
A Uni�ed View of Graph Partitioning and Weighted Kernelk-meansInderjit S. Dhillon, Yuqiang Guan, and Brian KulisUniversity of Texas at AustinDepartment of Computer SienesAustin, TX 78712UTCS Tehnial Report #TR-04-25June 30, 2004AbstratThe last few years have seen a surge of interest in advaned methods for lustering data. Adrawbak with several popular lustering algorithms, suh as k -means, is that they an only �ndlusters that are linearly separable in input spae. To overome this problem, two seeminglydi�erent approahes have been proposed: kernel k -means and spetral lustering using graphpartitioning. Despite signi�ant researh, these methods have remained only loosely related.In this paper, we give an expliit theoretial onnetion between weighted kernel k -means andgraph partitioning. We show the generality of the weighted kernel k -means objetive fun-tion, and derive various graph partitioning objetives as speial ases. We are then able tore-interpret nearly all spetral lustering algorithms in terms of the weighted kernel k -meansobjetive funtion. Given a graph, our results lead to novel weighted kernel k -means algorithmsthat monotonially improve the normalized ut, ratio ut, or ratio assoiation in the graph, aswell as an inremental kernel k -means algorithm for the Kernighan-Lin objetive. Our resultshave important impliations: a) eigenvetor-based algorithms, whih an be omputationallyprohibitive, are not essential for optimizing various ut riteria, b) due to the monotoniityof iterative algorithms, the output of spetral lustering algorithms may be further optimizedusing their appropriate iterative ounterpart. Sine kernel methods have signi�ant memoryoverheads, we show how to sale our algorithms both in terms of speed and memory require-ments. Finally, we present several experimental results, inluding showing that normalized utimage segmentation an suessfully be performed without alulating eigenvetors.1 IntrodutionClustering has reeived a signi�ant amount of attention in the last few years as one of the fun-damental problems in data mining. It has been applied to a number of di�erent problems in datamining appliations, as well as other areas suh as image segmentation and iruit layout.One of the most popular algorithms for lustering is the k -means algorithm, whih has been inuse for deades. In this algorithm, loal optima of a squared loss funtion are obtained by iterativelyreassigning points to their losest lusters and omputing the distane from points to every lusterenter. Reent researh has generalized the algorithm in many ways; for example, similar algorithmsfor lustering an be obtained using arbitrary Bregman divergenes as the distortion measure [2℄.1



Other improvements inlude loal searh to improve the lustering results [7℄, and better lusterinitialization [3℄.A major drawbak to k -means is that it annot separate lusters that are not linearly separablein input spae. A reent approah that has emerged for takling suh a problem is kernel k -means.The data is �rst mapped to a higher-dimensional feature spae using a nonlinear funtion, andthen kernel k -means partitions the points by linear separators in the new feature spae. The linearseparator in feature spae orresponds to a non-linear separator in the input spae.Spetral lustering using graph partitioning is another proposed tehnique that allows non-linearseparation of lusters. These algorithms use the eigenvetors of an aÆnity (or losely related) matrixto obtain a lustering of the data - the nodes of the graph are the data points, and edges representsimilarity. Suh an approah has proven useful for a number of lustering problems. Popularobjetive funtions used in spetral lustering are to minimize the ratio ut [4℄ or normalized ut [22℄.On the surfae, kernel k -means and graph partitioning appear to be ompletely di�erent ap-proahes. In this paper we �rst unite these two forms of lustering under a single framework. Bygeneralizing the k -means objetive funtion to use both weights and kernels, we show how the twoapproahes to lustering are related. Spei�ally, we an rewrite the weighted kernel k -means ob-jetive funtion as a trae maximization problem whose relaxation an be solved with eigenvetors.The result shows how partiular kernel and weight shemes are related to a number of di�erent spe-tral lustering objetives. The advantage to our approah is that we an generalize the lusteringalgorithm to use arbitrary kernels and weights.In partiular, we show that by hoosing the weights and kernels in ertain ways, the weightedkernel k -means objetive funtion is the same (up to a onstant) as the normalized ut, ratio ut,ratio