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Abstract

A central problem for structured peer-to-peer networks is topology maintenance, that is, how to
properly update neighbor variables when nodes join and leave the network, possibly concurrently. In
this paper, we present a protocol that maintains Ranch, a structured peer-to-peer network topology con-
sisting of multiple rings. The protocol handles both joins and leaves concurrently and actively (i.e.,
neighbor variables are updated once a join or a leave occurs). We use an assertional method to prove
the correctness of the protocol, that is, we first come up with a global invariant and then show that ev-
ery action of the protocol preserves the invariant. The protocol is simple and the proof is rigorous and
explicit.
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1 Introduction

In a structured peer-to-peer network, members (i.e., nodes, or interchangeably, processes, that belong to the
network) maintain some neighbor variables. The neighbor variables of all the members collectively form
a certain topology (e.g., a ring). Over time, membership may change: non-members may wish to join the
network and members may wish to leave the network, possibly concurrently. When membership changes,
neighbor variables should be properly updated to maintain the designated topology. This problem, known
as topology maintenance, is a central problem for structured peer-to-peer networks.

1.1 Existing Work

There are two general approaches to topology maintenance: the passive approach and the active approach.
In the passive approach, when membership changes, the neighbor variables are not immediately updated.
Instead, a repair protocol runs in the background periodically to restore the topology. In the active approach,
the neighbor variables are immediately updated. Joins and leaves may be treated using the same approach
or using different approaches (e.g., passive join and passive leave [13], active join and passive leave [8, 14],
active join and active leave [3, 15]).

Existing work on topology maintenance has certain shortcomings. For the passive approach (e.g., [13]),
since the neighbor variables are not immediately updated, the network may diverge significantly from its
designated topology. And the passive approach is not as responsive to membership changes and requires
considerable background traffic (i.e., the repair protocol). On the other hand, active topology maintenance
is a rather complicated task. Some existing work gives protocols without proofs [15], some handle joins ac-
tively but leaves passively [8, 14], and some uses a protocol that only handles joins and a separate protocol
that only handles leaves [3]. It is not true, however, that an arbitrary join protocol and an arbitrary leave
protocol, if put together, can handle both joins and leaves (e.g., the protocols in [3] cannot; see a detailed
discussion in Section 6). Finally, existing protocols are complicated and their correctness proofs are opera-
tional and sketched at a high level. It is well known, however, that concurrent programs often contain subtle
errors and operational reasoning is unreliable for proving their correctness.

1.2 Our Contributions

In this paper, we present a topology maintenance protocol for Ranch, a structured peer-to-peer network
topology consisting of multiple rings. The protocol handles both joins and leaves concurrently and actively.
The protocols presented in this paper are simple. For example, the join protocol for Ranch, discussed in
Section 4, is much simpler than the join protocols for other topologies (e.g., [3, 8, 14]). The protocols are
based on an asynchronous communication model where only reliable delivery is assumed.

We use an assertional method to prove the correctness of the protocols, that is, we first come up with
a global invariant for a protocol and then show that every action of the protocol maintains the invariant.
We show that, although a topology may be tentatively disrupted during membership changes, our protocols
eventually restore the topology once membership changes subside. Our protocols in fact restore the topology
once the messages associated with each pending membership change are delivered, assuming that no new
changes are initiated. In practice, it is likely that message delivery time is much shorter than the mean time
between membership changes. Hence, in practice, even if membership changes never subside, the protocols
maintain the topology most of the time. A shortcoming of our protocols, however, is that some of them are
not livelock-free; see a detailed discussion in Section 5.3.
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Unlike the passive approach, which handles leaves as fail-stop faults, we handle leaves actively (i.e., we
argue that leaves and faults should be handled differently). Although treating leaves and faults in the same
manner is simpler, in many situations, leaves occur more frequently than faults. In such situations, handling
leaves and faults in the same manner may lead to some drawbacks in terms of performance (e.g., delay in
response, substantial background traffic). In peer-to-peer networks, nodes cooperate with each other all the
time by forwarding each other’s messages. Hence, it is reasonable to assume that a leaving node invokes a
leave protocol, but not just leaves silently.

The rest of this paper is organized as follows. Section 2 provides some preliminaries. Section 3 briefly
describes the Ranch topology. Section 4 discusses how to handle joins for unidirectional Ranch. Section 5
discusses how to maintain bidirectional Ranch. Section 6 discusses related work. Section 7 provides some
concluding remarks.

2 Preliminaries

We consider a fixed and finite set of processes denoted by V . Let V ′ denote V ∪ {nil}, where nil is a
special process that does not belong to V . In what follows, symbols u, v, w are of type V , and symbols
x, y, z are of type V ′. We use u.x to denote variable x of process u, and we use u.x.y to stand for (u.x).y.
By definition, the nil process does not have any variable (i.e., nil.x is undefined). We call a variable x of
type V ′ a neighbor variable. We assume that there are two reliable and unbounded communication channels
between every two distinct processes in V , one in each direction, there is one channel from a process to
itself, and there is no channel from or to process nil. Message transmission in any channel takes a finite, but
otherwise arbitrary, amount of time.

A set of processes S form a (unidirectional) ring via their x neighbors if for all u, v ∈ S (which may be
equal to each other), there is an x-path of positive length from u to v and u.x ∈ S. Formally,

ring(S, x) = 〈∀u, v : u, v ∈ S : u.x ∈ S ∧ path+(u, v, x)〉,

where
path+(u, v, x) = 〈∃i : i > 0 : u.xi = v〉

and where u.xi means u.x.x · · · x with x repeated i times. We use biring(S, x, y) to mean that a set of
processes S form a bidirectional ring via their x and y neighbors, formally,

biring(S, x, y) = ring(S, x) ∧ ring(S, y) ∧ 〈∀u : u ∈ S : u.x.y = u ∧ u.y.x = u〉.

Some other notations used in the paper are as follows.

m(msg , u, v): The number of messages of type msg in the channel from u to v. We sometimes include the
parameter of a message type. For example, m(grant(x), u, v) denotes the number of grant messages
with parameter x in the channel from u to v).

m+(msg , u), m−(msg , u): The number of outgoing and incoming messages of type msg of u, respec-
tively. A message from u to itself is considered both an outgoing message and an incoming message
of u.

#msg : The total number of messages of type msg in all channels.

↑, ↓, l: Shorthands for “before this action”, “after this action”, and “before and after this action”.
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In this paper, we write our protocols as a collection of actions, using a notation similar to Gouda’s
abstract protocol notation [6]. An execution of a protocol consists of an infinite sequence of actions. We
assume a weak fairness model where each action is executed infinitely often; execution of an action with a
false guard has no effect on the system. We assume without loss of generality that each action is atomic,
and we reason about the system state between actions. We now give a brief justification of the assumption
on the atomicity of actions. Mcguire [18] gives a more complete treatment of this issue.

Every action consists of a number of steps, which is one of the following three statements: a local
statement (i.e., an assignment to a local variable), a send statement, and a receive statement. Note that a
receive statement can only be the first step of an action. We assume that every step is atomic. An execution
of a protocol is equivalent to a sequence of steps. Given an arbitrary sequence of steps where the steps
belonging to different actions may be interleaved, our goal is to establish that this sequence, called an
interleaving execution, is equivalent to some sequence where the steps of every action are contiguous, called
a sequential execution. Subsequent results of this paper hold for arbitrary sequential executions, and this
theorem implies that those results also hold for any execution, interleaving or sequential.

Theorem 2.1 Every interleaving execution of the protocol is equivalent to some sequential execution of the
protocol.

Proof: It suffices to show that the nonfirst steps of an action, if separated by steps in other actions, can be
left moved to be adjacent to the first step of the action. Consider two adjacent steps s and t in the interleaving
execution, where s and t belong to different actions and t is not the first step of its action. First note that
s and t belong to different processes because a process completes an action before executing another one.
Our goal is to show that st = ts (i.e., executing s first and t next is equivalent to executing t first and s

next). Consider the following cases (note that t cannot be a receive statement). If t is a local statement, then
clearly st = ts. If t is a send statement, then: (1) If s is a send statement, since s and t belong to different
processes, these two sends affect different channels, and hence st = ts. (2) If s is a local statement, then
clearly st = ts. (3) If s is a receive statement, since the receive statement successfully receives some
message, putting t before s does not prevent t from receiving that message, and hence st = ts. The proof is
hence completed.

There is, however, one exception. In order to enable a joining process to find an existing process in the
peer-to-peer network, we assume that an external mechanism provides a contact() function that returns a
process in the network if there is one, and returns the calling process otherwise. Suppose that the ring has
no process, and if two processes p and q call contact() simultaneously, then contact() returns p and q to
them, respectively, causing the creation of two rings. Hence, we assume that two actions do not interleave
if they both call the contact() function.

3 The Ranch Topology

The Ranch (random cyclic hypercube) topology, proposed in [12], is a structured peer-to-peer network
topology with a number of nice properties, including scalability, locality awareness, and fault tolerance.
The presentation of Ranch in this paper is self-contained, although many details on Ranch are omitted.

In Ranch, every process u has a binary string, denoted by u.id , as its identifier. The first bit of a
nonempty identifier of u is u.id [1]. We require that the first bit of every nonempty identifier to be 0.1

Identifiers need not be unique or have the same length. Over time, identifiers may grow or shrink. We use

1This assumption is solely for the convenience of expressing the properties of Ranch.
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Figure 1: An Example of the Ranch topology.

