
On partitioning and model checking

Subramanian Iyer1, Debashis Sahoo2, Jawahar Jain3, and E. Allen Emerson1

1 University of Texas at Austin, Austin, TX 78712, USA
2 Stanford University, Stanford CA 94305, USA

3 Fujitsu Laboratoies of America, Sunnyvale CA 94085, USA

Abstract. State space partitioning-based approaches have been pro-
posed in the literature to address the state-space explosion problem in
model checking. These approaches, whether sequential or distributed,
perform a large amount of work in the form of inter-partition (cross-
over) image computations, which can be expensive. We present a model
checking algorithm that aggregates such cross-over images by localis-
ing computation to individual partitions. Experimentally, this algorithm
consistently outperforms extant approaches in terms of time taken, as
well as cross-over image computation cost.

1 Introduction

Model checking is performed by means of successive backward image computa-
tions. Image computation becomes difficult as the data structures representing
the state sets grow larger. Large state sets are a direct consequence of the state-
space explosion problem. Model checking is unable to handle data structures
when their size exceeds (roughly by an order of magnitude) what can be rea-
sonably handled in main memory. This frequently happens when handling large
designs.

From a practical standpoint, a monolithic approach to model checking fails
due to this excessive memory requirement for state set representation. Parti-
tioned symbolic data structures have been proposed in the literature to handle
this memory explosion problem. Partitioning of the state space is found to bal-
ance the trade-off between compactness and canonicity of symbolic BDD repre-
sentations. In such a framework, each partition of the state space may obey a
different variable variable order.

In a partitioned approach, the state space S is partitioned into subspaces
S1, S2, . . . Sn. This induces a disjunctive partitioning on the transition relation
T into the parts Tij which represents the set of transitions from states in a source
partition i to states in the destination partition j. The size of each such transition
relation can be further reduced by an implicitly conjoined implementation.

Each partition can be thought of as being the owner of a set of states. Tran-
sitions from each partition naturally comprise of two components - ones that
are wholly local to individual partitions, and ones that span multiple partitions.
Correspondingly, the computed image X comprises of a local component Xl and
a cross-over component Xc. The states corresponding to Xl may be computed

locally in each partition. On the other hand, the states in Xc arise out of tran-
sitions that originate at a state in one partition and terminate at a state in
another, thus, “crossing over” into the destination partition.

Computing cross-over component of the image is often significantly more
expensive than the local component for various reasons. Firstly, the cross-over
component involves transitions into a potentially larger subspace. Secondly, this
incurs the overhead of transporting these states to the partition that “owns”
them. Thirdly, the source and destination partitions likely obey different variable
orders, and therefore the state set needs to be reordered, which is a known
difficult problem as representation sizes become large.

The naive way of combining partitioning with the classical model checking
algorithm of [1] performs repeated exact images. Each such image computation
requires a quadratic number of cross-over computations.

Notice that the set obtained by performing operation EXl is a subset of the
actual image, and in this sense, can be thought of as an under-approximation
to EX. This allows for an efficient analysis of reachability [4] and a subset of
CTL [2] by replacing a sequence of EX operations by a sequence of the less
expensive EXl operations, interspersed with an occasional EXc to maintain
completeness.

The problem is trickier with greatest fix-points, e.g. the EG operator. The
EG operator and its dual AF are important in falsifying and verifying liveness
properties. In this case, the final result is the conjunction of successively smaller
supersets of the result. If operation EXc is ignored in pre-image computations,
then the result is a subset of the actual pre-image EX, and this means that some
states get pruned early in the greatest fixpoint computation for computing the set
EG. Since the convergence is on a sequence which is monotonically decreasing,
these states pruned early may be lost for ever. Consequently, EX cannot be
replaced by EXl as it compromises on soundness. An important question arises
as to how to compute greatest fix-points in the partitioned framework without
having to perform repeated cross-over image computations.

In this paper, we propose an alternative piece-wise algorithm for model check-
ing CTL formulae in a partitioned setting that addresses these concerns. Our
approach exploits the separability of the local and cross-over components of im-
age computation. It performs a number of image computations locally within
each partition, and synchronises occasionally by doing cross-over image compu-
tations only when a fixpoint is reached locally in each partition.

