
Triangle Fixing Algorithms for the Metric Nearness Problem

Inderjit S. Dhillon Suvrit Sra
Computer Sciences

The University of Texas at Austin

Austin, TX, 78712

Joel A. Tropp
ICES

The University of Texas at Austin

Austin, TX, 78712.

September 10, 2004

Technical Report # TR-04-22
Department of Computer Sciences

University of Texas at Austin
Austin, TX, 78712

Abstract

Numerous problems in machine learning, data mining, databases and statistics involve
pairwise dissimilarities amongst a set of objects. These dissimilarities can be represented as
edge weights in a complete graph with the objects as the vertices. Often one desires the dissim-
ilarities to satisfy the properties of a metric—especially the triangle inequality. Applications
where metric data is important include clustering, metric based indexing, classification, query
processing, and approximation algorithms. In this paper we present algorithms for solving the
Metric Nearness Problem: Given a non-metric graph (dissimilarity matrix), find the “nearest”
metric graph whose edge weights satisfy the triangle inequalities. This paper presents algo-
rithms that exploit the innate structure of the problem for solving it efficiently for nearness
in ℓp norms. Empirically, the algorithms have time and storage requirements linear in the
number of triangle constraints. The methods are easily parallelizable enabling the solution of
large problems.

1 Introduction

The Metric Nearness (MN) problem, which seeks the “nearest” metric graph to a given input
graph, was introduced by Dhillon et al. [2003]. The problm can be modeled as a general convex
optimization problem for an important class of nearness measures (the ℓp norms with 1 < p < ∞),
and as linear programming for ℓ1 and ℓ∞ based error measures. Other than resorting to standard
convex optimization softare, Dhillon et al. [2003] did not provide explicit algorithms for solving the
problem, though they conjectured the existence of efficient algorithms that could take advantage of
the structure of the problem. In this paper we exploit the structure of the problem to give generic
triangle fixing algorithms1 to enforce triangle inequality on the input graph. Our approach, which
makes use of specific convex programming techniques, is general enough to encompass a wide
variety of nearness measures. We make use of row action methods that proceed by optimizing the
objective function subject to one constraint at a time, with the inclusion of certain correction terms.

1Triangle fixing algorithms proceed by enforcing triangle equality for each violated triangle in the input graph.

The way equality is enforced is governed by the particular nearness measure employed.

1

The beauty of such methods is that, by an appropriate choice of the correction term (determined
by the nearness measure), the method can be shown to converge to the globally optimal solution.

The MN problem is formally described in Section 3 along with the notation and concepts neces-
sary for understanding the algorithms that form the subject of Section 4. Preliminary experimental
results illustrating the performance of our algorithms follow in Section 5. Some discussion about
the problem and the algorithms along with a mention of interesting connections to the All Pairs
Shortest Paths (APSP) problem can be found in Section 6. Since the MN problem is new and
as yet underexplored, we suggest potential future work in Section 7. Important, but somewhat
ancillary details are pushed into an appendix trailing this report.

2 Background Material

For solving the MN problem we make use of two well known optimization methods: (i) Bregman’s
method for inequality constrained problems [Censor and Zenios, 1997, §6.3], and (ii) Dykstra’s
method for [Deutsch, 2001, Chapter 9]. We could have employed Bregman’s method alone for
our purpose but to expose other related methods we chose to also include Dykstra’s method.
Both Bregman’s and Dykstra’s methods are row action methods as they proceed by enforcing one
constraint (one row) of the constraint matrix at a time. Bregman’s method is more general in the
functions that it can minimize subject to linear inequality constraints whereas Dykstra’s method
minimizes a quadratic objective allowing the constraint sets to be arbitrary convex sets. We
emphasize though that these two methods, used by themselves would be prohibitive, implemented
as triangle fixing procedures they become viable.

There also exist methods in the literature [Bauschke and Lewis, Bregman et al., 1999] that
allow one to generalize either Bregman’s algorithm (or Dykstra’s algorithm) so that the method is
applicable to a wide range of objective functions along with arbitrary convex constraint sets. We
present procedures that efficiently implement Bregman’s and Dykstra’s methods to take advantange
of the structure of the constraint matrix thereby solving the nearness problem efficiently.

Before we proceed to the problem or the algorithms we need to establish some background.
The material presented herein can be found in much greater detail in the book by Censor and
Zenios [1997]. More details about Dykstra’s algorithm and a proof of its convergence can be found
in the book by Deutsch [2001].

