
Removing Redundancy from Packet Classifiers

Alex X. Liu Mohamed G. Gouda

TR-04-26

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188, U.S.A.

{alex, gouda}@cs.utexas.edu

June 4, 2004

Abstract

Packet classification is the core mechanism that en-
ables many networking services such as firewall access
control and traffic accounting. Reducing memory space
for packet classification algorithms is of paramount im-
portance because a packet classifier must use very lim-
ited on-chip cache to store complex data structures.
This paper proposes the first ever scheme that can sig-
nificantly reduce memory space for all packet classifica-
tion algorithms. The scheme is to remove all redundant
rules in a packet classifier before a classification algo-
rithm starts building data structures. By removing re-
dundant rules, we can save more than 73% of memory
for a packet classifier that examines eight packet fields.
In this paper, we categorize redundant rules into up-
ward redundant rules and downward redundant rules.
We give a necessary and sufficient condition for identi-
fying each type of redundant rule. We present two ef-
ficient algorithms for detecting and removing the two
types of redundant rules respectively. The two algo-
rithms make use of a graph model of packet classifiers,
called packet decision diagrams. The experimental re-
sults shows that our algorithms are very efficient.

1. Introduction

Most routers on the Internet have packet classifica-
tion capabilities. Packet classification is the core mech-
anism that enables routers to perform many network
services, such as routing [9], active networking [8], fire-
wall access control [3], quality of service [1], differential
service [2], etc. A packet classifier maps each packet to
a decision based on a sequence of rules. A packet can
be viewed as a tuple with a finite number of fields;

examples of these fields are source/destination IP ad-
dress, source/destination port number, and protocol
type. The possible decisions to which a packet classifier
can map a packet are application specific. For exam-
ple, the possible decision to which a packet is mapped
by a packet classifier that is used as a firewall can be
either accept or discard . Each rule in a packet classi-
fier is of the form 〈predicate〉 → 〈decision〉 where the
〈predicate〉 is a boolean expression over some packet
fields. A packet matches a rule iff the packet satisfies
the predicate of the rule. A packet may match more
than one rule in a packet classifier. Therefore, a packet
classifier maps each packet to the decision of the first
(i.e., highest priority) rule that the packet matches.

A packet classifier may have redundant rules. A rule
in a packet classifier is redundant iff removing the rule
does not change the decision of the packet classifier for
each packet. For example, consider the simple packet
classifier in Figure 1. This packet classifier consists of
four rules r1 through r4, where each rule only checks
one packet field F1 whose domain of values is [1, 100].

r1 : F1 ∈ [1, 50] → accept

r2 : F1 ∈ [40, 90] → discard

r3 : F1 ∈ [30, 60] → accept

r4 : F1 ∈ [51, 100]→ discard

Figure 1. A simple packet classifier

We have the following two observations concerning
the redundant rules in the packet classifier in Figure 1.

1. Rule r3 is redundant. This is because the first
matching rule for all packets where F1 ∈ [30, 50] is
r1, and the first matching rule for all packets where

1

F1 ∈ [51, 60] is r2. Therefore, there are no pack-
ets whose first matching rule is r3. We call r3 an
upward redundant rule. A rule r in a packet clas-
sifier is upward redundant iff there are no pack-
ets whose first matching rule is r. Geometrically,
a rule is upward redundant in a packet classifier if
the rule is overlayed by some rules listed above it.

2. Rule r2 becomes redundant after r3 is removed.
Note that r2 is the first matching rule for all pack-
ets where F1 ∈ [51, 90]. However, if both r2 and r3

are removed, the first matching rule for all those
packets becomes r4 instead of r2. This is accept-
able since both r2 and r4 have the same decision.
We call r2 a downward redundant rule. A rule r in
a packet classifier, where no rule is upward redun-
dant, is downward redundant iff for each packet,
whose first matching rule is r, the first matching
rule below r has the same decision as r.

Gupta identified two special types of redundant rules
in his PhD thesis [4], namely backward redundant rules
and forward redundant rules, by studying 793 packet
classifiers from 101 different Internet Service Providers
and enterprise networks with a total of 41, 505 rules. A
rule r in a packet classifier is backward redundant iff
there exists another rule r′ listed above r such that all
packets that match r also match r′. In [4], Gupta ob-
served that on average 7.8% of the rules in a packet
classifier are backward redundant. Clearly, a backward
redundant rule is an upward redundant rule, but not
vice versa. For example, rule r2 in Figure 1 is upward
redundant, but not backward redundant.

A rule r in a packet classifier is forward redundant
iff there exists another rule r′ listed below r such that
the following three conditions hold: (1) all packets that
match r also match r′, (2) r and r′ have the same deci-
sion, (3) for each rule r′′ listed between r and r′, either
r and r′′ have the same decision, or no packet matches
both r and r′′. In [4], Gupta observed that on average
7.2% of the rules in a packet classifier are forward re-
dundant. Clearly, a forward redundant rule is a down-
ward redundant rule, but not vice versa. For example,
rule r2 in Figure 1, assuming r3 has been removed pre-

PSfrag replacements

r1 :

r2 :

r3 :

r4 :

1 50

40 90

30 60

51 100

accept

accept

discard

discard

Figure 2. Geometric representation of the rules
in Figure 1

viously, is downward redundant, but not forward re-
dundant.

In [3], Gouda and Liu identified redundancy in the
sequence of rules generated from a firewall decision di-
agram. However, the algorithms for removing redun-
dant rules in [3] are applicable only to the rules gener-
ated from a firewall decision diagram. By contrast, the
algorithms presented in the current paper can be ap-
plied to any packet classifier.

