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Abstract chy [4, 26], or ad-hoc [16, 21, 29] define the paths along
Many replication mechanisms for large scale distributedvhich communication flows.

systems exist, but they require a designer to compro- Unfortunately, existing replication mechanisms are
mise a system’s replication policy (e.g., by requiring full entangled with specific policy assumptions. For example,
replication of all data to all nodes), consistency policyBayou [29] allows arbitrary topologies for communica-
(e.g., by supporting per-object coherence but not multition among nodes but fundamentally assumes full repli-
object consistency), or topology policy (e.g., by assumeation where all nodes store all data from any volume
ing a hierarchical organization of nodes.) In this paperthey export. Conversely, Coda’s [20] replication policy
we present the first PRACTI (Partial Replication, Arbi- allows nodes to cache subsets of data, but Coda funda-
trary Consistency, and Topology Independence) mechanentally assumes a restrictive client-server communica-
nisms for replication in large scale systems. These neiwion topology.

mechanisms allow construction of systems that replicate g paper describes a set of mechanisms that for the

or cache any data on any node, that provide a broad rangig; time simultaneously provide all three PRACTI (Par-

of consistency and coherence guarantees, and that pgl| replication, Arbitrary Consistency, and Topology In-

mit any node to communicate with any other node alyependence) propertieBartial replicationmeans that a

any time. Our evaluation of a prototype suggests that by, stem can place any subset of data on any node. In con-
disentangling mechanism from policy, PRACTI replica--55t some replication systems require a node to main-

tion enables better trade-offs for system designers thagi fuil copies of all objects in all volumes they ex-
possible with existing mechanisms. _For ex_ample, forport [27, 29, 42]. Arbitrary consistencyneans that the
one workload we study, PRACTI's partial replication re- oy stem provides flexible semantic guarantees, including
duces bandwidth requirements by over an order of mage apility to selectively enforce both consistency guaran-
nitude compared to full replication for nodes that onlygeg (which constrain the order that updates across mul-
care about a subset of the system's data. tiple objects become observable to readers) and coher-
ence guarantees (which constrain the order that updates
1 Introduction to a single object become observable but do not addi-

Data replication is a fundamental technique for improv-tionally constrain the ordering of updates across differ-
ing the performance [3, 11, 13, 28, 31, 37], availabil-€Nt objects.) In contrast, some replication systems can
ity [7, 13, 21, 41], ubiquity [20, 29], persistence [25], only enforce coherence guarantees but_make no guaran-
and managability [1] of a broad range of large-scale dis€€S about consistency [16, 3Topology independence
tributed systems such as personal file systems [20, 29jpeans that any node can communicate with any other
web service replication systems [11, 13, 37], global-scal@0de. In contrast, many systems restrict communication
file systems [9, 41, 31], or enterprise data distributiorf® client-server [18, 20, 28] or hierarchical [4, 40] pat-
systems [1]. Because no replication system can have pefms-

fect performance properties [24] or perfect availability We base the PRACTI protocols on Bayou’s log ex-
and consistency [5], systems designed for different envichange mechanisms [29], which support a range of con-
ronments make different trade-offs among these factorsistency guarantees [42] and topology independence, but
by implementing different consistency policies, place-which fundamentally assume full replication in order to
ment policies, and topology policies. Informalbgnsis-  maintain the invariant that each node’s log represents a
tency policiesuch as sequential [23] or causal [19] reg-causally-consistent prefix of the system’s writes. We
ulate how quickly newly written data are seen by readsadapt this protocol to support partial replication using
placement policiessuch as demand-caching [18, 28], two principles. First, weseparate the control path from
prefetching [15], push-caching [17] or replicate-all [29] the data pathby separating invalidation messages that
define which nodes store local copies of which data, andlentify what has changed from body messages that en-
topology policiessuch as client-server [18, 28], hierar- code the changes to the contents of files [2, 31]. In con-



trast with Bayou’s protocol that assumes that invalidaa “Unified Replication Architecture” toolkit that will
tions and bodies go hand-in-hand, these modificationsimplify the development and deployment of large-scale
require us to introduce new synchronization rules to enreplication systems. Because current mechanisms and
force ordering restrictions, mechanisms for handling depolicies are entangled, when a replication system is built
mand read misses, and protocols for enforcing policie$or a new environment, it must often be built from scratch
on the minimum safe degree of data replication [31]. Secer must modify existing mechanisms to accommodate
ond, we usémprecise invalidationswhich allow a single  new policy trade-offs. PRACTI may help define a com-
invalidation to conservatively summarize a set of omittedmon substrate over which a broad range of replication
invalidations. We define a protocol that allows nodes tesystems can be constructed. Note, however, that although
compose precise invalidations into imprecise ones, to inthe current system provides a great deal of flexibility, it
crementally exchange logs of mixed precise and impredoes fall short of our eventual goal of providing a unified
cise invalidations, to allow precise reads (that see a coneplication architecture in two significant ways. First, al-
sistent view of the data) or imprecise reads (that see onlghough our current system supports a wide range of con-
acoherentview of the data), and to recover precision for sistency options—including causal coherence, eventual
an interest set that has become imprecise. coherence, causal consistency, eventual consistency, and
Because PRACTI mechanisms support a broad rang&cknowledged writes—there are some limitations on this
of replication, topology, and Consistency policies, we de-ﬂeXib”ity. As we discuss in Section 2.4, several enhance-
sign our prototype as a “replication microkernel” thatments appear to be relatively straightforward extensions
carefully separates mechanism from policy. Replicagiven our current mechanisms; these extensions include
tion corescommunicate with one another using an asyn-application-specific conflict detection and resolution [33]
chronous communication protocol, and each core usedd tunable quantitative limits on inconsistency [42].
the PRACTI mechanisms to enforce a node’s safety propStill, we have not precisely quantified the boundaries
erties regardless of what messages other nodes sent todf. What semantics can be conveniently accommodated
A separateontrollerlayer implements the system’s poli- Within PRACTI’s “arbitrary” consistency. Second, we do
cies by triggering communication between nodes. Wewot yet accommodate some families of replication tech-
implement several flavors of controller including a novelniques, such as quorums for replication, callback state
one that uses SDIMS (a DHT-based Scalable Distributefpr coordinating communications among nodes [18, 28],
Information Management System) [38] for a numberand leases for limiting staleness [14], though we even-
of purposes including locating data on read misses an@ally hope integrate such techniques within a common
forming per-interest-set spanning trees to propagate dateamework.
to interested nodes. This paper makes two contributions. First, it de-
We have constructed a prototype system and we evaficribes novel mechanisms that support efficient and scal-
uate it using microbenchmarks. Our primary conclusiorfPlé PRACTIreplication. To our knowledge past systems
is thatby disentangling mechanism from policy, PRACTINave provided two, but never all three, of the PRACTI
replication enables better trade-offs for system designerBroperties. Second, it provides a prototype replication
than possible with existing mechanismBor example, toolkit based on PRACTI that cleanly separates mecha-
it is now possible to build a system that provides causalliSm from policy and that allows nearly arbitrary replica-
consistency and that—like Bayou—allows any node tdion, consistency, and topology policies.
exchange updates with any other node and that—like The rest of this paper is organized as follows. Sec-
Coda—allows each node to store and see updates f§Pn 2 describes the design of the PRACTI mechanisms,
only the data about which it cares. For one workload wetnd Section 3 details our prototype of the core (mech-
study, PRACTI's partial replication reduces bandwidth@nisms) and controller (policies). Section 4 experimen-
requirements by an order of magnitude compared to {lly evaluates the design. Finally, Section 5 surveys re-
full replication for nodes that only care about a subsetated work and Section 6 highlights our conclusions.
of the system’s data, and PRACTI’s topology indepen- .
dence reduces synchronization latency by over a facted PRACTI deS|gn
of three and enable synchronization in scenarios where ithis section describes the key ideas required to provide
would otherwise be impossible compared to a restrictedscalable PRACTI replication. The basic idea is simple.
topology, central server system for mobile clients that ar@\s Section 2.1 describes, we begin with a basic log ex-
weakly connected to main server. Finally, we find thatchange protocol similar to that used in Bayou [29]. Then,
imprecise invalidations are effective at limiting the addi-we modify the protocol to separate the control path from
tional cost of providing consistency over the cost of pro-the data path by separating invalidations from update
viding coherence. bodies as described in Section 2.2; this separation allows
More broadly, we envision PRACTI as a step towardsus to avoid sending all body updates to all nodes and to