In section 2, we recall the notions of state space partitioning and the definition
of model checking. We present the partitioned version of the classical model
checking algorithm in section 3. Section 4 describes our algorithm designed to
localise computation by postponing cross-over image computations. Details of
implementation and experimental results follow in Section 6.

2 Preliminaries

In this section, we briefly look at some background related to state space par-
titioning and image computation, leading up to a description of the classical
model checking algorithm in a partitioned framework.

2.1 State Space Partitioning

The idea of partitioning was used to discuss a function representation scheme
called partitioned-ROBDDs in [3] which was extensively developed in [5].
Definition. [5] Given a Boolean function f : Bn → B, defined over n inputs
Xn = {x1, . . . , xn}, the partitioned-ROBDD (henceforth, POBDD) representa-
tion χf of f is a set of k function pairs, χf = {(w1, f1), . . . , (wk, fk)} where,
wi : Bn → B and fi : Bn → B, are also defined over Xn and satisfy the following
conditions:
1. wi and fi are ROBDDs respecting the variable ordering πi, for 1 ≤ i ≤ k.
2. w1 ∨ w2 ∨ . . . ∨ wk = 1
3. wi ∧ wj = 0, for i 6= j

4. fi = wi ∧ f , for 1 ≤ i ≤ k The set {w1, . . . , wk} is denoted by W . Each
wi is called a window function and represents a partition of the Boolean space
over which f is defined. Each partition is represented separately as an ROBDDs
and can have a different variable order. Most ROBDD based algorithms can be
adapted easily for POBDDs.

Partitioned-ROBDDs are canonical and various Boolean operations can be
efficiently performed on them just like ROBDDs. In addition, they can be ex-
ponentially more compact than ROBDDs for certain classes of functions. The
practical utility of this representation is also demonstrated by constructing ROB-
DDs for the outputs of combinational circuits [5].

2.2 Model Checking

We omit the syntax of CTL as it is widely known and readily available in the
literature. We shall only note that it is possible to express any CTL formula in
terms of the Boolean connectives of propositional logic and the existential tem-
poral operators EX, EU and EG. Such a representation is called the existential
normal form.

Model Checking is usually performed in two stages: In the first stage, the
finite state machine is reduced with respect to the formula being model checked
and then the reachable states are computed. The second stage involves comput-
ing the set of states falsifying the given formula. The reachable states computed
earlier are used as a care set in this step.

Since there exist computational procedures for efficiently performing Boolean
operations on symbolic BDD data structures, including POBDDs, model check-
ing of CTL formulas primarily is concerned with the symbolic application of the
temporal operators. EXq is a backward image and uses the same machinery as
image computation during reachability, with the adjustment for the direction.

EpUq (resp. EGp) has been traditionally represented as the least (resp. greatest)
fixpoint of the operator τ(Z) = q ∨ (p ∧ EXZ) (resp. τ(Z) = p ∧ EXZ).

3 Classical Model Checking with Partitioning

Since backward image computation is the basic unit operation in performing
model checking, we first examine POBDD based image computation.

Given a set of states, R(s), that the system can reach, the set of next states,
N(s′), is calculated using the equation N(s′) = ∃s,i[T (s, s′, i) ∧ R(s)]. This cal-
culation is also known as image computation. State space partitioning into n

disjoint parts induces a partitioning of the transition relation T into n2 parts
Tjk consisting of transitions from a state in partition j to a state in partition
k. We can derive Tjk by conjoining T with the respective window functions as
Tjk(s, s′, i) = wj(s)wk(s′)T (s, s′, i). Thus we can express the transition relation
T (s, s′, i) =

∨
j

∨
k Tjk(s, s′, i) as an induced disjunctive partitioning. Accord-

ingly, the image computation can be performed separately on each of these as
illustrated in Figure 1.

ComputeImage(R) {
foreach (partition k)

foreach (partition j)
Imgjk(s′) = ∃s,i[Tjk(s, s′, i) ∧ Rj(s)]
reorder BDD Imgjk(s′) from partition order j to order k

end for
Nk(s′) =

∨
j
Imgjk(s′)

end for
output N

}

Fig. 1. Image Computation

Here the set Rj is the set of initial states in partition j, and the set Nk

represents the set of next states in partition k which are computed by application
of the transition relation Tjk(s, s′, i).