Previous work on packet classification has focused
on developing efficient classification algorithms (e.g.,
[11, 12, 13]). A packet classification algorithm builds a
data structure from the sequence of rules in a packet
classifier, and uses this data structure to search for the
decision of the first rule that a packet matches. The de-
sign goals of all these algorithms are to reduce the clas-
sification time and space. The classification time is the
average processing time that a packet classification al-
gorithm needs to find the decision for a packet. The
classification space is the amount of memory needed
to store the (usually large) data structures of a packet
classification algorithm. Reducing classification space
for packet classification algorithms is of paramount im-
portance because small classification space enables the
use of very limited on-chip cache to store the data
structure of a packet classification algorithm. In other
words, reducing classification space has significant im-
pact on reducing classification time.

In this paper, we propose to remove all redundant
rules from a packet classifier before a packet classifica-
tion algorithm starts building its data structure from
the rules. We give a necessary and sufficient condi-
tion for identifying all redundant rules. We catego-
rize redundant rules into upward redundant rules and
downward redundant rules. We present two efficient
graph based algorithms for removing these two types
of redundant rules. The experimental results show that
these two algorithms are very efficient.

Removing the redundant rules from a packet classi-
fier has the following three main merits:

1. Complement classification algorithms: The
algorithms presented in this paper for removing
redundant rules are not intended to replace any of
the previous (or future) classification algorithms.
Rather, it complements these algorithms since re-
dundancy removal can be viewed as a preprocess-
ing procedure for each of these classification algo-
rithms.

2. Reduce classification space: Based on the com-
plexity bounds from computational geometry in
[10], the fastest packet classification algorithm
needs O(nd) classification space (and O(log n)
classification time), where n is the total number of
rules and d (d > 3) is the total number of packet

2

fields that the classifier examines for each packet.
Most fast packet classification algorithms, such as
Recursive Flow Classification [5], have O(log n)
complexity with O(nd) memory space. It has been
observed in [4] that on average a packet classi-
fier has 15% redundant rules (based on Gupta’s
definition of redundant rules). For a packet clas-
sifier with 15% redundant rules, Figure 3 shows
the percentage of classification space that is saved
by removing redundant rules versus the number of
fields that a packet classifier checks. From this fig-
ure, we see that removing redundant rules from
a packet classifier saves about 48% memory space
when d = 4 and saves about 80% memory space
when d = 10.

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

Number of fields checked by a packet classifier

P
er

ce
nt

ag
e

of
 m

em
or

y
sa

ve
d

by
 re

m
ov

in
g

al
l r

ed
un

da
nt

 ru
le

s
(%

)

Figure 3. Number of fields vs. Memory Saved

3. Reduce classification time: It has been ob-
served in [7] that reducing the amount of overlap-
ping among rules or reducing the total number of
rules reduces classification time. Two rules overlap

iff there is at least one packet that can match both
rules. Redundancy in a packet classifier is caused
by the overlapping of rules. Each redundant rule
overlaps with some other rules. By removing re-
dundant rules, while other non-redundant rules re-
main unchanged, both the amount of overlapping
of rules and the total number of rules are reduced.
Therefore, removing redundant rules directly re-
duces classification time.

The rest of this paper is organized as follows. We
give a necessary and sufficient condition for identify-
ing redundant rules in Section 2. In Section 3, we in-
troduce Packet Decision Diagrams, which will be used
as the core data structure for redundancy removal al-
gorithms. The upward and downward redundancy re-

moval algorithms are presented in Section 4 and 5. The
experimental results are shown in Section 6. We give
concluding remarks in Section 7.

2. Redundancy of Packet Classifiers

We define a packet over the fields F1, · · · , Fd as a d-
tuple (p1, · · · , pd) where each pi is in the domain D(Fi)
of field Fi, and each D(Fi) is an interval of nonnega-
tive integers. For example, the domain of the source ad-
dress in an IP packet is [0, 232−1]. We use Σ to denote
the set of all packets over fields F1, F2, · · · , Fd. It follows
that Σ is a finite set and |Σ| = |D(F1)|×· · ·×|D(Fn)|.

A packet classifier, over the fields F1, · · · , Fd and
whose decision set is DS , is a sequence of rules, and
each rule is of the following format:

(F1 ∈ S1) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉

where each Si is a nonempty subset of D(Fi) and
〈decision〉 is an element of DS . A packet (p1, · · · , pd)
matches a rule (F1 ∈ S1) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈
Sd) → 〈decision〉 iff the following condition holds:

(p1 ∈ S1) ∧ (p2 ∈ S2) ∧ · · · ∧ (pd ∈ Sd)

For simplicity, in the rest of this paper, we assume that
all packets and all packet classifiers are over the fields
F1, F2, · · · , Fd, if not otherwise specified.

Next we define two important concepts: matching
set and resolving set. Consider a packet classifier f that
consists of n rules 〈r1, r2, · · · , rn〉. The matching set of
a rule ri in this packet classifier is the set of all pack-
ets that match ri. The resolving set of a rule ri in this
packet classifier is the set of all packets that match r,
but do not match any rj that j < i. For example, con-
sider the rule r2 in Figure 1: its matching set is the set
of all the packets whose F1 field is in [40, 90]; its resolv-
ing set is the set of all the packets whose F1 field is in
[51, 90]. The matching set of a rule ri is denoted M(ri),
and the resolving set of a rule ri is denoted R(ri, f).
Note that the matching set of a rule depends only on
the rule itself, while the resolving set of a rule depends
both the rule itself and all the rules listed above it in
a packet classifier.