avoid storing all bodies at all nodes. Third, we usere-  clock. In order to support fast local reads, each node
cise invalidationgo avoid full replication of consistency also maintains a snapshstore of the per-object state
messages and state as described in Section 2.3. Fourdlt,time currentVV>. Storeq;rq contains two fields:
we extend the interface over these basic mechanisms irccept, the accept stamp of the latest write dbjld,
order to support strengthening or weakening of the conand body, the value of that write. When processing

sistency semantics as described in Section 2.4. w;, it (wj.accept > storey, objra-accept) then update
storew,; .obj1d-body = w;.body.
2.1 Background: Log exchange Note that the simple protocol described here omits

Our protocol extends Bayou's log exchange proto-Several features. Most notably, in Bayou, writes are more
col [29]. In order to clarify our terminology and differ- 9eneral queries that can affect multiple different objects
ences between our protocol and Bayou's, we review thand that carry with them references to application spe-
basic protocol here. cific conflict detection and resolution routines [33]. Fur-
When a node issues a write, it assigns the writagn thermore, Bayou implements a primary-commit protocol
cept stampomprising the node’s ID and a logical clock to estabh.sh gﬂnal orderon a _preﬂx of writes despng un-
value. The logical clock is a Lamport clock [22] that is COmMmunicative nodes. We discuss both of these issues
advanced on each local operation and which, upon comvhen we address flexible consistency in Section 2.4.
munication with another node, is advanced to exceed the Overall, the Bayou protocol provides several attractive
maximum of the local and remote nodes’ logical clocks features. It providesopology independende that any
A node maintains a checkpoint representing all writes upiode can exchange updates with any other node at any
to a time represented by a version veatpVV, where time. And, it provides the relatively strong consistency
cpV'V,, holds the highest accept stamp from nedee- ~ gurantees of causal consistency and eventual consistency
flected in the checkpoint. Additionally, a node maintainswhich are stronger guarantees than just providing coher-
a log of all writes it has seen since the checkpoint sorte§nce- These stronger consistency guarantees are essential
by the writes’ accept stamps (using the logical clock ador ensuring that Bayou's application-specific detection
the primary key and the node ID to break ties) as wel@nd resolution procedures eventually agree on the same

as a version vectarurrentV'V that indicates the highest total order on all writes and therefore eventually converge
per-node accept stamps in the log. on the same state: given the power of Bayou’s conflict

At Bayou’s core are three properties. First, fefix resolution mechanisms, any difference in the order that

propertyis the invariant that a node’s state always reflectdVrtes are observed could cause a “butterfly effect” where
a prefix of the sequence of writes by each node: if a nodEe state at different nodes arbitrarily diverge.

B hascurrentVV, = t, theng’s state reflects all writes . . .
by o up to and including the write at logical tinte Sec- 2.2 Separate invalidations from update

ond, each node’s local state always refleetssally con- bodies

sistent[19] view of all writes that have occurred. This In order to add partial replication to the log exchange pro-
property follows from the prefix property and from the tocol’s topology independence and flexible consistency,
use of Lamport clocks to ensure that once a node hage first separate the control path from the data path by
observed a writev, all of its subsequent writes’ accept separating invalidation messages from update messages.
stamps will exceed’s. Third, the system ensures even- This separation allows update bodies to be sent to arbi-
tual consistency— eventually all connected nodes wiltrary subsets of the nodes according to the system’s data
agree on the same total order of all writes. replication policy.

Bayou’s log exchange protocotnforces these prop- Invalidation messagesontain two fields: objld,
erties. If 5 would like « to send it a stream of up- which identifies the modified object, aracept which
dates,3 sendsv its current version vectarurrentVV?.  is the accept stamp assigned by the writer when the write
Then, a connects tos and sends a sequence of mes-occurs? A node’s local state includes a log (sorted by
sages:{startVV, wi, wo, ...}. Wheng receives such accept stamp) and a per-object store representing the cur-
an incoming stream, it rejects the stream if any elerent state of each object for readStore,;rq4 contains
ment of the stream’startV'V exceedscurrentVVP.  three fields:accept valid, andbody. Finally, each node
It then processes each write by insertingw; into its  maintains acurrentVVversion vector and aurrentAc-
sorted log, updatingurrentV V? and its local Lamport  ceptLamport clock.

1We describe our extension of Bayou’s log exchange protocol that 2For simplicity, we describe the protocol in terms of full-object
supports either thbatch-moddog exchange in the original Bayou, in writes. In practice we track writes on the granularity of arbitrary byte
which a batch of updates is atomically applied to a node’s local state, aranges: Invalidation and body messages contaioftsetand length
astreaminglog exchange in which one node sends another a sequendeeld in addition to the fields discussed here, and our per-object state
of updates, each of which is individually applied. contains per-byte-rangeecept valid, andbodyfields.



Invalidation log exchange. When a node receives a two types—arunboundinvalidation as described above
stream of updategstartV'V, wi, wy, ...}, it rejects  or aboundinvalidation that contains, in addition to the

g‘e Sgtﬁgmviigséaﬁv‘%Ceéscelé”éegéb‘{ga fl?lfs gﬂ% ”%ﬂg fields listed above, &ody field that contains the body

lows: a write is created, its invalidation is initially bound. An
if w;.accept > storey, objrd-accept then unbind messageontains an accept stamp and is propa-
storew, objra-valid = INVALID gated through the system using a flooding strategy: when

StOrew;.objId-acCept = w;.accept a node receives an unbind message, it checks to see if

The node also updates arrentVVandcurrentAccept. it has the corresponding bound invalidation in its local