2.1 Bregman Functions and Generalized Projections

Let S be a nonempty, open convex set such that its closure S̄ is contained in the domain of a
strictly convex function ϕ : Λ ⊆ Rn → R. Also assume that ϕ(x) has continuous first partial
derivatives for all x ∈ S. From such a function ϕ we can construct a function Bϕ : S̄ × S → R:

Bϕ(x, y) = Bϕ(x‖y) := ϕ(x) − ϕ(y) − 〈∇ϕ(y), x − y〉. (2.1)

This function Bϕ(x‖y) is called the Bregman divergence between x and y [Censor and Zenios,
1997] or the E-function [Hestenes, 1975]. It is nonnegative, convex in the first argument and zero if
and only if x = y. Under certain conditions (strictly convexity, twice continuously differentiability
and co-finiteness when ϕ : Rn → R) ϕ is called a Bregman function [See Censor and Zenios, 1997,
Def. 2.1.1]. For our purposes, we will always work with functions that are Bregman functions and
following Censor and Zenios [1997] we denote the family of Bregman functions B(S), where S is
as described above.

2

Since we aim to solve nearness problems where the measure of nearness is a Bregman divergence,
we must first look at Bregman projections (or simply projections where the distance is measured
by a Bregman divergence).

Definition 2.1 (Bregman projection [Censor and Zenios, 1997, Def 2.1.2]). Given Ω ⊆ Rn,
ϕ ∈ B(S) and y ∈ S, a point x∗ ∈ Ω ∩ S̄ for which

Pϕ
Ω (y) ≡ min

z∈Ω∩S̄
Bϕ(z‖y) = Bϕ(x∗‖y),

is called the Bregman projection of the point y onto the set Ω.

In the absence of a superscript, we adopt the convention that PΩ(y) refers to the orthogonal
projection of y onto Ω.

Lemma 2.2 ([Censor and Zenios, 1997, Lemma 2.1.2]). If ϕ ∈ B(S), then for any closed

convex set Ω ⊆ Rn, such that the intersection of Ω with the closure of S is nonempty, i.e., Ω∩S̄ 6= ∅,
and for any y ∈ S, there exists a unique Bregman projection x∗ ≡ Pϕ

Ω (y).

We now state the most important lemma for our algorithms. This lemma shows how to find
the Bregman projection of a given point onto a hyperplane (or onto a half-space).

Lemma 2.3 (Projection onto Hyperplane [Censor and Zenios, 1997, Lemma 2.2.1]).
Let ϕ ∈ B(S), H = {x|〈a,x〉 = b}, and assume that for every y ∈ S, the projection Pϕ

H(y) ∈ S.

Then for any given y ∈ S, the system

∇ϕ(x∗) = ∇ϕ(y) + µa

〈a, x∗〉 = b,
(2.2)

uniquely determines the point x∗ that is the Bregman projection of y onto H. For a fixed H, the

system also determines the parameter µ.

Note that the KKT optimality conditions mandate,

µ(b − 〈a,y〉) > 0, if y 6∈ H,

µ = 0, if y ∈ H.
(2.3)

If the point y already satisfies aT y ≤ b, then µ = 0. This observation allows us to use the same
lemmas for half-spaces as for hyperplanes. As a simple corollary, let us derive the orthogonal
projection onto a hyperplane.

Corollary 2.4 (Orthogonal Projection). Let ϕ(x) = 1
2‖x0 − x‖2, where x ∈ Rn. Let H =

{x|〈a,x〉 = b}. Then PH(x) is given by,

PH(x) = x +
1

‖a‖2
[b − 〈a,x〉]+a, (2.4)

where [α]+ = α if α ≥ 0 and 0 otherwise.

Proof. From Lemma 2.3 and (2.3) we know that x∗ = PH(x) must satisfy

x∗ − x0 = x − x0 + µa

〈a,x∗〉 = b.

Solving for µ and substituting, we immediately obtain (2.4).

3

3 Metric Nearness

Let us begin with some basic definitions.

Definition 3.1 (Triangle Fixing). The procedure of enforcing triangle equality for one violating
triangle (when an edge in the triangle has weight greater than the sum of the other two) is called a
triangle fixing procedure. This procedure involves optimally adjusting the weights of the edges of
the given triangle where the notion of optimality depends upon the measure of nearness employed.

Definition 3.2 (Metric Graph). We define a metric graph to be a complete graph G′ whose
edge weights satisfy the triangle inequality. If G′ is a metric graph then eik ≤ eij + ejk for every
triple of distinct vertices (i, j, k). We denote the set of all n vertex metric graphs by Mn.

