenever a message is sent.

encrypted_message = (NCR (B.b, (NCR (R.s, (message, nonce)))))

These methods of defense against adversary action protect us from messages that have no
credibility. Using these schemes, we can be assured that the message we receive is indeed
from whom we expect it to be.

An adversary can also send email by inserting a message in the channel between two
servers without paying for it. To avoid this, each server in the protocol is provided with a
certificate by the bank. This certificate is encrypted with the private key of the bank and
it has the public key of the server and the server’s identity. This certificate can only be
attained by compliant servers. Thus, a spammer program would not have such a key thus
would be unable to send messages to servers using this protocol.

6. Conclusion

The protocol mentioned in this paper revolves around reversing the economics of email
such that the bulk of the cost for sending spam falls on the spammers. The individual
whose time and effort is wasted in receiving and reading spam is now compensated. The
ISP that spends incredible amount of money to keep the Internet fast is also satisfied that
the people who are using the most bandwidth are being charged for it. The Internet is not
a free advertising machine and thus spammers are liable for their usage.

This scheme does not promise to stamp out spam, because what is spam for one person is
important information for another. Instead, this scheme makes the spammers think twice
before sending bulk email. Spam should only be sent to individuals who are interested in
knowing about that subject. This idea forces spammers to send email to only those people
who are actually going to read it. Thus, junk mail will still be around, but you will only
receive the junk you asked for.

 21

7. Acknowledgments

I would like to sincerely thank Dr. Mohamed Gouda, Dr. Benjamin Kuipers and Alex Liu
for their support and help in guiding me through writing this paper and for giving me this
opportunity.

8. References

[ABBDW03] Abadi, M., Birrell, A., Burrows, M., Dabek, F., Wobber, T., Bankable Postage for
Network Services, 2003

[SCT] Soonthornphisaj, N., Chajkulseriwat, K., Tang-On, P., Anti-Spam Filtering: A
Centroid-Based Classification Approach

[F] Fawcett, T., “In vivo” spam filtering: A challenge problem for KDD

[OV] O’Brien, C., Vogel, C., Spam Filters: Bayes vs. Chi-squared; Letters vs. Words

