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tThe last few years have seen a surge of interest in advan
ed methods for 
lustering data. Adrawba
k with several popular 
lustering algorithms, su
h as k -means, is that they 
an only �nd
lusters that are linearly separable in input spa
e. To over
ome this problem, two seeminglydi�erent approa
hes have been proposed: kernel k -means and spe
tral 
lustering using graphpartitioning. Despite signi�
ant resear
h, these methods have remained only loosely related.In this paper, we give an expli
it theoreti
al 
onne
tion between weighted kernel k -means andgraph partitioning. We show the generality of the weighted kernel k -means obje
tive fun
-tion, and derive various graph partitioning obje
tives as spe
ial 
ases. We are then able tore-interpret nearly all spe
tral 
lustering algorithms in terms of the weighted kernel k -meansobje
tive fun
tion. Given a graph, our results lead to novel weighted kernel k -means algorithmsthat monotoni
ally improve the normalized 
ut, ratio 
ut, or ratio asso
iation in the graph, aswell as an in
remental kernel k -means algorithm for the Kernighan-Lin obje
tive. Our resultshave important impli
ations: a) eigenve
tor-based algorithms, whi
h 
an be 
omputationallyprohibitive, are not essential for optimizing various 
ut 
riteria, b) due to the monotoni
ityof iterative algorithms, the output of spe
tral 
lustering algorithms may be further optimizedusing their appropriate iterative 
ounterpart. Sin
e kernel methods have signi�
ant memoryoverheads, we show how to s
ale our algorithms both in terms of speed and memory require-ments. Finally, we present several experimental results, in
luding showing that normalized 
utimage segmentation 
an su

essfully be performed without 
al
ulating eigenve
tors.1 Introdu
tionClustering has re
eived a signi�
ant amount of attention in the last few years as one of the fun-damental problems in data mining. It has been applied to a number of di�erent problems in datamining appli
ations, as well as other areas su
h as image segmentation and 
ir
uit layout.One of the most popular algorithms for 
lustering is the k -means algorithm, whi
h has been inuse for de
ades. In this algorithm, lo
al optima of a squared loss fun
tion are obtained by iterativelyreassigning points to their 
losest 
lusters and 
omputing the distan
e from points to every 
luster
enter. Re
ent resear
h has generalized the algorithm in many ways; for example, similar algorithmsfor 
lustering 
an be obtained using arbitrary Bregman divergen
es as the distortion measure [2℄.1



Other improvements in
lude lo
al sear
h to improve the 
lustering results [7℄, and better 
lusterinitialization [3℄.A major drawba
k to k -means is that it 
annot separate 
lusters that are not linearly separablein input spa
e. A re
ent approa
h that has emerged for ta
kling su
h a problem is kernel k -means.The data is �rst mapped to a higher-dimensional feature spa
e using a nonlinear fun
tion, andthen kernel k -means partitions the points by linear separators in the new feature spa
e. The linearseparator in feature spa
e 
orresponds to a non-linear separator in the input spa
e.Spe
tral 
lustering using graph partitioning is another proposed te
hnique that allows non-linearseparation of 
lusters. These algorithms use the eigenve
tors of an aÆnity (or 
losely related) matrixto obtain a 
lustering of the data - the nodes of the graph are the data points, and edges representsimilarity. Su
h an approa
h has proven useful for a number of 
lustering problems. Popularobje
tive fun
tions used in spe
tral 
lustering are to minimize the ratio 
ut [4℄ or normalized 
ut [22℄.On the surfa
e, kernel k -means and graph partitioning appear to be 
ompletely di�erent ap-proa
hes. In this paper we �rst unite these two forms of 
lustering under a single framework. Bygeneralizing the k -means obje
tive fun
tion to use both weights and kernels, we show how the twoapproa
hes to 
lustering are related. Spe
i�
ally, we 
an rewrite the weighted kernel k -means ob-je
tive fun
tion as a tra
e maximization problem whose relaxation 
an be solved with eigenve
tors.The result shows how parti
ular kernel and weight s
hemes are related to a number of di�erent spe
-tral 
lustering obje
tives. The advantage to our approa
h is that we 
an generalize the 
lusteringalgorithm to use arbitrary kernels and weights.In parti
ular, we show that by 
hoosing the weights and kernels in 
ertain ways, the weightedkernel k -means obje
tive fun
tion is the same (up to a 
onstant) as the normalized 
ut, ratio 
ut,ratio asso
iation, or Kernighan-Lin obje
tives, all graph partitioning problems. Thus far, onlyeigenve
tor-based algorithms have been employed to optimize the normalized 
ut, ratio 
ut, or ratioasso
iation obje
tives in spe
tral 
lustering and image segmentation. However, software to 
omputeeigenve
tors of large sparse matri
es (often based on the Lan
zos algorithm) 
an have substantial
omputational overheads, espe
ially when many eigenve
tors are to be 
omputed. In su
h situations,our equivalen
e has an important impli
ation: we 
an use k -means-like iterative algorithms foroptimizing these graph 
ut obje
tives. Using our derivations, we 
an re-interpret most spe
tral
lustering algorithms, and provide their weighted k -means 
ounterparts. Furthermore, we 
an showhow an in
remental kernel k -means algorithm will allow us to optimize the Kernighan-Lin obje
tive.An issue in using spe
tral 
lustering algorithms is that we must transform the eigenve
tor matrixinto a dis
rete 
lustering of the points. We generalize the result in [1℄ to our weighted k -meansobje
tive fun
tion. This leads to a general method for forming a dis
rete partitioning of pointsfrom the eigenve
tors. Finally, our iterative algorithms 
an be used to further re�ne the spe
tralobje
tives: after running the spe
tral algorithms and obtaining a dis
rete partitioning, one 
an usethe iterative algorithms that we introdu
e to monotoni
ally improve the graph 
ut obje
tives.Spe
tral methods 
an be impra
ti
al for huge databases; we show how our iterative algorithms
an be s
aled to very large datasets. We 
ombine two di�erent approa
hes for s
aling kernel k -means,one based on organizing the aÆnity matrix by blo
ks, and the other on an a