We use G to denote the input graph that is assumed to be a complete undirected edge weighted
graph on n vertices. Assuming the edge weights represent inter-vertex dissimilarities, we use the
matrix D to encode this information. That is, dij = dji gives the dissimilarity between the
vertices i and j. Further assume that self dissimilarity is zero, i.e., dii = 0. Thus, D is a
symmetric, nonnegative matrix with zero diagonal. We call the matrix corresponding to a metric
graph a distance matrix and we denote it as M . We associate a vector d corresponding to each
dissimilarity matrix D and we obtain d by stacking the strict upper triangle of D taken row-wise.
Figure 1 illustrates a graph, its corresponding dissimilarity matrix and the dissimilarity vector.

G =

a b

c

d
12 8

1

3 2

7

, D =









0 1 12 3
1 0 8 2
12 8 0 7
3 2 7 0









, d = [1, 12, 3, 8, 2, 7]

Figure 1: Input Graph and its representations

We use the convention that the triple (i, j, k) corresponds to the triangle inequality

dij ≤ djk + dki.

Similarly (j, k, i) and (k, i, j) correspond to djk ≤ dki + dij and dki ≤ dij + djk; thus there are
three ordered triples for each triangle in the graph. The

(

n
2

)

edges of G result in 3
(

n
3

)

such ordered
triples. The set of all these triples is denoted by T and we define

T = {(i, j, k), (j, k, i), (k, i, j) : 1 ≤ i < j < k ≤ n}.

Our convention allows us to index the set of triples T . This indexing proves useful for efficient
implementation of a triangle fixing algorithm. For example, for a 4-vertex complete graph the set
of triples (triangle inequalities) can be listed as

T = {(1, 2, 3), (2, 3, 1), (3, 1, 2), . . . , (2, 3, 4), (3, 4, 2), (4, 2, 3)}. (3.1)

Each triple in set T can also be represented by a vector that describes which inequality is in effect.
For the triangle inequality dij − djk − dki ≤ 0 we define a vector a with entries +1,−1,−1 in
positions corresponding to edges i → j, j → k and k → i respectively and zeros elsewhere. We

4

collect all the triangle inequality vectors and put them in a matrix A. The number of rows in A

equals the size of T (3
(

n
3

)

) and the number of columns equals the size of d (
(

n
2

)

). The rows of A

have a 1-1 correspondence with the triples in T 2 in T , and the columns correspond to the edges
of the graph G. For a complete graph on 4 vertices (Figure 1) the triangle constraint matrix A is
given by

A =

Triple ab ac ad bc bd cd
abc
bca
cab
abd
bda
dab
acd
cda
dac
bcd
cdb
dbc









































1 −1 0 −1 0 0
−1 −1 0 1 0 0
−1 1 0 −1 0 0

1 0 −1 0 −1 0
−1 0 −1 0 1 0
−1 0 1 0 −1 0

0 1 −1 0 0 −1
0 −1 −1 0 0 1
0 −1 1 0 0 −1
0 0 0 1 −1 −1
0 0 0 −1 −1 1
0 0 0 −1 1 −1









































. (3.2)

In the triangle constraint matrix A above, ab, ac, bc, etc., represent the edges that form the
triangle. The row numbers on the left are used to index the inequalities and correspond to the
triples in an ordered listing of T (see 3.1). It is easy to see that whenever a triangle inequality is
violated, the corresponding component of Ad is greater than 0.

3.1 The Problem

The metric nearness problem requests a metric graph G′ (with distance matrix M) that is closest
to a given nonmetric graph G (with dissimilarity matrix D) with respect to some measure of
divergence. Specifically we seek a distance matrix M so that,

Bϕ(M‖D) ≡ Bϕ(m‖d) =
∑

ij

Bϕ(mij‖dij), (3.3)

is minimized subject to the restriction that M correspond to a metric graph (i.e., Am ≤ 0),
Bϕ(x‖y) be a Bregman divergence and ϕ be a Bregman function.

Remark 3.3. If ϕ(x) is a Bregman function such that ∇ϕ(x0) = 0 then

argmin
x∈Ω

Bϕ(x‖x0) = argmin
x∈Ω

ϕ(x),

where Ω is the domain of ϕ(x). This fact can be easily proved by using the definition of a Bregman
divergence.

Bregman’s optimization algorithm works for Bregman functions. We first explore how to solve
the nearness problem for vector ℓp norms (1 < p < ∞) that are Bregman functions also. For these
norms the problem is to find m to

minimize
1

p
‖m − d‖p

p,

subject to Am ≤ 0.

(3.4)

2We do not need to construct the matrix A in an implementation and we also do not need to construct T . The

triples can be generated in some desired order and the corresponding constraint vector a determined at runtime.