Vα to denote the set of processes prefixed by α. Every process u uses two infinite arrays of type V ′, u.r[0..]
and u.l[0..], to be their right neighbors and left neighbors.2 We require that u.r[0] = u.l[0] = u at all times.
The Ranch topology is informally defined as: For every nonempty bit string α, all the processes prefixed by
α form a ring. The rings in Ranch can be either unidirectional or bidirectional. Formally, a topology is a
unidirectional Ranch if

U = 〈∀α : ring(Vα, r[|α|])〉

holds, and a topology is a bidirectional Ranch if

B = 〈∀α : biring(Vα, r[|α|], l[|α|])〉

holds. Hence, the key to maintaining Ranch is the joining or leaving of a single ring. We call the ring
consisting of all the processes in Vα simply the α-ring. Figure 1 shows an example of the Ranch topology.

In practice, for good performance, a process should join a sufficient number of rings, but we do not im-
pose this requirement here as it does not affect correctness. To go from one process to another, a message is
forwarded along the rings and progressively correct the bits between the current process and the destination.
We refer the reader to [12] for more details of the Ranch topology.

At a high level, Ranch and skip graphs [3] share some similarities. But as far as topology maintenance is
concerned, they have two key differences: (1) in Ranch, a new process can be added to an arbitrary position
in the base ring (i.e., the 0-ring), while in skip graphs, a new process has to be added to an appropriate
position; (2) in Ranch, the order in which the processes appear in, say, the α0-ring need not be the same
as the order in which they appear in, say, the α-ring, while in skip graphs, they have to be. For example,
in Figure 1, the order in which the processes appear in the 00-ring is different from the order in which they
appear in the 0-ring. These two flexibilities allow us to design simple maintenance protocols for Ranch,
while extra effort has to be made in order to maintain skip graphs.

4 Joins for Unidirectional Ranch

A process joins Ranch ring by ring: it first calls the contact() function to join the 0-ring, then after it has
joined the α-ring, for some α, if it intends to join one more ring, it generates the next bit d of its identifier

2Assuming infinite arrays of neighbors is solely for the convenience of expressing the protocols. In practice, a sufficiently long
array suffices.
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and joins the αd-ring. But how does the process find an existing process in the αd-ring? Note that we can
no longer use the contact() function for this purpose.

4.1 A Basic Join Protocol

The idea to overcome this difficulty is as follows. Suppose that process u intends to join the α0-ring, where
|α0| = i. Process u sends a join(u, i, 0) message to u.r[i − 1]. This join message is forwarded around the
α-ring. Upon receiving the join message, a process p makes one of the following decisions:

1. If a = p (i.e., the join message originates from p and comes back), then the α0-ring is empty and p

creates the α0-ring by setting p.r[i] = p.

2. If p is in the α-ring but is not in the α0-ring, then p forwards the join message to p.r[i − 1].

3. If p is not in the α-ring, or p itself is also trying to join the α0-ring, then p sends a retry message to a.

4. If p is in the α0-ring, then p sends a grant message to a, informing a that p is its r[i] neighbor.

Figure 2 shows the join protocol for unidirectional Ranch. Here, we assume that the contact() function
returns a process u where u.k 6= 0 if there is such a process, and returns the calling process otherwise. The
proofs of the following two theorems are omitted because they are simpler than those of some subsequent
theorems.

Theorem 4.1 invariant I .

Proof: Recall that path+(u, v, x) denotes 〈∃i : i > 0 : u.xi = v〉. We let dist(u, v, x) to denote the
smallest such i. Note that by definition, dist(u, v, x) > 0 and dist(u, v, x) is undefined if such an i does not
exist. We introduce the following definitions.

f(u) = #join(u, ∗, ∗) + m−(grant , u) + m−(retry , u),

Uα = {u : u ∈ Vα ∧ u.r′[|α|] 6= nil},

u.r′[i] =

{

x if i = u.k ∧ m−(grant , u) = 1 ∧ m−(grant(x), u) = 1
u.r[i] otherwise,

∆(u) =















Vu.id ∩ {w : 0 < dist(u,w, r′[u.k − 1]) < dist(u, v, r′[u.k − 1])}
if #join(u, ∗, ∗) = 1 ∧ m−(join(u, ∗, ∗), v) = 1 ∧ path+(u, v, r′[u.k − 1])

∅
otherwise.

In the above definitions, we use #join(u, ∗, ∗) to denote the number of join messages in all the channels
with u as the first parameter and arbitrary second and third parameters (∗ means “don’t care”). And we use
u.r[0..u.k) to mean the array from u.r[0] to u.r[u.k− 1]. An invariant of this protocol is shown in Figure 3.

Since I clearly holds initially, it suffices to show that every action preserves every conjunct of I . We
observe that the following conjuncts are trivially preserved:

C1 The only action that sends a grant message is T2, and the guard implies that r[i] 6= nil.
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process p

var s : {in, jng}; {state}
id : array [1..] of [0..1]; {identifier; k = |id |, not explicitly maintained}
r : array [0..] of V ′; {right neighbors}
a : V ′; i : integer; d : [0..1] {auxiliary variables}

init k = 0 ∧ s = in ∧ r[0] = p ∧ r[1..] = nil

begin
�

s = in → {action T1; initiate a join}
if k = 0 → a, d := contact(), 0

�
k 6= 0 → a, d := r[k], random fi;

id := grow (id , d);
if a = p → r[k] := p

�
a 6= p → s := jng ; send join(p, k, d) to a fi

�
rcv join(a, i, d) from q → {T2}
if a = p → r[k], s := p, in

�
a 6= p ∧ ((k < i ∧ r[k] 6= nil) ∨ (k ≥ i ∧ id [i] 6= d)) → send join(a, i, d) to r[i − 1]

�
a 6= p ∧ ((k < i ∧ r[k] = nil) ∨ (k ≥ i ∧ id [i] = d ∧ r[i] = nil)) → send retry() to a

�
a 6= p ∧ k ≥ i ∧ id [i] = d ∧ r[i] 6= nil → send grant(r[i]) to a; r[i] := a fi

�
rcv grant(a) from q → {T3}
r[k], s := a, in

�
rcv retry() from q → {T4}
s, id := in, shrink (id)

end

Figure 2: The basic join protocol for unidirectional Ranch.

R1 The first branch of the second if statement in T1 changes r[k], and the growth of id implies that k ≥ 1.
The first branch of T2 changes r[k], and C2 implies that k ≥ 1. Action T3 changes r[k], and A implies
that k ≥ 1.

R2 The only action that grows the id is T1, and the first if statement implies that if k ≥ 1, then id [1] = 0.

It then follows from I that E : 〈∀u : u.k ≤ 1 : ∆(u) = ∅〉, because by the definition of ∆, if u.k = 0,
then ∆(u) = ∅, and

u.k = 1
⇒ {R1,2; def. of r′}

u.id = 0 ∧ u.r[0] = u ∧ u.r′[0] = u

⇒ {def. of ∆}
∆(u) = ∅.

{I} T1 {I}: Suppose that k = 0 and then a = p. [A] This action establishes p.k ≥ 1. [B] This action
increases p.k from 0 to 1 and establishes u.r[1] 6= nil. [C2] This action does not falsify the consequent
because A implies that l #join(p, ∗, ∗) = 0. [C3] This action does not falsify the consequent because it
grows p.id and establishes p.r′[1] 6= nil. [D1] By E, this action preserves ∆(p) = ∅. [D2] The definition
of the contact() function implies that ↑ 〈∀u :: u.k = 0〉 and E implies that ↑ 〈∀u :: ∆(u) = ∅〉. Hence, this
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I = A ∧ B ∧ C ∧ D ∧ R

A = 〈∀u :: (u.s = jng ≡ f(u) = 1) ∧ f(u) ≤ 1 ∧ (f(u) = 0 ∨ u.k ≥ 1)〉

B = 〈∀u :: (u.s = in ≡ u.r[u.k] 6= nil) ∧ u.r[0..u.k) 6= nil ∧ u.r(u.k..] = nil〉

C = 〈∀u, v, j, e : C1 ∧ C2 ∧ C3〉

C1 = #grant(nil) = 0

C2 = #join(u, j, e) > 0 ⇒ j ≥ 1 ∧ j = u.k ∧ e = u.id [u.k]

C3 = m−(join(u, j, ∗), v) > 0 ⇒ v.r′[j − 1] 6= nil ∧ u.id [1..j) = v.id [1..j) ∧ (u 6= v ∨ u.k ≥ 2)

D = 〈∀u, v :: D1 ∧ D2〉

D1 = u 6∈ ∆(v) ∨ v 6∈ ∆(u)

D2 = v ∈ ∆(u) ∧ v.r′[u.k] 6= nil ⇒ 〈∃w : w ∈ Vu.id ∧ w 6∈ ∆(u) : w.r[u.k] 6= nil〉

R = 〈∀u, α : R1 ∧ R2 ∧ R3〉

R1 = u.r[0] = u

R2 = u.k ≥ 1 : u.id [1] = 0

R3 = ring(Uα, r′[|α|])

Figure 3: An invariant of the join protocol for unidirectional Ranch.

action does not truthify the antecedent. Since this action adds p to V0 and establishes p.r[1] 6= nil, it does
not falsify the consequent. [R3] We observe that

↑ contact() returns p

⇒ {def. of contact()}
↑ 〈∀u :: u.k = 0〉

⇒ {action}
↓ p.id = 0 ∧ p.r[1] = p ∧ p.s = in ∧ 〈∀u : u 6= p : u.k = 0〉

⇒ {def. of ring}
↓ 〈∀α :: ring(Uα, r′[|α|])〉.

{I} T1 {I}: Suppose that k = 0 and then a 6= p. [A] This action establishes p.s = jng , f(p) = 1, and
p.k = 1. [B] This action falsifies p.s = in and it increases p.k from 0 to 1. It follows from B that l p.r[0] 6=
nil ∧ p.r[1..] = nil. [C2] This action establishes #join(p, 1, 0) > 0, as well as p.k = 1 ∧ p.id [1] = 0.
[C3] This action establishes m−(join(p, 1, 0), a) > 0. The definition of the contact() function implies that
l a.k ≥ 1. The definition of r′ and R1 imply that l a.r′[0] 6= nil. The guard implies that p 6= a. This
action does not falsify the consequent because it grows p.id . [D1] This action preserves ∆(p) = ∅. [D2]
This action does not truthify the antecedent because, by the definition of ∆, l ∆(p) = ∅ ∧ p 6∈ ∆(u) for
any u. This action does not falsify the consequent because it increases V0 and establishes p.r[1] 6= nil. [R3]
Unaffected.