From the definition of M(ri) and R(ri, f), we have

R(ri, f) = M(ri) −
i−1
⋃

j=1

M(rj)

Therefore, we have the following theorem:

Theorem 1 Let f be any packet classifier that con-
sists of n rules: 〈r1, r2, · · · , rn〉. For each i, 1 ≤ i ≤ n,
we have:

R(ri, f) = M(ri) −
i−1
⋃

j=1

R(rj , f)

3

2

A sequence of rules 〈r1, r2, · · · , rn〉 is comprehensive

iff for any packet p, there is at least one rule that
matches p in the sequence. A sequence of rules must
be comprehensive for it to serve as a packet classifier.
From now on, we assume each packet classifier is com-
prehensive. Therefore, we have the following theorem:

Theorem 2 Let f be any packet classifier that con-
sists of n rules: 〈r1, r2, · · · , rn〉. The following two con-
ditions hold:

1. Determinism: R(ri, f) ∩ R(rj , f) = ∅ (i 6= j)

2. Comprehensiveness:
⋃n

i=1 R(ri, f) = Σ 2

We use f(p) to denote the decision to which a packet
classifier f maps a packet p. Two packet classifiers f

and f ′ are equivalent, denoted f ≡ f ′, iff for any packet
p in Σ, f(p) = f ′(p) holds. This equivalence relation is
symmetric, self-reflective, and transitive.

The following theorem says that the last rule in a
packet classifier can be modified in a way that the re-
sulting packet classifier is equivalent to the original one.

Theorem 3 Let f be any packet classifier that con-
sists of n rules: 〈r1, r2, · · · , rn〉. If rule rn in f is of

the form: (F1 ∈ S1) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) →

〈decision〉, and if f ′ is the resulting packet classifier af-
ter rule rn is modified to become of the form:

(F1 ∈ D(F1)) ∧ (F2 ∈ D(F2)) ∧ · · · ∧ (Fd ∈ D(Fd))
→ 〈decision〉

then f and f ′ are equivalent.

Proof Sketch: By Theorem 1, we have R(rn, f) =

M(rn) −
⋃n−1

j=1 R(rj , f), and by Theorem 2, we have

R(rn, f) = Σ −
⋃n−1

j=1 R(rj , f). So R(rn, f) does not
change if we modify M(rn) to be Σ, i.e., if we mod-
ify the predicate of the last rule rn to be (F1 ∈
D(F1)) ∧ (F2 ∈ D(F2)) ∧ · · · ∧ (Fd ∈ D(Fd)). 2

By modifying rule rn in this way, any postfix of a
packet classifier is comprehensive, i.e., if 〈r1, r2, · · · , rn〉
is comprehensive, then 〈ri, ri+1, · · · , rn〉 is comprehen-
sive for each i, 1 ≤ i ≤ n. In the rest of this paper, we
assume the predicate of the last rule in a packet classi-
fier is (F1 ∈ D(F1))∧(F2 ∈ D(F2))∧· · ·∧(Fd ∈ D(Fd)).

Redundant rules are defined as follows.

Definition 1 A rule r is redundant in a packet classi-
fier f iff the resulting packet classifier f ′ after remov-
ing rule r is equivalent to f .

The following theorem shows a necessary and suf-
ficient condition for identifying redundant rules. The
correctness of this theorem can be proven in a straight-
forward way by the above discussion. Note that we use

the notation 〈ri+1, ri+2, · · · , rn〉(p) to denote the deci-
sion to which the packet classifier 〈ri+1, ri+2, · · · , rn〉
maps the packet p.

Theorem 4 (Redundancy Theorem) Let f be any
packet classifier that consists of n rules: 〈r1, r2, · · · , rn〉.
A rule ri is redundant in f iff one of the following two
conditions holds:

1. R(ri, f) = ∅,

2. R(ri, f) 6= ∅, and for any p that p ∈ R(ri, f),
〈ri+1, ri+2, · · · , rn〉(p) is the same as the decision
of ri. 2

By the redundancy theorem, we categorize all re-
dundant rules into upward and downward redundant
rules.

Definition 2 A rule that satisfies the first condition
in the redundancy theorem is called an upward redun-

dant rule, whereas a rule that satisfies the second con-
dition in the redundancy theorem is called a downward

redundant rule.

Consider the example packet classifier f in Fig-
ure 1. Rule r3 is an upward redundant rule because
R(r3, f) = ∅. Let f ′ be the resulting packet classifier
by removing rule r3 from f . Then rule r2 is downward
redundant in f ′.

2.1. Upward/Downward Redundancy vs.
Backward/Forward Redundancy

Next we argue that the backward redundant rules
defined by Gupta in [4] form a (sometimes proper)
subset of upward redundant rules, and similarly the
forward redundant rules defined in [4] form a (some-
times proper) subset of downward redundant rules. In
other words, the classification of redundancy in [4] is
not as complete as our classification of redundancy in
this paper. Therefore, more rules can be removed from
a packet classifier using our definition (of upward and
downward redundancy) without changing the function
of the packet classifier.

Let f be any packet classifier that consists of n rules:
〈r1, r2, · · · , rn〉.

1. Upward redundancy vs. backward redundancy :
By Gupta’s definition, a rule ri is backward re-
dundant in f iff there exists k, 1 ≤ k < i, such
that M(ri) ⊆ M(rk). Clearly, if there exists such

k for ri, then R(ri, f) = M(ri)−
⋃i−1

j=1 M(rj) = ∅;
therefore, ri is upward redundant. However, if
R(ri, f) = ∅, such k may not exist. As an exam-
ple, in the packet classifier in Figure 1, rule r3 is
upward redundant, but not backward redundant.
Thus r3 can be removed based on our definition,

4

but it cannot be removed based on Gupta’s defi-
nition.