5

For simplicity we introduce an auxiliary variable x = m−d that we call the error vector. Then
our problem is to minimize 1

p‖x‖
p
p, subject to the constraints A(d + x) ≤ 0 ≡ Ax ≤ −Ad. Thus

we set ϕ(x) = 1
p‖x‖

p
p. Trivially ϕ(x) has global minimizer at m = d, i.e., x = 0, hence minimizing

ϕ(x) is the same as minimizing Bϕ(x‖0).

3.2 Handling ℓ1 and ℓ∞

Our approach is not restricted to Bregman functions. The most notable exceptions that we can
tackle in our triangle fixing framework are the problems arising from measuring the nearness using
the ℓ1 and ℓ∞ vector norms. Both these norms are important because the MN problem modeling
their minimization yields linear programs. The Linear Programming (LP) formulation for these
norms was originally presented in the MN Technical Report [Dhillon et al., 2003].

For the ℓ1 and ℓ∞ cases, the objective functions are,

min1T |x|, for ℓ1,

and, min max
i

|xi|, for ℓ∞.

Observe that these two measures are not strictly convex, whereby triangle fixing based on Breg-
man’s algorithm cannot be applied directly. Using an LP solver turns out to be computationally
expensive both in time and storage. Fortunately, as is shown in the next section, we may model the
linear programs for these two cases by corresponding quadratic programs that offer strict convexity
that we may exploit.

4 Algorithms

This section contains triangle fixing operations that solve the MN problem for a vast assortment
of Bregman divergence measures and also for the ℓ1 and ℓ∞ norms. We begin by illustrating the
triangle fixing operation for the ℓ2 case that is not only the simplest, but also pivotal in solving
the ℓ1 and ℓ∞ cases.

4.1 The ℓ2 case

For the ℓ2 case we can use either Bregman’s algorithm based triangle fixing (after appropriate
simplifications of the general procedure given in the next section) or use Dykstra’s algorithm
(see Appendix A for details). Here we provide the triangle fixing procedure based on Dykstra’s
algorithm for the ℓ2 case. The main difference between our implementation of Bregman’s algorithm
and Dykstra’s algorithm for the ℓ2 case is that the former minimizes 1

2‖x‖
2 subject to Ax ≤ −Ad,

whereas the latter minimizes 1
2‖m− d‖2 subject to Am ≤ 0. The correctness and convergence of

our procedures follow from the corresponding properties of Bregman’s and Dykstra’s procedures.
We see in the algorithm that we work by fixing one triangle at a time instead of fixing the entire

graph. This fact is a simple consequence of the structure of the triangle constraint vector a that
is 0 for all edges of the graph that are not a part of the triangle to which it refers. Consequently,
we call the process of performing a projection onto the half-space defined by the constraint vector
a to be the process of triangle fixing.

For each triangle inequality in the input graph, Algorithm 4.1 performs the projection as given
by Corollary 2.4. We see that ‖a‖2 = 3, and we are projecting onto the hyperspace aT x ≤ 0.
Therefore we set x ← x− 1

‖a‖2 δ+a. For an inequality, say (a, b, c), that corresponds to a we have

6

δ = [〈a,x〉 − 0] = ab − bc − ca. Since the vector a has a +1 for the edge whose weight (say ab)
could be possibly larger than the sum of the other two edge weights, we subtract δ/3 from ab.
Also, a has −1 in the positions corresponding to the edges bc and ca hence we add δ to bc and ca.
We observe that there exists a δ for each triangle. Therefore we need to store

(

n
3

)

floating point
numbers.

Algorithm 4.1: Triangle fixing for ℓ2 norm.

L2 Metric Nearness(G, T)
Input: G the input graph, T list of triples (inequalities to fix)
Output: G after metrizing.

{Initialization}
foreach (i, j, k) ∈ T

δijk = 0 {Correction terms}
while not converged

foreach (a, b, c) ∈ T
(oa, ob, oc) ← (ab, bc, ca)
{Apply correction}
ab ← ab + δabc; bc ← bc − δabc; ca ← ca − δabc

δ = ab − bc − ca
if (δ > 0)

ab ← ab − δ/3
bc ← bc + δ/3
ca ← ca + δ/3

endif
δabc = δabc − ab + oa

endfor
end.

4.2 General ℓp norms (1 < p < ℓ∞)

Now we present the triangle-fixing procedure when the error measure is an arbitrary ℓp norm. This
case becomes immediately computationally more difficult than the quadratic (ℓ2) case because of
the need to solve nonlinear equations to determine the projection parameter (see 2.2).