assoiation, or Kernighan-Lin objetives, all graph partitioning problems. Thus far, onlyeigenvetor-based algorithms have been employed to optimize the normalized ut, ratio ut, or ratioassoiation objetives in spetral lustering and image segmentation. However, software to omputeeigenvetors of large sparse matries (often based on the Lanzos algorithm) an have substantialomputational overheads, espeially when many eigenvetors are to be omputed. In suh situations,our equivalene has an important impliation: we an use k -means-like iterative algorithms foroptimizing these graph ut objetives. Using our derivations, we an re-interpret most spetrallustering algorithms, and provide their weighted k -means ounterparts. Furthermore, we an showhow an inremental kernel k -means algorithm will allow us to optimize the Kernighan-Lin objetive.An issue in using spetral lustering algorithms is that we must transform the eigenvetor matrixinto a disrete lustering of the points. We generalize the result in [1℄ to our weighted k -meansobjetive funtion. This leads to a general method for forming a disrete partitioning of pointsfrom the eigenvetors. Finally, our iterative algorithms an be used to further re�ne the spetralobjetives: after running the spetral algorithms and obtaining a disrete partitioning, one an usethe iterative algorithms that we introdue to monotonially improve the graph ut objetives.Spetral methods an be impratial for huge databases; we show how our iterative algorithmsan be saled to very large datasets. We ombine two di�erent approahes for saling kernel k -means,one based on organizing the aÆnity matrix by bloks, and the other on an aeleration sheme thatexploits the triangle inequality.We show the usefulness of our approah to the appliation of lustering gene expression data. Inbioinformatis appliations, we often want to group genes that have strong positive as well as negativeorrelations to eah other, sine both forms of orrelations imply funtional similarity. In order to doso, we an use a quadrati kernel (squared orrelation) to obtain an appropriate objetive funtion,and then use spetral relaxation for omputing suh lusters. Our kernel k -means algorithm alsoprovides a non-spetral approah to suh a task. We also illustrate the salability of our algorithmsin terms of omputation time by applying it to a large handwriting reognition data set. Finally,we perform image segmentation using an iterative normalized ut algorithm. This approah, whih2



Polynomial Kernel �(a;b) = (a � b+ )dGaussian Kernel �(a;b) = exp(�ka� bk2=2�2)Sigmoid Kernel �(a;b) = tanh((a � b) + �)Table 1: Examples of popular kernel funtionsdoes not involve omputing any eigenvetors, may be quite useful for large images, or in situationswhere eigenvetor omputation is prohibitive.A word about our notation. Capital letters suh as A;X; Y and � denote matries; lower-asebold letters suh as a;b denote olumn vetors; sript letters suh as A;B;V ; E represent sets; kakdenotes the L2 norm of a vetor; a � b represents the inner produt between vetors; and kXkFdenotes the Frobenius norm of a matrix, given by kXkF = (Pi;j X2ij)1=2.2 The EssentialsIn this setion, we separately summarize the seemingly di�erent approahes of weighted kernel k -means and graph partitioning.2.1 Weighted Kernel k-meansThe k -means lustering algorithm an be enhaned by the use of a kernel funtion, a nonlinear map-ping from the original (input) spae to a higher-dimensional feature spae. By using an appropriatemapping, one an extrat lusters that are non-linearly separable in input spae.Let us denote lusters by �j , and a partitioning of points as f�jgkj=1. Using the non-linearfuntion �, the k -means objetive funtion using Eulidean distane beomesD(f�jgkj=1) = kXj=1 Xa2�j k�(a)�mjk2;where mj = 1j�j j Xa2�j �(a):To ompute inner produts of the form �(a) � �(b), we use the kernel representation K(a;b), whereK(a;b) = �(a) � �(b). This allows us to ompute the dot produt without having to ompute themapping �. The matrix of inner produts K is often alled the kernel matrix (it is also alled theGram matrix). See Table 1 for examples of popular kernel funtions.Using the above objetive funtion, we an derive an algorithm analogous to standard k-means.Furthermore, by areful manipulation, it beomes possible to run the entire omputation for thekernel k -means algorithm using only the entries of the kernel matrix.We an generalize the kernel k -means objetive funtion by disussing a weighted variant. As weshall see later, this generalization is powerful and enompasses various well known spetral lusteringformulations. We introdue a non-negative weight for data point a, denoted by w(a). The modi�edobjetive funtion is: D(f�jgkj=1) = kXj=1 Xa2�j w(a)k�(a)�mjk2:
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Algorithm 1: Weighted Kernel k-means.Weighted Kernel kmeans(K, k, w, C1; :::; Ck)Input: K: kernel matrix, k: number of lusters, w: weights for eah pointOutput: C1; ::::; Ck: partitioning of the points1. Initialize the k lusters: C(0)1 ; :::; C(0)k .2. Set t = 0.3. For eah point a, �nd its new luster index as�(a) = argmink�(a)�mk2; using (1).4. Compute the updated lusters asCt+1 = fa : �(a) = g:5. If not onverged, set t = t+ 1 and go to Step 3; Otherwise, stop.The luster representative of �j is mj = Pb2�j w(b)�(b)Pb2�j w(b) :Note that this is the \best" luster representative sinemj = argminz Xa2�j w(a)k�(a)� zk2:Clearly, we an obtain the original (or unweighted) kernel k -means objetive funtion by setting allweights to be equal to one. We must ompute the distane from eah (weighted) point to everyluster representative. For luster �j , this is given by���������(a)� Pb2�j w(b)�(b)Pb2�j w(b) ��������2;whih an be expanded as�(a) � �(a)� 2Pb2�j w(b)�(a) � �(b)Pb2�j w(b) + Pb,d2�j w(b)w(d)�(b) � �(d)(Pb2�j w(b))2 : (1)As stated before, the dot produts �(a) ��(b) are ontained in the kernel matrixK. All omputationis in the form of suh inner produts, hene we an replae all inner produts by entries of the kernelmatrix.To obtain an iterative algorithm for kernel k -means, we must ompute the distanes as in (1).However, all other aspets k -means remain the same, as shown in Algorithm 1.Assuming we are able to store the whole aÆnity matrix in main memory, we an analyze thetime omplexity of Algorithm 1. It is lear that the bottlenek is Step 3, i.e., the omputation ofdistanes. The �rst term in (1), �(a) � �(a), need not be omputed sine it is a onstant for a andthus does not a�et the assignment of a to lusters. The seond term is alulated one per datapoint, and osts O(n) eah time it is omputed, leading to a ost of O(n2) per iteration. For the thirdterm, notie that Pb,2�j w(b)w()�(b)��()(Pb2�j w(b))2 is �xed for luster j, so in eah iteration it is omputed4



one and stored. Thus the omplexity is O(n2) salar operations per iteration. Initially, we mustompute the kernel matrix K, whih usually takes time O(n2m), where m is the dimension of theoriginal points. If the total number of iterations is � , then the time omplexity of Algorithm 1 isO(n2(� +m)).2.2 Spetral Clustering and Graph PartitioningSpetral lustering has emerged reently as a popular method for lustering data that uses eigen-vetors of a matrix derived from the data. Several algorithms have been proposed in the litera-ture [14, 16, 17, 22℄, eah using the eigenvetors in slightly di�erent ways. There have been a fewpapers omparing di�erent algorithms, inluding some analysis of their properties [23, 24℄.Nearly all spetral lustering algorithms an be viewed as optimizing a graph partitioning obje-tive. Several di�erent graph partitioning objetives have been proposed in the literature and usedin various appliations. In this setion, we review a few of the most prominent ones. We will seelater that by writing graph partitioning objetives as trae maximization problems, we an obtainiterative and spetral algorithms for the objetives.We are given a graph G = (V ; E ; A), where V is the set of verties, E is the set of edges, and Ais an edge aÆnity matrix. We assume that the matrix A is both symmetri (G is undireted) andnonnegative. For two subsets A and B of V , we de�ne the links between A and B to be the sum ofthe aÆnity weights from A to B. In other words,links(A;B) = Xi2A;j2BA(i; j):We de�ne the degree of a set A to be the total links from A to all nodes in V , i.e., degree(A) =links(A, V). We an now de�ne a number of graph partitioning objetives.Kernighan-Lin Objetive. The Kernighan-Lin graph partitioning algorithm [15℄ is a loal searhproedure that maintains two equally sized partitions while trying to minimize the ut between thepartitions. We an generalize their objetive funtion to k partitions (for ease in presentation, weassume that the total number of verties is divisible by k), and we say that the objetive funtion isminimize kXi=1 links(Vi;V n Vi)jVij ; subjet to jVij = jVj=k; for all i = 1; : : : ; k:Ratio Cut. For the ratio ut objetive [4℄, we are intertested in optimizing the following:minimize kXi=1 links(Vi;V n Vi)jVij :Ratio Assoiation. This maximization problem is similar to the ratio ut problem (though notidential). We are interested in optimizing the following:maximize kXi=1 links(Vi;Vi)jVij :Normalized Cut. For normalized ut [16, 1, 25℄, instead of dividing by the size of the partition,we use the degree of the partition:minimize kXi=1 links(Vi;V n Vi)degree(Vi) :5