2. Downward redundancy vs. forward redundancy :
By Gupta’s definition, a rule ri is forward redun-
dant iff there exists k, i < k ≤ n, such that the fol-
lowing three conditions hold: (1) M(ri) ⊆ M(rk),
(2) ri and rk have the same decision, (3) for any
j that i < j < k, either M(ri) ∩ M(rj) = ∅ or ri

and rj have the same decision. Clearly, if there ex-
ists such k for ri, then for any p that p ∈ R(ri, f),
the decision 〈ri+1, ri+2, · · · , rn〉(p) is the same as
the decision of ri; therefore, ri is downward re-
dundant. However, a rule may be downward re-
dundant even if there is no such k. As an exam-
ple, in the packet classifier that results from the
classifier in Figure 1 after r3 is removed, rule r2

is downward redundant, but not forward redun-
dant. Thus r2 can be removed based on our defini-
tion, but it cannot be removed based on Gupta’s
definition.

3. Packet Decision Diagrams and Rules

In [3], Gouda and Liu presented Firewall Decision
Diagrams as a useful notation for specifying firewalls.
In this paper, we extend these diagrams to specify
packet classifiers; therefore, we call the extended de-
cision diagrams Packet Decision Diagrams. Later we
show that Packet Decisions Diagrams play an impor-
tant role in our redundancy removal algorithms.

Definition 3 A Packet Decision Diagram (PDD) f

with a decision set DS and over fields F1, · · · , Fd is
an acyclic and directed graph that has the following
five properties:

1. There is exactly one node in f that has no incom-
ing edges and is called the root of f . The nodes
in f that have no outgoing edges are called termi-

nal nodes of f .

2. Each node v in f has a label, denoted F (v), such
that

F (v) ∈

{

{F1, · · · , Fd} if v is a nonterminal node,
DS if v is a terminal node.

3. Each edge e in f has a label, denoted I(e), such
that if e is an outgoing edge of node v, then I(e)
is a nonempty subset of D(F (v)).

4. A directed path in f from the root to a terminal
node is called a decision path of f . No two nodes
on a decision path have the same label.

5. The set of all outgoing edges of a node v in f , de-
noted E(v), satisfies the following two conditions:

(a) Consistency : I(e) ∩ I(e′) = ∅ for any two
distinct edges e and e′ in E(v),

(b) Completeness:
⋃

e∈E(v) I(e) = D(F (v)) 2

Figure 4 shows an example of a PDD with a deci-
sion set {a, d} and over the two fields F1 and F2, where
D(F1) = D(F2) = [1, 100]. In the examples of this pa-
per, we employ the decision set {a, d}, where “a” rep-
resents “accept” and “d” represents “discard”.

PSfrag replacements

F1

F2F2

[1, 19] [20, 50]

[51, 100]

[1, 100] [1, 34] [35, 65]

[66, 100]

ad d

Figure 4. A packet decision diagram

A decision path in a PDD f is represented by
(v1e1 · · · vkekvk+1) where v1 is the root of f , vk+1

is a terminal node of f , and each ei is a directed
edge from node vi to node vi+1 in f . A decision path
(v1e1 · · · vkekvk+1) in a PDD defines the following rule:

F1 ∈ S1 ∧ · · · ∧ Fn ∈ Sn → F (vk+1)

where

Si =

I(ej) if there is a node vj in the decision
path that is labelled with field Fi,

D(Fi) if no nodes in the decision path is
labelled with field Fi.

For a PDD f , we use Sf to represent the set of all
the rules defined by all the decision paths of f . For any
packet p, there is one and only one rule in Sf that p

matches because of the consistency and completeness
properties of the PDD f ; therefore, f maps p to the
decision of the only rule that p matches in Sf . We use
f(p) to denote the decision to which a PDD f maps
a packet p. A PDD f and a sequence of rules f ′ are
equivalent, denoted f ≡ f ′, iff for any packet p, the
condition f(p) = f ′(p) holds.

Given a PDD f , any packet classifier that consists of
all the rules in Sf is equivalent to f . The order of the
rules in such a packet classifier is immaterial because
there are no overlapping rules in Sf .

Given a sequence of rules, in section 4 we will see
that an equivalent PDD is constructed after all the up-
ward redundant rules are removed by the upward re-
dundancy removal algorithm.

In the process of detecting and removing downward
redundant rules, the data structure that we maintain
is called a standard PDD. A standard PDD is a spe-
cial type of PDD where the following two additional
conditions hold:

5

1. each node has at most one incoming edge (i.e., a
standard PDD is of a tree structure),

2. each decision path contains d nonterminal nodes,
and the i-th node is labelled Fi for each i that
1 ≤ i ≤ d (i.e., each decision path in a standard
PDD is of the form (v1e1v2e2 · · · vdedvd+1) where
F (vi) = Fi for each i that 1 ≤ i ≤ d).

An example of a standard PDD is in Figure 4.

In the process of checking upward redundant rules,
the data structure that we maintain is called a partial
PDD. A partial PDD is a diagram that may not have
the completeness property of a standard PDD, but has
all the other properties of a standard PDD.

We use Sf to denote the set of all the rules defined
by all the decision paths in a partial PDD f . For any
packet p that p ∈

⋃

r∈Sf
M(r), there is one and only

one rule in Sf that p matches, and we use f(p) to de-
note the decision of the unique rule that p matches in
f .

Given a partial PDD f and a sequence of rules
〈r1, r2, · · · , rk〉 that may be not comprehensive, we say
f is equivalent to 〈r1, r2, · · · , rk〉 iff the following two
conditions hold:

1.
⋃

r∈Sf
M(r) =

⋃k

i=1 M(ri),

2. for any packet p that p ∈
⋃

r∈Sf
M(r), f(p) is the

same as the decision of the first rule that p matches
in the sequence 〈r1, r2, · · · , rk〉.

An example of a partial PDD is in Figure 8.