eleration s
heme thatexploits the triangle inequality.We show the usefulness of our approa
h to the appli
ation of 
lustering gene expression data. Inbioinformati
s appli
ations, we often want to group genes that have strong positive as well as negative
orrelations to ea
h other, sin
e both forms of 
orrelations imply fun
tional similarity. In order to doso, we 
an use a quadrati
 kernel (squared 
orrelation) to obtain an appropriate obje
tive fun
tion,and then use spe
tral relaxation for 
omputing su
h 
lusters. Our kernel k -means algorithm alsoprovides a non-spe
tral approa
h to su
h a task. We also illustrate the s
alability of our algorithmsin terms of 
omputation time by applying it to a large handwriting re
ognition data set. Finally,we perform image segmentation using an iterative normalized 
ut algorithm. This approa
h, whi
h2



Polynomial Kernel �(a;b) = (a � b+ 
)dGaussian Kernel �(a;b) = exp(�ka� bk2=2�2)Sigmoid Kernel �(a;b) = tanh(
(a � b) + �)Table 1: Examples of popular kernel fun
tionsdoes not involve 
omputing any eigenve
tors, may be quite useful for large images, or in situationswhere eigenve
tor 
omputation is prohibitive.A word about our notation. Capital letters su
h as A;X; Y and � denote matri
es; lower-
asebold letters su
h as a;b denote 
olumn ve
tors; s
ript letters su
h as A;B;V ; E represent sets; kakdenotes the L2 norm of a ve
tor; a � b represents the inner produ
t between ve
tors; and kXkFdenotes the Frobenius norm of a matrix, given by kXkF = (Pi;j X2ij)1=2.2 The EssentialsIn this se
tion, we separately summarize the seemingly di�erent approa
hes of weighted kernel k -means and graph partitioning.2.1 Weighted Kernel k-meansThe k -means 
lustering algorithm 
an be enhan
ed by the use of a kernel fun
tion, a nonlinear map-ping from the original (input) spa
e to a higher-dimensional feature spa
e. By using an appropriatemapping, one 
an extra
t 
lusters that are non-linearly separable in input spa
e.Let us denote 
lusters by �j , and a partitioning of points as f�jgkj=1. Using the non-linearfun
tion �, the k -means obje
tive fun
tion using Eu
lidean distan
e be
omesD(f�jgkj=1) = kXj=1 Xa2�j k�(a)�mjk2;where mj = 1j�j j Xa2�j �(a):To 
ompute inner produ
ts of the form �(a) � �(b), we use the kernel representation K(a;b), whereK(a;b) = �(a) � �(b). This allows us to 
ompute the dot produ
t without having to 
ompute themapping �. The matrix of inner produ
ts K is often 
alled the kernel matrix (it is also 
alled theGram matrix). See Table 1 for examples of popular kernel fun
tions.Using the above obje
tive fun
tion, we 
an derive an algorithm analogous to standard k-means.Furthermore, by 
areful manipulation, it be
omes possible to run the entire 
omputation for thekernel k -means algorithm using only the entries of the kernel matrix.We 
an generalize the kernel k -means obje
tive fun
tion by dis
ussing a weighted variant. As weshall see later, this generalization is powerful and en
ompasses various well known spe
tral 
lusteringformulations. We introdu
e a non-negative weight for data point a, denoted by w(a). The modi�edobje
tive fun
tion is: D(f�jgkj=1) = kXj=1 Xa2�j w(a)k�(a)�mjk2:
3