Note that minimizing the normalized ut is equivalent to the orresponding normalized assoiationproblem, a maximization problem.3 The Spetral ConnetionAt �rst glane, weighted kernel k -means and spetral lustering using graph partitioning appear tobe quite di�erent. After all, spetral lustering uses eigenvetors to help determine the partitions,whereas eigenvetors do not appear to �gure in kernel k -means. In this setion, we show howwe an express weighted kernel k -means as a trae maximization problem, and later we will seehow to express eah of the graph partitioning objetives as trae maximizations as well, leading toiterative algorithms for the graph partitioning objetives. On the other hand, relaxations for thetrae maximization problems lead to spetral lustering algorithms, whih allows us to optimizeweighted kernel k -means using spetral methods. This will onnet the two methods of lustering.For ease in presentation, let us denote the \distortion" of a luster �j to be d(�j) =Pa2�j w(a)k�(a)�mjk2. Then we have that D(f�jgkj=1) =Pkj=1 d(�j). Moreover, let us denote, for a luster �j , thesum of the w weights of the points in �j to be sj ; in other words, sj =Pa2�j w(a). Finally, let usdenote W to be the diagonal matrix of all the w weights, and Wj to be the diagonal matrix of theweights in �j .It is easy to see that we an rewrite the mean vetor mj asmj = �jWjesj ;where �j is the matrix of points assoiated with luster �j (after the � mapping), i.e., � =[�(a1; �(a2); : : : ; �(an)℄, and e is the vetor of all ones.We an rewrite the distortion of luster �j to be:d(�j) = Xa2�j w(a)k�(a)�mjk2= Xa2�j w(a)k�(a)� �jWjesj k2= k(�j � �jWjeeTsj )W 1=2j k2F= k(�jW 1=2j (I � W 1=2j eeTW 1=2jsj )k2F :Using the fat that trae(AAT ) = trae(ATA) = kAk2F , and noting that I � W 1=2j eeTW 1=2jsj = P is anorthogonal projetion, i.e. P 2 = P sine sj = eTWje, we get thatd(�j) = trae��jW 1=2j �I � W 1=2j eeTW 1=2jsj ��I � W 1=2j eeTW 1=2jsj �W 1=2j �Tj �= trae��jW 1=2j �I � W 1=2j eeTW 1=2jsj �W 1=2j �Tj �= trae(W 1=2j �Tj �jW 1=2j )� eTWjpsj �Tj �jWjepsj :6



If we represent the full matrix of points as � = [�1;�2; : : : ;�k℄, then we have thatD(f�jgkj=1) = trae(W 1=2�T�W 1=2)� trae(Y TW 1=2�T�W 1=2Y );where Y = 2666664W 1=21 eps1 W 1=22 eps2 � � � W 1=2k epsk
3777775 :Note that Y is an n� k orthonormal matrix, i.e., Y TY = I .Sine trae(�W�T ) is a onstant, we see that we have derived an equivalent formulation forthe weighted kernel k -means objetive funtion. In partiular, we rewrite the minimization of theobjetive funtion as a maximization of trae(Y TW 1=2�T�W 1=2Y ). The matrix �T� is simply thekernel matrix K of the data, so we an rewrite it as the maximization of trae(Y TW 1=2KW 1=2Y ).A standard result in linear algebra [11℄ provides a global solution to a relaxed version of thisproblem. By allowing Y to be an arbitrary orthonormal matrix, we an obtain the optimal Yby taking the top k eigenvetors of W 1=2KW 1=2. Similarly, the sum of the top k eigenvalues ofW 1=2KW 1=2 gives the optimal trae value.4 ImpliationsThe previous setion shows that the weighted kernel k -means problem an be written as a traemaximization problem. We now show how eah of the graph partitioning objetives an also bewritten as trae maximizations, leading to new iterative algorithms for the objetives. We alsodisuss a postproessing method for obtaining a disrete lustering from the eigenvetor matrixwhen using spetral methods.4.1 Normalized Cuts using Weighted Kernel k-meansAs disussed in [25℄, the normalized ut problem an be reast as a trae maximization problem.Let xj denote the indiator vetor for partition j, i.e., xj(i) = 1 if luster Vj ontains the datapoint i. Also, let D be the degree matrix for A: D is a diagonal matrix whose entries orrespond tothe sum of the rows of A. Notie that degree(Vj) = xTj Dxj and links(Vj ;Vj) = xTj Axj . We notedearlier that the normalized ut problem is equivalent to the normalized assoiation problem; i.e., theproblem an be expressed as:maximize � kXj=1 links(Vj ;Vj)degree(Vj) = kXj=1 xTj AxjxTj Dxj = kXj=1 ~xTj A~xj�;where ~xj = xj=(xTj Dxj)1=2.If we let ~X be the matrix of all ~xj vetors, then the above expression may be re-written astrae( ~Y TD�1=2AD�1=2 ~Y ), where ~Y = D1=2 ~X, and is orthonormal.We now show a simple relationship between the trae maximizations of the normalized ut andkernel k -means problems. If we set W = D and K = D�1AD�1, the trae maximization problemof weighted kernel k -means is to maximize trae(Y TD�1=2AD�1=2Y ), whih is equivalent to thetrae maximization for normalized ut. Thus, with this hoie of weights, we an use the weightedkernel k -means proedure in order to minimize the normalized ut. However, this hoie of K is only7



