
PRACTI Replication for Large-Scale Systems

Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen Yalagandula, and Jiandan Zheng
University of Texas at Austin

Abstract
Many replication mechanisms for large scale distributed
systems exist, but they require a designer to compro-
mise a system’s replication policy (e.g., by requiring full
replication of all data to all nodes), consistency policy
(e.g., by supporting per-object coherence but not multi-
object consistency), or topology policy (e.g., by assum-
ing a hierarchical organization of nodes.) In this paper,
we present the first PRACTI (Partial Replication, Arbi-
trary Consistency, and Topology Independence) mecha-
nisms for replication in large scale systems. These new
mechanisms allow construction of systems that replicate
or cache any data on any node, that provide a broad range
of consistency and coherence guarantees, and that per-
mit any node to communicate with any other node at
any time. Our evaluation of a prototype suggests that by
disentangling mechanism from policy, PRACTI replica-
tion enables better trade-offs for system designers than
possible with existing mechanisms. For example, for
one workload we study, PRACTI’s partial replication re-
duces bandwidth requirements by over an order of mag-
nitude compared to full replication for nodes that only
care about a subset of the system’s data.

1 Introduction
Data replication is a fundamental technique for improv-
ing the performance [3, 11, 13, 28, 31, 37], availabil-
ity [7, 13, 21, 41], ubiquity [20, 29], persistence [25],
and managability [1] of a broad range of large-scale dis-
tributed systems such as personal file systems [20, 29],
web service replication systems [11, 13, 37], global-scale
file systems [9, 41, 31], or enterprise data distribution
systems [1]. Because no replication system can have per-
fect performance properties [24] or perfect availability
and consistency [5], systems designed for different envi-
ronments make different trade-offs among these factors
by implementing different consistency policies, place-
ment policies, and topology policies. Informally,consis-
tency policiessuch as sequential [23] or causal [19] reg-
ulate how quickly newly written data are seen by reads,
placement policiessuch as demand-caching [18, 28],
prefetching [15], push-caching [17] or replicate-all [29]
define which nodes store local copies of which data, and
topology policiessuch as client-server [18, 28], hierar-

chy [4, 26], or ad-hoc [16, 21, 29] define the paths along
which communication flows.

Unfortunately, existing replication mechanisms are
entangled with specific policy assumptions. For example,
Bayou [29] allows arbitrary topologies for communica-
tion among nodes but fundamentally assumes full repli-
cation where all nodes store all data from any volume
they export. Conversely, Coda’s [20] replication policy
allows nodes to cache subsets of data, but Coda funda-
mentally assumes a restrictive client-server communica-
tion topology.

This paper describes a set of mechanisms that for the
first time simultaneously provide all three PRACTI (Par-
tial Replication, Arbitrary Consistency, and Topology In-
dependence) properties.Partial replicationmeans that a
system can place any subset of data on any node. In con-
trast, some replication systems require a node to main-
tain full copies of all objects in all volumes they ex-
port [27, 29, 42]. Arbitrary consistencymeans that the
system provides flexible semantic guarantees, including
the ability to selectively enforce both consistency guaran-
tees (which constrain the order that updates across mul-
tiple objects become observable to readers) and coher-
ence guarantees (which constrain the order that updates
to a single object become observable but do not addi-
tionally constrain the ordering of updates across differ-
ent objects.) In contrast, some replication systems can
only enforce coherence guarantees but make no guaran-
tees about consistency [16, 31].Topology independence
means that any node can communicate with any other
node. In contrast, many systems restrict communication
to client-server [18, 20, 28] or hierarchical [4, 40] pat-
terns.

We base the PRACTI protocols on Bayou’s log ex-
change mechanisms [29], which support a range of con-
sistency guarantees [42] and topology independence, but
which fundamentally assume full replication in order to
maintain the invariant that each node’s log represents a
causally-consistent prefix of the system’s writes. We
adapt this protocol to support partial replication using
two principles. First, weseparate the control path from
the data pathby separating invalidation messages that
identify what has changed from body messages that en-
code the changes to the contents of files [2, 31]. In con-

1

trast with Bayou’s protocol that assumes that invalida-
tions and bodies go hand-in-hand, these modifications
require us to introduce new synchronization rules to en-
force ordering restrictions, mechanisms for handling de-
mand read misses, and protocols for enforcing policies
on the minimum safe degree of data replication [31]. Sec-
ond, we useimprecise invalidations, which allow a single
invalidation to conservatively summarize a set of omitted
invalidations. We define a protocol that allows nodes to
compose precise invalidations into imprecise ones, to in-
crementally exchange logs of mixed precise and impre-
cise invalidations, to allow precise reads (that see a con-
sistent view of the data) or imprecise reads (that see only
acoherentview of the data), and to recover precision for
an interest set that has become imprecise.