Coming back to the ℓp problem we see that we have to minimize ϕ(x) = 1
p‖x‖

p
p, where ‖ · ‖p is

the vector p-norm (‖x‖p = (
∑

i |xi|
p)1/p). Using (2.2) we find that the projection must satisfy

∇ϕ(x∗) ≡ sgn(x∗)|x∗|p−1 = sgn(x)|x|p−1 + µa. (4.1)

If the Legendre conjugate is well defined we may write (2.2) as

x∗ = (∇ϕ∗)
(

∇ϕ(x) + µa
)

. (4.2)

Equation (4.2) allows us to solve for the updated vector once the parameter µ is known. Observe
that for a given triangle constraint vector a, if ai = 0, then x∗

i = (∇ϕ∗)
(

∇ϕ(xi)
)

= xi. Thus the
triangle fixing once again becomes evident as we only have to modify the components corresponding
to the edges of the triangle described by a. This special structure of a is essential for the efficient
implementation of Bregman’s algorithm. Since we have to consider only three edges, we need

7

to store at most three numbers per triangle under consideration, leading to decreased storage
requirements.

Note that x denotes the vector of additive changes to d that are needed to take d to the
nearest metric graph. Consider the triple (a, b, c) for which which we wish to enforce aT x ≤ b. On
applying (4.2) to (4.1) we obtain,

x∗
ab = sgn

(

(sgn(xab)|xab|
p−1 + µ)

)

∣

∣

∣

∣

sgn(xab)|xab|
p−1 + µ

∣

∣

∣

∣

1

p−1

(4.3a)

x∗
bc = sgn

(

(sgn(xbc)|xbc|
p−1 − µ)

)

∣

∣

∣

∣

sgn(xbc)|xbc|
p−1 − µ

∣

∣

∣

∣

1

p−1

(4.3b)

x∗
ca = sgn

(

(sgn(xca)|xca|
p−1 − µ)

)

∣

∣

∣

∣

sgn(xca)|xca|
p−1 − µ

∣

∣

∣

∣

1

p−1

(4.3c)

x∗
ab − x∗

bc − x∗
ca − b = 0, on using aT x ≤ b. (4.3d)

Algorithm 4.2: Bregman Projection for ℓp norm (1 < p < ∞).

findMu(xabc, (a, b, c))
Input: xabc the correction vector for the triple (a, b, c)
Output: µ as per (4.3).
{Enforces the constraint aT x ≤ b}
begin

(xab, xbc, xca) ← xabc

b ← −(ab − bc − ca) {b = −aT d}
δ ← xab − xbc − xca − b {[aT x − b]+}
if (δ > 0)

α ← sgn(xab)|xab|
p−1

β ← sgn(xbc)|xbc|
p−1

γ ← sgn(xca)|xca|
p−1

s ← 1/(p − 1)
f(µ) := sgn(α + µ)|α + µ|s − sgn(β − µ)|β − µ|s − sgn(γ − µ)|γ − µ|s

µ ← f−1(α, β, γ) {Found numerically}
endif

return µ

We solve the set of equations (4.3) for µ (using some nonlinear root finding method) and then
back substitute into (4.3a)–(4.3c) to obtain the values for x∗

ab, x∗
bc and x∗

ca. Algorithm 4.2 computes
µ. The equations (4.3) are explicit enough so we do not show the procedure fixTriangle that
implements them. Since these equations need to be solved multiple times, if not solved efficiently
they could easily become a bottleneck of the triangle fixing algorithm.

8

Algorithm 4.3: Generic Triangle Fixing For ℓp (1 < p < ∞).

Triangle Fixing(G, T)
Input: G: Input graph, T set of triples
Output: G′ nearest metric graph in specified distortion

foreach (a, b, c) ∈ T
zabc ← 0

foreach ab ∈ G
xab ← ab {Error values for each edge}

while not converged
foreach (a, b, c) ∈ T

xabc ← (xab, xbc, xca)
µ ← findMu(xabc, (a, b, c))
θ ← min(µ, zabc)
(x∗

ab, x
∗
bc, x

∗
ca) ← fixTriangle(xabc, (a, b, c), θ) Fix using (4.3)

z∆ ← zabc − θ
end foreach

end while

At this point we may also remark that solving MN for general Bregman divergences will involve
performing a Bregman projection which could be computationally intensive. Sometimes one can
use first order approximations without performing the projections very accurately and still converge
to the optimum. More information regarding this remark may be found in the paper by Bauschke
and Borwein [1997].

4.3 MN for the ℓ1 and ℓ∞ norms

The basic triangle fixing algorithm succeeds only when the nearness measure used in is strictly
convex. Hence, it cannot be applied directly to the ℓ1 and ℓ∞ cases. These require a more
sophisticated approach.