Algorithm 1: Weighted Kernel k-means.Weighted Kernel kmeans(K, k, w, C1; :::; Ck)Input: K: kernel matrix, k: number of 
lusters, w: weights for ea
h pointOutput: C1; ::::; Ck: partitioning of the points1. Initialize the k 
lusters: C(0)1 ; :::; C(0)k .2. Set t = 0.3. For ea
h point a, �nd its new 
luster index as
�(a) = argmin
k�(a)�m
k2; using (1).4. Compute the updated 
lusters asCt+1
 = fa : 
�(a) = 
g:5. If not 
onverged, set t = t+ 1 and go to Step 3; Otherwise, stop.The 
luster representative of �j is mj = Pb2�j w(b)�(b)Pb2�j w(b) :Note that this is the \best" 
luster representative sin
emj = argminz Xa2�j w(a)k�(a)� zk2:Clearly, we 
an obtain the original (or unweighted) kernel k -means obje
tive fun
tion by setting allweights to be equal to one. We must 
ompute the distan
e from ea
h (weighted) point to every
luster representative. For 
luster �j , this is given by���������(a)� Pb2�j w(b)�(b)Pb2�j w(b) ��������2;whi
h 
an be expanded as�(a) � �(a)� 2Pb2�j w(b)�(a) � �(b)Pb2�j w(b) + Pb,d2�j w(b)w(d)�(b) � �(d)(Pb2�j w(b))2 : (1)As stated before, the dot produ
ts �(a) ��(b) are 
ontained in the kernel matrixK. All 
omputationis in the form of su
h inner produ
ts, hen
e we 
an repla
e all inner produ
ts by entries of the kernelmatrix.To obtain an iterative algorithm for kernel k -means, we must 
ompute the distan
es as in (1).However, all other aspe
ts k -means remain the same, as shown in Algorithm 1.Assuming we are able to store the whole aÆnity matrix in main memory, we 
an analyze thetime 
omplexity of Algorithm 1. It is 
lear that the bottlene
k is Step 3, i.e., the 
omputation ofdistan
es. The �rst term in (1), �(a) � �(a), need not be 
omputed sin
e it is a 
onstant for a andthus does not a�e
t the assignment of a to 
lusters. The se
ond term is 
al
ulated on
e per datapoint, and 
osts O(n) ea
h time it is 
omputed, leading to a 
ost of O(n2) per iteration. For the thirdterm, noti
e that Pb,
2�j w(b)w(
)�(b)��(
)(Pb2�j w(b))2 is �xed for 
luster j, so in ea
h iteration it is 
omputed4



on
e and stored. Thus the 
omplexity is O(n2) s
alar operations per iteration. Initially, we must
ompute the kernel matrix K, whi
h usually takes time O(n2m), where m is the dimension of theoriginal points. If the total number of iterations is � , then the time 
omplexity of Algorithm 1 isO(n2(� +m)).2.2 Spe
tral Clustering and Graph PartitioningSpe
tral 
lustering has emerged re
ently as a popular method for 
lustering data that uses eigen-ve
tors of a matrix derived from the data. Several algorithms have been proposed in the litera-ture [14, 16, 17, 22℄, ea
h using the eigenve
tors in slightly di�erent ways. There have been a fewpapers 
omparing di�erent algorithms, in
luding some analysis of their properties [23, 24℄.Nearly all spe
tral 
lustering algorithms 
an be viewed as optimizing a graph partitioning obje
-tive. Several di�erent graph partitioning obje
tives have been proposed in the literature and usedin various appli
ations. In this se
tion, we review a few of the most prominent ones. We will seelater that by writing graph partitioning obje
tives as tra
e maximization problems, we 
an obtainiterative and spe
tral algorithms for the obje
tives.We are given a graph G = (V ; E ; A), where V is the set of verti
es, E is the set of edges, and Ais an edge aÆnity matrix. We assume that the matrix A is both symmetri
 (G is undire
ted) andnonnegative. For two subsets A and B of V , we de�ne the links between A and B to be the sum ofthe aÆnity weights from A to B. In other words,links(A;B) = Xi2A;j2BA(i; j):We de�ne the degree of a set A to be the total links from A to all nodes in V , i.e., degree(A) =links(A, V). We 
an now de�ne a number of graph partitioning obje
tives.Kernighan-Lin Obje
tive. The Kernighan-Lin graph partitioning algorithm [15℄ is a lo
al sear
hpro
edure that maintains two equally sized partitions while trying to minimize the 
ut between thepartitions. We 
an generalize their obje
tive fun
tion to k partitions (for ease in presentation, weassume that the total number of verti
es is divisible by k), and we say that the obje
tive fun
tion isminimize kXi=1 links(Vi;V n Vi)jVij ; subje
t to jVij = jVj=k; for all i = 1; : : : ; k:Ratio Cut. For the ratio 
ut obje
tive [4℄, we are intertested in optimizing the following:minimize kXi=1 links(Vi;V n Vi)jVij :Ratio Asso
iation. This maximization problem is similar to the ratio 
ut problem (though notidenti
al). We are interested in optimizing the following:maximize kXi=1 links(Vi;Vi)jVij :Normalized Cut. For normalized 
ut [16, 1, 25℄, instead of dividing by the size of the partition,we use the degree of the partition:minimize kXi=1 links(Vi;V n Vi)degree(Vi) :5