{I} T1 {I}: Suppose that k 6= 0 and then a = p. Let β be the old p.id . [A] This action establishes p.k ≥ 1.
[B] This action establishes p.r[|βd|] 6= nil. It follows from B that ↓ p.r[0..|β|] 6= nil. [C2] It follows from
A that l #join(p, ∗, ∗) = 0. [C3] This action does not falsify the consequent because it grows the id and
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establishes p.r′[|βd|] 6= nil. [D1] This action may add p to ∆(u) for some u, but D1 is preserved because
∆(p) remains ∅. [D2] Since this action preserves ∆(p) = ∅, it may truthify the antecedent only if v = p

and ↑ u ∈ Vβd ∧ u.k = |βd| for some u 6= p. But this is impossible because ↑ p.r[|β|] = p ∧ p ∈ Vβ , and
R3 implies that ↑ u 6∈ Vβ ∨ u.r′[|β|] = nil. This action does not falsify the consequent because it increases
Vβd and establishes p.r[|βd|] 6= nil. [R3] We observe that

↑ p.r[|β|] = p ∧ p.s = in

⇒ {A; def. of r′}
↑ p.r′[|β|] = p

⇒ {R3; B; def. of r′}
↑ Uβ = {p} ∧ Uβd = ∅

⇒ {action}
↓ Uβd = {p} ∧ p.r′[|βd|] = p

⇒ {R3}
↓ ring(Uβd, r

′[|βd|]).

{I} T1 {I}: Suppose that k 6= 0 and then a 6= p. [A] This action changes p.s from in to jng , increases
f(p) from 0 to 1, and increments p.k by 1. [B] This action changes p.s from in to jng and increases p.k

by 1. It follows from A and ↑ p.s = in that ↓ p.r[0..p.k] 6= nil ∧ p.r(p.k..] = nil. [C2] This action
establishes #join(p, p.k, d) > 0, as well as ↓ p.k ≥ 1 ∧ d = p.id [p.k]. [C3] It follows from B that
a 6= nil (i.e., the join message is sent to a non-nil process). Let ` be the old p.k. This action establishes
m−(join(p, ` + 1, d), a) > 0. We observe that

↑ p.r[`] = a ∧ p.s = in

⇒ {def. of r′}
↑ p.r′[`] = a

⇒ {R3; action; guard of the second if statement}
l a.r′[`] 6= nil ∧ p.id [1..`] = a.id [1..`] ∧ a 6= p

This action does not falsify the consequent because it grows p.id . [D1] This action preserves ∆(p) = ∅.
Thus, even if this action falsifies p 6∈ ∆(v) for some v, it preserves v 6∈ ∆(p). [D2] Let β be the old p.id .
This action does not truthify the antecedent because ↓ p.r ′[|βd|] = nil. This action does not falsify the
consequent because it enlarges Vβd. [R3] Unaffected.

{I} T2 {I}: Suppose T2 takes the first branch (i.e., self). [A] This action changes p.s from jng to in and
decreases f(p) from 1 to 0. [B] This action establishes both p.s = in and p.r[p.k] 6= nil. [C2] This action
removes a join message and preserves p.id . [C3] This action removes a join message. It does not falsify
the consequent because it establishes p.r ′[p.k] 6= nil. [D1] This action establishes ∆(p) = ∅. [D2] Let
p.id = βd. We observe that before this action

#join(p, ∗, ∗) = 1 ∧ m−(join(p, ∗, ∗), p) = 1
⇒ {B; def. of r′; R3}

path+(p, p, r′[|β|])
⇒ {def. of ∆; B; def. of r′}

∆(p) = Vβd \ {p}
⇒ {D1}

〈∀u : u ∈ Vβd : p 6∈ ∆(u)〉.
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Therefore, this action does not truthify the antecedent. This action does not falsify the consequent either
because it establishes both ∆(p) = ∅ and p.r[p.k] 6= nil. [R3] By the derivation for D2 above, we have

↑ ∆(p) = Vp.id \ {p}
⇒ {D2; A; def. of r′}

↑ 〈∀u : u ∈ Vp.id : u.r′[p.k] = nil〉
⇒ {action}

↓ ring(Up.id , r′[p.k]).

{I} T2 {I}: Suppose T2 takes the second branch (i.e., forward). [A,B,C2] Unaffected. [C3] Let w be
p.r[i − 1]. Then C3 and B imply that p.k ≥ i − 1 ∧ w 6= nil (i.e., the join message is forwarded to
a non-nil process). This action establishes m−(join(a, i, ∗), w) > 0. It follows from C3 and R3 that
w.r′[i − 1] 6= nil ∧ a.id [1..i) = p.id [1..i) ∧ p.id [1..i) = w.id [1..i). It follows from R2 that u.k ≥ 2. This
action does not falsify the consequent. [D1] This action preserves ∆(a), due to the guard of this branch and
the definition of ∆. [D2] This action preserves ∆(a). [R3] Unaffected.

{I} T2 {I}: Suppose T2 takes the third branch (i.e., retry). [A] This action decrements #join(a, ∗, ∗) by
1 and increments m−(retry , a) by 1, preserving f(a). [B] Unaffected. [C2,3] This action removes a join

message. [D1] This action establishes ∆(a) = ∅. [D2] This action establishes ∆(a) = ∅. [R3] Unaffected.

{I} T2 {I}: Suppose this action takes the fourth branch (i.e., grant). [A] This action decrements #join(a)
by 1 and increments m−(grant , a) by 1, preserving f(a). [B] This action preserves p.r[i] 6= nil, due to
the guard of this branch and C2, which implies that a 6= nil. [C2,3] This action removes a join message,
truthifies a.r′[i] 6= nil, and preserves p.r′[i] 6= nil. [D1] This action establishes ∆(a) = ∅. [D2] This
action establishes both ∆(a) = ∅ and a.r ′[a.k] 6= nil. Hence, it may truthify the antecedent only if v = a

and u.k = a.k, for some u 6= a. If p 6∈ ∆(u), then p is the w that satisfies the consequent. If p ∈ ∆(u),
then there exists some w 6= p that satisfies the consequent because p ∈ ∆(u) ∧ p.r ′[u.k] 6= nil. This
action does not falsify the consequent because it establishes ∆(a) = ∅ and preserves p.r[i] 6= nil. [R3]
This action changes a.r′[a.k] from nil to the old p.r′[a.k] and changes p.r′[a.k] to a. Hence, it preserves
ring(Ua.id , r[|a.id |]).

{I} T3 {I}: [A] This action falsifies p.s = jng and decreases f(p) from 1 to 0 by decrementing m−(grant , p)
by 1. [B] This action establishes both p.s = in and p.r[p.k] 6= nil. [C2,3, D1] Unaffected because by the
definition of r′, this action preserves p.r′[p.k], which is non-nil. [D2] This action establishes p.r[p.k] 6= nil

and preserves p.r′[p.k] 6= nil. Hence it does not truthify the antecedent or falsify the consequent. [R3] This
action preserves p.r′[p.k].

{I} T4 {I}: [A] This action falsifies p.s = jng and decreases f(p) from 1 to 0 by decrementing m−(retry , p)
by 1. [B] This action changes p.s from jng to in and shrinks p.id by one bit. It follows from B and the
action that ↓ p.r[0..p.k] 6= nil. [C2] This action shrinks u.id , but ↑ m−(retry , p) > 0 and A imply that
l #join(p, ∗, ∗) = 0. [C3] This action does not falsify the consequent because ↑ p.r ′[p.k] = nil. It shrinks
p.id but A and ↑ m−(retry , p) imply that l #join(p, ∗, ∗) = 0. [D1,2] Unaffected. [R3] Unaffected.

Therefore invariant I .

Theorem 4.2 If joins eventually subside, then eventually U holds and continues to hold.

Proof: Similar to the proof of Theorem 5.2.
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4.2 Avoiding Livelocks

The join protocol in Figure 2, though correctly maintains the Ranch topology, may get into the following
livelock situation. Suppose that processes u and v are in the α-ring and they both intend to join the α0-ring,
which is empty. The join message from u and that from v may reach each other at the same time and they
are both rejected. Then u and v may try to join the α0-ring again. This situation can repeat forever. Hence
a livelock. On the other hand, we cannot forward both of the join messages because that may cause the
creation of two α0-rings.

The aforementioned livelock problem partly results from the symmetry of u and v: they have the same
identifier. To overcome this problem, we use an idea similar to leader election on a ring. We assume a total
order on the processes. There are many ways to achieve such a total order. For example, the processes can
generate a sufficiently large random number, or they can generate in advance a sufficiently long identifier so
that all identifiers are unique. We do not concern ourselves with the method of achieving such a total order
in this paper.

With the total order in place, upon receiving a join(a, i, d) message on the α-ring, if process u is also
trying to join the αd-ring, then it compares itself with a based on the total order. If u < a, then u forwards
the join message and sets u.c, a local variable, to a (i.e., u records that a process with higher order is also
trying to join the αd-ring). If u > a, then u sends a retry message to a. If the join(a, i, d) message comes
back to processes a, then a first compares a.c with a. If a.c > a, then a withdraws the current attempt to
join. If a.c ≤ a, then a forms a singleton ring.