4. Removing Upward Redundancy

In this section, we discuss how to remove upward re-
dundant rules. By definition, a rule is upward redun-
dant iff its resolving set is empty. Therefore, in order to
remove all upward redundant rules from a packet clas-
sifier, we need to calculate resolving set for each rule
in the packet classifier. The resolving set of each rule
is calculated by its effective rule set. An effective rule
set of a rule r in a packet classifier f is a set of non-
overlapping rules where the union of all the matching
sets of these rules is exactly the resolving set of rule r in
f . More precisely, an effective rule set of a rule r is de-
fined as follows:

Definition 4 Let r be a rule in a packet classifier f .
A set of rules {r′1, r

′
2, · · · , r

′
k} is an effective rule set of

r iff the following three conditions hold:

1. R(r, f) =
⋃k

i=1 M(r′i),

2. M(r′i) ∩ M(r′j) = ∅ for 1 ≤ i < j ≤ k,

3. r′i and r have the same decision for 1 ≤ i ≤ k. 2

For example, consider the packet classifier in Fig-
ure 1. Then, {F1 ∈ [1, 50] → accept} is an effective rule
set of rule r1, {F1 ∈ [51, 90] → discard} is an effec-
tive rule set of rule r2, ∅ is an effective rule set of rule
r3, and {F1 ∈ [91, 100] → discard} is an effective rule
set of rule r4. Clearly, once we obtain an effective rule
set of a rule r in a packet classifier f , we know the re-
solving set of the rule r in f , and consequently know
whether the rule r is upward redundant in f . Note that
by the definition of an effective rule sets, if one effec-
tive rule set of a rule r is empty, then any effective
rule set of the rule r is empty. Theorem 5 straightfor-
wardly follows from the above discussion.

Theorem 5 A rule r is upward redundant in a packet
classifier iff an effective rule set of r is empty. 2

Based on Theorem 5, the basic idea of our upward
redundancy removal algorithm is as follows: given a
packet classifier 〈r1, r2, · · · , rn〉, we calculate an effec-
tive rule set for each rule from r1 to rn. If the effec-
tive rule set calculated for a rule ri is empty, then ri

is upward redundant and is removed. Now the prob-
lem is: how to calculate an effective rule set for each
rule in a packet classifier?

An effective rule set for each rule in a packet clas-
sifier is calculated with the help of partial PDDs.
Consider a packet classifier that consists of n rules
〈r1, r2, · · · , rn〉. Our upward redundancy removal algo-
rithm first builds a partial PDD, denoted f1, that is
equivalent to the sequence 〈r1〉, and calculates an ef-
fective rule set, denoted E1, of rule r1. (Note that E1

cannot be empty because M(r1) 6= ∅; therefore, r1 can-
not be upward redundant.) Then the algorithm trans-
forms the partial PDD f1 to another partial PDD, de-
noted f2, that is equivalent to the sequence 〈r1, r2〉, and
during the transformation process calculates an effec-
tive rule set, denoted E2, of rule r2. The same transfor-
mation process continues until we reach rn. When we
finish, an effective rule set is calculated for each rule.

Here we use fi to denote the partial PDD that we
constructed from the rule sequence 〈r1, r2, · · · , ri〉, and
Ei to denote the effective rule set that we calculated for
rule ri. By the following example, we show the process
of transforming the partial PDD fi to the partial PDD
fi+1, and the calculation of Ei+1. Consider the packet
classifier in Figure 5 with the decision set {a, d} and
over fields F1 and F2, where D(F1) = D(F2) = [1, 100].
Figure 6 shows the geometric representation of this
packet classifier, where each rule is represented by a
rectangle. From Figure 6, we can see that rule r3 is up-
ward redundant because r3, whose area is marked by
dashed lines, is totally overlaid by rules r1 and r2. Later
we will see that the effective rule set calculated by our
upward redundancy removal algorithm for rule r3 is in-
deed an empty set.

6

r1 : (F1 ∈ [20, 50]) ∧ (F2 ∈ [35, 65]) → a

r2 : (F1 ∈ [10, 60]) ∧ (F2 ∈ [15, 45]) → d

r3 : (F1 ∈ [30, 40]) ∧ (F2 ∈ [25, 55]) → a

r4 : (F1 ∈ [1, 100]) ∧ (F2 ∈ [1, 100]) → d

Figure 5. A packet classifier of 4 rules

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

 Packet Field F1

 P
ac

ke
t F

ie
ld

 F
2

 r
4

 r
2

 r
1

 r
3

 r
4

 r
2

 r
1

 r
3

 r
4

 r
2

 r
1

 r
3

Figure 6. Geometric representation of the rules
in Figure 5

Figure 7 shows a partial PDD f1 that is equivalent
to 〈r1〉 and an effective rule set E1 of rule r1. In this
figure, we use v1 to denote the node with label F1, e1

to denote the edge with label [20, 50], and v2 to denote
the node with label F2.

PSfrag replacements

F1

F2

[20, 50]

[10, 19]

[51, 60]

[35, 65]

[15, 34]

[15, 45]

〈 r1 : F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a 〉

E1 = {F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a}

a

d

Figure 7. Partial PDD f1 and an effective rule set
E1 of rule r1 in Figure 5

Now we show how to append rule r2 to f1 in or-
der to get a partial PDD f2 that is equivalent to
〈r1, r2〉, and how to calculate an effective rule set
E2 of rule r2. We first compare the set [10, 60] with
the set [20, 50] labelled on the outgoing edge of v1.
Since [10, 60] − [20, 50] = [10, 19] ∪ [51, 60], r2 is the

first matching rule for all packets that satisfy F1 ∈
[10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45], so we add one outgo-
ing edge e to v1, where e is labeled [10, 19] ∪ [51, 60]
and e points to the path built from F2 ∈ [15, 45] → d.
The rule defined by the decision path containing e,
F1 ∈ [10, 19]∪[51, 60]∧F2 ∈ [15, 45] → d, should be put
in E2 because for all packets that match this rule, r2

is their first matching rule. Because [20, 50] ⊂ [10, 60],
r2 is possibly the first matching rule for a packet that
satisfies F1 ∈ [20, 50]. So we further compare the set
[35, 65] labeled on the outgoing edge of v2 with the set
[15, 45]. Since [15, 45]− [35, 65] = [15, 34], we add a new
edge e′ to v2, where e′ is labeled [15, 34] and e′ points
to a terminal node labeled d. Similarly to what we did
to the new edge added to node v1, we add the rule,
F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d, defined by the deci-
sion path containing the new edge e′ into E2. The par-
tial PDD f2 and an effective rule set E2 of rule r2 is
shown in Figure 8, where E2 consists of the two rules
defined by the two new edges e and e′ that we add to
the partial PDD f1 in Figure 7.