Applying bodies. Although invalidations continue to log; if so, it converts that invalidation to be unbound
be sent in causal, sequence number order, we suppéHd propagates the unbind message to alll neighbors with
distribution of bodies according to arbitrary policies, in Whom it is currently connected. If the node either has
arbitrary order, across arbitrary topologies. Arriving bod-N0t seen the correspondmg Invalld.atlon or already ha§ it
ies must therefore be synchronized with the invalidatiodn the unbound state, it does nothing. Note that unbind
streams before they are applied to the local state. \Waropagation is best-effort— if the connection topology
maintain the invariant that update bodies are not applie@hanges between when a write occurs and when it is un-
until the corresponding invalidation message has beefound, some nodes may not see the unbind and continue
Nodes maintain pendingUpdatdist of updates that have 0 Propagate the invalidation in the bound state for longer
been received but not yet applied to the local state, antnan necessary. But, because this situation should be rare
they sort this list by accept stamp to put the earliestdnd hurts performance rather than correctness, we have
numbered update at the head of the queue. When a bo@gcted not to include a more heavy-weight mechanism
messagé is at the head of the pending update queue, thfr reliably propagating unbind messages with the logs.
node waits untiktore, op;74.accept > b.accept and then Conversel_y, mtegratmg the pro_pagatlon. of bouqd invali-
(@) if storep.op;rq-accept == b.accept, applies the up- dations with the log is a conscious choice. By integrat-
date by setting theodyfield of that object’s checkpoint g our mechanism for ensuring reliability to the log ex-

state tob.body and setting thealid field to VALID or (b) changg, we tie reliability to the causal order guarantees:
if storey, op;14-accept > b.accept, discardsb. any write in a node’s log depends only on (a) explicitly
unbound writes (judged safe by some higher level policy)

Demandreads. The system ensures the safety propertyor (b) bound writes in that node’s log (which are as good
of providing a causally consistent view of data by havingas safe due to fate sharing).

alocal read request block until the requested object’s sta- To help the reliability algorithm decide when it is
tus isVALID. To ensure liveness, when #84VALID ob-  safe to unbind a write, each node provides an interface

jectis read, an implementation should arrange for somesync(replyTo, acceptStampyhich is an asynchronous
one to send the body. PRACTI supports any policy forrequest that asks the node to send a messamlyTo
doing this from a static hierarchy (i.e., ask your parent oixfter the node has stored the invalidation corresponding
a central server for the missing data) to a separate, cefy acceptStamjn its persistent redo log. A policy con-
tralized location-metadata directory [2], toa DHT—baseqt‘Ouer can imp|ement, for examp|emOpy po“cy by is-
location-metadata directory [34], to a hint-based searcBying sync requests to various nodes when a write occurs
strategy [32], to a push-all strategy [29] (i.e., “just wait and then, when it receives replies, issuing an unbind
and the data will come.”) request to the local node (which will flood the unbind to

Reliability. Separating invalidations from updates en-'S neighbors).

ables partial replication but also raises the issue of relianalysis. Separating invalidations from bodies retains
ability: in Bayou, all nodes have copies of all data, butthe topology independence and causal consistency of log
a PRACTI system will need to enforce an explicit policy exchange protocols, but it allows arbitrary policies to
decision about the minimum acceptable level of replicacontrol the replication of bodies. Note, however, that all
tion so that the loss of a node or a local cache replacarodes must still see all invalidations.

ment decision does not render some data unavailable or L. L

the storage system unreliable. We provide a simple, low2-3  Imprecise invalidations

level mechanism that supports a broad range of hightmprecise invalidations allow a node to omit details from
level policies from maintaining a fixed number of “gold” logs that it sends while still allowing receivers to enforce
copies of each object [9, 31] to propagating all data to @ausal consistency. Imprecise invalidations work by (1)
well-provisioned central server [18] or replicated servereplacing invalidation messages witltansevative sum-
“core” [20] to Bayou'’s strategy of replicating everything mary of them and (2) maintaining per-node data struc-
to everyone: an invalidation message can be of one dfires that track which objects are safe to access.
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Invalidation log exchange. An imprecise invalidation Algorithm 1 ProcesslnvalStreams = {startVV, giy,
contains three fieldsstart andend which are arrays of gis, ...} for interest sef S

accept stamps, an@drget which describes the objects ™ startVV = s.next()

affected by the invalidation. For every nodethat has if Ja | startVVa > currentV'V, then

one or more writes summarized by an imprecise inval- retgrn;i/Reject stream that does not preserve prefix property
idation, start,’s value is at most the earliest summa- ;jf’f?ﬁe‘xt’g)e W Set0

rized accept stamp anchd,’s value is at least the lat-

while (g7 # null) do
est summarized accept stampargetmay encode cov-

ered objects in any manner, as long as it is conserva-

tive and allows the receiver of the invalidation to identify
all objects affected by the summarized writes. Our im-
plementation encodesrgetas a list of directory paths
where each path represents either an individual file or di-
rectory (e.g., /foo/bar) or a subtree (e.g., /flim/flam/*).
Note that a precise invalidation is a special case of an
imprecise invalidation with a single writestart = end

and a single object astarget We use the terngen-
eral invalidationto refer to either a precise or impre-
cise invalidation. A system forms an imprecise invali-
dation using the union operation on two general invali-
dations: giy = gi1 U gis hasstart andendarrays with
entries for every server in eitheti; or gis’s start and
end with giy.start, = min(giy.start,, gis.start,),

Vo : nextStartVVy, = MAX (startVVy, gi.starta)
if 1(3p € pending | (Va : p.end < nextStartV'Vy))then
/I Apply overlappingy: from s at start time
log.insertgi, startV'V)
if gi.target intersectd S then
if gi.isPrecise() AND Vo : IpV'Vy > startVV, then
/'If no gaps to this precise inval, update IpVV
Vo : IpV Ve =MAX (IpV Va, gi.starta)
Va : currentVVy = MAX (currentV Vy, gi.endq)
startVV = nextStartVV
if gi.isPrecise() then
storeg;. objrqa-updatégi.start, INVALID)
pending.inser{gi)
gi = s.next()
elsel// Apply non-overlapping from pending at end time
if |(p.target intersectd S) then
if Vo : IpV' V, > gi.starts then
Va : lpV Ve =MAX (IpV Vi, p.endV V)
Va : currentVVy =MAX (currentV Vg, p.endV'Vy)
pending.removep)

giv-end, = maz(gii.endy, gis.end,,), andgiy .target
encompassing all objects encompassedhyand gio’s
targets time is at mostextStartVV, the startVV value that
Algorithm 1 summarizes how a node processes avill hold after the next invalidation is processed at its
streams of general invalidationd startVV, g¢iy, gia,  Starttime.
...} against one interest set of data that it wishes to be At g¢i's start time, we first insert it into the sorted log
able to access locally. For each such interest Sethe  of all invalidations. Then, if the invalidation overlaps$,
node maintains the interest set membership, the last prese advanceurrentVV to the end time of the invalida-
cise version vectoipV'V' that represents the highest ver- tion (indicating that the data idS must reflect invali-
sion vector for which all precise invalidations have beerdations up teendin order to be considered current). We
applied to7S, and the current version vectoV'V that  advancdpVVfor the interest only if (ajtartVVis at most
represents the highest version vector for which a generahe currentpVV for IS (i.e., there is no missing precise
invalidation has been applied 1. invalidation beforegi) and (b) this general invalidation
We rely on the prefix property for reasoning aboutis, in fact, a precise invalidation (i.ey; does not intro-
messages in a stream. In particular, a stream that béucing a missing precise invalidation.) Finally, if the in-
gins with startVV ensures that the subsequent invalida-validation overlaps the interest set, we advasizetVV
tions represent a causally consistent sequence with rfor the interest set; if the invalidation is precise, we up-
omissions starting fronstartVV. To support incremen- date the per object state in the same way as described in
tal application, our algorithm updates a per-stream, perSection 2.2.
interest setstartVV after processing each invalidation.  An invalidation that does not overlap an interest set
(For simplicity the pseudo-code shows a single interes¢ould safely be ignored since it carries no invalidations
set version of our protocol; see an extended technical rehat could make the interest set imprecise. But, the very
port for the full version [8]. fact that the invalidation does not intersect the interest set
General invalidations are applied to an interest set ins useful—it shows that there was a period of time over
sorted order based on their timestamps, but they are hawhich no invalidations (precise or imprecise) intersected
dled differently depending on whether they overlap an inthe interest set; this information can help disambiguate
terest set or not. If an invalidation overlaps an interest sefther general invalidations that overlap the interest set
it is applied at its start time as it arrives from the streamand this one in time. Agi's end time, if the invalidation
but if it does not overlap, it is buffered until its end time is target does not overlapS, and if startTime is at most
guaranteed not to be causally dependent on any remaiis’s IpVV, updatelpVV so that all elements are at least
ing start time in the stream, which happens when its ends great agi.end; in any event, advancgS’s currentVV