First, observe that the problem of minimizing the ℓ1 norm of the changes can be written as an
LP:

min
x,z

1T z

subject to Ax ≤ −Ad, −x − z ≤ 0, x − z ≤ 0.
(4.4)

The auxiliary variable z can be interpreted as the absolute value of x. Similarly, minimizing the
ℓ∞ norm of the changes can be accomplished with the LP

min
x,ζ

ζ

subject to Ax ≤−Ad, −x − ζ1 ≤ 0, x − ζ1 ≤ 0.
(4.5)

We interpret ζ = ‖x‖∞.
Solving these linear programs using standard software is prohibitively expensive because of the

large number of constraints. Moreover, the solutions are not unique because the ℓ1 and ℓ∞ norms
are not strictly convex. Instead, we replace the LP by a quadratic program (QP) that is strictly
convex and returns the solution of the LP that has minimum ℓ2-norm. For the ℓ1 case, we have
the following result.

9

Theorem 4.1 (ℓ1 Metric Nearness). There exists a constant λ > 0 such that

argmin
z∈Z

‖λ1 + z‖2 = argmin
z∈Z⋆

‖z‖2, (4.6)

where Z is the feasible set for (4.4) and Z⋆ is the set of optimal solutions to (4.4). The minimizer

is unique.

Theorem 4.1 follows from an application of a result of Mangasarian [1984, Theorem 2.1-a-i]. A
similar theorem may be stated for the ℓ∞ case.

The QP (4.6) can be solved using an augmented triangle-fixing algorithm since the majority
of the constraints in (4.6) are triangle inequalities. As in the ℓ2 case, the triangle constraints are
enforced using (3.4). Each remaining constraint can be enforced by computing an orthogonal pro-
jection. Algorithm 4.4 gives a sample implementation of the augmented triangle fixing procedure
for solving (4.6).

We have found empirically that for the ℓ∞ case a small value of λ yields good answers and for
the ℓ1 problem, λ must be usually larger than the maximum edge weight in the graph.

Algorithm 4.4: Triangle fixing for ℓ1 norm.

L1 Metric Nearness(d, T , λ)
Input: d input dissimilarity vector, T list of triples, λ parameter
Output: d after metrizing.
begin

{Initialization}
z ← −λ1
for i = 1 to length(d)

ǫx(i) = 0; ǫz(i) = 0; {Correction terms}
γx(i) = 0; γz(i) = 0; {Correction terms}

while not converged

{Perform inner loop triangle fixing as in Algorithm 4.1}
{Now we enforce −x − z ≤ 0}
for i = 1 to length(d)

tx ← di; tz ← zi

δ ← −di − ǫx(i) − zi − ǫz(i)
if δ > 0

di ← di + ǫx(i) + 0.5 ∗ δ
zi ← zi + ǫz(i) + 0.5 ∗ δ

ǫx(i) ← ǫx(i) + tx − di

ǫz(i) ← ǫz(i) + tz − zi

{Now we enforce x − z ≤ 0}
tx ← di; tz = zi

δ ← di + γx(i) − zi − γz(i)
if δ > 0

di ← di + γx(i) − 0.5 ∗ δ
zi ← zi + γz(i) + 0.5 ∗ δ

γx(i) ← γx(i) + tx − di

γz(i) ← γz(i) + tz − zi

end for

end while

end.

10

4.4 Variations

One can think of numerous variations of the MN problem where new constraints are added to the
problem or some constraints are removed. A few simple ideas are considered here and they can all
be easily handled within our current framework. For example,

• Consider MN with any element-wise monotonic distance measure with the stipulation that
we allow only decreases in the original dissimilarity values. Plaxton and Clement [2003–
2004] brought to our attention the result that for such a decrease only MN problem, the
element-wise maximal solution is given by the All Pairs Shortest Path (APSP) solution.
This interesting observation led us to explore the connection between Linear Programming
and APSP and we expand a little bit on that in Section 6.1.

• In a similar vein, one can also consider the increase only variation of MN, in which one desires
the nearest metric graph to have edge weights greater than or equal to the input non-metric
graph.

• Plaxton and Clement [2003–2004] also suggested a non-strictly polynomial time binary search
procedure for finding the nearest metric graph where nearness is measured by the ℓ∞ norm.
The binary search procedure starts by guessing the ℓ∞ error, adding that to all edge weights,
and then doing APSP on the graph to see if the reduced edge weights are still within the
guessed range. If so, it decreases its guess and searches again, else it increases its guess and
repeats the search. They also seem to have some research on solving the MN problem for
the ℓ1 norm.

• One could enforce ordering constraints on values, i.e., if in the input dij < dpq then we also
want mij < mpq.

• One might also require box constraints on the metric solution, i.e., l ≤ m ≤ u. Note
that a non-zero l will guarantee a metric instead of a possibly quasi-metric solution (in a
quasi-metric mij = 0 is possible even if i 6= j).