Note that minimizing the normalized 
ut is equivalent to the 
orresponding normalized asso
iationproblem, a maximization problem.3 The Spe
tral Conne
tionAt �rst glan
e, weighted kernel k -means and spe
tral 
lustering using graph partitioning appear tobe quite di�erent. After all, spe
tral 
lustering uses eigenve
tors to help determine the partitions,whereas eigenve
tors do not appear to �gure in kernel k -means. In this se
tion, we show howwe 
an express weighted kernel k -means as a tra
e maximization problem, and later we will seehow to express ea
h of the graph partitioning obje
tives as tra
e maximizations as well, leading toiterative algorithms for the graph partitioning obje
tives. On the other hand, relaxations for thetra
e maximization problems lead to spe
tral 
lustering algorithms, whi
h allows us to optimizeweighted kernel k -means using spe
tral methods. This will 
onne
t the two methods of 
lustering.For ease in presentation, let us denote the \distortion" of a 
luster �j to be d(�j) =Pa2�j w(a)k�(a)�mjk2. Then we have that D(f�jgkj=1) =Pkj=1 d(�j). Moreover, let us denote, for a 
luster �j , thesum of the w weights of the points in �j to be sj ; in other words, sj =Pa2�j w(a). Finally, let usdenote W to be the diagonal matrix of all the w weights, and Wj to be the diagonal matrix of theweights in �j .It is easy to see that we 
an rewrite the mean ve
tor mj asmj = �jWjesj ;where �j is the matrix of points asso
iated with 
luster �j (after the � mapping), i.e., � =[�(a1; �(a2); : : : ; �(an)℄, and e is the ve
tor of all ones.We 
an rewrite the distortion of 
luster �j to be:d(�j) = Xa2�j w(a)k�(a)�mjk2= Xa2�j w(a)k�(a)� �jWjesj k2= k(�j � �jWjeeTsj )W 1=2j k2F= k(�jW 1=2j (I � W 1=2j eeTW 1=2jsj )k2F :Using the fa
t that tra
e(AAT ) = tra
e(ATA) = kAk2F , and noting that I � W 1=2j eeTW 1=2jsj = P is anorthogonal proje
tion, i.e. P 2 = P sin
e sj = eTWje, we get thatd(�j) = tra
e��jW 1=2j �I � W 1=2j eeTW 1=2jsj ��I � W 1=2j eeTW 1=2jsj �W 1=2j �Tj �= tra
e��jW 1=2j �I � W 1=2j eeTW 1=2jsj �W 1=2j �Tj �= tra
e(W 1=2j �Tj �jW 1=2j )� eTWjpsj �Tj �jWjepsj :6



If we represent the full matrix of points as � = [�1;�2; : : : ;�k℄, then we have thatD(f�jgkj=1) = tra
e(W 1=2�T�W 1=2)� tra
e(Y TW 1=2�T�W 1=2Y );where Y = 2666664W 1=21 eps1 W 1=22 eps2 � � � W 1=2k epsk
3777775 :Note that Y is an n� k orthonormal matrix, i.e., Y TY = I .Sin
e tra
e(�W�T ) is a 
onstant, we see that we have derived an equivalent formulation forthe weighted kernel k -means obje
tive fun
tion. In parti
ular, we rewrite the minimization of theobje
tive fun
tion as a maximization of tra
e(Y TW 1=2�T�W 1=2Y ). The matrix �T� is simply thekernel matrix K of the data, so we 
an rewrite it as the maximization of tra
e(Y TW 1=2KW 1=2Y ).A standard result in linear algebra [11℄ provides a global solution to a relaxed version of thisproblem. By allowing Y to be an arbitrary orthonormal matrix, we 
an obtain the optimal Yby taking the top k eigenve
tors of W 1=2KW 1=2. Similarly, the sum of the top k eigenvalues ofW 1=2KW 1=2 gives the optimal tra
e value.4 Impli
ationsThe previous se
tion shows that the weighted kernel k -means problem 
an be written as a tra
emaximization problem. We now show how ea
h of the graph partitioning obje
tives 
an also bewritten as tra
e maximizations, leading to new iterative algorithms for the obje
tives. We alsodis
uss a postpro
essing method for obtaining a dis
rete 
lustering from the eigenve
tor matrixwhen using spe
tral methods.4.1 Normalized Cuts using Weighted Kernel k-meansAs dis
ussed in [25℄, the normalized 
ut problem 
an be re
ast as a tra
e maximization problem.Let xj denote the indi
ator ve
tor for partition j, i.e., xj(i) = 1 if 
luster Vj 
ontains the datapoint i. Also, let D be the degree matrix for A: D is a diagonal matrix whose entries 
orrespond tothe sum of the rows of A. Noti
e that degree(Vj) = xTj Dxj and links(Vj ;Vj) = xTj Axj . We notedearlier that the normalized 
ut problem is equivalent to the normalized asso
iation problem; i.e., theproblem 
an be expressed as:maximize � kXj=1 links(Vj ;Vj)degree(Vj) = kXj=1 xTj AxjxTj Dxj = kXj=1 ~xTj A~xj�;where ~xj = xj=(xTj Dxj)1=2.If we let ~X be the matrix of all ~xj ve
tors, then the above expression may be re-written astra
e( ~Y TD�1=2AD�1=2 ~Y ), where ~Y = D1=2 ~X, and is orthonormal.We now show a simple relationship between the tra
e maximizations of the normalized 
ut andkernel k -means problems. If we set W = D and K = D�1AD�1, the tra
e maximization problemof weighted kernel k -means is to maximize tra
e(Y TD�1=2AD�1=2Y ), whi
h is equivalent to thetra
e maximization for normalized 
ut. Thus, with this 
hoi
e of weights, we 
an use the weightedkernel k -means pro
edure in order to minimize the normalized 
ut. However, this 
hoi
e of K is only7