to gi.end. and b. Finally, nodé cares about a and ¢ and receives
from (8 precise invalidations about a (but imprecise inval-

Log update. Simply insertinggi into the log in sorted .~ . : -
order is not sufficient because interpreting a general in'—datlons about b and ¢ due s imprecision) and from

validation is done in the context of the stream in which precise invalidations_about ¢ (but imprecise_ invz_ilida-
it is received. In particulag: is interpreted based on the Egzz ?br%lét.siafg? :.a)anlijlr'sr% Ségqseios:rsz'ﬂ doigt\cl)?ga_
per-streanstartV'V which indicates that no causally re- ! breci 'mpreci

quired invalidations are missing betweefurtV'V" and illustrated in the figure, each invalidation advances the
gi.start. So, when we insei into the log W'e first de- per-invalidation-stream, per-interest-setrtV'V value

. . . S as well as b’s per-interest-set last precise version vector
compose it into per-writer general invalidations; we then P P

usegap filling and theintersectionoperation to encode gg V;Z)tr?giecgazn'tnvzrl'sé(;? VeCtolf‘("rfwiérHs,Z\évtzv'iié?;t
this “no missing invalidations” information. u invalidatiof, , be) i '

Decomposing o perter genealmldaons 354 (0) 1o message causes at pieretct o becone
gio is simple: for each serverin gi.start, generatei, h pt interest set’ VVq After br ing all four inval
with gi.start,, gi.end,,, andgi.target. atinterest set&V'V. After processing all fou a

For the gap filling operation, each per-writer log main-idations in that stream is precise for interest set a, but

tains the invarient that there is no gap between the en'&{}‘éfﬁi‘? f?;::?stirﬁ]?a‘?‘iz;gz:sbfi??:V:I;\%r dpi;(ches;lgg itr:]VZI—
time of an element and the start time of the next element. P P

When a node insertgi,, into its per-writer log fora at idations for a and b is similar.

startV'V,, if gi is newer than the newest element in the hThetrr:, whens r;ndy send the|r’ Ic])vg i(:rr:tent's tﬁl}/(\jle
log, it fills any gap betweegi and existing element by show the case whergprocesseg’ first three invalida-

inserting a new gap-filling invalidation with a start stampf“ons_’ thgms four mvghdatmns, and finalls’s fou_rth
validation. As the figure shows, after processing the

one larger than the highest existing end stamp, and erta L . . .
stamp gne smaller thaji’s start andgan empty tgrget irst three invalidations frorg, § is precise for a, but im-
For the intersection operation, we maintain the invarir€¢!s€ for b and c. The next four messages (frgm

ent that there is at most one invalidation that covers an haITe(Stpremse for fc butblmpre((s:ltset;or i etmd b. Flnallcljy,
moment in time in a per-writer log. We intersect two € last message (froff) bringsa to the state one wou

general invalidationgi; andgi, by replacing them with fjeswe:_ aft?r ssetlrr:g all Zre(gse |r_1tvatllr$ia';|orls:[rf]0; ?harm c
up to three general invalidations: the first covers the timéS Precise forboth a an Cd eiﬁ' € the fact tha _esel%re—
from the earlier start to the later start and targets the ol >€ MesSages were mixed with Some imprecise invalida-

jects targeted by the earlier start; the second covers tﬁ pns for a, b, and c. Finally, one may verify that because

time from the later start to the earlier end and covers tar> the 9's gap filling and intersection operatiorss log

gets represented by the intersectioryaf andgis's tar- contains sufficient information so that a nodéhat re-

gets; and the third covers the time from the earlier end tgeslvesé s log contents cou!d get precise upd.ates fora or
the later end and covers the targets of the later end. ¢ Conversely, note that § were simply to interleave

When we send a stream of invalidations to anothe}he messages it .received fromand 3 WithQUt 9ap ﬁ”_
node, we discard gap-filling invalidations and we com-"9 allgtz)mlter?ect:;n an%tgerll sfte_nd therp,hm;formaguon d
bine per-writer invalidations into multi-writer invalida- would be lost ana would be left imprecise for a, b, an

tions using the policy described in Section 3.1.

Demand reads. When a demand read occurs, it blocks Checkpoint recovery. The above protocol describes
until the interest set it targets becomes precise. Thil€ common case of streaming, incremental log ex-
blocking ensures the safety property that reads alwaysange. However, nodes can garbage collect their logs,
observe a causally consistent view. In Section 2.4 we dei° the system must handle the case when a noce
scribe how a reader can relax these guarantees. As wifflests data from;, buta’s currentVVis newer thang's
reads of invalidated objects, a system can use any poIidf?VV for a given interest set. The protocql handles this
for selecting one or more nodes to which to connect irfFaS€ by doing a full state transfer for the interest set:

order to retrieve the precise invalidations needed to makeends? its IpVV andcVVior the interest set along with
an interest set precise. theacceptstamp for each object in that interest set from
) _ ) ] a’s per-object state updates itdpVV andcVV for the
Example. Figure 1 illustrates these mechanisms in acinterest set and, if thaccepttime it receives for an ob-
tion. Nodea writes objects a, b, and c¢; nodecares
about object a and receives framprecise invalidations 3And, in this case, b. Our current log maintanence algorithm ac-

about a and imprecise invalidations about b and ¢ Nod@a”y extracts a bit more information from the stream of incoming re-
) quests than our interest set status algorithm; we are not sure if there is

Y C_are_s about Ob]eCt c a_md rec_elve_s frqnpr_emse IN- " aclean way to extract this information during interest set maintenance
validations about ¢ and imprecise invalidations about as well.




ject exceeds the locally storedcepttime, it updates the its log to3, 5 can continue to provide causal consistency
local accepttime for the object and marks the objéist  across all objects.