• Finding Approximate metrics (where all the triangle constraints need not be satisfied) can
also be tackled.

• Certain applications that make use λ-triangle inequalities also fall under the framework. In
this case a given triangle vector a has +λ1, −λ2, −λ3 instead of the usual +1, −1 and −1
components. The problem is still triangle fixing because the structure is determined by the
presence of the non-zeros.

5 Examples and Experiments

The MN problem has an input of size N , and the number of constraints is roughly N3/2. We ran
experiments to ascertain the empirical behavior of the algorithm. Figure 2 shows log–log plots of
the running time of our algorithms for solving the ℓ1 and ℓ2 Metric Nearness Problems. The time
cost appears to be O(N3/2), which is linear in the number of constraints. The results plotted in the
figure were obtained by executing the algorithms on random dissimilarity matrices. The procedure
was halted when the distance values changed less than 10−3 from one iteration to the next. For
both problems, the results were obtained with a simple Matlab implementation. Nevertheless,
this basic version outperforms Matlab’s optimization package by one or two orders of magnitude

11

1 2 3 4 5 6 7 8
−6

−4

−2

0

2

4

6

8

Log(N) −− Where N is the input size

Lo
g(

R
un

ni
ng

 ti
m

e)
 −

−
se

co
nd

s.

Log−Log Plot showing runtime behavior of l
1
 MN

y = 1.6x − 6.3 for the linear fit

Running Time
Linear Fit

7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Log(N) −− N is input size

Lo
g(

R
un

ni
ng

 T
im

e)

Log−Log Plot of Running time for l
2
 MN

y = 1.5*x − 6.1

Running time
Linear fit

Figure 2: Running time for ℓ1 and ℓ2 norm solutions (plots have different scales).

(depending on the problem). A more sophisticated (C or parallel) implementation could improve
the running time even more, which would allow us to study larger problems.

6 Discussion

Our iterative procedures proceed by fixing triangles one by one. This operation forms the common
core for all metric nearness problems. It would be interesting to see if one can obtain faster
methods for solving the nearness problem at least for ℓ1 and ℓ∞ cases. Because the running
time of APSP (without allowing arithmetic on edge weights) is lower bounded by Ω(N3/2), the
metric nearness problem is also lower bounded by the same. Since our methods proceed by fixing
triangles, it is not evident how one could perform sub-cubic computation and still achieve a low
error of approximation. We make a passing observation that if one requires to enforce both ordering
and metricity, one can trivially achieve that by (with high error) adding maxij dij to each edge of
the graph. In this case the error is as high as possible, but the running time is just O(N).

6.1 Linear Programming and APSP

As previously noted, if just one sided decreasing changes are allowed to the edge weights of the
graph, then the graph yielded by APSP solves the problem for any monotonic error measure. Since
we originally formulated MN as as a linear program, the APSP solution lends to the curiosity of
the problem because it can be turned around and one can ask: What is the LP interpretation
of APSP? The LP interpretation of Dijkstra’s SSSP (see [Papadimitriou and Steiglitz, 2000]) has
long been known, and to our knowledge there has been a gaping hole for an LP view of the APSP
problem (other than an LP arising out of Multi-commodity network flows). Since both APSP and
the decreasing metric nearness essentially proceed by triangle fixing operations, we can build an
explicit connection between an LP solution and an APSP solution. We do not give an explicit
mapping between the moves made by a primal-dual simplex procedure for solving the decreasing
MN and APSP.

12

7 Summary and Future Work

In this paper we presented generic triangle fixing algorithms for solving the metric nearness prob-
lem [Dhillon et al., 2003]. All our algorithms share their structure, differing only in the particular
Bregman projection involved to fix a given triangle. We saw that the algorithms are quite efficient
and they allow us to obtain fairly accurate approximations.

There are various issues however that would merit further investigation. Some possibilities are:

• The decrease only case that performs arithmetic on edge weights, to obtain metricity in
O(APSP) time.

• Decreasing storage requirements for large graphs or even performing out of core metric near-
ness. For example,

1. Since all we need to do is to perform cyclic fixes to the triangles we can fix a large
number of triangles and then swap their data (error vectors) out to disk and fix the
next set and proceed henceforth.

2. Is it possible to recompute the errors instead of storing them? Can one store O(N) or
lesser information and construct the error vectors for each triangle so that the overall
iteration still remains O(N3/2). It seems that the storage requirements are Ω(N3/2)
because there are Ω(N3/2) constraints and we need to store error values for each con-
straint.

• Algorithms that seek to explore graphs theoretic procedures for the ℓ1 MN problem based
on a network simplex approach could be investigated.