To compute the image, the n2 computations Tjk(Rj) need to be performed,
followed by n disjunctions as shown. Recall that when using a partitioned-BDD
to represent the set of states, each partition is maintained separately in memory,
under differing variable orders. It is therefore natural that the image of states
in partition j under the trasitions leading to each partition k, i.e. the compu-
tation Tjk ∧ (Rj), is performed in partition j. Each partition j thus computes
states that potentially belong to every other partition. Subsequently the dis-
junction to obtain the pre-image lying with partition k, i.e. the computation of∨

j Imgjk, is performed by partition k. As a consequence, the set Imgjk needs
to be transferred from partition j to partition k, when j and k differ.

We call these n2 − n computations as cross-over image computations, in
the sense that the source and destination partitions are different. It must be
emphasised that Cross-over image computation is expensive for various reasons:
First, a quadratic number of image computations need to be performed as above
and the BDDs need to be accessed from every partition. In the case of large
designs, where the BDDs of even a single partition can run into millions of
nodes, this usually means accessing stored partitions from secondary memory.
Then, the BDD variable order of the computed imageset must be changed from
the order of the source partition to that of each of its target partitions, before
the new states can be added to the reached set in the target. Reordering large
BDDs can be very expensive. There may also be other overhead, for eg., in the
case of a parallel implementation there is the overhead of physically transmitting
a large number of these BDDs over the network.

computeEU(p, q) {
S := q and S.old := φ
repeat

S.old := S
temp := computeEX(S)
forall (partitions j)

Sj := qj ∨ (pj ∧ tempj)
end for

until(S = S.old)
output S

}
a) Least fixpoint, E(pUq)

computeEG(p) {
S := p
repeat

S.old := S
temp := computeEX(S)
forall (partitions j)

Sj := pj ∧ tempj

end for
until(S = S.old)
output S

}
b) Greatest fixpoint, EGp

Fig. 2. Classical Model Checking of Fixpoints in presence of Partitioning

The classical fixpoint algorithms for E(pUq) and EGp as modified to use the
POBDD data structure and image computation are illustrated in Fig. 2. Notice
that these rely on the partitioned image computation and therefore perform one
set of cross-over images in each iteration.

In the next section, we present a model checking algorithm that localises
computation to individual partitions by postponing these cross-over image com-
putations.

4 Partitioned Model Checking

In this section we present a new partitioned model checking algorithm which
works by postponing cross-over image computations. When the design is defec-
tive and is falsified, this algorithm discovers bugs faster, by virtue of computa-
tions being localised to individual partitions. Even when the design is correct and
is verified, this algorithm converges after fewer cross-over image computations.

We show that in the worst case, this algorithm has at most as many cross-
over image computations as the partitioned version of the classical algorithm,
presented in the previous section.

Model checking of boolean connectives is well-known for the partitioned ap-
proach, so we will only describe the image and fixpoint computations. It must
however be mentioned that all boolean operations - conjunction, disjunction as
well as negation - are local to individual partitions and involve no interaction
between them. Also, it suffices to consider the existential operators EX, EG and
EU .

4.1 Image Computation

The main computation in the partitioned form of the classical model checking
algorithm is image computation. As noted in the previous section, the computa-
tion of EXp from p comprises of n2 image computations, reorderings and state
set transfers between partitions and this can get expensive. Even though our
focus is on trying to avoid computing the entire image at every step, it is still
essential to perform teh full image computation in two cases – firstly, for the
occasional cross-over images, and secondly, when the property is expressed in
terms of the EX or AX operators. In this section, we look at some of the issues
in computing the image.