Algorithm 2: NCut Kernel k-means.NCut Kernel kmeans(A, k, C1; :::; Ck)Input: A: edge aÆnity matrix, k: number of lustersOutput: C1; ::::; Ck: partitioning of the points1. Compute D, the diagonal matrix whose entries are the sum of the rows of A.2. Let the w weight for eah point ai be Dii and set K = pD�1 +D�1AD�1.3. Initialize the k lusters: C(0)1 ; :::; C(0)k .4. Set t = 0.5. For eah point ai orresponding to olumn i of K, �nd its new luster index as�(ai) = argminf(ai; );where f(ai; ) equalsK(i; i)� 2Pbj2� w(bj)K(i; j)Pbj2� w(bj) + Pbj ;dl2� w(bj)w(dl)K(j; l)(Pbj2� w(bj))2 :6. Compute the updated lusters asCt+1 = fai : �(ai) = g:7. If not onverged, set t = t+ 1 and go to Step 5; Otherwise, stop.guaranteed to monotonially derease the normalized ut objetive if K is positive de�nite. Thisis beause if K is positive de�nite, then it an be viewed as �T�, and thus as inner produts of afuntion �. With this property, we an prove onvergene of the kernel k -means algorithm, but wewill have no suh guarantee for arbitrary K.For the ase that K is not positive de�nite, we instead de�ne K = pD�1+D�1AD�1, where p ishosen to be large enough that K is positive de�nite. Here we use the fat that a matrix is positivede�nite if and only if all of its eigenvetors are positive, so we an easily �nd a p value suh thatK is positive de�nite. Consider running weighted kernel k -means on this matrix K, with W = D.Then the trae maximization an be written as:trae(Y TD1=2KD1=2Y )= trae(Y TD1=2pD�1D1=2Y ) + trae(Y TD�1=2AD�1=2Y )= pk + trae(Y TD�1=2AD�1=2Y )Hene, the maximization problem is equivalent to the trae maximization problem for the normalizedut of A, for any symmetri A.By the monotoniity property of kernel k -means, it an be shown that Algorithm 2 has the fol-lowing property:Property 1: Eah iteration of NCut Kernel k -means (Algorithm 2) dereases the k -way normalizedut.Sine K is positive de�nite by onstrution, we an interpret K as inner produts of a kernelfuntion [5℄, as is done in kernel k -means. 8



4.2 Ratio Cuts and Kernighan-Lin using Weighted Kernel k-meansNow we extend our analysis for the ratio ut problem. Again, let xj denote the indiator vetor forpartition j. Then we an rewrite the ratio-ut minimization problem asminimize kXj=1 xTj (D �A)xjxTj xj ;sine xTj Dxj � xTj Axj = degree(Vj)� links(Vj) = links(Vj ;V n Vj), and xTj xj = jVj j.The matrix D � A is the Laplaian, whih we will write as L, and it an be proven that thismatrix is positive de�nite. It is easy to see that the above problem is equivalent to:minimize � kXj=1 xTj LxjxTj xj = jXj=1 ~xTj L~xj = trae( ~XTL ~X)�;with ~xj = xj=(xTj xj)1=2, and ~X the matrix of ~xj vetors.The diÆulty with this formulation is that we have written k -means in Setion 3 as a traemaximization, not a minimization. Though one an perform trae minimization by taking thesmallest eigenvetors of L, the orresponding k -means objetive funtion is a maximization problem.Hene, it is not immediately lear how to relate the minimization of the k -means objetive funtionto the above trae minimization.In a similar fashion to the normalized ut problem, onsider the matrixK = pI�L for unweightedkernel k -means, with p suÆiently large suh that K is positive de�nite. Then we have that theobjetive funtion is equivalent totrae(pI � L)� trae(Y T (pI � L)Y )= trae(pI)� trae(L)� ptrae(Y TY ) + trae(Y TLY )= p(n� k)� trae(L) + trae(Y TLY ):Hene, the minimization of the objetive funtion for kernel k -means with K = pI �L is equivalentto the minimization of trae(Y TLY ), whih is the ratio ut of A sine Y = ~X.There are several simple methods for hoosing the value p. One approah is to use the fat thatthe norm of a matrix is greater than or equal to the largest eigenvalue. Hene, we an alulate asimple upper bound on the largest eigenvalue by determining kLk1 = maxiPnj=1 jLij j.Our approah, therefore, is simply to run kernel k -means with all weights equal to one, using thekernel matrix pI � L. We an verify the following property of the algorithm:Property 2: Eah iteration of Ratio-Cut Kernel k -means dereases the k -way ratio ut.Again, this follows diretly from the fat that the k -means objetive funtion dereases mono-tonially at every iteration, and our analysis from the previous setions.The Kernighan-Lin graph partitioning objetive follows easily from the ratio ut objetive. Forthe ase of K-L partitioning, we maintain equally sized partitions, and hene the only di�erenebetween the ratio ut and K-L partitioning is the fat that the Xj indiator vetors are onstrainedto be of size jVj=k. If we start with equally sized partitions, an inremental weighted kernel k -meansalgorithm (where we only onsider swapping points, or hains of points, that improve the objetivefuntion) an be run to simulate the Kernighan-Lin algorithm.9