VALID. Note that checkpoint recovery can be done on a . . ) ) )
per-interest set basis, but for any interest sets not updatedtrengthening consistency. A library interface built

currentVVmust be advanced to at least therentvVof ~ Over the low-level mechanisms provided by the basic
the checkpoint. PRACTI interface can strengthen consistency guaran-

tees. In particular, theync()interface described above

Ana|ysis_ This a|gorithm retains topo|ogy indepen_ allows the construction of a write() that blocks until
dence and causal consistency, but it also allows partidhe update has propagated to a specified set of ma-
replication of both bodies and invalidations. In particu-chines [21, 31]. Another option for strengthening con-
lar, to maintain an interest set in the precise state requirédstency that we plan to explore is layering TACT over
O(number of writes to the interest set) precise invalidathese basic mechanisms to provide tunable consistency
tions plus one imprecise invalidation summarizing inval-guarantees [42].
idations that do not intersect the interest set. In prac- . . . .
tice, systems may send more imprecise invalidations tgonﬂ'Ct d_etectlon and res_olutl(_)n. The simple proto-
limit the delay in assembling and sending an invalidationCOI descnbgd ab_ove prm_ndes mcr(_amen_tal log exchange
stream as described in Section 3.1. and Iast—v_vnter—wms conflict resolution with glqbal even-
tual consistency in the case of concurrent writes. How-
2.4 Tunable consistency ever,'it is useful to not only resolve conflicts ir'1 a globally
consistent way but also to flag them and provide informa-
The basic mechanisms above provide a solid substratfon about conflicting writes to a more flexible manual
over which it is straightforward to weaken the sys-or programmatic conflict resolution procedure. As we
tem’s consistency guarantees (e.g., to improve perfodiscuss in an extended technical report [8], we augment
mance [24] or availability in the face of partitions [5]) the protocol described above by including hooks to detect
or to strengthen the system’s consistency guarantees gite-write conflicts (by adding arevAccepfield in all
meet application semantic requirements. invalidation messages and per-object store records), stor-
ing “losing” writes in a local (unshared) per-object con-
Weakening consistency. By default, demand reads fjictfile, and providing utility functions to read and delete
block until the interest set they reference is precise anﬂjsing writes from conflict files as part of a “Compensat_
they can ensure that the data they return representsjgy transaction” for application-specific conflict resolu-
causally-consistent view of the system’s state. We protion, Causal consistency (as opposed to coherence) is
vide an interface that overrides this behavior by allowing,seful for conflict detection and resolution: our protocol
imprecise readshat skip thelpVV = cVVcheck and re-  ensyres that all nodes agree on the same set of conflicts
turn data as soon as it is valid regardless of whether thgnq “|osing” writes.
interest set in which it resides is precise or imprecise. The extended report also describes how to use the
Nodes that use this interface obsenausally coherent  pRACT| mechanisms with Bayou's more powerful strat-
data—if a node reads a version of an object and then  gqy of associating application-specific conflict detection
writes another version;., of the object, than once any and resolution functions with writes [33]. Our reasons for
node reads version; ., of the object, any subsequent 5 simpler approach are (1) to support incremental (rather
read will return versiom; .., or a later version—but they  than patch) log exchange for improved performance and
are no longer guaranteed to observe a causally consistepl 1o avoid the need for aommitprotocol that can en-
view—if a node reads version, of objecta and then  gyre that late-arriving writes (which can include detec-
writes versior, of objectb, a node that reads versiop  tjon/resolution “programs” that can arbitrarily disrupt the

of objectb using an imprecise read may still observe acyrrent state) are placed after committed writes.
version of object: older thanv,,.

The potential benefit of doing an imprecise read is .
that a node can read an object from a currently—imprecisg’ Implementatlon
interest set without communicating with other nodes tocOur PRACTI techniques cleanly separate mechanism
make that interest set precise. Imprecise reads can theifieem policy in order to support a broader range of repli-
fore reduce bandwidth consumption, improve responseation policies than made available by current techniques
time, or improve availability. Note that even if a node that entangle policy choices with their mechanisms for
« executes one or more imprecise reads and then issussplication, consistency, or topology. Our implemen-
some writes, the protocol ensures thég log contains tation therefore seeks to serve as a “replication micro-
sufficient imprecise invalidations to put all of its invali- kernel” that provides basic low level mechanisms over
dations into a causally consistent order: even gends which higher-level services can be built.
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Fig. 1: lllustration of imprecise invalidation mechanismssplit-join scenario. Nodes, 3, v, andd share objects a, b, and c.

At each node, we show the per-interest-set information (last precise version g¢tiorand current version vectefi’V), the
per-invalidation-stream informatios#artV'V and a series of generalized invalidations), and the per-interest-set per-invalidation-
stream informationgtartV'V as it is updated as each generalized invalidation is applied.) For clarity, we show'sitymponent

for all version vectors and omit the node IB)(in accept stamps.

Local AP! | (read(, write(), delete()) Figure 2 illustrates the division of labor between
ez - mechanism and policy in our system. A PRACre
inval Sreams PRACTI Core " el Streams maintains local state in kg for reliability and commu-
- — nication and docal storefor random access. A core
- - Log Locd _ receives and generates streams of general invalidations
Body Sreams | BodySreas (precise, imprecise, and bound invalidations), bodies
I = (demand replies and prefetched/pushed data), and sync
Sync Streams ] Sync Sreams . . . L
Inform Mgt o replies (to support unbind and consistency policies as de-
Requeststo Requests from scribed in Sections 2.2 and 2.4.) The core also provides a
remotecores | Controller remote cores remote request interface that allows remotely-generated
requests to trigger outgoing streams or individual mes-

Fig. 2: High level architecture of PRACTI prototype. sages.

The PRACTI mechanisms ensure safety. Our pro- A controllers purpose is to send requests asking other

. _nodes’ cores to trigger streams or messages. To aid this
totype uses an asynchronous  style of commumc?-ask the core inf(?r%s its local controllergof important
tion in which incoming messages or streams are self-"" AR o P

Sevents (e.g., connection initiation/termination, local re-

describing—the rules for processing each incoming mes, ests, and message arrivals) To customize a replication
sage are completely defined, and interpreting a messa ' ag : plicat
ystem to an environment, different controllers use dif-

does not require knowledge of what request triggered it e . .
9 9 d 99 6ent policies. For example, we implement a Static-

transmission. Because message handling rules are ba 0 oloavController that creates a static topoloay amon
on the PRACTI algorithms, they ensure safety regardle pology o L pology Y
Ifs nodes for propagating invalidations and bodies and for

of the policy used for sending messages: any maching . ..

can send any legal protocol message to any other m alisfying demand r('aque.sts,l a BgyouControIIer that per-

chine manently leaves all invalidations in the bound state, and
' a SDIMSController that uses the DHT-based Scalable In-

Because the low-level mechanisms enforce safety ing mation Management System [38] to track the state of
dependent of policy, higher level policies can focus ONhe distributed system

liveness (including performance and availability con-
cerns.) Essentially, the policy layer's job is to ensure thaB.1 Core imp|ementation

the right nodes send useful data at the right time in orde«{-he core implements procedures applying incoming re-

to do such things as to satisfy a read miss, prefetch da@uests messages to its local state that ensure that the rules

to improve performance, or provision a node’s local storagcrined in Section 2 are enforced. A core’s local state
age so that it can make its data available while disconFlas two main parts: a log and a data store

nected. Each node provides an interface for requesting

that the node send invalidations or bodies to other nodeog. A core’s log has two main purposes. First, it
but these requests can be regarded as hints: the lossagits as a replay log for reliability. Second, it maintains
messages or the introduction of extra messages can afferausally-ordered lists of invalidations that serve as the
system performance but not the correctness of responsbkasis for communicaton with other nodes.