Because PRACTI mechanisms support a broad range
of replication, topology, and consistency policies, we de-
sign our prototype as a “replication microkernel” that
carefully separates mechanism from policy. Replica-
tion corescommunicate with one another using an asyn-
chronous communication protocol, and each core uses
the PRACTI mechanisms to enforce a node’s safety prop-
erties regardless of what messages other nodes sent to it.
A separatecontroller layer implements the system’s poli-
cies by triggering communication between nodes. We
implement several flavors of controller including a novel
one that uses SDIMS (a DHT-based Scalable Distributed
Information Management System) [38] for a number
of purposes including locating data on read misses and
forming per-interest-set spanning trees to propagate data
to interested nodes.

We have constructed a prototype system and we eval-
uate it using microbenchmarks. Our primary conclusion
is thatby disentangling mechanism from policy, PRACTI
replication enables better trade-offs for system designers
than possible with existing mechanisms.For example,
it is now possible to build a system that provides causal
consistency and that—like Bayou—allows any node to
exchange updates with any other node and that—like
Coda—allows each node to store and see updates for
only the data about which it cares. For one workload we
study, PRACTI’s partial replication reduces bandwidth
requirements by an order of magnitude compared to a
full replication for nodes that only care about a subset
of the system’s data, and PRACTI’s topology indepen-
dence reduces synchronization latency by over a factor
of three and enable synchronization in scenarios where it
would otherwise be impossible compared to a restricted-
topology, central server system for mobile clients that are
weakly connected to main server. Finally, we find that
imprecise invalidations are effective at limiting the addi-
tional cost of providing consistency over the cost of pro-
viding coherence.

More broadly, we envision PRACTI as a step towards

a “Unified Replication Architecture” toolkit that will
simplify the development and deployment of large-scale
replication systems. Because current mechanisms and
policies are entangled, when a replication system is built
for a new environment, it must often be built from scratch
or must modify existing mechanisms to accommodate
new policy trade-offs. PRACTI may help define a com-
mon substrate over which a broad range of replication
systems can be constructed. Note, however, that although
the current system provides a great deal of flexibility, it
does fall short of our eventual goal of providing a unified
replication architecture in two significant ways. First, al-
though our current system supports a wide range of con-
sistency options—including causal coherence, eventual
coherence, causal consistency, eventual consistency, and
acknowledged writes—there are some limitations on this
flexibility. As we discuss in Section 2.4, several enhance-
ments appear to be relatively straightforward extensions
given our current mechanisms; these extensions include
application-specific conflict detection and resolution [33]
and tunable quantitative limits on inconsistency [42].
Still, we have not precisely quantified the boundaries
of what semantics can be conveniently accommodated
within PRACTI’s “arbitrary” consistency. Second, we do
not yet accommodate some families of replication tech-
niques, such as quorums for replication, callback state
for coordinating communications among nodes [18, 28],
and leases for limiting staleness [14], though we even-
tually hope integrate such techniques within a common
framework.

This paper makes two contributions. First, it de-
scribes novel mechanisms that support efficient and scal-
able PRACTI replication. To our knowledge past systems
have provided two, but never all three, of the PRACTI
properties. Second, it provides a prototype replication
toolkit based on PRACTI that cleanly separates mecha-
nism from policy and that allows nearly arbitrary replica-
tion, consistency, and topology policies.

The rest of this paper is organized as follows. Sec-
tion 2 describes the design of the PRACTI mechanisms,
and Section 3 details our prototype of the core (mech-
anisms) and controller (policies). Section 4 experimen-
tally evaluates the design. Finally, Section 5 surveys re-
lated work and Section 6 highlights our conclusions.

2 PRACTI design
This section describes the key ideas required to provide
scalable PRACTI replication. The basic idea is simple.
As Section 2.1 describes, we begin with a basic log ex-
change protocol similar to that used in Bayou [29]. Then,
we modify the protocol to separate the control path from
the data path by separating invalidations from update
bodies as described in Section 2.2; this separation allows
us to avoid sending all body updates to all nodes and to

2

avoid storing all bodies at all nodes. Third, we useimpre-
cise invalidationsto avoid full replication of consistency
messages and state as described in Section 2.3. Fourth,
we extend the interface over these basic mechanisms in
order to support strengthening or weakening of the con-
sistency semantics as described in Section 2.4.