We find that performing the cross-over images one partition at a time is
memory intensive and often the intermediate BDDs get very large for many ex-
amples. Therefore, we advocate performing these cross-over image computations
from each partition into many partitions at a time.4

In order to perform cross-over images efficiently, we maintain a transfer man-
ager M . Given the set p, in order to compute EXp, each partition i computes the
image Tii(pi) which it keeps locally and the set of unowned states Ui = T

ii
(pi)

which is communicated to the manager M . M uses the window functions wj to
calculate the sets Sj =

∨
i6=j Ui ∗ wj and then transmits the states Sj to parti-

tion j. Thus EXp is computed by doing 2n image computations and 2n transfers
between partitions, although the number of reorderings remains n2.

It should be mentioned here that in a multiprocessor environment, such a
manager can become a bottleneck, and should perhaps be dispensed with. But
the point is that only a constant number of image computations be performed
in each partition, rather than a number linear in the number of partitions.

We call the fraction Tii(pi) which is computed locally as the local image EXl

and the rest as the cross-over image EXc.

4.2 Fixpoint computations

The main idea for model checking fixpoints is that the computations can be sig-
nificantly localised to individual partitions by postponing the cross-over image

4 Here, it must be noted that we address the case of verification using uniprocessor sys-
tems. The partitioned approach easily extends to distributed and parallel computing
environments and our improvements are expected to scale accordingly.

computations, which are then aggregated and performed infrequently. Accord-
ingly, we define the fixpoint operators in terms of two operations – local image
computations and cross-over image computations, rather than the classical def-
inition in terms of just the image computation operation, EX.

The algorithms for computing E(pUq) and EGp are shown in Figure 3. The
key idea is to create an under-approximation (resp. over-approximation) to EXp,
which can be wholly calculated locally within individual partitions, so that the
least (resp. greatest) fixpoint computation can be localised.

computeEU(p, q) {
S := q
S.old := φ
repeat

S.old := S
forall (partitions j)

repeat
Sj .old := Sj

Sj := Sj ∨ (pj ∧ EXl(Sj , j))
until(Sj = Sj .old)

end for
S := S ∨ (p ∧ EXc(S))

until(S = S.old)
output S

}
a) Least fixpoint, E(pUq)

computeEG(p) {
S := p
Border := p ∧ EXc(S)
repeat

S.old := S
forall (partitions j)

repeat
Sj .old := Sj

Sj := pj ∧ (EXl(Sj , j) ∨ Borderj)
until(Sj == Sj .old)

end for
Border := p ∧ EXc(S)

until(S == S.old)
output S

}
b) Greatest fixpoint, EGp

Fig. 3. Fixpoint Computations localised by postponement of cross-over image compu-
tation

We call each iteration of the outermost repeat-until loop in algorithm 2 and
algorithm 3 as a phase. We will show that algorithm 3 terminates with the cor-
rect result and that the number of its phases is at most the number of phases in
algorithm 2. Since each such phase has precisely one cross-over image computa-
tion, we have that the number of cross-over images computed is no more than
that for the algorithm of the previous section.

In the rest of this section, we prove the correctness of the model checking
algorithm of Fig. 3.

Theorem 1. a)[2] The procedure computeEU of Fig 3a, given the set of states
corresponding to formulas p and q as inputs, terminates with the output S being
precisely the set of states that model the formula E(pUq).
b) The number of its phases does not exceed the number of phases for algo-
rithm 2a.

Proof: Let the set of states S at the end of the ith phase be called Si. The
termination is guaranteed because the sequence of sets Si is strictly monotonic
increasing.

We first show the soundness of algorithm 3a, i.e., at all times S |= E(pUq). We
show this by induction on the sets Sk. This clearly holds for any state in S0, since
every state in S0 satisfies q and therefore E(pUq). Assume that Si |= E(pUq).
Consider a state s ∈ Si+1 − Si. Then, by construction of Si+1 from Si, we have
s |= p. Either s is added in the local image computation EXl for some partition
j or in the cross-over image computations EXc. In either case, s |= p. It remains
to show that s is the predecessor of a state that models E(pUq). In the first case,
such a state is int he same partition as s and in the second case, such a state
exists in partition k such that s was added in the cross-over image computation
from k to j. Thus in either case, s models EX(E(pUq)). Consequently, Alg 3a
is sound.