We plan to further investigate the application of MN to other problems in data mining, machine
learning and database query retrieval.

Acknowledgements

We would like to acknowledge Prof. C. G. Plaxton and his student A. Clement for exposing the
connection of MN to APSP and also for the binary search procedure for the ℓ∞ case. This research
was supported by NSF CAREER Award No. 0093404, Texas Advanced Research Program Grant
003658-0431-2001 and NSF ITR Award No. IIS-0325116.

References

H. H. Bauschke and J. M. Borwein. Legendre functions and the method of random Bregman
projections. Journal of Convex Analysis, 4:27–67, 1997.

H. H. Bauschke and A. S. Lewis. Dykstra’s algorithm with Bregman projections: a convergence
proof.

L. M. Bregman, Y. Censor, and S. Reich. Dykstra’s Algorithm as the Nonlinear Extension of
Bregman’s Optimization Method. Journal of Convex Analysis, 6(2):319–333, 1999.

Y. Censor and S. A. Zenios. Parallel Optimization: Theory, Algorithms, and Applications. Nu-
merical Mathematics and Scientific Computation. Oxford University Press, 1997.

13

F. R. Deutsch. Best Approximation in Inner Product Spaces. Springer Verlag, first edition, 2001.
ISBN 0387951563.

I. S. Dhillon, S. Sra, and J. A. Tropp. The Metric Nearness Problems with Applications. Technical
Report TR-03-23, Computer Sciences, University of Texas at Austin, 2003.

M. R. Hestenes. Optimization Theory: The Finite Dimensional Case. Wiley Interscience, New
York, 1975. ISBN 0471374717.

O. L. Mangasarian. Normal solutions of linear programs. Mathematical Programming Study, 22:
206–216, 1984.

C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Dover, 2000.

C. G. Plaxton and A. Clement. Personal Communication, 2003–2004.

A Bregman’s and Dykstra’s Algorithms

A quick summary of the algorithms central to our approach is provided here.

A.1 Bregman’s Algorithm for Inequality Constrained Problems

Consider the problem,

minimize ϕ(x)

s.t. Ax ≤ b

x ∈ S̄, ϕ ∈ B(S).

(A.1)

Bregman’s algorithm (as described below) cycles through the constraints one by one perform-
ing an appropriate projection with correction to converge towards the optimal solution. The con-
straints are visited in a cyclic fashion and thus if the number of constraints is r, the [kr] = r, k ∈ N
and [n] = n mod r otherwise.

Algorithm A.5: Bregman’s algorithm for Inequality Constrained Problems

Bregman(ϕ, A, b)
Input: ϕ, A, b as in (A.1)
Output: argmin ϕ(x) s.t. constraints are satisfied

{Initialization}
x0 ∈ {x ∈ S|∃z ∈ Rm

+ ∋ ∇ϕ(x) = −AT z} and z0 s.t. ∇ϕ(x0) = −AT z0

{Iterative step} Given xn and zn perform the following updates
repeat

cn := min(zn
[n], µn)

∇ϕ(xn+1) = ∇ϕ(xn) + cna[n]

zn+1 = zn − cne[n]

{µn is calculated by solving (2.2) with y = xn, a = a[n] and b = b[n].}
until convergence.

14

A.2 Dykstra’s Algorithm

Dykstra’s algorithm can be viewed as a special case of Bregman’s method by appealing to the
generalization of Bregman’s method when the constraint sets are arbitrary convex sets instead of
just half-spaces. The interested reader is pointed to the work by Bauschke and Lewis, who describe
a Dysktra style algorithm for a restricted class of strictly convex functions. Bregman et al. [1999]
show how one can consider Dykstra’s Algorithm as the non-linear extension of Bregman’s cylic
projection procedure.

We describe Dykstra’s Algorithm it here for the sake of completeness and since we directly use
it for solving the nearness problem for ℓ1, ℓ2 and ℓ∞ based nearness measures.

Dykstra’s algorithm minimizes,

1

2
‖x0 − y‖2

s.t. y ∈ ∩r
i=1Ci, each Ci is a convex set

(A.2)

For further details and a proof of convergence the interested reader is referred to Deutsch [2001].

Algorithm A.6: Projection onto the intersection of convex sets

Dykstra(x0, C1,. . . ,Cr)
Input: x0, Ci convex sets
Output: argminy ‖x0 − y‖2 s.t. constraints are satisfied

{Initialization}
x0 = x0

{Iterative step} Given xn and zn perform the following updates
repeat

xn+1 ← P[n](x
n + zn−r)

zn ← xn − xn+1 + zn−r

{P[n] is the orthogonal projection onto the set C[n]}
until convergence.

15