2.1 Background: Log exchange
Our protocol extends Bayou’s log exchange proto-
col [29]. In order to clarify our terminology and differ-
ences between our protocol and Bayou’s, we review the
basic protocol here.

When a node issues a write, it assigns the write anac-
cept stampcomprising the node’s ID and a logical clock
value. The logical clock is a Lamport clock [22] that is
advanced on each local operation and which, upon com-
munication with another node, is advanced to exceed the
maximum of the local and remote nodes’ logical clocks.
A node maintains a checkpoint representing all writes up
to a time represented by a version vectorcpV V , where
cpV Vα holds the highest accept stamp from nodeα re-
flected in the checkpoint. Additionally, a node maintains
a log of all writes it has seen since the checkpoint sorted
by the writes’ accept stamps (using the logical clock as
the primary key and the node ID to break ties) as well
as a version vectorcurrentV V that indicates the highest
per-node accept stamps in the log.

At Bayou’s core are three properties. First, theprefix
propertyis the invariant that a node’s state always reflects
a prefix of the sequence of writes by each node: if a node
β hascurrentV Vα = t, thenβ’s state reflects all writes
by α up to and including the write at logical timet. Sec-
ond, each node’s local state always reflectscausally con-
sistent[19] view of all writes that have occurred. This
property follows from the prefix property and from the
use of Lamport clocks to ensure that once a node has
observed a writew, all of its subsequent writes’ accept
stamps will exceedw’s. Third, the system ensures even-
tual consistency— eventually all connected nodes will
agree on the same total order of all writes.

Bayou’s log exchange protocol1 enforces these prop-
erties. If β would like α to send it a stream of up-
dates,β sendsα its current version vectorcurrentV V β .
Then, α connects toβ and sends a sequence of mes-
sages:{startV V , w1, w2, . . .}. Whenβ receives such
an incoming stream, it rejects the stream if any ele-
ment of the stream’sstartV V exceedscurrentV V β .
It then processes each writewi by insertingwi into its
sorted log, updatingcurrentV V β and its local Lamport

1We describe our extension of Bayou’s log exchange protocol that
supports either thebatch-modelog exchange in the original Bayou, in
which a batch of updates is atomically applied to a node’s local state, or
a streaminglog exchange in which one node sends another a sequence
of updates, each of which is individually applied.

clock. In order to support fast local reads, each node
also maintains a snapshotstore of the per-object state
at time currentV V β . StoreobjId contains two fields:
accept, the accept stamp of the latest write toobjId,
and body, the value of that write. When processing
wi, if (wi.accept > storewi.objId.accept) then update
storewi.objId.body = wi.body.

Note that the simple protocol described here omits
several features. Most notably, in Bayou, writes are more
general queries that can affect multiple different objects
and that carry with them references to application spe-
cific conflict detection and resolution routines [33]. Fur-
thermore, Bayou implements a primary-commit protocol
to establish a final order on a prefix of writes despite un-
communicative nodes. We discuss both of these issues
when we address flexible consistency in Section 2.4.

Overall, the Bayou protocol provides several attractive
features. It providestopology independencein that any
node can exchange updates with any other node at any
time. And, it provides the relatively strong consistency
gurantees of causal consistency and eventual consistency
which are stronger guarantees than just providing coher-
ence. These stronger consistency guarantees are essential
for ensuring that Bayou’s application-specific detection
and resolution procedures eventually agree on the same
total order on all writes and therefore eventually converge
on the same state: given the power of Bayou’s conflict
resolution mechanisms, any difference in the order that
writes are observed could cause a “butterfly effect” where
the state at different nodes arbitrarily diverge.

2.2 Separate invalidations from update
bodies

In order to add partial replication to the log exchange pro-
tocol’s topology independence and flexible consistency,
we first separate the control path from the data path by
separating invalidation messages from update messages.
This separation allows update bodies to be sent to arbi-
trary subsets of the nodes according to the system’s data
replication policy.

Invalidation messagescontain two fields: objId,
which identifies the modified object, andaccept, which
is the accept stamp assigned by the writer when the write
occurs.2 A node’s local state includes a log (sorted by
accept stamp) and a per-object store representing the cur-
rent state of each object for reads.StoreobjId contains
three fields:accept, valid, andbody. Finally, each node
maintains acurrentVVversion vector and acurrentAc-
ceptLamport clock.

2For simplicity, we describe the protocol in terms of full-object
writes. In practice we track writes on the granularity of arbitrary byte
ranges: Invalidation and body messages contain anoffsetand length
field in addition to the fields discussed here, and our per-object state
contains per-byte-rangeaccept, valid, andbodyfields.