Next, we show completeness, i.e., that every state of E(pUq) is indeed in set
S. For every state s |= E(pUq), there exists a sequence of states s0, s1, . . . , sk

that has the smallest length k ≥ 0 such that s0 = s, sk |= q, ∀i < k : si |= p

and ∀i < k : si ∈ EX(si+1). This sequence of states is called a witness for
the inclusion of s in E(pUq), and k is its length. Let T k be the set of states
whose inclusion in E(pUq) is witnessed by a path of length at most k. We
prove by induction on k that T k ⊆ S. In the base case, this trivially holds
because T 0 = q = S0 ⊆ S. Now, assume that T i ⊆ S. For any state s ∈ T i+1

consider the sequence of states s0 = s, s1, . . . , si+1 that witnesses its inclusion
in E(pUq). The sequence s1, . . . , si+1 is a witness for s1, therefore s1 ∈ T i ⊆ S.
In particular, there exists a smallest j so that s1 ∈ Sj . We know that s |= p

and s ∈ EX(s1) ⊆ EX(Sj). From the definition of Sj and Algorithm 3a, we
have that s ∈ Sj+1, whereby T i+1 ⊆ Sj+1 ⊆ S. By induction, this gives us
E(pUq) ⊆ S.

This proves that algorithm 3a terminates with the set S = E(pUq). Notice
that the set of states at the end of the kth phase of algorithm 2a is precisely
T i. As above, ∀i, T i+1 ⊆ Sj+1 ⊆ Si+1. Hence algorithm 3a has at most as many
phases as algorithm 2a.

Before proving an analogous result for the greatest fixpoint operator EGp,
we briefly motivate its construction. As EXlp is a subset of EXp, the result
of localising the computation by performing repeated EXl operations yields an
underapproximation at every step. Since the greatest fixpoint operator converges
by a sequence of monotonically decreasing sets, underapproximation leads to
some states being pruned too early and being lost for ever. States that may
be incorrectly pruned early in the computation of EG comprises of states, each
of which lies in a different partition from its predeccesor, and can therefore
be discovered only by performing the operation EXc, which is the expensive
component of image computation.

Algorithm 3b compensates for this by maintaining a set Border, which is the
set of all states which have a successor in a different partition than themselves.
This is, clearly an overapproximation to EXc in each partition. This superset
of EXc is used to calculate a superset of EX at every image. This Perimeter
is updated only once in each phase, when each partition has reached a fixpoint

with respect to local images EXl. These overapproximations are monotonically
decreasing, and so the computed set eventually converges to the desired set EG.

We now prove the following theorem.

Theorem 2. a) The procedure computeEG of Fig 3b, given the set of states cor-
responding to formula p as input , terminates with the output S being precisely
the set of states that model the formula EGp.
b) The number of its phases does not exceed the number of phases for algo-
rithm 2b.

Proof: Again, let the set of states S at the end of the ith phase be called Si. The
termination is guaranteed because the sequence of sets Si is strictly monotonic
decreasing.

We first show the soundness of algorithm 3b, i.e., the algorithm only deletes
states which do not satisfy EGp. Note that a state can be deleted only in the
two circumstances. The first is if it does not satisfy p and is deleted in the very
beginning. We can therefore assume that all states under consideration satisfy
p. The second way a state may be deleted is during some phase, when it is not a
predecessor to any state in its own partition, and it is not on the Border, i.e., it
has been determined previously that this state is not a predecessor to any state
in another partition. Thus all successors to such a state satisfy ¬p, and therefore
any deleted state is not in EGp.

Next we show completeness, i.e., the algorithm deletes all states that do not
satisfy EGp. Consider a state s 6|= EGp. Then there exists a sequence of states
s0, s1, . . . , sk, which is cycle-free that has the greatest length k ≥ 0 such that
s0 = s, sk |= ¬p, ∀i < k : si |= p and ∀i < k : si ∈ EX(si+1). This sequence
of states is called a witness for the exclusion of s from EGp, and k is its length.
Now, let T k be the set of states whose exclusion from EGp is witnessed by a
longest cycle-free path of length at most k. We prove by induction on k that
T k ∩ Sk = φ. In the base case, this trivially holds because T 0 = ¬q and S0 = q.
Now, assume that T i ∩ Si = φ. For any state s ∈ T i+1 consider the sequence of
states s0 = s, s1, . . . , si+1 that witnesses its exclusion from EGp. The sequence
s1, . . . , si+1 is a witness for s1, therefore s1 ∈ T i, and therefore s1 6∈ Si. In
particular, there exists a smallest j so that s1 was deleted in the jth stage of
the algorithm. Two cases arise, either both s0 and s1 are in the same partition
or they are in different partitions. If they are in the same partition, then s0 is
deleted in the jth stage also when a fixpoint is computed locally in that partition.
If they are in different partitions, then s0 is in the border set for its partition,
and is deleted from this border set at the end of the jth stage because its last
successor s1 is deleted and no other successors can exist because this is the
longest witness. Therefore s is deleted in the j + 1th stage, as required to be
proved.