Figure 4 shows a join protocol, which we refer to as the fancy join protocol, that realizes this idea. This
protocol also correctly maintains the Ranch topology, but we omit its correctness proofs. We remark that
this leader election algorithm is not a serious performance drawback: the algorithm is invoked only when
multiple nodes are competing to join an empty ring, which does not happen often, because in practice, to
achieve good performance (i.e., logarithmic network diameter), a process joins as many rings as possible
until the smallest ring to which it belongs consists of only a (small) constant number of processes. Hence,
only a constant number of processes compete to join an empty ring.

Theorem 4.3 The fancy join protocol is livelock-free.

Proof idea: We observe that an attempt to join, say, the α0-ring may only fail due to one of the following
two reasons: (1) the α-ring is being expanded, or (2) there is a process with a higher order also attempting
to join the α0-ring. Since there are only finite number of processes and rings, attempts to join a ring leads
to the expansion of some ring (although maybe a different ring). Hence, the system is livelock-free.

5 Maintaining Bidirectional Ranch

Similar to [11], our approach to designing a protocol that maintains bidirectional Ranch is to first design a
join protocol and a leave protocol, and then combine them.

5.1 Handling Joins and Leaves Separately

The join protocol for bidirectional Ranch is a simple combination of the ideas in [11] and in Section 4.
Figure 5 shows the protocol. We omit its correctness proofs as they are simpler than those in Section 5.2.
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process p

var s : {in, jng} {state}
id : array [1..] of [0..1]; {identifier; k = |id |, not explicitly maintained}
r : array [0..] of V ′; {right neighbors}
a, c : V ′; i : integer; d : [0..1] {auxiliary variables}

init k = 0 ∧ s = in ∧ r[0] = p ∧ r[1..] = c = nil

begin
�

s = in → {action T1; initiate a join}
if k = 0 → a, d := contact(), 0

�
k 6= 0 → a, d := r[k], random fi;

id := grow (id , d);
if a = p → r[k] := p

�
a 6= p → s, c := jng , p; send join(p, k, d) to a fi

�
rcv join(a, i, d) from q → {T2}
if a = p ∧ c = p → r[k], s, c := p, in,nil

�
a = p ∧ c 6= p → s, id , c := in, shrink (id),nil

�
a 6= p ∧ ((k < i ∧ r[k] 6= nil) ∨ (k ≥ i ∧ id [i] 6= d)) → send join(a, i, d) to r[i − 1]

�
a > p ∧ k ≥ i ∧ id [i] = d ∧ r[i] = nil → send join(a, i, d) to r[i − 1]; c := a

�
(a 6= p ∧ k < i ∧ r[k] = nil) ∨ (a < p ∧ k ≥ i ∧ id [i] = d ∧ r[i] = nil) → send retry() to a

�
a 6= p ∧ k ≥ i ∧ id [i] = d ∧ r[i] 6= nil → send grant(r[i]) to a; r[i] := a fi

�
rcv grant(a) from q → {T3}
r[k], s, c := a, in ,nil

�
rcv retry() from q → {T4}
s, id , c := in, shrink (id),nil

end

Figure 4: The fancy join protocol for unidirectional Ranch.

A process leaves Ranch ring by ring, starting from the “highest” ring that it participates. The leave
protocol for bidirectional Ranch is a straightforward extension of the leave protocol in [11]. Figure 6 shows
the protocol. Again, we omit its correctness proofs.

5.2 Handling Both Joins and Leaves

Designing a protocol that handles both joins and leaves is a much more challenging problem than designing
two that handle them respectively. In particular, there are two subtleties.

The first subtlety is as follows. Suppose that there is a join(a, |α0|, 0) message in transmission from
u to v, both of which are in the α-ring. Since we only assume reliable delivery, when this join message
is in transmission, v may leave the α-ring, and even worse, v may join the α-ring again, but at a different
location. If this happens, then the join message may “skip” part of the α-ring, which may contain some
processes in the α0-ring. Therefore, if the join message comes back to process a, it causes a to form a
singleton ring, resulting in two α0-rings, which violates the definition of Ranch.

The second subtlety is as follows. Suppose that u and v belong to the α-ring and w is the only pro-
cess in the α0-ring. Then u decides to join the α0-ring and sends out a join(u, |α0|, 0) message. But
when this message has passed v but has not reached w, v also decides to join the α0-ring and sends out a
join(v, |α0|, 0) message. Since we only assume reliable delivery, the join(v) message may reach w earlier
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process p

var s : array [0..] of {in , out , jng , busy} {states}
id : array [1..] of [0..1]; {identifier; k = |id |, not explicitly maintained}
r, l, t : array [0..] of V ′; {right and left neighbors; t are auxiliary variales}
a : V ′; i : integer; d : [0..1] {auxiliary variables}

init k = 0 ∧ s[0] = in ∧ s[1..] = out ∧ r[0] = l[0] = p ∧ r[1..] = l[1..] = t[0..] = nil

begin
�

s[k] = in → {action T1; initiate a join}
if k = 0 → a, d := contact(), 0

�
k 6= 0 → a, d := r[k], random fi;

id := grow (id , d);
if a = p → r[k], l[k], s[k] := p, p, in

�
a 6= p → s[k] := jng ; send join(p, k, d) to a fi

�
rcv join(a, i, d) from q → {T2}
if a = p → r[k], l[k], s[k] := p, p, in

�
a 6= p ∧ ((k < i ∧ r[k] 6= nil) ∨ (k ≥ i ∧ id [i] 6= d)) → send join(a, i, d) to r[i − 1]

�
a 6= p ∧ ((k < i ∧ r[k] = nil) ∨ (k ≥ i ∧ id [i] = d ∧ s[i] 6= in)) → send retry() to a

�
a 6= p ∧ k ≥ i ∧ id [i] = d ∧ s[i] = in → send grant(a, i) to r[i]; r[i], s[i], t[i] := a, busy , r[i] fi

�
rcv grant(a, i) from q → {T3}
send ack(l[i]) to a; l[i] := a

�
rcv ack(a) from q → {T4}
r[k], l[k], s[k] := q, a, in ; send done(k) to l[k]

�
rcv done(i) from q → {T5}
s[i], t[i] := in,nil

�
rcv retry() from q → {T6}
s[k], id := out , shrink (id)

end

Figure 5: The join protocol for bidirectional Ranch.

than the join(u) message does. Hence, v is granted into the α0-ring, but then w may leave the α0-ring.
Therefore, the join(u) message does not encounter any process in the α0-ring before it comes back to u,
causing u to create the α0-ring. This violates the Ranch definition, because the α0-ring already exists and
consists of v.

We use the following idea to overcome these two subtleties. When u decides to join, say, the α0-ring. It
changes u.s[|α|] (from in) to wtg (waiting), a new state. Upon receiving a join(u, i, 0) message, process v

first checks if v.s[i−1] = in . If so, v takes appropriate decision as before, and if it needs to forward the join

message, v changes v.s[i − 1] to wtg . If not, v sends a retry message to u. After u receives either a grant

or a retry message, it sends an end message, which is forwarded on, to change the state of those processes
which has been set to wtg by its join message back to in . Intuitively, changing a state to wtg prevents a
process from performing certain join or leave operation that may jeopardize an ongoing join operation. The
combined protocol that realizes this idea is shown in Figure 7.

Theorem 5.1 invariant I .
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process p

var s : array [0..] of {in , out , lvg , busy} {states}
id : array [1..] of [0..1]; {identifier; k = |id |, not explicitly maintained}
r, l : array [0..] of V ′; {right and left neighbors}
a : V ′; i : integer {auxiliary variables}

init s[0..k] = in ∧ r(k..] = l(k..] = t[0..k] = nil

begin
�

s[k] = in ∧ k > 0 → {T1}
if l[k] = p → r[k], l[k], s[k], id := nil,nil, out , shrink (id)

�
l[k] 6= p → s[k] := lvg ; send leave(r[k], k) to l[k] fi

�
rcv leave(a, i) from q → {T2}
if s[i] = in ∧ r[i] = q → send grant(q, i) to a; r[i], s[i], t[i] := a, busy , r[i]

�
s[i] 6= in ∨ r[i] 6= q → send retry() to q fi

�
rcv grant(a, i) from q → {T3}
send ack(nil) to a; l[i] := q

�
rcv ack(a) from q → {T4}
send done(k) to l[k]; r[k], l[k], s[k], id := nil,nil, out , shrink (id)

�
rcv done(i) from q → {T5}
s[i], t[i] := in,nil

�
rcv retry() from q → {T6}
s[k] := in

end

Figure 6: The leave protocol for bidirectional Ranch.