Algorithm 2: NCut Kernel k-means.NCut Kernel kmeans(A, k, C1; :::; Ck)Input: A: edge aÆnity matrix, k: number of 
lustersOutput: C1; ::::; Ck: partitioning of the points1. Compute D, the diagonal matrix whose entries are the sum of the rows of A.2. Let the w weight for ea
h point ai be Dii and set K = pD�1 +D�1AD�1.3. Initialize the k 
lusters: C(0)1 ; :::; C(0)k .4. Set t = 0.5. For ea
h point ai 
orresponding to 
olumn i of K, �nd its new 
luster index as
�(ai) = argmin
f(ai; 
);where f(ai; 
) equalsK(i; i)� 2Pbj2�
 w(bj)K(i; j)Pbj2�
 w(bj) + Pbj ;dl2�
 w(bj)w(dl)K(j; l)(Pbj2�
 w(bj))2 :6. Compute the updated 
lusters asCt+1
 = fai : 
�(ai) = 
g:7. If not 
onverged, set t = t+ 1 and go to Step 5; Otherwise, stop.guaranteed to monotoni
ally de
rease the normalized 
ut obje
tive if K is positive de�nite. Thisis be
ause if K is positive de�nite, then it 
an be viewed as �T�, and thus as inner produ
ts of afun
tion �. With this property, we 
an prove 
onvergen
e of the kernel k -means algorithm, but wewill have no su
h guarantee for arbitrary K.For the 
ase that K is not positive de�nite, we instead de�ne K = pD�1+D�1AD�1, where p is
hosen to be large enough that K is positive de�nite. Here we use the fa
t that a matrix is positivede�nite if and only if all of its eigenve
tors are positive, so we 
an easily �nd a p value su
h thatK is positive de�nite. Consider running weighted kernel k -means on this matrix K, with W = D.Then the tra
e maximization 
an be written as:tra
e(Y TD1=2KD1=2Y )= tra
e(Y TD1=2pD�1D1=2Y ) + tra
e(Y TD�1=2AD�1=2Y )= pk + tra
e(Y TD�1=2AD�1=2Y )Hen
e, the maximization problem is equivalent to the tra
e maximization problem for the normalized
ut of A, for any symmetri
 A.By the monotoni
ity property of kernel k -means, it 
an be shown that Algorithm 2 has the fol-lowing property:Property 1: Ea
h iteration of NCut Kernel k -means (Algorithm 2) de
reases the k -way normalized
ut.Sin
e K is positive de�nite by 
onstru
tion, we 
an interpret K as inner produ
ts of a kernelfun
tion [5℄, as is done in kernel k -means. 8



4.2 Ratio Cuts and Kernighan-Lin using Weighted Kernel k-meansNow we extend our analysis for the ratio 
ut problem. Again, let xj denote the indi
ator ve
tor forpartition j. Then we 
an rewrite the ratio-
ut minimization problem asminimize kXj=1 xTj (D �A)xjxTj xj ;sin
e xTj Dxj � xTj Axj = degree(Vj)� links(Vj) = links(Vj ;V n Vj), and xTj xj = jVj j.The matrix D � A is the Lapla
ian, whi
h we will write as L, and it 
an be proven that thismatrix is positive de�nite. It is easy to see that the above problem is equivalent to:minimize � kXj=1 xTj LxjxTj xj = jXj=1 ~xTj L~xj = tra
e( ~XTL ~X)�;with ~xj = xj=(xTj xj)1=2, and ~X the matrix of ~xj ve
tors.The diÆ
ulty with this formulation is that we have written k -means in Se
tion 3 as a tra
emaximization, not a minimization. Though one 
an perform tra
e minimization by taking thesmallest eigenve
tors of L, the 
orresponding k -means obje
tive fun
tion is a maximization problem.Hen
e, it is not immediately 
lear how to relate the minimization of the k -means obje
tive fun
tionto the above tra
e minimization.In a similar fashion to the normalized 
ut problem, 
onsider the matrixK = pI�L for unweightedkernel k -means, with p suÆ
iently large su
h that K is positive de�nite. Then we have that theobje
tive fun
tion is equivalent totra
e(pI � L)� tra
e(Y T (pI � L)Y )= tra
e(pI)� tra
e(L)� ptra
e(Y TY ) + tra
e(Y TLY )= p(n� k)� tra
e(L) + tra
e(Y TLY ):Hen
e, the minimization of the obje
tive fun
tion for kernel k -means with K = pI �L is equivalentto the minimization of tra
e(Y TLY ), whi
h is the ratio 
ut of A sin
e Y = ~X.There are several simple methods for 
hoosing the value p. One approa
h is to use the fa
t thatthe norm of a matrix is greater than or equal to the largest eigenvalue. Hen
e, we 
an 
al
ulate asimple upper bound on the largest eigenvalue by determining kLk1 = maxiPnj=1 jLij j.Our approa
h, therefore, is simply to run kernel k -means with all weights equal to one, using thekernel matrix pI � L. We 
an verify the following property of the algorithm:Property 2: Ea
h iteration of Ratio-Cut Kernel k -means de
reases the k -way ratio 
ut.Again, this follows dire
tly from the fa
t that the k -means obje
tive fun
tion de
reases mono-toni
ally at every iteration, and our analysis from the previous se
tions.The Kernighan-Lin graph partitioning obje
tive follows easily from the ratio 
ut obje
tive. Forthe 
ase of K-L partitioning, we maintain equally sized partitions, and hen
e the only di�eren
ebetween the ratio 
ut and K-L partitioning is the fa
t that the Xj indi
ator ve
tors are 
onstrainedto be of size jVj=k. If we start with equally sized partitions, an in
remental weighted kernel k -meansalgorithm (where we only 
onsider swapping points, or 
hains of points, that improve the obje
tivefun
tion) 
an be run to simulate the Kernighan-Lin algorithm.9