This proves that algorithm 3b terminates with the set EGp. Notice that the
set of states T i is precisely the set of states deleted in phase i of algorithm 2b. As
above, states in Ti have all been deleted by the end of i phases of the algorithm.
Hence algorithm 3b has at most as many phases as algorithm 2b.

It is noteworthy that, in the worst case, the algorithms of Fig 3 require
at most as many phases as that of Fig 2. However, in practice, this algorithm
outperforms Alg 2, because the fixpoints localised to individual partitions often
discover or prune, as the case may be, many more states than when performing
just one image computation in each phase, and thus the postponement of cross-
over images is found to afford a significant benefit in overall faster convergence
of the algorithm, often reducing the number of phases.

In the next section, we describe our experimental setup and the results of
the same.

5 Experimental Results

Our sequential implementation of this algorithm shows us the following results:

1. Crossover image computation is a bottleneck: On a sequential machine, there
are examples where performing crossover images one partition at a time runs
out of memory, whereas doing the image all at a time, and then restricting
to individual window functions, finishes. However, performing all cross-overs
at a time is expensive because it does not make effective use of partitioning.
Also, doing them all at a time is unfavorable to effective parallelization.

2. The time taken by cross-over images as a percentage of total time is reduced.
3. Experimentally, the proposed algorithm converges faster, both in terms of

total time, as well as in terms of number of expensive cross-over image com-
putations that are performed.

4. The proposed algorithm is more easily parallelizable than the existing model
cehcking algorithms.

6 Conclusion

We have presented a model checking algorithm in the presence of state space
partitioning, that aggregates and postpones cross-over image computations, al-
lowing for significant localisation of image computations. This is also found in
practice to reduce the number of iterations in fixpoint computations.

Our experiments have been conducted on uniprocessor machines, but this
algorithm can be easily parallelized and we believe its benefits would scale to an
implementation in a multi-processor environment.

In the worst case, this method would be identical to the naive one, with strict
alternation between localised (EXl) and cross-over (EXc) image operations in
every fixpoint calculation. However, this is extremely unlikely because it corre-
sponds to a case where every “path” corresponding to a formula comprises of
states each of which lies in a different partition than its predecessor. This does
not happen in practice when partitioning is done properly.

We believe this algorithm can be generalised to more expressive logics liek the
alternation free µ-calculus, as well as the full µ-calculus with slight modifications.

References

1. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. IBM Workshop on Logics of Programs,
volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer-Verlag,
1981.

2. S. Iyer, D. Sahoo, C. Stangier, A. Narayan, and J. Jain. Improved symbolic Verifi-
cation Using Partitioning Techniques. In Proc. of CHARME 2003, volume 2860 of
Lecture Notes in Computer Science, 2003.

3. J. Jain. On analysis of boolean functions. Ph.D Dissertation, Dept. of Electrical

and Computer Engineering, The University of Texas at Austin, 1993.
4. A. Narayan, A. Isles, J. Jain, R. Brayton, and A. Sangiovanni-Vincentelli. Reacha-

bility Analysis Using Partitioned-ROBDDs. In Proc. of the Intl. Conf. on Computer-

Aided Design, pages 388–393, 1997.
5. A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned-

ROBDDs - A Compact, Canonical and Efficiently Manipulable Representation for
Boolean Functions. In Proc. of the Intl. Conf. on Computer-Aided Design, pages
547–554, 1996.