Graph Partitioning Objetive Weights KernelRatio Assoiation w(a) = 1 for all a K = pI + ARatio Cut w(a) = 1 for all a K = pI � LKernighan-Lin w(a) = 1 for all a K = pI � LNormalized Cut w(a) = degree of a K = pD�1 +D�1AD�1Table 2: Popular graph partitioning objetives and orresponding weights and kernels given aÆnitymatrix A4.3 Ratio Assoiation using Weighted Kernel k-meansFinally, the related maximization problem of ratio assoiation an also easily be added into ourframework. In the ratio assoiation problem for an aÆnity matrixA, we are interested in maximizingkXj=1 links(Vj ;Vj)jVj jIf we use the same indiator vetor that was used in ratio uts, the maximization an be written asmaximize kXj=1 xTj AxjxTj xjThis an be rewritten as the maximization of trae(Y TAY ), where Y is orthonormal (we set olumnj of Y as xj=(xTj xj)1=2). It is easy to verify that this is equivalent to the unweighted kernel k -meansobjetive funtion, using the aÆnity matrix as the kernel matrix. As before, the matrix A does notneessarily have to be positive de�nite, as we an substitute pI +A for suÆiently large p.In Table 2, the weights and kernels for eah graph objetive are summarized.4.4 Re-interpreting Spetral AlgorithmsNearly all spetral lustering algorithms attempt to optimize one of the three spetral lusteringobjetives that we have just disussed (normalized ut, ratio ut, or ratio assoiation). Consequently,we now have the ability to re-interpret most spetral lustering algorithms in terms of the weightedkernel k -means objetive funtion.As an example, onsider the algorithm of Pothen, Simon, and Liou [19℄. This algorithm isreursive, and uses the seond smallest eigenvetor of the Laplaian to partition the points into twolusters. The algorithm partitions all of the data into two lusters, then reurses on the two lusters.Using the result from the ratio ut setion, if we onsider the assoiated k -means objetive, withk = 2, then we �nd that the spetral relaxation involves using the two smallest eigenvetors of theLaplaian to partition the points. However, the smallest eigenvetor of the Laplaian is all ones,and does not ontribute. Therefore, only the seond smallest eigenvetor is used to partition thepoints. Sine the eigenvetors of pI � L are equal to the eigenvetors of L, their algorithm an bereformulated as a spetral relaxation to a weighted kernel k -means objetive funtion, where thekernel is pI � L and all weights are one.As another example, onsider the Ng, Jordan, and Weiss algorithm [17℄. Their algorithm �rstomputes the kernel matrix K, where the kernel that is used is the Gaussian Kernel. They omputea diagonal matrix D suh that the diagonal entries of D are the sums of the rows of K. Thenthey form D�1=2(I � K)D�1=2, ompute the eigenvetors of this matrix (whih are equal to theeigenvetors of D�1=2KD�1=2), and form a disrete lustering using these eigenvetors.10



Algorithm Spetral ObjetivePerona and Freeman [18℄ Reursive Ratio AssoiationSott and Longuet-Higgins [21℄ k -way Ratio AssoiationPothen, Simon, and Liou [19℄ Reursive Ratio CutChan, Shlag, and Zien [4℄ k -way Ratio CutShi and Malik [22℄ Reursive Normalized CutMeila and Shi [16℄ k -way Normalized CutYu and Shi [25℄ k -way Normalized CutNg, Jordan, and Weiss [17℄ k -way Normalized CutTable 3: Spetral Clustering Algorithms and their Assoiated ObjetivesHene, we see that the NJW algorithm an be viewed as either a spetral relaxation to theweighted kernel k -means objetive funtion or as a normalized ut problem. The onnetion tonormalized uts is lear: we view the aÆnity matrix K in the spetral algorithm as de�ning theedge weights of a graph, and their algorithm attempts to minimize the normalized ut in this graph.It follows then that this algorithm an be viewed as a spetral relaxation to weighted kernel k -means,using the weights and kernel from normalized ut.In Table 3, we list several spetral algorithms and their assoiated objetives. All of thesealgorithms an be interpreted in terms of weighted kernel k -means and their objetives an beloally optimized by iterative algorithms.One advantage to our use of an iterative algorithm for these graph problems is that we anuse di�erent improvement methods, suh as loal searh, to inrease the quality of the results. Insituations where eigenvetor omputation is diÆult, for example, when the aÆnity matrix