Proof: We introduce the following definitions to be used in this proof.

f(u) = #join(u, ∗, ∗) + m+(leave , u) + #grant(u, ∗) + m−(ack , u) + m−(retry , u),

g(u, i) = m+(grant(∗, i), u) + m−(done(i), u) + h(u, i),

h(u, i) =

{

m(ack , u.t[i], u.r[i]) + m(ack , u.r[i], u.t[i]) if u.t[i] 6= nil ∧ u.r[i] 6= nil

0 otherwise,

u.r′[i] =















v if u.s[i] = jng ∧ #grant(u, i) = 1 ∧ m−(grant(u, i), v) = 1
v if u.s[i] = jng ∧ #grant(u, i) = 0 ∧ m−(ack , u) = 1 ∧ m(ack , v, u) = 1
nil if u.s[i] = lvg ∧ #grant(u, i) + m−(ack , u) = 1
u.r[i] otherwise,

u.l′[i] =















































v if u.s[i] = jng ∧ #grant(u, i) = 1 ∧ m+(grant(u, i), v) = 1
x if u.s[i] = jng ∧ #grant(u, i) = 0 ∧ m−(ack , u) = 1 ∧ m−(ack(x), u) = 1
nil if u.s[i] = lvg ∧ #grant(u, i) + m−(ack , u) = 1
x if #grant(u, i) + m−(ack , u) = 0 ∧ m−(grant (∗, i), u) = 1 ∧

m−(grant(x, i), u) = 1 ∧ x.s[i] = jng

v if #grant(u, i) + m−(ack , u) = 0 ∧ m−(grant (∗, i), u) = 1 ∧
m(grant(x, i), v, u) = 1 ∧ x.s[i] = lvg

u.l[i] otherwise,
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process p

var s : array [0..] of {in , out , jng , lvg , busy ,wtg}; {states}
id : array [1..] of [0..1]; {identifier; k = |id |, not explicitly maintained}
r, l, t : array [0..] of V ′; {right and left neighbors; t are auxiliary variales}
a : V ′; i : integer; d : [0..1] {auxiliary variables}

init k = 0 ∧ s[0] = in ∧ s[1..] = out ∧ r[0] = l[0] = p ∧ r[1..] = l[1..] = t[0..] = nil

begin
�

s[k] = in → {action T
j
1 ; initiate a join; let k′ = k − 1}

if k = 0 → a, d := contact(), 0
�

k 6= 0 → a, d := r[k], random fi;
id := grow (id , d);
if a = p → r[k], l[k], s[k] := p, p, in

�
a 6= p → s[k′], s[k] := wtg , jng ; send join(p, k, d) to a fi

�
s[k] = in ∧ k > 0 → {T l

1; initiate a leave}
if l[k] = p → r[k], l[k], s[k], id := nil,nil, out , shrink (id)

�
l[k] 6= p → s[k] := lvg ; send leave(r[k], k) to l[k] fi

�
rcv join(a, i, d) from q → {T j

2 ; let i′ = i − 1}
if a = p → r[i], l[i], s[i′], s[i] := p, p, in, in; send end(p, i′) to r[i′]

�
a 6= p ∧ s[i′] = in ∧ (k < i ∨ (k ≥ i ∧ id [i] 6= d)) → s[i′] := wtg ; send join(a, i, d) to r[i′]

�
a 6= p ∧ (s[i′] 6= in ∨ (s[i′] = in ∧ k ≥ i ∧ s[i] 6= in ∧ id [i] = d)) → send retry() to a

�
a 6= p ∧ s[i′] = in ∧ k ≥ i ∧ s[i] = in ∧ id [i] = d → send grant(a, i) to r[i];

r[i], s[i], t[i] := a, busy , r[i] fi
�

rcv leave(a, i) from q → {T l
2}

if s[i] = in ∧ r[i] = q → send grant(q, i) to a; r[i], s[i], t[i] := a, busy , r[i]
�

s[i] 6= in ∨ r[i] 6= q → send retry() to q fi
�

rcv grant(a, i) from q → {T3}
if l[i] = q → send ack(l[i]) to a; l[i] := a

�
l[i] 6= q → send ack(nil) to a; l[i] := q fi

�
rcv ack(a) from q → {T4; let k′ = k − 1}
if s[k] = jng → r[k], l[k], s[k′], s[k] := q, a, in, in ; send done(k) to l[k];

if k′ 6= 0 → send end(a, k′) to r[k′] fi
�

s[k] = lvg → send done(k) to l[k]; r[k], l[k], s[k], id := nil,nil, out , shrink (id) fi
�

rcv done(i) from q → {T5}
s[i], t[i] := in,nil

�
rcv retry() from q → {T6; let k′ = k − 1}
if s[k] = jng → s[k′], s[k], id := in, out , shrink (id); if k 6= 0 → send end(q, k) to r[k] fi

�
s[k] = lvg → s[k] := in fi

�
rcv end(a, i) from q → {T7}
if p 6= a → s[i] := in; send end(a, i) to r[i] fi

end

Figure 7: The combined protocol for bidirectional Ranch.
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∆(u) =























X if u.s[u.k] = jng ∧ f(u) = 1 ∧ m−(join(u, ∗, ∗), v) = 1 ∧ path+(u, v, r′[u.k − 1])
X if u.s[u.k] = jng ∧ f(u) = 1 ∧ m+(grant (u, ∗), v) = 1 ∧ path+(u, v, r′[u.k − 1])
X if u.s[u.k] = jng ∧ f(u) = 1 ∧ m−(ack (v), u) = 1 ∧ path+(u, v, r′[u.k − 1])
X if u.s[u.k] = jng ∧ f(u) = 1 ∧ m(retry , v, u) = 1 ∧ path+(u, v, r′[u.k − 1])
∅ otherwise,

X = {u} ∪ {w : 0 < dist(u,w, r′[u.k − 1]) < dist(u, v, r′[u.k − 1])}.

We use µ and ν to denote instances of the end message and, with a slight abuse of notation, we use µ.1 to
denote the first parameter of µ and we use µ.2 to denote the second parameter of µ. For every instance µ of
the end message, where µ is being sent to u and µ.1 = v, define Γ(µ) to be:

Γ(µ) =















{u} ∪ {w : 0 < dist(u,w, r′[µ.2]) < dist(u, v, r′[µ.2])}
if path+(u, v, r′[µ.2]) ∧ u 6= v

∅
otherwise

An invariant of the combined protocol is shown in Figure 8. In the invariant, j ′ denotes j − 1. We remark
that, in order to make use of the proofs in [11], we do not strive to simplify the invariant in Figure 8. For
example, the C and F conjuncts can be combined, but we do not do so because the C conjunct is almost
identical to the C conjunct of the invariant for the combined protocol for a single ring presented in [11].

It suffices to check that every action preserves every conjunct of I . We observe that conjuncts D1, R1,
and R2 are trivially preserved by every action. Also, by R1 and the definition of ∆, we have G : 〈∀u :
u.k ≤ 1 : ∆(u) = ∅〉.

{I} T
j
1 {I}: [A1] If a join message is sent, then this action establishes both p.s[p.k] = jng and f(p) = 1.

If no join message is sent, then this action preserves both p.s[p.k] = in and f(p) = 0. [A2] This action
preserves p.s[p.k] 6= busy . [A3] This action increments p.k by 1 and ↓ p.s[p.k] = in|jng . [B1] If a
join message is sent, then ↓ p.s[p.k] = jng ∧ p.r[p.k] = p.l[p.k] = nil. If no join message is sent,
then ↓ p.s[p.k] = in ∧ p.r[p.k] = p.l[p.k] = p. [B2] This action increases p.k by 1 and preserves
p.s[p.k] 6= busy . [C] Similar to the proof in [11]. [E j

1] Let ` be the old p.k. Suppose that a join(p, `+1, ∗)
message is sent. Then this action clearly establishes p.s[`] = wtg ∧ p.r[`] = a, and if ` + 1 ≥ 2, it follows
from R3 that l path+(p, p, r′[`]), where ` is the old p.k. And this action does not falsify the consequent
because it establishes p.s[`] = wtg . Suppose that no join message is sent. Then this action does not falsify
the consequent because it establishes p.s[`] = wtg ∧ p.r[` + 1] 6= nil ∧ p.r ′[` + 1] 6= nil. [El

1] This
action preserves m+(leave , p) = 0. [E2] This action may falsify the consequent only if x = p. But A1

implies that l #grant(p, ∗) = 0. [Ej
3] This action may truthify the antecedent or falsify the consequent

only if v = p. But A1 implies that l m−(ack , p) = 0. [Ej
5] This action may truthify the antecedent or

falsify the consequent only if v = p. But A1 implies that l m−(retry , p) = 0. [E6] This action does
not falsify the consequent because it does not falsify path+(u, v, r′[j]) for any u, v, j. [F1] This action
preserves ∆(p) = ∅. [F2] This action does not generate or remove any end message, it does not falsify
path+(u, v, r′[j]) for any u, v, j. [F3] This action does not generate or remove any end message, it does not
falsify path+(u, v, r′[j]) for any u, v, j, and it preserves ∆(p) = ∅. [F4] This action preserves ∆(p) = ∅.
[F5] This action preserves ∆(p) = ∅ and does not falsify v.s[j] = wtg for any v.j. [F6] Let ` be the old
p.k. This action does not truthify the antecedent because, if a join message is sent, then all the r ′ values are
preserved, and if no join message is sent, then after the action, p is the only process whose r ′[` + 1] value
equals p. This action does not falsify u.s[j] = wtg for any u, j. [R3] If this action does not send a join
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I = A ∧ B ∧ C ∧ D ∧ E ∧ F ∧ R

A = 〈∀u :: A1 ∧ A2 ∧ A3〉
A1 = (u.s[u.k] = jng |lvg ≡ f(u) = 1) ∧ f(u) ≤ 1
A2 = (u.s[j] = busy ≡ g(u, j) = 1) ∧ g(u, j) ≤ 1
A3 = u.s[0..u.k) = in|busy |wtg ∧ u.s(u.k..] = out

B = 〈∀u :: B1 ∧ B2〉
B1 = (u.s[j] = in|busy |lvg |wtg ≡ u.r[j] 6= nil ∧ u.l[j] 6= nil) ∧ (u.r[j] 6= nil ≡ u.l[j] 6= nil)
B2 = u.s[j] = busy ≡ u.t[j] 6= nil

C = 〈∀u, v, x, j : C l
1 ∧ C

j
2 ∧ C l

2 ∧ C
j
3 ∧ C l

3 ∧ C4〉
C l

1 = m+(leave(x, ∗), u) > 0 ⇒ u.s[u.k] = lvg ∧ u.r[u.k] = x

C
j
2 = m(grant(x, j), u, v) > 0 ∧ x.s[j] = jng ⇒ u.t[j] = v ∧ v.l[j] = u

C l
2 = m(grant(x, j), u, v) > 0 ∧ x.s[j] = lvg ⇒ u.t[j] = x ∧ u.r[j] = v ∧ v.l[j] = x ∧ x.l[j] = u