Graph Partitioning Obje
tive Weights KernelRatio Asso
iation w(a) = 1 for all a K = pI + ARatio Cut w(a) = 1 for all a K = pI � LKernighan-Lin w(a) = 1 for all a K = pI � LNormalized Cut w(a) = degree of a K = pD�1 +D�1AD�1Table 2: Popular graph partitioning obje
tives and 
orresponding weights and kernels given aÆnitymatrix A4.3 Ratio Asso
iation using Weighted Kernel k-meansFinally, the related maximization problem of ratio asso
iation 
an also easily be added into ourframework. In the ratio asso
iation problem for an aÆnity matrixA, we are interested in maximizingkXj=1 links(Vj ;Vj)jVj jIf we use the same indi
ator ve
tor that was used in ratio 
uts, the maximization 
an be written asmaximize kXj=1 xTj AxjxTj xjThis 
an be rewritten as the maximization of tra
e(Y TAY ), where Y is orthonormal (we set 
olumnj of Y as xj=(xTj xj)1=2). It is easy to verify that this is equivalent to the unweighted kernel k -meansobje
tive fun
tion, using the aÆnity matrix as the kernel matrix. As before, the matrix A does notne
essarily have to be positive de�nite, as we 
an substitute pI +A for suÆ
iently large p.In Table 2, the weights and kernels for ea
h graph obje
tive are summarized.4.4 Re-interpreting Spe
tral AlgorithmsNearly all spe
tral 
lustering algorithms attempt to optimize one of the three spe
tral 
lusteringobje
tives that we have just dis
ussed (normalized 
ut, ratio 
ut, or ratio asso
iation). Consequently,we now have the ability to re-interpret most spe
tral 
lustering algorithms in terms of the weightedkernel k -means obje
tive fun
tion.As an example, 
onsider the algorithm of Pothen, Simon, and Liou [19℄. This algorithm isre
ursive, and uses the se
ond smallest eigenve
tor of the Lapla
ian to partition the points into two
lusters. The algorithm partitions all of the data into two 
lusters, then re
urses on the two 
lusters.Using the result from the ratio 
ut se
tion, if we 
onsider the asso
iated k -means obje
tive, withk = 2, then we �nd that the spe
tral relaxation involves using the two smallest eigenve
tors of theLapla
ian to partition the points. However, the smallest eigenve
tor of the Lapla
ian is all ones,and does not 
ontribute. Therefore, only the se
ond smallest eigenve
tor is used to partition thepoints. Sin
e the eigenve
tors of pI � L are equal to the eigenve
tors of L, their algorithm 
an bereformulated as a spe
tral relaxation to a weighted kernel k -means obje
tive fun
tion, where thekernel is pI � L and all weights are one.As another example, 
onsider the Ng, Jordan, and Weiss algorithm [17℄. Their algorithm �rst
omputes the kernel matrix K, where the kernel that is used is the Gaussian Kernel. They 
omputea diagonal matrix D su
h that the diagonal entries of D are the sums of the rows of K. Thenthey form D�1=2(I � K)D�1=2, 
ompute the eigenve
tors of this matrix (whi
h are equal to theeigenve
tors of D�1=2KD�1=2), and form a dis
rete 
lustering using these eigenve
tors.10