to application read and write requests. Our log implementation has two components. First,



it has a single on-disk append-only replay log in whichizing sentVV = startVydrawing from the per-writer logs
invalidation messages, local updates, and unbind meshe element with the lowest accept stamp that exceeds
sages are stored in the order they are received. SecorsgntVV and updatingentVVto include the end time of

it maintains an in-memory per-writer log of invalidations the element. Key to accomplishing the second task is the
and local updates sorted by accept stamp. Incoming megllowing observation:

sages are first appended to the on-disk replay log and

then, as described in Section 2.3, they are decomposed Given a causally consistent sequescef gen-

into single-writer invalidations that are merged with the eral invalidationsS = (go,91,.--,9n_1), S€-
single writer logs usingap filling andintersectiorto en- lect any two subsequenc8s andS; such that
force the invarient that each per-writer log contains agap- ¢, appears inS;, each element of appears
free list of elements that do not overlap in time. in eitherS; or Ss, and all elements i$; and

So appear in the same relative order asSin
Form an imprecise invalidatiod that is the
union of all invalidations inS; (as defined in
Section 2.3.) Then, the sequerge= (I, 52)

represents a causally consistent sequence.

Data store. The data store maintains per-interest set
status which tracks the last precise version vectpiMV)

and current version vectocYV) for each interest set as
described in Section 2.3. In our implementation, an inter-
est set is identified by a subdirectory name and includes
the path from the root to that subdirectory as well as al

enclosed subdirectories. LI'his property follows from the fact that if the imprecise

. . invalidation! intersects a receiver’s interest e, then
The data store also maintains per-object metadata ar\%a ) . . !
P ) when it arrives, the receiver advancEscV'V to I.end

body information. For each object in the system, one fil ) :
on the local disk holds the body of the object, with byteeb“t does not advanceS.IpV'V; conversely, ifI does
not intersect/ S, then when it arrives, the receiver waits

1 of the file corresponding to byteof the object. A sec- . : .

ond file holds the object’s consistency state: a series 0 ntil at Ieast[r.]end. tr)]efore advar?cmg eltheIrS.cVV ﬁr

records with amoffsetandlengthidentifying a byterange, S.lpV‘?. In the either case, w eglprr]oceismg. eac Imes—

acceptidentifying accept stamp of the most recent inval-529€9: from 53, IS.[pV’Vis no higher than it wou d

idation applied to the byterag@revAcceptidentifying have been ify; were prqcessed as par.t of the qnglnal se-

the accept stamp of the previous write to the byteragguer?ces’ andIS.cVV_ is at least as high, sbS is only
recise after processing messaggender.S; if it would

(for conflict detection as described in Section 2.4), and %a e been precise after processing the message gnder
valid flag indicating whether the body file’s contents are v Precise P >INg ge
To save bandwidth while avoiding unnecessarily mak-

VALID or INVALID for this range. For simplicity, we " . .
implement each object's consistency state as a Java o9 interest sets imprecise, a sender therefore buffers out-

ject, manage an in-memory cache of these objects, ar{;boing invalidations and aggregates ones that do not in-
serialize dirty objects to per-object disk files for check-tersectP. .Wh.en an outgoing stream draws a sequence
points. S of invalidations out of the log, it adds eaghto I if

g; does not intersect the precise g&and it appends;

Operation. Section 2 outlines how a core processes into a sequence of pending invalidatiofig otherwise. A
coming invalidation and body messages as well as lonode sends and cleafsand thenS, after one of two
cal read requests. Local write and delete requests ataneouts occurs: eithef),,..;sc ms have elapsed since
treated like incoming invalidation requests—they are firsthe first element was placed in this instanceSaf or
applied to the log and then to the local store. Incominglimprecise MS have elapsed sindebecame non-empty.
sync replies have no effect on the core’s state. Typically T precise > Tprecise SINCE NOdes may tolerate

Each core has an interface to trigger outgoing streamienger delays for updates about information they don't
of invalidations. A request to start an invalidation streamcare about. Note that our current prototype implements a
includes thedestinationnode 1D to which to send the limited version of this logic that allow$},,,ccise t0 be
data, sstartVVversion vector indicating the desired start- set by the trigger request but that assuffigs.;se == 0.
ing point, and a precise sétlisting subdirectories for Generating outgoing body streams is similar but sim-
which the receiver would prefer to receive precise invalipler because the safety of the system does not depend on
dations if the sender has them available. A sender threatie order of body messages or sync replies. When a node
has two tasks: First, it must draw requests from the perreceives a request for a body, the node uses data in its
writer logs in a causally consistent order, and second ifocal store to generate and send a body message with the
should reduce network overhead by combining some inebject ID, byte range, the range’s accept stamp, and as
validations into imprecise invalidations and sending thenmuch data beginning at the requested offset as is valid.
resulting stream of general invalidations in a causallyNote that if the local data is in the INVALID state, the
consistent order. It accomplishes the first task by initial-node’s reply would indicate a zero-length body, which



has no semantic effect at the receiver, but which will genplementing a specific distributed policy may communi-
erate an event the receiver’s controller can use as a hicate with one another using policy-specific interfaces.
that it should retry (perhaps to a different node); if the A core uses its local controller’s inform interface to
data store does not have a record for that object/offseinform the controller of events of interest. A core informs
the node generates an impossibly low-numbered acceftlocal controller of (1)stream connectioiitiation or
stamp for its reply which has the same effect. For effi-termination for invalidations or updates, (2) inval, sync,
ciency, our prototype maintains a pool of TCP connecand bodymessage arrivabvents, and (3)ocal events
tions for body messages to amortize TCP setup costs anitte read hit, read miss, read imprecise (a read that blocks
to pipeline sends when multiple bodies are sent to a nodeccessing an imprecise interest set), and write.

A core also provides an interface to request that a Controllers can respond to inform events by sending
nodea push bodies newer than some version vector tgequest messages to a remote core. For example, when
another nodes for some specified object or subtree ininformed of a read miss, a controller uses some policy-
the object name space. In our implementatiomllo-  specific strategy to identify a node that can supply the
cates a bounded-size priority queue which drains updatgiss and sends a request to that node for the body. Then,
body messages t® over a low-priority network connec- one of three things will happen: (1) the body arrives at
tion [35], andw inserts into this priority queue a reference the core, unblocks the waiting read request, and causes
to each new body matching the subtree using a per-objegte core to inform its controller of the body arrive event,
priority supplied bya's controller. (2) an empty body arrives at the core (signifying that the

sender does not have the desired data), the controller re-
Recovery and garbage collection. In order to allow  cejves a body arrive event for the empty body, and the
timming of update logs, nodes checkpoint their localcontroller sends another body read request, or (3) a time-
store state. A checkpoint comprisesiarentVVversion oyt event within the controller occurs and the controller
vector that indicates the on-disk state reflects at least thgsyes another body read request.
application of general invalidations up ¢orrentVV, the Finally, the core has a local management interface that
list of interest sets, a per interest §BYV version vector  5jjows the controller to query the core to learn about in-
indicating the last time the interest set was precise, thgymg state (e.g., the intererest set status, per-object state,
per-object metadata (current to at lelpstV for each ob- |4 status, and connection status) and to manage that lo-
ject'sinterest set), and the per-object body for at least anyy; siate (e.g., shut down a connection, mark an object
bound invalidations that are reflected in the checkpointg invalid and garbage collect its body storage, or begin
(a node’s controller is always free to direct the node tocrackinngVVanchVfor a new interest set.)
discard any unbound body to limit space consumption.)
Once such a checkpoint s stored, the prefix of the log bespms Controller  To more concretely illustrate the
fore currentVVmay be truncated, though in practice we nteractions between the controller and the core, we de-
keep a longer prefix in the log to facilitate incrementalscripe one of the controllers we have built. The SDIMS

synchronization among nodes [29]. controller uses the DHT-based SDIMS system [38] to
. ) coordinate a distributed collection of controllers. Note
3.2 Controller implementation that the current SDIMS Controller is intended as a proof