C
j
3 = m(ack(x), u, v) > 0 ∧ v.s[v.k] = jng ⇒ x.t[v.k] = u ∧ x.r[v.k] = v

C l
3 = m(ack(x), u, v) > 0 ∧ v.s[v.k] = lvg ⇒ x = nil ∧ v.l[v.k].t[v.k] = v ∧ v.l[v.k].r[v.k] = u

C4 = m(done(j), u, v) > 0 ⇒ v.t[j] 6= nil

D = 〈∀u, j, e : D1 ∧ D2〉
D1 = #grant(nil, ∗) = 0
D2 = #join(u, j, e) > 0 ⇒ j ≥ 1 ∧ j = u.k ∧ e = u.id [j] ∧ u.s[j] = jng ∧ u.s[j ′] = wtg

E = 〈∀u, v, w, x, j, e : E
j
1 ∧ El

1 ∧ E2 ∧ E
j
3 ∧ E

j
5 ∧ E6〉

E
j
1 = m(join(w, j, ∗), u, v) > 0 ⇒ u.s[j ′] = wtg ∧ u.r[j ′] = v ∧ (j ≥ 2 ⇒ path+(w, u, r′[j′]))

El
1 = m+(leave(x, j), u) > 0 ⇒ u.k = j

E2 = m(grant(x, j), u, v) > 0 ⇒ j = x.k ∧ (x.s[j] = jng ∧ j ≥ 2 ⇒ path+(x, u, r′[j′]))

E
j
3 = m(ack(x), u, v) > 0 ∧ v.s[v.k] = jng ∧ v.k ≥ 2 ⇒ path+(v, x, r′[v.k − 1])

E
j
5 = m(retry , u, v) > 0 ∧ v.s[v.k] = jng ∧ v.k ≥ 2 ⇒ path+(v, u, r′[v.k − 1])

E6 = m−(end(v, j), u) > 0 ⇒ j ≥ 1 ∧ (u 6= v ⇒ path+(u, v, r′[j]))
F = 〈∀u, v, µ, ν : F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6〉
F1 = u.k = v.k ⇒ ∆(u) ∩ ∆(v) = ∅
F2 = µ.2 = ν.2 ⇒ Γ(µ) ∩ Γ(ν) = ∅
F3 = µ.2 = u.k − 1 ⇒ ∆(u) ∩ Γ(µ) = ∅
F4 = ∆(u) ∩ Uu.id ⊆ {u}
F5 = v ∈ ∆(u) ⇒ v.s[u.k − 1] = wtg

F6 = u ∈ Γ(µ) ⇒ u.s[µ.2] = wtg

R = 〈∀u, α : R1 ∧ R2 ∧ R3〉
R1 = u.r[0] = u

R2 = u.k ≥ 1 ⇒ u.id [1] = 0
R3 = biring(Uα, r′[|α|])

Figure 8: An invariant of the combined protocol for bidirectional Ranch.
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message, then it creates the β-ring, where β is the new p.id . If this action sends a join message, then it does
not affect R3.

{I} T l
1 {I}: [A1] Similar to the proof in [11]. [A2] Similar to the proof in [11]. [A3] The first branch

decreases p.k by 1 and establishes p.s[j] from in to out , where j is the old p.k. The second branch changes
p.s[p.k] from in to lvg . [B1] Similar to the proof in [11]. [B2] Similar to the proof in [11]. [C] Similar to
the proof in [11]. [D2] By A1, l #join(p, ∗, ∗) = 0. [Ej

1] (first branch) Let ` be the old p.k. By R3, before
this action, p is the only process whose r ′[`] value is p. Hence, this action may falsify the consequent only if
u = p. But ↑ p.s[`] = in . (second branch) This action does not falsify the consequent because it preserves
p.s[`] 6= wtg . [El

1] (first branch) By A1, l m+(leave , p) = 0. (second branch) This action establishes
m+(leave(p, p.k), p) > 0. [E2] (first branch) This action may falsify the consequent only if x = p, but
A1 implies that l #grant(x, ∗) = 0. (second branch) This action preserves p.s[p.k] 6= jng . [E j

3] (first
branch) This action may falsify the consequent only if x = p. But A1 implies that l #ack(p) = 0. (second
branch) This action preserves p.s[`] 6= jng . [Ej

5] (first branch) This action may falsify the consequent only
if u = p. But A1 implies that l m−(retry , p) = 0. (second branch) This action preserves p.s[`] 6= jng .
[E6] This action may falsify the consequent only if u = v = p. [F1] (first branch) Let β be the old p.id .
Since before this action, p is the only process on the β-ring, removing p from the β-ring does not affect any
∆ value. (second branch) Unaffected. [F2] (first branch) By E6, if p has any incoming end(u, `) message,
then u = p. Hence, removing p from the β-ring preserves the emptiness of the Γ value of those messages.
(second branch) Unaffected. [F3] (first branch) As reasoned in F2, this action preserves all the Γ and ∆
values. It may truthify the antecedent only if u = p, but l ∆(p) = ∅. (second branch) Unaffected. [F4]
This action preserves ∆(p) = ∅ and the first branch establishes Uβ = ∅ where β is a the old p.id . [F5] This
action preserves all the ∆ values and preserves p.s[`] 6= wtg . [F6] This action preserves all the Γ values
and preserves p.s[`] 6= wtg . [R3] (first branch) This action removes p from the singleton β-ring. (second
branch) Unaffected.

{I} T
j
2 {I}: (self) [A1] This action decreases f(p) from 1 to 0 and establishes p.s[p.k] = in . [A2] This

action changes p.s[p.k] from jng to in and changes p.s[p.k − 1] from wtg to in . [A3] This action changes
p.s[p.k] from jng to in and changes p.s[p.k − 1] from wtg to in . [B1] This action changes p.s[p.k] from
jng to in and truthifies both p.r[p.k] 6= nil and p.l[p.k] 6= nil. [B2] This action preserves p.s[p.k] 6= busy .
[C l

1] By A1 and ↑ #join(p, ∗, ∗) > 0, we have l m+(leave , p) = 0. [C2,3] This action truthifies
p.r[p.k] 6= nil and p.l[p.k] 6= nil. Hence it does not falsify any of the consequents. [C4] Unaffected. [D2]
This action removes a join message and falsifies both p.s[p.k] = jng and p.s[p.k − 1] = wtg . [E j

1] This
action removes a join message. It may falsify the consequent only if u = p and j = p.k. We observe that
there is no outgoing join(x, p.k, ∗) message from p for some x because otherwise, by the definition of ∆,
p ∈ ∆(p)∧ p ∈ ∆(x), contradicting F1. [El

1] Unaffected. [E2] This action does not falsify the consequent
because it truthifies both p.s[p.k] 6= jng and p.r ′[p.k] 6= nil. [Ej

3] This action falsifies p.s[p.k] = jng and
truthifies p.r′[p.k] 6= nil. [Ej

5] Same as E
j
3 . [F1] This action preserves p.k and truthifies ∆(p) = ∅. [F2]

Let S be the old ∆(p). This action creates a new instance ρ of the end message, and Γ(ρ) = S \ {p}. Thus,
by F3, this action preserves F2. [F3] Similar to F2. By F1, this action preserves F3. [F4] Let β be p.id .
By R3 and the definition of ∆, ↑ ∆(p) = Vp.id [1..p.k). Hence, ↑ Uβ = ∅. This action puts p into Uβ but
establishes ∆(p) = ∅. [F5] This action does not truthify the antecedent because it establishes ∆(p) = ∅.
This action may falsify the consequent only if v = p and u.k = p.k. But F1 implies that p does not belong
to ∆(u) of any u such that u.k = p.k and u 6= p. [F6] This action creates a new instance ρ of the end

message such that Γ(ρ) = S \ {p} where S is the old ∆(p). Hence, by F5, this action preserves F6. [R3]
This action creates a singleton β-ring.
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{I} T
j
2 {I}: (forward) [A1] This action preserves f(a) = 1. [A2] Unaffected. [A3] Unaffected.

[B1] Unaffected. [B2] Unaffected. [C] Unaffected because this action preserves p.s[i′] 6= lvg . [D2]
This action forwards the join message and truthifies p.s[i′] = wtg . [Ej

1] This action establishes both
m(join(a, i, ∗), p, p.r[i′ ]) > 0 and p.s[i′] = wtg . By E

j
1 , ↑ path+(a, q, r′[i′]) ∧ q.r′[i′] = p. Hence,

↓ path+(a, p, r′[i′]). [El
1] Unaffected. [E2, E

j
3, E

j
5] This action preserves p.s[i′] 6= jng . [E6] Unaffected.

[F1] This action adds p to ∆(a), and F1 is preserved by this action due to F5. [F2] Unaffected. [F3] This
action adds p to ∆(a), and F3 is preserved by this action due to F6. [F4] This action adds p to ∆(a), but due
to the guard of this branch, p 6∈ Ua.id . [F5] This action adds p to ∆(a) and truthifies p.s[a.k − 1] = wtg .
[F6] This action truthifies p.s[i′] = wtg . [R3] Unaffected.

{I} T
j
2 {I}: (retry) [A1] This action preserves f(a). [A2] Unaffected. [A3] Unaffected. [B1] Unaffected.

[B2] Unaffected. [C] Unaffected. [D2] This action removes a join message. [Ej
1] This action removes a

join message. [E2, E
j
3, E6] Unaffected. [Ej

5] This action truthifies m(retry , p, a) > 0, and E
j
1 implies that

if a.k ≥ 2, then path+(a, p, r′[a.k − 1]). [F ] Unaffected because ∆(p) is preserved. [R3] Unaffected.