PSfrag replacements

F1

F2 F2

[20, 50] [10, 19]

[51, 60]

[35, 65] [15, 34] [15, 45]

E2 = {F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45] → d
F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d}

〈 r1 : F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a

r2 : F1 ∈ [10, 60] ∧ F2 ∈ [15, 45] → d 〉 a d d

Figure 8. Partial PDD f2 and an effective rule set
E2 of rule r2 in Figure 5

Let f be any packet classifier that consists of n

rules: 〈r1, r2, · · · , rn〉. A partial PDD that is equiv-
alent to 〈r1〉 is easy to construct. Assuming r1 is
(F1 ∈ S1) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉.
Then the partial PDD that consists of only one path
(v1e1v2e2 · · · vdedvd+1), where F (vi) = Fi and I(ei) =
Si for 1 ≤ i ≤ d and F (vd+1) = 〈decision〉, is equiva-
lent to 〈r1〉. We denote this partial PDD by f1, and call
(v1e1v2e2 · · · vdedvd+1) the path that is built from rule

(F1 ∈ S1) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉.
Suppose that we have constructed a partial PDD

fi that is equivalent to the sequence 〈r1, r2, · · · , ri〉,
and calculated an effective rule set for each of these
i rules. Let v be the root of fi, and assume v has k

outgoing edges e1, e2, · · · , ek. Let rule ri+1 be (F1 ∈
S1) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉. Next
we consider how to transform the partial PDD fi to a
partial PDD, denoted fi+1, that is equivalent to the se-

7

quence 〈r1, r2, · · · , ri, ri+1〉, and during the transforma-
tion process, how to calculate an effective rule set de-
noted Ei+1, for rule ri+1.

First, we examine whether we need to add another
outgoing edge to v. If S1−(I(e1)∪I(e2)∪· · ·∪I(ek)) 6=
∅, we need to add a new outgoing edge ek+1 with la-
bel S1−(I(e1)∪I(e2)∪· · ·∪I(ek)) to v. This is because
any packet, whose F1 field satisfies S1−(I(e1)∪I(e2)∪
· · · ∪ I(ek)), does not match any of the first i rules,
but matches ri+1 provided that the packet also satis-
fies (F2 ∈ S2)∧(F3 ∈ S3)∧· · ·∧(Fd ∈ Sd). The new edge
ek+1 points to the root of the path that is built from
(F2 ∈ S2) ∧ (F3 ∈ S3) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉.
The rule r, (F1 ∈ S1−(I(e1)∪I(e2)∪· · ·∪I(ek)))∧(F2 ∈
S2)∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉, defined by the deci-
sion path containing the new edge ek+1 has the prop-
erty M(r) ⊆ R(ri+1, f). Therefore, we add rule r to
Ei.

Second, we compare S1 and I(ej) for each j (1 ≤
j ≤ k) in the following three cases:

1. S1 ∩ I(ej) = ∅: In this case, we skip edge ej be-
cause any packet whose value of field F1 is in set
I(ej) doesn’t match ri+1.

2. S1 ∩ I(ej) = I(ej): In this case, for a packet p

whose value of field F1 is in set I(ej), the first rule
that p matches may be one of the first i rules, and
may be rule ri+1. So we append (F2 ∈ S2)∧ (F3 ∈
S3) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉 to the sub-
graph rooted at the node that ej points to in a
similar fashion.

3. S1 ∩ I(ej) 6= ∅ and S1 ∩ I(ej) 6= I(ej): In this case,
we split edge e into two edges: e′ with label I(ej)−
S1 and e′′ with label I(ej)∩S1. Then we make two
copies of the subgraph rooted at the node that ej

points to, and let e′ and e′′ point to one copy each.
Thus we can deal with e′ by the first case, and e′′

by the second case.

In the process of appending rule ri+1 to partial PDD
fi, each time when we add a new edge to a node in fi,
the rule defined by the decision path containing the
new edge is added to Ei+1. After the partial PDD fi is
transformed to fi+1, the rules in Ei+1 satisfy the fol-
lowing three conditions: (1) the union of all the match-
ing sets of these rules is the resolving set of ri+1 ac-
cording to the transformation process, (2) no overlap-
ping among these rules by the consistency properties
of a partial PDD, (3) all these rules have the same de-
cision as ri+1 according to the transformation process.
Therefore, Ei+1 is an effective rule set of rule ri+1.

By applying our upward redundancy removal algo-
rithm to the packet classifier in Figure 5, we get an ef-
fective rule set for each rule as shown in Figure 9. Note
that E3 = ∅, which means that rule r3 is upward re-
dundant, therefore r3 is removed.

1 : E1 = {F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a};
2 : E2 = {F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45] → d

F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d};
3 : E3 = ∅;
4 : E4 = {

F1 ∈ [1, 9] ∪ [61, 100] ∧ F2 ∈ [1, 100] → d

F1 ∈ [20, 29] ∪ [41, 50] ∧ F2 ∈ [1, 14] ∪ [66, 100]→ d

F1 ∈ [30, 40] ∧ F2 ∈ [1, 14] ∪ [66, 100] → d

F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [1, 14] ∪ [46, 100]→ d}

Figure 9. Effective rule sets calculated for the
packet classifier in Figure 5

The pseudocode for removing upward redundant
rules is in Figure 10. In the algorithm, we use e.t to
denote the node that edge e points to.