Each core has a controller that initiates the communicaef concept for the PRACTI mechanisms rather than as
tion that the core needs such as subscriptions to invalida full-fledged replication system. Although we intend
tion streams, subscriptions to prefetch body streams, art@ build complete replication system using SDIMS and
requests for bodies to satisfy demand read misses. CORRACTI, some desirable features are not yet imple-
trollers also issue maintenance directives to the local core@ented as we detail below.
for issues like cache replacement and garbage collection. Our prototype uses SDIMS to maintain per-interest-

The controller subsystem is defined by its interfaceset spanning trees for both invalidation and update
Within this interface, we anticipate a wide range of dif- streams. As Figure 3 illustrates, for a given interest
ferent implementations providing different policies. setlS, the node informs SDIMS of its interest ifS,

and SDIMS aggregates this information across locality-

Interface and operation. Controllers use three inter- aware and administrative-unit-aware trees, selecting an
faces to accomplish their work: a core calls a controller'dnterested node from each subtree to function as the sub-
inform interface to inform the controller of important tree’s root. A node then finds its parent using SDIMS
actions, a controller calls a remote core&mote re- and creates invalidation (and optionally, body) streams
guestinterface to trigger sends, and a controller calls it¢o and from its parent fof S. Note that some updates
core’smanagemeninterface for maintenance functions to the interest sefoo/barare relevant to the interest set
like cache control. Additionally, a set of controllers im- /foo/bar/baz so the root node of the spanning tree for
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guidance.
Fig. 4. Scalability of PRACTI
selects as its parent any node in the spanning tree for the
shorterpath’ formed by deleting after the last “/” ihS’s
path A controller maintains spanning tree connections
by retrying on communication failures and when SDIMS
notifies a node that its parent in in the spanning tree has

changed. :

. O Invalidate traffic
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We use a similar approach for maintaining a dis- 2 5000000
tributed directory for satisfying local read misses. Each § 1
node informs SDIMS of the valid byte ranges it caches =

and queries SDIMS on misses to find a nearby copy of ; i g

data [30]. 0 N X 2
Note that SDIMS ensures only eventual consistency, @% % %&

SO a spanning tree parent or body supplier suggested by v

SDIMS may not be the correct parent, may not have the Bandwidth consumed

desired data, or may be unreachable. The first problem Fig. 5: Scalability of PRACTI

is handled by using SDIMS’sontinuous probednter- .
face to notify a controller when its parent changes. ad Evaluation

controller handles stale values and timeouts by retryingn, this section we evaluate the properties of our PRACTI
SDIMS queries with a flag teeaggregatestored values prototype. Our primary conclusions are (1) the separa-
from children in the distributed tree [38]. tion of invalidations from updates can reduce bandwidth
A complete version of an SDIMS-based distributedconsumption by an order of magnitude compared to full-
file system would require several additional featuresreplication systems when workloads have locality of in-
First, we plan to use SDIMS to allow a node to locateterest, (2) the use of imprecise invalidations can provide
a nearby node whose interest set status for some inted-further significant reduction in synchronization over-
est set is precise up to a specified point in time. Thidieads in systems with large numbers of files when some
information is useful for “filling holes” when a node re- nodes only care about subsets of those files, (3) flexible
ceieves an imprecise invalidation for an interest set itopologies can significantly reduce synchronization de-
wishes to maintain as precise. Providing this informatiorlays, particularly in mobile or low-bandwidth environ-
will entail maintaining per-interest set, per-writer aggre-ments, and (4) imprecise invalidations make the band-
gation functions so that an SDIMS subtree will identify width cost of providing consistency guarantees approach
the node in the subtree with the highest accept stamp fdhe cost of providing weaker coherence guarantees.
a given interest set and writer. Second, we plan to use We show in figure 4 and 5 the number of bytes trans-
SDIMS to track the read and write rates to different ob-ferred for each of our various replication strategies. We
jects. Prefetch algorithms use this information to prior-run our experiments on two machines - a sender, which
itize replication [36, 37]. Third, a complete controller writes to random files, and a receiver that reads random
should implement policies for local cache replacemenfiles. At the sender, we generate 1000 files with 10000
and log garbage collection. bytes each, and perform 10000 random writes. The re-
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LaptOp/i';V'\D/A/PhO”e Q\','V in a hotel room has a laptop, PDA, and phone that share
: a 1Mbit/s wireless connection, and the user also has an
Replicate all 2521KB 35125KB nt on a fixed rver that the lapt n Vi
All-inval, interest-update 483KB 3612KB account on a fixed server that the faptop can access via
Interest-update, interest-inva 243KB 2991KB a 50Kbit/s modem link (when it is available). We use
Hierarchy impossible 1588KB a synthetic workload in which 100K files each of 10KB

size exist at the server, with 10K of those files at the lap-
Table 1: Bandwidth consumption for synchronization. top, 1K at the PDA, and 100 at the phone. We assume