{I} T
j
2 {I}: (grant) [A1] Similar to the proof in [11]. [A2] Similar to the proof in [11]. [A3] This action

changes p.s[i] from in to busy . [B1] Similar to the proof in [11]. [B2] Similar to the proof in [11].
[C] Similar to the proof in [11]. [D2] This action removes a join message and preserves p.s[i] 6= jng

and p.s[i] 6= wtg . [Ej
1] This action removes a join message. It does not falsify the consequent because

↑ p.s[i′] 6= wtg and this action does not falsify path+(w, u, r′[j′]) for any w, u, j because it changes p.r ′[i] to
a and changes a.r′[a.k] from nil to the old p.r′[i]. [El

1] Unaffected. [E2] Let w be the old p.r[i]; B1 implies
that w 6= nil. This action establishes m(grant(a, i), p, w) > 0. By D2, i = a.k ∧ a.s[i] = jng , and by E

j
1 ,

if j ≥ 2, then path+(a, p, r′[j′]). This action does not falsify the consequent because it preserves p.k and
p.s[i] 6= jng , and this action does not falsify path+(x, u, r′[j′]) for any x, u, j. [Ej

3] This action preserves
p.s[i] 6= jng and does not falsify path+(v, x, j) for any v, x, j. [Ej

5] Same as E
j
3. [E6] This action does not

falsify path+(u, v, r′[j]) for any u, v, j. [F1] This action preserves ∆(a). Since ↑ p.s[i] = in∧a.s[i] = jng ,
by F5, neither of them is in ∆(w) where w.k = i + 1. Hence, changing p.r ′[i] and a.r′[i] does not affect
any ∆ value. [F2] Since ↑ p.s[i] = in ∧ a.s[i] = jng , by F6, neither of them is in Γ(ρ) where ρ.k = i.
Hence, changing p.r′[i] and a.r′[i] does not affect any Γ value. [F3] Similar to F1. Unaffected. [F4] Let
β be a.id . This action preserves ∆(a). It truthifies a.r ′[a.k] 6= nil and hence adds a to Uβ . [F5] This
action preserves both ∆(a) and p.s[i] 6= wtg . [F6] Similar to F2, all Γ values are preserved, and this action
preserves p.s[i] 6= wtg . [R3] Similar to the proof in [11].

{I} T l
2 {I}: [A1] Similar to the proof in [11]. [A2] Similar to the proof in [11]. [A3] (first branch) This

action changes p.s[i] from in to busy . (second branch) This action preserves p.s[i]. [B1] Similar to the
proof in [11]. [B2] Similar to the proof in [11]. [C] Similar to the proof in [11]. [D2] Either branch preserves
p.s[i] 6= jng and p.s[i] 6= wtg . [Ej

1] (first branch) This action may falsify the consequent only if u = p or
u = a. But ↑ p.s[i] 6= wtg and ↑ a.s[i] 6= wtg . (second branch) Unaffected. [E l

1] This action removes a
leave message. [E2] (first branch) Let w be the old p.r[i]. This action establishes m(grant(q, i), p, w) > 0.
By El

1, we have i = q.k. This action may falsify the consequent only if u = q and j ′ = q.k. But A1

and C l
2 imply that l m+(grant(∗, q.k + 1), q) = 0. (second branch) Unaffected. [E j

3] (first branch) This
action preserves p.s[i] 6= jng . It may falsify the consequent only if x = q. But A1 and C

j
3 imply that

l #ack(q) = 0. (second branch) Unaffected. [Ej
5] (first branch) This action preserves p.s[i] 6= jng . It

may falsify the consequent only if u = q for some u. But if the antecedent holds after this action, then
↑ p.s[i] = wtg because ↑ p ∈ ∆(v), contradicting ↑ p.s[i] = in . (second branch) This action establishes
m(retry , p, q) > 0, but q.s[q.k] 6= jng . [E6] (first branch) This action may falsify the consequent only
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if v = q and j = q.k. If ↑ m−(end(q, q.k), w) > 0 for some w, then by F6, ↑ p.s[q.k] = wtg because
↑ p ∈ Γ(µ) for some µ, contradicting ↑ p.s[q.k] = in . (second branch) Unaffected. [F1] (first branch)
Since ↑ p.s[i] = in∧q.s[i] = lvg , by F5, we have p 6∈ ∆(w) and q 6∈ ∆(w) for any w such that w.k = i+1.
Hence, this action preserves all the ∆ values. (second branch) Unaffected. [F2] (first branch) By F6, we
observe that this action preserves all the Γ values. (second branch) Unaffected. [F3] Similar to F1 and
F2. This action preserves all the ∆ and Γ values. [F4] (first branch) This action preserves all the ∆ values
and removes q from Uq.id . (second branch) Unaffected. [F5] (first branch) This action preserves all the ∆
values and preserves both p.s[i] 6= wtg and q.s[i] 6= wtg . (second branch) Unaffected. [F6] Similar to F5.
[R3] Similar to the proof in [11].

{I} T3 {I}: [A1] Similar to the proof in [11]. [A2] Similar to the proof in [11]. [A3] Unaffected. [B1]
Similar to the proof in [11]. [B2] Similar to the proof in [11]. [C] Similar to the proof in [11]. [D2]
Unaffected. [Ej

1] Unaffected. [El
1] Unaffected. [E2] This action removes a grant message. [Ej

3] (first
branch) This action establishes m(ack(q), p, a) > 0. By E2, we have ↑ path+(a, q, r′[a.k − 1]). (second
branch) We observe that ↑ a.s[i] = lvg . [Ej

5] Unaffected. [E6] Unaffected. [F ] Unaffected. [R3]
Similar to the proof in [11].

{I} T4 {I}: (first branch) [A1] Similar to the proof in [11]. [A2] Similar to the proof in [11]. [A3] This
action changes p.s[p.k] from jng to in and changes p.s[p.k − 1] from wtg to in . [B1] Similar to the proof
in [11]. [B2] Similar to the proof in [11]. [C] Similar to the proof in [11]. [D2] This action may falsify
the consequent only if u = p. But A1 implies that l #join(p, ∗, ∗) = 0. [Ej

1] This action may falsify
the consequent only if u = p and j = p.k. But p has no outgoing join(w, p.k, ∗) message for any w

because that makes p ∈ ∆(p) and p ∈ ∆(w), violating F1. [El
1] Unaffected. [E2] This action falsifies

p.s[p.k] = jng . [Ej
3] This action removes an ack message and falsifies p.s[p.k] = jng . [E j

5] This action
falsifies p.s[p.k] = jng . [E6] Let w be p.r[p.k − 1]. This action establishes m(end(a, p.k − 1), w) > 0. If
a 6= w, then by E2 and ↑ p.r′[p.k−1] = w, we have ↓ path+(w, a, r′[p.k−1]). [F1] This action establishes
∆(p) = ∅. [F2] Let S be the old ∆(p). This action creates an instance ρ of the end message such that
Γ(ρ) = S \ {p}. Hence, by F3, this action preserves F2. [F3] By F1, this action preserves F3. [F4] This
action establishes ∆(p) = ∅. [F5] This action establishes ∆(p) = ∅ and falsifies p.s[p.k − 1] = wtg . By
F1, we observe that p 6∈ ∆(w) for any w such that w.k = p.k. [F6] By F5, this action preserves F6. [R3]
Similar to the proof in [11].

{I} T4 {I}: (second branch) [A1] Similar to the proof in [11]. [A2] Similar to the proof in [11]. [A3] This
action changes p.s[p.k] from lvg to out . [B1] Similar to the proof in [11]. [B2] Similar to the proof in [11].
[C] Similar to the proof in [11]. [D2] This action preserves p.s[p.k] 6= jng . [Ej

1] This action preserves
p.s[p.k] 6= wtg . [E l

1] This action decreases p.k by 1, but A1 implies that l #grant(p, ∗) = 0. [E2] This
action preserves p.s[p.k] 6= jng . [Ej

3] This action removes an ack message and preserves p.s[p.k] 6= jng

and decreases p.k by 1. [Ej
5] This action preserves p.s[p.k] 6= jng . [E6] Unaffected. [F ] Unaffected. Note

that this action preserves p.s[p.k] 6= wtg . [R3] Similar to the proof in [11].

{I} T5 {I}: [A1] Similar to the proof in [11]. [A2] Similar to the proof in [11]. [A3] This action changes
p.s[i] from busy to in . [B1] Similar to the proof in [11]. [B2] Similar to the proof in [11]. [C] Similar to
the proof in [11]. [D2, E, F ] Unaffected. [R3] Similar to the proof in [11].

{I} T6 {I}: (first branch) [A1] Similar to the proof in [11]. [A2] Similar to the proof in [11]. [A3]
This action changes p.s[p.k] from jng to out and p.s[p.k − 1] from wtg to in . [B1] Similar to the proof
in [11]. [B2] Similar to the proof in [11]. [C] Similar to the proof in [11]. [D2] This action may falsify the
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consequent only if u = p. But A1 and ↑ m−(retry , p) > 0 imply that l #join(p, ∗, ∗) = 0. [Ej
1] Let ` be

the old p.k. This action falsifies p.s[` − 1] = wtg . We observe that p has no other outgoing join(w, `, ∗)
message because otherwise ↑ p ∈ ∆(p)∧p ∈ ∆(w), violating F1. [El

1] This action decreases p.k by 1. But
A1 implies that l m+(leave , p) = 0. [E2] This action may falsify the consequent only if x = p. But A1 and
↑ m−(retry , p) > 0 imply that l #grant(p, ∗) = 0. [Ej

3] This action falsifies p.s[p.k] = jng . [Ej
5] This

action removes a retry message and falsifies p.s[p.k] = jng . [E6] Let ` be the new p.k and let w be p.r[`].
This action establishes m(end(q, `), w) > 0. If q 6= w and ` ≥ 1, then by E

j
5 , we have path+(w, q, r′[`]).