Algorithm Spe
tral Obje
tivePerona and Freeman [18℄ Re
ursive Ratio Asso
iationS
ott and Longuet-Higgins [21℄ k -way Ratio Asso
iationPothen, Simon, and Liou [19℄ Re
ursive Ratio CutChan, S
hlag, and Zien [4℄ k -way Ratio CutShi and Malik [22℄ Re
ursive Normalized CutMeila and Shi [16℄ k -way Normalized CutYu and Shi [25℄ k -way Normalized CutNg, Jordan, and Weiss [17℄ k -way Normalized CutTable 3: Spe
tral Clustering Algorithms and their Asso
iated Obje
tivesHen
e, we see that the NJW algorithm 
an be viewed as either a spe
tral relaxation to theweighted kernel k -means obje
tive fun
tion or as a normalized 
ut problem. The 
onne
tion tonormalized 
uts is 
lear: we view the aÆnity matrix K in the spe
tral algorithm as de�ning theedge weights of a graph, and their algorithm attempts to minimize the normalized 
ut in this graph.It follows then that this algorithm 
an be viewed as a spe
tral relaxation to weighted kernel k -means,using the weights and kernel from normalized 
ut.In Table 3, we list several spe
tral algorithms and their asso
iated obje
tives. All of thesealgorithms 
an be interpreted in terms of weighted kernel k -means and their obje
tives 
an belo
ally optimized by iterative algorithms.One advantage to our use of an iterative algorithm for these graph problems is that we 
anuse di�erent improvement methods, su
h as lo
al sear
h, to in
rease the quality of the results. Insituations where eigenve
tor 
omputation is diÆ
ult, for example, when the aÆnity matrix is largeand sparse, and many eigenve
tors are desired, our iterative algorithm is parti
ularly useful.Another major advantage is that we 
an improve the output of most spe
tral 
lustering algorithmsusing our iterative approa
h. After running spe
tral 
lustering, we obtain a partitioning of the pointsthat relates to a relaxed version of a spe
tral obje
tive fun
tion. If we then run the 
orrespondingiterative 
lustering algorithm on the partition, the monotoni
ity of the iterative algorithm guaranteesus that we 
an only improve the quality of the 
lustering. This two-layer approa
h { �rst runningspe
tral 
lustering to get an initial partitioning and then re�ning the partitioning by running kernelk -means on the partitioning { typi
ally results in a robust partitioning of the data. We will showexperimental results indi
ating that spe
tral methods provide ex
ellent initializations to iterative
lustering algorithms.4.5 Kernel k-means using Eigenve
torsThe reformulation of the kernel k -means obje
tive fun
tion allows us to solve a relaxed problemusing the eigenve
tors of the matrix W 1=2KW 1=2. This yields a spe
tral approa
h to minimizingthe obje
tive fun
tion: we �rst 
ompute the top k eigenve
tors of the matrix W 1=2KW 1=2. Thismaps the original points to a lower-dimensional spa
e.We require that some postpro
essing be done in order to obtain a dis
rete 
lustering of the datapoints from the eigenve
tors. This may be a

omplished by 
lustering the points in this new spa
e,or another method. In [26℄, for example, the 
luster assignment was 
omputed by using a pivotedQR de
omposition.In [1℄, Ba
h and Jordan show that, for spe
tral 
lustering based on normalized 
uts, a goodway to obtain a dis
rete 
lustering from the matrix of eigenve
tors is to run a weighted k-meansalgorithm. They show that if the rows of the eigenve
tor matrix are treated as k-dimensional points,11



then weighted k -means 
an be run with wi weights equal to the sum of the rows of the original aÆnitymatrix, and se
ondary vi weights equal to w�1=2i . It is shown that using these weights minimizes anatural 
ost fun
tion between the eigenve
tor solution and a dis
rete solution.We 
an extend their analysis to our general framework. In this way, we will provide a strongmethod for postpro
essing to a
hieve a dis
rete partitioning of the data, thus leading to a 
ompleteview of spe
tral 
lustering. We see that to minimize the 
ost fun
tion of Ba
h and Jordan, weightedk -means 
an be run with wi weights given before taking eigenve
tors, and for every i we multiplyrow i of the eigenve
tor matrix by w�1=2i before running weighted k -means (this 
orresponds to thev weights in the Ba
h and Jordan algorithm). Their analysis follows easily for this generalized 
ase.See [1℄ for a more extensive treatment of postpro
essing.5 S
alability IssuesIn this se
tion, we dis
uss methods for s
aling the kernel k -means algorithm to very large data sets.The paper [27℄ by Zhang and Rudni
ky 
onsiders the problem of s
alability for kernel k -means.We will 
ombine the ideas presented in that paper with the ideas of [9, 6℄ to dis
uss a s
alableapproa
h to running kernel k -means.The key idea in [27℄ is that, while the aÆnity matrix may be too large to store in main memory,we 
an instead read in the aÆnity matrix blo
k by blo
k. We need only store an n by k matrix C,whose (i; j) entry tells us the 
urrent distan
e from point i to 
luster j. We 
omputed the distan
efrom �(ai) to m
 asK(i; i)� 2Pbj2�
 w(bj)K(i; j)Pbj2�
 w(bj) + Pbj ;dl2�
 w(bj)w(dl)K(j; l)(Pbj2�
 w(bj))2 (2)We 
an therefore 
ompute the denominators of this expression for ea
h 
luster before reading theblo
ks, and we simply 
ompute C as we read in ea
h blo
k, whi
h is possible sin
e the distan
e is asum of kernel matrix values.We note that we 
an improve marginally on the pro
edure given in [27℄. Instead of 
omputingin a 
ompletely serial fashion { namely, reading in a blo
k, 
omputing on that blo
k, reading in thenext blo
k, and so on { we 
an break our blo
k into two smaller blo
ks B1 and B2. While we are
omputing with B1, we read in a new B2. Then, when we are �nished with B1, we 
an immediatelybegin 
omputing with B2. Then, while we 
ompute with B2, we read in a new B1. This pipeliningavoids waiting for ea
h blo
k to be read in.While the above pro
edure helps us 
ompute kernel k -means on very large data sets, we still havethe problem that kernel k -means is slower than standard k -means. To speed up the 
omputation,we 
an adapt the pruning pro
edure used in [9, 6℄. The idea behind the a