is largeand sparse, and many eigenvetors are desired, our iterative algorithm is partiularly useful.Another major advantage is that we an improve the output of most spetral lustering algorithmsusing our iterative approah. After running spetral lustering, we obtain a partitioning of the pointsthat relates to a relaxed version of a spetral objetive funtion. If we then run the orrespondingiterative lustering algorithm on the partition, the monotoniity of the iterative algorithm guaranteesus that we an only improve the quality of the lustering. This two-layer approah { �rst runningspetral lustering to get an initial partitioning and then re�ning the partitioning by running kernelk -means on the partitioning { typially results in a robust partitioning of the data. We will showexperimental results indiating that spetral methods provide exellent initializations to iterativelustering algorithms.4.5 Kernel k-means using EigenvetorsThe reformulation of the kernel k -means objetive funtion allows us to solve a relaxed problemusing the eigenvetors of the matrix W 1=2KW 1=2. This yields a spetral approah to minimizingthe objetive funtion: we �rst ompute the top k eigenvetors of the matrix W 1=2KW 1=2. Thismaps the original points to a lower-dimensional spae.We require that some postproessing be done in order to obtain a disrete lustering of the datapoints from the eigenvetors. This may be aomplished by lustering the points in this new spae,or another method. In [26℄, for example, the luster assignment was omputed by using a pivotedQR deomposition.In [1℄, Bah and Jordan show that, for spetral lustering based on normalized uts, a goodway to obtain a disrete lustering from the matrix of eigenvetors is to run a weighted k-meansalgorithm. They show that if the rows of the eigenvetor matrix are treated as k-dimensional points,11



then weighted k -means an be run with wi weights equal to the sum of the rows of the original aÆnitymatrix, and seondary vi weights equal to w�1=2i . It is shown that using these weights minimizes anatural ost funtion between the eigenvetor solution and a disrete solution.We an extend their analysis to our general framework. In this way, we will provide a strongmethod for postproessing to ahieve a disrete partitioning of the data, thus leading to a ompleteview of spetral lustering. We see that to minimize the ost funtion of Bah and Jordan, weightedk -means an be run with wi weights given before taking eigenvetors, and for every i we multiplyrow i of the eigenvetor matrix by w�1=2i before running weighted k -means (this orresponds to thev weights in the Bah and Jordan algorithm). Their analysis follows easily for this generalized ase.See [1℄ for a more extensive treatment of postproessing.5 Salability IssuesIn this setion, we disuss methods for saling the kernel k -means algorithm to very large data sets.The paper [27℄ by Zhang and Rudniky onsiders the problem of salability for kernel k -means.We will ombine the ideas presented in that paper with the ideas of [9, 6℄ to disuss a salableapproah to running kernel k -means.The key idea in [27℄ is that, while the aÆnity matrix may be too large to store in main memory,we an instead read in the aÆnity matrix blok by blok. We need only store an n by k matrix C,whose (i; j) entry tells us the urrent distane from point i to luster j. We omputed the distanefrom �(ai) to m asK(i; i)� 2Pbj2� w(bj)K(i; j)Pbj2� w(bj) + Pbj ;dl2� w(bj)w(dl)K(j; l)(Pbj2� w(bj))2 (2)We an therefore ompute the denominators of this expression for eah luster before reading thebloks, and we simply ompute C as we read in eah blok, whih is possible sine the distane is asum of kernel matrix values.We note that we an improve marginally on the proedure given in [27℄. Instead of omputingin a ompletely serial fashion { namely, reading in a blok, omputing on that blok, reading in thenext blok, and so on { we an break our blok into two smaller bloks B1 and B2. While we areomputing with B1, we read in a new B2. Then, when we are �nished with B1, we an immediatelybegin omputing with B2. Then, while we ompute with B2, we read in a new B1. This pipeliningavoids waiting for eah blok to be read in.While the above proedure helps us ompute kernel k -means on very large data sets, we still havethe problem that kernel k -means is slower than standard k -means. To speed up the omputation,we an adapt the pruning proedure used in [9, 6℄. The idea behind the aeleration sheme is thatwe an use the triangle inequality to avoid unneessary omputation.The aeleration is based on the following observation: using the triangle inequality, we havethat, for a point