[F1] This action establishes ∆(p) = ∅. [F2] Let S be the old ∆(p). Then this action creates an instance
ρ of the end message such that Γ(ρ) = S \ {p}. Then by F3, this action preserves F2. [F3] By F1, this
action preserves F3. [F4] This action establishes ∆(p) = ∅. [F5] This action falsifies p.s[`] = wtg . But F1

implies that ↑ p 6∈ ∆(w) for any w such that w.k = ` + 1. [F6] This action falsifies p.s[`] = wtg . But F3

implies that ↑ p 6∈ Γ(ρ) for any ρ such that ρ.k = `. [R3] Similar to the proof in [11].

{I} T6 {I}: (second branch) [A1] Similar to the proof in [11]. [A2] Similar to the proof in [11]. [A3] This
action changes p.s[`] from lvg to out , where ` is the old p.k, and then decrements p.k by 1. [B1] Similar
to the proof in [11]. [B2] Similar to the proof in [11]. [C] Similar to the proof in [11]. [D2] This action
preserves p.s[p.k] 6= jng and p.s[p.k] 6= wtg . [Ej

1] This action preserves p.s[p.k] 6= wtg . [E l
1] Unaffected.

[E2] This action preserves p.s[p.k] 6= jng . [Ej
3] This action preserves p.s[p.k] 6= jng . [Ej

5] This action
preserves p.s[p.k] 6= jng . [E6] Unaffected. [F ] Unaffected. [R3] Similar to the proof in [11].

{I} T7 {I}: If p = a, then I is trivially preserved because this action only removes an end message. Sup-
pose that p 6= a. [A,B] By F6, this action changes p.s[i] from wtg to in . [C] By F6, this action changes
p.s[i] from wtg to in . [D2] This action falsifies p.s[i] = wtg . But A1 implies that l #join(p, ∗, ∗) = 0.
[Ej

1] This action falsifies p.s[i] = wtg . But F3 implies that p does not have any outgoing join(w, i + 1, ∗)

message. [El
1] Unaffected. [E2, E

j
3 , E

j
5] This action preserves p.s[i] 6= jng . [E6] This action es-

tablishes m−(end(a, i), p.r[i]) > 0. If a 6= p.r[i], then E6 implies that ↓ path+(p.r[i], a, r′[i]). [F1]
Unaffected. [F2] This action removes an instance ρ, and creates an instance ρ′, of the end message, such
that Γ(ρ) = Γ(ρ′)∪ {p}. [F3] Similar to F2. [F4] Unaffected. [F5] This action falsifies p.s[i] = wtg . But
F3 implies that p 6∈ ∆(w) such that w.k = i + 1. [F6] This action falsifies p.s[i] = wtg . But F2 implies
that p 6∈ Γ(ρ) such that ρ.k = i. [R3] Unaffected.

Therefore, invariant I .

Theorem 5.2 If joins and leaves eventually subside, then B eventually holds and continues to hold.

Proof idea: We use the techniques in [19] to prove the progress properties. Let Q (quiescent) be a global
boolean variable controlled by the environment but not the protocol. We assume that Q is initially false and
Q remains true once it is truthified. We modify the protocol by adding ¬Q as an additional conjunct to the
guards of T

j
1 and T l

1. Hence, once Q holds, T
j
1 and T l

1 are disabled. Our goal is to show that Q 7→ B. The
discussion below apply to the system state after Q is truthified.

We first observe that eventually #leave = 0 because Q prevents new leave messages from being gen-
erated and the existing leave messages will eventually be either granted or declined. Similarly, all the
messages generated due to a leave request will eventually be delivered. We then observe that after those
messages are all delivered, eventually #join = 0. To see this, let J be the set of all the join messages in the
network at that time. Consider a join(u, i, d) message, where i is the smallest second parameter among all

20



the messages in J . The program text and the fact that all the messages related to leaves are delivered imply
that

#join(u, i, d) = 1 ∧ |∆(u)| = ` co #join(u, i, d) = 0 ∨ |∆(u)| = ` + 1.

Since i is the smallest among all the messages in J and a join(∗, j, ∗) message may only cause a β-ring,
where |β| = j, to grow, and since ∆(u) consists of processes on a ring of length i − 1 and hence ∆(u)
does not grow, eventually #join(u, i, d) = 0. Therefore, by a simple inductive argument on i, eventually
#join = 0.

We then observe that, once Q ∧ #leave = 0 ∧ #join = 0 holds, it follows from the program
text that all the messages other than end messages will eventually be delivered. Therefore, Q 7→ Q ∧
(there are only end messages). When this holds, let S be the set of all the end messages. Let M = |S| and
let N =

∑

µ∈S |Γ(µ)|. When there are only end messages, by the program text, we have

M = m ∧ N = n 7→ (M = m − 1 ∧ N = n) ∨ (M = m ∧ N = n − 1)

Hence, M = m 7→ M = 0 and therefore, Q 7→ Q∧(no message in the network). If there are no messages
in the network, then u.r′[i] = u.r[i] and u.l′[i] = u.l[i], for all u, i, by the definitions of r ′, l′. Therefore,
Q 7→ B.

5.3 Discussions

A desirable property for a topology maintenance protocol is that a process that has left the network does not
have any incoming message related to the network. This property, however, is not provided by the protocol
in Figure 7 if we only assume reliable, but not ordered delivery. On the other hand, if we assume reliable
and ordered delivery of messages and we extend the protocol using a method similar to the one suggested
in [11], then the extended combined protocol provides this property.

This combined protocol in Figure 7 is not livelock-free. In fact, as pointed out in [11], the leave protocol
for a single ring is not livelock-free. We remark that this property is not provided by existing work either;
see a detailed discussion in Section 6 and in [11]. Lynch et al. [15] have pointed out the similarity between
this problem and the classical dining philosophers problem, for which there is no deterministic symmetric
solution that avoids starvation [10]. However, one may use a probabilistic algorithm similar to the one
in [10] to provide this property, or, as in the Ethernet protocol, a process may delay a random amount of
time before sending out another leave request.

6 Related Work

Peer-to-peer networks belong in two categories, structured and unstructured, depending on whether they
have stringent neighbor relationships to be maintained by their members. Topology maintenance is thus a
non-issue for unstructured peer-to-peer networks. In recent years, numerous topologies have been proposed
for structured peer-to-peer networks (e.g., [3, 7, 12, 16, 17, 20, 23, 21, 22, 24]). Many of them, however,
assume that concurrent membership changes only affect disjoint sets of the neighbor variables. Clearly, this
assumption does not always hold.

Chord [23] takes the passive approach to topology maintenance. Liben-Nowell et al. [13] investigate the
bandwidth consumed by repair protocols and show that Chord is nearly optimal in this regard. Hildrum et
al. [8] focus on choosing nearby neighbors for Tapestry [24], a topology based on PRR [20]. In addition,
they propose a join protocol for Tapestry, together with a correctness proof. Furthermore, they describe
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how to handle leaves (both voluntary and involuntary) in Tapestry. However, the description of voluntary
(i.e., active) leaves is high-level and is mainly concerned with individual leaves. Liu and Lam [14] have
also proposed an active join protocol for a topology based on PRR. Their focus, however, is on constructing
a topology that satisfies the bit-correcting property of PRR; in contrast with the work of Hildrum et al.,
proximity considerations are not taken into account.

The work of Aspnes and Shah [3] is closely related to ours. They give a join protocol and a leave pro-
tocol, along with two terse correctness arguments. The correctness arguments is a step towards assertional
proofs because they reason about an invariant that captures the definition of a skip graph. But their work
has some shortcomings. Firstly, the invariant does not capture the system state when messages are in trans-
mission. As we have seen in this paper, reasoning about the system state during message transmission is a
main part of the proofs. Also, the arguments of [3] are operational and mainly reason about individual joins
or leaves, but the reasoning on concurrency is sketchy. Secondly, the join protocol and the leave protocol
of [3], if put together, cannot handle both joins and leaves. (To see this, consider the scenario where a join
occurs between a leaving process and its right neighbor.) Thirdly, for the leave protocol, a process may send
a leave request to a process that has already left the network. As we previously discussed, this is undesirable.
The problem persists even if ordered delivery of messages is assumed, and a method like retry does not fix
the problem. It is assumed in [3] that a process does not leave the network if it is waiting for some message
associated with a leave. This assumption does not solve the problem, though, because even if a process u

does not have an incoming message from v at a given moment, process v may later forward a message from
w to u. As a result, a process may never know when it can leave the network. Moreover, in practice, it is
likely to be difficult for a process to detect if it has an incoming message. Fourthly, the protocols rely on the
search operation, the correctness of which under topology change is not established.

Awerbuch and Scheideler [4] propose the hyperring, a low-congestion deterministic dynamic network
topology. The focus of [4] is on the performance bounds (e.g., message bounds) of hyperrings, and the
maintenance of hyperrings is only briefly discussed.

In their position paper, Lynch et al. [15] outline an approach to providing atomic data access in peer-to-
peer networks and give the pseudocode of the approach for the Chord ring. The pseudocode, excluding the
part for transferring data, gives a topology maintenance protocol for the Chord ring. However, although [15]
provides some interesting observations and remarks, no proof of correctness is given, and the proposed
protocol has several shortcomings, some of which are similar to those of [3] (e.g., it does not work for both
joins and leaves and a message may be sent to a process that has already left the network).

Assertional proofs of distributed algorithms appear in, e.g., Ashcroft [2], Lamport [9], and Chandy and
Misra [5]. It is not uncommon for a concurrent algorithm to have an invariant consisting of a number of con-
juncts. Our work can be described by the closure and convergence framework of Arora and Gouda [1]: the
protocols operate under the closure of the invariants, and the topology converges to a ring once membership
changes subside.

7 Concluding Remarks

We have shown in this paper simple protocols that actively maintain the Ranch topology under both joins
and leaves. Numerous issues merit further investigation. It would be interesting to develop machine-checked
proofs for the protocols; investigate if certain techniques can help to reduce the proof lengths; design simple
protocols that provide certain progress properties; extend the protocols to faulty environments.
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