eleration s
heme is thatwe 
an use the triangle inequality to avoid unne
essary 
omputation.The a

eleration is based on the following observation: using the triangle inequality, we havethat, for a point i, d(i;m0) � d(i;m)� d(m;m0), where m is an old 
enter and m0 is a new 
enter.We see that we 
an 
ompute the distan
es between new and old 
enters and store the informationinto a k by k matrix D. Similarly, we keep a k by n matrix L that 
ontains lower bound informationfor the distan
e from ea
h point to ea
h 
enter. Suppose after a single iteration, all distan
es are
omputed between ea
h point and ea
h 
enter. In the next iteration, we 
an obtain the lower boundsfrom the points to the new 
enters by using the d(m;m0) 
al
ulations and the distan
es from theprevious iteration. In this way, we 
al
ulate the lower bounds as d(i;m) � d(m;m0) for the matrixL. Furthermore, these lower bounds allow us to eliminate expli
itly 
omputing many distan
es. On
ewe have 
omputed lower bounds and begin to 
ompute exa
t distan
es, the lower bound allows us12



to determine whether or not to 
ompute remaining distan
es exa
tly.We should also brie
y mention s
alability of the Lan
zos algorithm. The bottlene
k for 
omput-ing eigenve
tors of a matrixM using the Lan
zos method is the 
omputation of M times a ve
tor x.There are methods for performing this multipli
ation even if the matrix M is too large to be storedin main memory. Su
h an approa
h would help to s
ale the Lan
zos 
omputation to large data sets.6 Experimental ResultsWe now provide experimental results. In this se
tion, we �rst illustrate the kernel k-means algorithmby showing how it 
orre
tly identi�es non-linearly separable 
lusters in two arti�
ial data sets: thetwo 
ir
les of the TwoCir
le data set and points of the XOR data set; see Se
tion 6.1. Then we applythe kernel 
lustering idea to a bioinformati
s appli
ation. We show that degree-2 polynomial kernelk-means generates \diametri
 
lustering" in the two gene expression datasets: human �broblastgene expression data [13℄ and the yeast data set of Rosetta Inpharmati
s [12℄. Further, with thehandwriting re
ognition data set, Pendigits, we show that using eigenve
tors to initialize kernelk-means gives better initial and �nal obje
tive fun
tion values and better 
lustering results. Thusthe theoreti
al 
onne
tion between spe
tral 
lustering and kernel k-means helps in obtaining higherquality results. We then show that our distan
e estimation te
hniques save a 
onsiderable amountof 
omputation time. Finally, we perform normalized 
ut image segmentation using our iterativenormalized 
ut algorithm.6.1 Data setsWe �rst use two arti�
ial datasets, XOR and TwoCir
les. XOR 
onsists of 100 points in two-dimensional spa
e. Assuming points on the diagonals form 
lusters, we will see that the degree-2polynomial kernel k-means algorithm as well as the asso
iated spe
tral algorithm 
an 
orre
tlyidentify the 
lusters. TwoCir
les has 150 points whi
h form two 
ir
les in two-dimensional spa
e.An exponential kernel k-means 
lustering is applied on it to re
over the two 
ir
ular 
lusters.The two gene expression datasets we analyze are: human �broblast gene expression data and theyeast dataset of Rosetta Inpharmati
s. The human �broblast gene expression dataset re
ords theresponse of human �broblasts after addition of serum to the growth media. This dataset 
ontainsexpression levels for 517 human genes whose expressions 
hange substantially following serum stim-ulation. The data (12 time points and an unsyn
hronized sample) is prepro
essed by dividing ea
hentry by the unsyn
hronized sample expression level, taking the log of the result, then normalizingea
h 12-element expression ve
tor to have unit L2 norm. The yeast dataset of Rosetta Inpharmati
s
onsists of 300 experiments measuring the expression of 6048 yeast genes, in whi
h trans
ript levelsof a mutant or 
ompound-treated 
ulture were 
ompared to those of a wild-type or mo
k-treated
ulture. After removing genes with missing expression measurements, we are left with 5246 genes.Then we normalize ea
h gene ve
tor to have unit L2 norm after shifting it by its mean.Another real-life dataset we use is Pendigits downloaded from UCI ma
hine learning repository(ftp://ftp.i
s.u
i.edu/ pub/ma
hine-learning-databases/pendigits), whi
h 
ontains (x; y) 
oordinatesof hand-written digits. This dataset 
ontains 7494 training digits and 3498 testing digits. Ea
h digitis represented as a ve
tor in 16-dimensional spa
e. The 
oordinate values are inside the interval[0; 100℄. In our experiments, the values are normalized to [0; 1℄.We also use a sample image in our experiments to show that our weighted kernel k-meansalgorithm is able to su

essfully segment the image into 
omponents. Image segmentation is oftendone using a spe
tral algorithm for normalized 
uts, and hen
e our algorithm may be useful in 
aseswhere eigenve
tor 
omputation is prohibitive (for example, if the image is very large).13