Upward Redundancy Removal Algorithm
input : A packet classifier f that consists of n rules

〈r1, r2 · · · , rn〉
output: (1) Upward redundant rules in f are removed.

(2) An effective rules set for each rule is calculated.

1. Build a path from rule r1 and let v be the root;
E1 := {r1};

2. for i := 2 to n do
(1) Ei := ∅;
(2) Ecal(v, i, ri);
(3) if Ei = ∅ then remove ri;

Ecal(v, i, (Fj ∈ Sj) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉)
/*F (v) = Fj and E(v) = {e1, · · · , ek}*/
1. if Sj − (I(e1) ∪ · · · ∪ I(ek)) 6= ∅ then

(1) Add an outgoing edge ek+1 with label
Sj − (I(e1) ∪ · · · ∪ I(ek)) to v;

(2) Build a path from
(Fj+1 ∈ Sj+1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉,
and let ek+1 point to its root;

(3) Add the rule defined by the decision path
containing edge ek+1 to Ei;

2. if j < d then
for g := 1 to k do

if I(eg) ⊆ Sj then
Ecal(eg .t, i, (Fj+1 ∈ Sj+1)∧· · · ∧ (Fd ∈ Sd)

→ 〈decision〉);
else if I(ej) ∩ Si 6= ∅ then

(1) I(eg) := I(eg) − Sj ;
(2) Add one outgoing edge e with label

I(eg) ∩ Sj to v;
(3) Replicate the graph rooted at eg .t, and

let e points to the replicated graph;
(4) Ecal(e.t, i, (Fj+1 ∈ Sj+1) ∧ · · ·

∧(Fd ∈ Sd) → 〈decision〉);

Figure 10. Upward Redundancy Removal Algo-
rithm

8

5. Removing Downward Redundancy

One particular advantage of detecting and remov-
ing upward redundant rules before detecting and re-
moving downward redundant rules in a packet classifier
is that an effective rule set for each rule is calculated
by the upward redundancy removal algorithm; there-
fore, we can use the effective rule set of a rule to check
whether the rule is downward redundant. The effec-
tive rule set Ei calculated for rule ri in a packet classi-
fier f is important in checking whether ri is downward
redundant because the resolving set of ri in f can be
easily obtained by the union of the matching set of ev-
ery rule in Ei.

Our algorithm for removing downward redundant
rules is based the following theorem.

Theorem 6 Let f be any packet classifier that con-
sists of n rules: 〈r1, r2, · · · , rn〉. Let fi (2 ≤ i ≤ n)
be a standard PDD that is equivalent to the sequence
of rules 〈ri, ri+1, · · · , rn〉. The rule ri−1 with an ef-
fective rule set Ei−1 is downward redundant in f iff
for each rule r in Ei−1 and for each decision path
(v1e1v2e2 · · · vdedvd+1) in fi where rule r overlaps the
rule that is defined by this decision path, the decision
of r is the same as the label of the terminal node vd+1.

Proof Sketch: Since the sequence of rules
〈ri, ri+1, · · · , rn〉 is comprehensive, there exists a stan-
dard PDD that is equivalent to this sequence of rules.
By the redundancy theorem, rule ri−1 is downward re-
dundant iff for each rule r in Ei−1 and for any p that
p ∈ M(r), 〈ri, ri+1, · · · , rn〉(p) is the same as the deci-
sion of r. Therefore, Theorem 6 follows. 2

Now we consider how to construct a standard PDD
fi, 2 ≤ i ≤ n, that is equivalent to the sequence of rules
〈ri, ri+1, · · · , rn〉. The standard PDD fn can be built
from rule rn in the same way that we build a path from
a rule in the upward redundancy removal algorithm.

Suppose we have constructed a standard PDD
fi that is equivalent to the sequence of rules
〈ri, ri+1, · · · , rn〉. First, we check whether rule
ri−1 is downward redundant by Theorem 6. If rule
ri−1 is downward redundant, then we remove ri, re-
name the standard PDD fi to be fi−1, and con-
tinue to check whether ri−2 is downward redundant.
If rule ri−1 is not downward redundant, then we ap-
pend rule ri−1 to the standard PDD fi such that
the resulting diagram is a standard PDD, de-
noted fi−1, that is equivalent to the sequence of
rules 〈ri−1, ri, · · · , rn〉. This procedure of transform-
ing a standard PDD by appending a rule is similar to
the procedure of transforming a partial PDD in the up-
ward redundancy removal algorithm. The above pro-
cess continues until we reach r1; therefore, all down-
ward rules are removed. The pseudocode for detecting

and removing downward redundant rules is in Fig-
ure 11.

Applying our downward redundancy removal algo-
rithm to the packet classifier in Figure 5, assuming r3

has been removed, rule r2 is detected to be downward
redundant, therefore r2 is removed. The standard PDD
in Figure 4 is the resulting standard PDD by append-
ing rule r1 to the standard PDD that is equivalent to
〈r4〉.

Downward Redundancy Removal Algorithm
input : A packet classifier 〈r1, r2 · · · , rn〉 where

each rule ri has an effective rule set Ei.
output: Downward redundant rules in f are removed.