ceiver then reads 10 of those files. We assume that tH8at since the last synchronization event, 1% of the files
receiver replicates 10% of the directories in the system@t €ach location have changed. We compare synchroniza-
and for each directory, we assume that the receiver replflon costs under two scenarios: (1) no connection to the
cates 10% of the files in that directory. server is available and the laptop, PDA, and phone are
We evaluate the bandwidth consumed by PRACTPENlY able to communicate with one another and (2) a con-
under 3 configurations: (1) Full replication, where then€ction to the server is available.
sender sends precise invalidates for all modified files (de- The table compares four protocols for synchronizing
notedFR) in the figures, (2PR Dirs where the sender the devices. First, the replicate-all approach replicates all
sends a precise invalidate message for each modified fiata and distributes all updates to all devices (similar to
f if f lies in a directoryd that is replicated at the receiver Bayou). The second strategy separates invalidations and
(even if only a subset of is replicated at the receiver) updates, has the devices subscribe for all invalidations,
and (3)PR Files where the sender sends precise invalibut has them only subscribe to (i.e., hoard [20]) updates
date messages for exact|y on|y those files that are rep]fﬂf the files in their interest sets. The third strategy re-
cated at the receiver. stricts subscriptions to the interest sets for both metadata
In figure 4 we evaluate the bandwidth consumed@nd data. And, the fourth strategy requires all communi-
by PRACTI underconservativealgorithms, where the cation to be between the server and a client as in tradi-
sender does not push any files to the receiver but instedtpnal client-server systems; like the third approach, our
forces the receiver to demand-fetch files as necessary. Vident-server toplogy system restricts subscriptions to the
note that by restricting the sender to sending precise irinterest set for both data and metadata.
validate messages for only those files that lie in replicated As the table illustrates, separating invalidations from
directories, we successfully reduce bandwidth consumpipdate bodies and providing nodes with the flexabity to
tion by a factor of 3.1. When we restrict the sender toonly access the bodies they care about significantly re-
sending invalidate messages only for exactly those fileduces bandwidth requirements. In this example, the sec-
that lie in the receiver’s interest set, we successfully reond strategy uses about an order of magnitude less band-
duce bandwidth consumption by a factor of 8.1. Due tavidth than the first. Also note that allowing nodes to
the large difference between the number of files written a@bserve only subsets of invalidations provides significant
the sender and the number of reads at the receiver, mdstther reductions. In this example, where the laptop and
of the bandwidth £ 97.6%) is spent sending invalidate server share 10% of their data, the third strategy reduces
messages. If transferring file data consumes more bangandwidth by about 10%; if the universe of data were
width, the relative benefits yielded by sending imprecisdarger than the 1GB used here and as if devices shared
invalidates would be reduced. smaller subsets of data, this number would increase.
Figure 5 shows the bandwidth consumed by PRACTI Finally note the advantage of topology independence.
when usingaggressivealgorithms, where for each modi- The centralized synchronization of metadata required by
fied file for which the sender sends an invalidate messaggome replication systems would force the user in this sce-
it also sends the modified data. The first line in the figurenario to dial in in order to synchronize her PDA and lap-
represents the case where the sender pushes all updat@s, even if the two devices are in the same room, thou-
to the receiver, as is done IBayou[29]. However, we sands of miles away from the server; clearly such restric-
note that by restricting the sender to sending only thos#ons are burdensome.
updates that occur in files that lie in replicated directo- Table 4 further illustrates this scenario. This table
ries, the sender consumes a factor of 8.7 less bandwidtBhows the synchronization times for an unoptimized ver-
Furthermore, by restricting the sender to sending onlgion of our system, using NistNet to restrict bandwidths
those updates that are to files replicated at the receivem the values listed above. Compared to a replicate-all
the sender uses a factor of 20 less bandwidth comparesirategy, partial replication reduces synchronization de-
to the fully replicated configuration. lay by over a factor of five, and we would expect that gap
Table 4 shows the bandwidth costs of synchronizingo widen as we tune our system. The optimized peer-to-
a collection of machines using various mechanisms angeer exchange of data also reduces time compared to a
policies. In this (emulated via NistNet) scenario, a usehierarchical system, even when the network to the server
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Laptop/PDA/Phone| Al systems that provide sequential consistency [24]. As
: Sync Time syncTime | 5 result, systemsustmake compromises or optimize
Replicate all 26s >1200s() | o specific workloads. Unfortunately, these workload-
All-inval, interest-update 7.5s 402.2s . . .
Interest-update, interestinval 7 s 20035 sp_eC|f|c compromises are pften reflected in system mech-
Hierarchy impossible 427 .45 anisms, not just their policies.

o S In particular, state of the art mechanisms allow a sys-
Table 2: Synchronization delays. (*) Due to time limitations, em designer to retain full flexibility along at most two of

we were unable to complete the replicate-all run over the slovsfhe three dimensions of replication, consistency, or topol-
network link for this submission, and we cut the run short afterogy policy

1200 seconds. Given these bandwidth constraints, the full run ) )

must take at least 1873 seconds. A first set of systems such as Sprite [28], AFS [18],
and Coda [20] support arbitrary replication policies and

in principle could support a range of consistency poli-

cies [39] (though, in practice, such systems typically im-

plement a specific consistency policy), but these pro-

tocols fundamentally assume a topology policy that re-

is available.

The following table illustrates the efficiencies that
come from imprecise invalidations as well as the bene
fits of having the flexibility to choose which data to track

in detail: stricts communications to hierarchical paths. Even when
Precise Imprecise client-server systems permit limited client-client commu-
Subscribe 10000 349723 bytes| 1769 bytes nication for cooperative caching [2, 10, 12] serialization
Subscribe 1000 | 4546 bytes | 3122 bytes of control messages at the server is vital for reasoning

about consistency [6].
In this experiment, a node that had been imprecise for A gsecond set of systems such as Bayou [29],
a directory subtree containing 100,000 files references facT [41], and Ivy [27] use a log-propagation mecha-
file in that subtree. To do so, the node must become preyism that is capable of providing a range of consistency
cise for at least the file in questlon, but since the Procesgyarantees [41] and that supports arbitrary topologies.
is likely to reference other data in that subtree, it mayowever, these mechanisms assume a replicate-all place-
also make the directories that include that file precise fop,ent policy that maintains a copy of all objects in a vol-

several levels of ancestors. We show two cases: whefgme on each node that participates in the volume's repli-
the node makes the nearest 10,000 files (10% of the datg}ion system.

precise and where the node makes the nearest 1,000 files 5 hird set of systems such as Ficus [16] and Pan-
(1% of the data) precise. Note that the first case requiregaea [31] maintain synchronization information sepa-

about an order of magnitude more bandwidth than the, ey for each object and support arbitrary topology poli-
second approach due to imprecise |nv'aI|d§1t|on's a_b'l'tycies and arbitrary replication policies. However, although

to stand in for large numbers of precise invalidationsneqe systems can provide some coherence guarantees on
Note also that the additional overheads required to carry, . rder of reads and writes when an individual object is
imprecise invalidations (and thereby provide ConSiSte”Cyconsidered, they provide limited consistency guarantees

not just coherence) are small compared to both the pregarding the ordering of reads and writes across objects.
cise information and (not shown) compared to the body

data of the files being accessed. And finally note that the )
imprecise invalidations reduce the metadata bandwidt® Conclusion

cost of synchronizing a subset of this volume by order§y, s haper, we present the first PRACTI (Partial Repli-
of magnitude compared to synchronizing all items Pre<ation, Arbitrary Consistency, and Topology Indepen-

C'S_?_lﬁl' . ts d ibed above d irate th I(dence) mechanism for replication in large scale systems.
€ expenments described above demonstrate the ese new mechanisms allow construction of systems

properties of the PRACTI approach. Our evaluation ef-ﬁhat replicate or cache any data on any node, that pro-

forts are ongoing a_nd we_expect to complete add't'onavide a broad range of consistency and coherence guaran-

experiments in the immediate future. tees, and that allow any node to communicate with any
other node at any time. Our evaluation of our prototype

5 Related work suggests thaby disentangling mechanism from policy,

Replication is fundamentally hard. For example BrewelPRACTI replication enables better trade-offs for system

describes the CAP dilemma [5]: a replication systemdesigners than possible with existing mechanisrg.

that provides sequenti&@onsistency cannot simultane- cleanly separating mechanism from policy, we speculate

ously provide 100%Availability in a system that can that PRACTI may serve as the basis foumified repli-

be Partitioned. Similarly, Lipton and Sandberg describecation architecturghat simplifies the design and deploy-

fundamental limitations on performance for distributedment of large-scale replication systems.
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