i, d(i;m0) � d(i;m)� d(m;m0), where m is an old enter and m0 is a new enter.We see that we an ompute the distanes between new and old enters and store the informationinto a k by k matrix D. Similarly, we keep a k by n matrix L that ontains lower bound informationfor the distane from eah point to eah enter. Suppose after a single iteration, all distanes areomputed between eah point and eah enter. In the next iteration, we an obtain the lower boundsfrom the points to the new enters by using the d(m;m0) alulations and the distanes from theprevious iteration. In this way, we alulate the lower bounds as d(i;m) � d(m;m0) for the matrixL. Furthermore, these lower bounds allow us to eliminate expliitly omputing many distanes. Onewe have omputed lower bounds and begin to ompute exat distanes, the lower bound allows us12



to determine whether or not to ompute remaining distanes exatly.We should also briey mention salability of the Lanzos algorithm. The bottlenek for omput-ing eigenvetors of a matrixM using the Lanzos method is the omputation of M times a vetor x.There are methods for performing this multipliation even if the matrix M is too large to be storedin main memory. Suh an approah would help to sale the Lanzos omputation to large data sets.6 Experimental ResultsWe now provide experimental results. In this setion, we �rst illustrate the kernel k-means algorithmby showing how it orretly identi�es non-linearly separable lusters in two arti�ial data sets: thetwo irles of the TwoCirle data set and points of the XOR data set; see Setion 6.1. Then we applythe kernel lustering idea to a bioinformatis appliation. We show that degree-2 polynomial kernelk-means generates \diametri lustering" in the two gene expression datasets: human �broblastgene expression data [13℄ and the yeast data set of Rosetta Inpharmatis [12℄. Further, with thehandwriting reognition data set, Pendigits, we show that using eigenvetors to initialize kernelk-means gives better initial and �nal objetive funtion values and better lustering results. Thusthe theoretial onnetion between spetral lustering and kernel k-means helps in obtaining higherquality results. We then show that our distane estimation tehniques save a onsiderable amountof omputation time. Finally, we perform normalized ut image segmentation using our iterativenormalized ut algorithm.6.1 Data setsWe �rst use two arti�ial datasets, XOR and TwoCirles. XOR onsists of 100 points in two-dimensional spae. Assuming points on the diagonals form lusters, we will see that the degree-2polynomial kernel k-means algorithm as well as the assoiated spetral algorithm an orretlyidentify the lusters. TwoCirles has 150 points whih form two irles in two-dimensional spae.An exponential kernel k-means lustering is applied on it to reover the two irular lusters.The two gene expression datasets we analyze are: human �broblast gene expression data and theyeast dataset of Rosetta Inpharmatis. The human �broblast gene expression dataset reords theresponse of human �broblasts after addition of serum to the growth media. This dataset ontainsexpression levels for 517 human genes whose expressions hange substantially following serum stim-ulation. The data (12 time points and an unsynhronized sample) is preproessed by dividing eahentry by the unsynhronized sample expression level, taking the log of the result, then normalizingeah 12-element expression vetor to have unit L2 norm. The yeast dataset of Rosetta Inpharmatisonsists of 300 experiments measuring the expression of 6048 yeast genes, in whih transript levelsof a mutant or ompound-treated ulture were ompared to those of a wild-type or mok-treatedulture. After removing genes with missing expression measurements, we are left with 5246 genes.Then we normalize eah gene vetor to have unit L2 norm after shifting it by its mean.Another real-life dataset we use is Pendigits downloaded from UCI mahine learning repository(ftp://ftp.is.ui.edu/ pub/mahine-learning-databases/pendigits), whih ontains (x; y) oordinatesof hand-written digits. This dataset ontains 7494 training digits and 3498 testing digits. Eah digitis represented as a vetor in 16-dimensional spae. The oordinate values are inside the interval[0; 100℄. In our experiments, the values are normalized to [0; 1℄.We also use a sample image in our experiments to show that our weighted kernel k-meansalgorithm is able to suessfully segment the image into omponents. Image segmentation is oftendone using a spetral algorithm for normalized uts, and hene our algorithm may be useful in aseswhere eigenvetor omputation is prohibitive (for example, if the image is very large).13