1. Build a path from rule rn and let v be the root;
2. for i := n − 1 to 1 do

if IsDownwardRedundant(v, Ei) = true
then remove ri;
else Append(v, ri);

IsDownwardRedundant(v, E) /*E = {r′

1
, · · · , r′

m}*/
1. for j := 1 to m do

if HaveSameDecision(v, r′

j
) = false then

return(false);
2. return(true);

HaveSameDecision(v, (Fi ∈ Si) ∧ · · ·∧(Fd ∈ Sd)
→ 〈decision〉)

/*F (v) = Fi and E(v) = {e1, · · · , ek}*/
1. for j := 1 to k do

if I(ej) ∩ Si 6= ∅ then
if i < d then

if HaveSameDecision(ej .t, (Fi+1 ∈ Si+1)
∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉) = false

then return(false);
else

if F (ej .t) 6= 〈decision〉 then return(false);
2. return(true);

Append(v, (Fi ∈ Si) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉)
/*F (v) = Fi and E(v) = {e1, · · · , ek}*/
if i < d then

for j := 1 to k do
if I(ej) ⊆ Si then
Append(ej .t, (Fi+1 ∈ Si+1) ∧ · · · ∧ (Fd ∈ Sd)

→ 〈decision〉);
else if I(ej) ∩ Si 6= ∅ then

(1) I(ej) := I(ej) − Si;
(2) Add one outgoing edge e with label

I(ej) ∩ Si to v;
(3) Replicate the graph rooted at ej .t, and

let e points to the replicated graph;
(4) Append(e.t, (Fi+1 ∈ Si+1) ∧ · · ·

∧(Fd ∈ Sd) → 〈decision〉);
else /*i = d*/

(1) for j := 1 to k do
(a) I(ej) := I(ej) − Si;
(b) if I(ej) = ∅ then remove edge ei and node ei.t;

(2) Add one outgoing edge e with label Si to v,
create a terminal node with label 〈decision〉,
and let e point this terminal node;

Figure 11. Downward Redundancy Removal Al-
gorithm

9

6. Experimental Results

In this section, we evaluate the efficiency of the up-
ward and downward redundancy removal algorithms.
In the absence of publicly available packet classifiers,
we create synthetic packet classifiers that embody the
important characteristics of real-life packet classifiers
that have been discovered so far in [4, 11].

We implemented the algorithms in this paper in
SUN Java JDK 1.4 [6]. The experiments were carried
out on one SunBlade 2000 machine running Solaris 9
with 1Ghz CPU and 1 GB memory. The average pro-
cessing time for removing all upward and downward
redundant rules from a packet classifier versus the to-
tal number of rules in the packet classifier is shown in
Figure 12. We can see that our redundancy removal al-
gorithms are efficient. For example, it takes less than
3 seconds to remove all the redundant rules from a
packet classifier that has up to 3000 rules, and it takes
less than 6 seconds to remove all the redundant rules
from a packet classifier that has up to 6000 rules.

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

1

2

3

4

5

6

Number of rules

R
ed

un
da

nc
y

R
em

ov
al

 (s
ec

)

Figure 12. Average processing time for removing
all (both upward and downward) redundant rules
vs. Total number of rules in a packet classifier

7. Concluding Remarks

We make three major contributions in this paper.
First, we propose to remove all redundant rules from a
packet classifier before a packet classification algorithm
starts building data structures from the rules. By this
preprocessing procedure of removing redundant rules,
both space and time for a packet classification algo-
rithm are reduced. Second, we give a necessary and
sufficient condition for identifying all redundant rules,
based on which we categorize redundant rules into up-
ward redundant rules and downward redundant rules.
Third, we present two efficient graph based algorithms

for detecting and removing these two types of redun-
dant rules. The experimental results shows that in a few
seconds our algorithms can remove all redundant rules
from a packet classifier with thousands of rules. We be-
lieve that our redundancy removal algorithms will be a
valuable preprocessing procedure for packet classifica-
tion algorithms.

The results in this paper can be extended for use in
many systems where a system can be represented by a
sequence of rules. Examples of such systems are rule-
based systems in the area of artificial intelligence and
access control in the area of databases. In these sys-
tems, we can extend the results in this paper to re-
move redundant rules and thereby make the systems
more efficient.

References

[1] N. Benameur, S. B. Fredj, S. Oueslati, and J. Roberts.
Quality of service and flow level admission control in the
internet. Computer Networks, 40:57–71, 2002.

[2] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Propor-
tional differentiated services: Delay differentiation and
packet scheduling. In Proc. of ACM SIGCOMM, pages
109–120, 1999.

[3] M.G.GoudaandA.X.Liu. Firewall design: consistency,
completeness and compactness. In Proc. of the 24th
IEEE International Conference on Distributed Comput-
ing Systems (ICDCS’04), March 2004.

[4] P. Gupta. Algorithms for Routing Lookups and Packet
Classification. PhD thesis, Stanford University, 2000.

[5] P.GuptaandN.McKeown. Packet classificationonmul-
tiple fields. InProc. of ACMSIGCOMM, pages 147–160,
1999.

[6] Java. http://java.sun.com/. November 2003.

[7] M. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and
A. Campbell. Directions in packet classification for net-
work processors. Network Processors Design: Issues and
Practices, 2, 2003.

[8] S. Merugu, S. Bhattacharjee, E. W. Zegura, and K. L.
Calvert. Bowman: A node OS for active networks. In
Proc. of IEEE INFOCOM, pages 1127–1136, 2000.

[9] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.
The click modular router. In Symposium on Operating
Systems Principles, pages 217–231, 1999.

[10] M. H. Overmars and A. F. van der Stappen. Range
searching and point location among fat objects. Jour-
nal of Algorithms, 21(3):629–656.

[11] S.Singh,F.Baboescu,G.Varghese, andJ.Wang. Packet
classification using multidimensional cutting. In Proc.
of ACM SIGCOMM, 2003.

[12] E. Spitznagel, D. Taylor, and J. Turner. Packet clas-
sification using extended tcams. In Proc. of IEEE In-
ternational Conference on Network Protocols (ICNP),
November 2003.

[13] T. Y. C. Woo. A modular approach to packet classifica-
tion: Algorithms and results. In Proc. of IEEE INFO-
COM, pages 1213–1222, 2000.

10