3

Invalidation log exchange. When a node receives a
stream of updates{startV V , w1, w2, . . .}, it rejects
the stream ifstartV Vα > currentV Vα for any node
α. Otherwise, it processes eachwi by inserting the
write into its sorted log and updating the store as fol-
lows:

if wi.accept > storewi.objId.accept then
storewi.objId.valid = INV ALID
storewi.objId.accept = wi.accept

The node also updates itscurrentVVandcurrentAccept.

Applying bodies. Although invalidations continue to
be sent in causal, sequence number order, we support
distribution of bodies according to arbitrary policies, in
arbitrary order, across arbitrary topologies. Arriving bod-
ies must therefore be synchronized with the invalidation
streams before they are applied to the local state. We
maintain the invariant that update bodies are not applied
until the corresponding invalidation message has been.
Nodes maintain apendingUpdatelist of updates that have
been received but not yet applied to the local state, and
they sort this list by accept stamp to put the earliest-
numbered update at the head of the queue. When a body
messageb is at the head of the pending update queue, the
node waits untilstoreb.objId.accept ≥ b.accept and then
(a) if storeb.objId.accept == b.accept, applies the up-
date by setting thebodyfield of that object’s checkpoint
state tob.body and setting thevalid field toVALID or (b)
if storeb.objId.accept > b.accept, discardsb.

Demand reads. The system ensures the safety property
of providing a causally consistent view of data by having
a local read request block until the requested object’s sta-
tus isVALID. To ensure liveness, when anINVALID ob-
ject is read, an implementation should arrange for some-
one to send the body. PRACTI supports any policy for
doing this from a static hierarchy (i.e., ask your parent or
a central server for the missing data) to a separate, cen-
tralized location-metadata directory [2], to a DHT-based
location-metadata directory [34], to a hint-based search
strategy [32], to a push-all strategy [29] (i.e., “just wait
and the data will come.”)

Reliability. Separating invalidations from updates en-
ables partial replication but also raises the issue of reli-
ability: in Bayou, all nodes have copies of all data, but
a PRACTI system will need to enforce an explicit policy
decision about the minimum acceptable level of replica-
tion so that the loss of a node or a local cache replace-
ment decision does not render some data unavailable or
the storage system unreliable. We provide a simple, low-
level mechanism that supports a broad range of high-
level policies from maintaining a fixed number of “gold”
copies of each object [9, 31] to propagating all data to a
well-provisioned central server [18] or replicated server
“core” [20] to Bayou’s strategy of replicating everything
to everyone: an invalidation message can be of one of

two types—anunboundinvalidation as described above
or a boundinvalidation that contains, in addition to the
fields listed above, abody field that contains the body
of the write that created the bound invalidation. When
a write is created, its invalidation is initially bound. An
unbind messagecontains an accept stamp and is propa-
gated through the system using a flooding strategy: when
a node receives an unbind message, it checks to see if
it has the corresponding bound invalidation in its local
log; if so, it converts that invalidation to be unbound
and propagates the unbind message to all neighbors with
whom it is currently connected. If the node either has
not seen the corresponding invalidation or already has it
in the unbound state, it does nothing. Note that unbind
propagation is best-effort— if the connection topology
changes between when a write occurs and when it is un-
bound, some nodes may not see the unbind and continue
to propagate the invalidation in the bound state for longer
than necessary. But, because this situation should be rare
and hurts performance rather than correctness, we have
elected not to include a more heavy-weight mechanism
for reliably propagating unbind messages with the logs.
Conversely, integrating the propagation of bound invali-
dations with the log is a conscious choice. By integrat-
ing our mechanism for ensuring reliability to the log ex-
change, we tie reliability to the causal order guarantees:
any write in a node’s log depends only on (a) explicitly
unbound writes (judged safe by some higher level policy)
or (b) bound writes in that node’s log (which are as good
as safe due to fate sharing).

To help the reliability algorithm decide when it is
safe to unbind a write, each node provides an interface
sync(replyTo, acceptStamp), which is an asynchronous
request that asks the node to send a message toreplyTo
after the node has stored the invalidation corresponding
to acceptStampin its persistent redo log. A policy con-
troller can implement, for example, ak-copy policy by is-
suing sync requests to various nodes when a write occurs
and then, when it receivesk replies, issuing an unbind
request to the local node (which will flood the unbind to
its neighbors).

Analysis. Separating invalidations from bodies retains
the topology independence and causal consistency of log
exchange protocols, but it allows arbitrary policies to
control the replication of bodies. Note, however, that all
nodes must still see all invalidations.

2.3 Imprecise invalidations
Imprecise invalidations allow a node to omit details from
logs that it sends while still allowing receivers to enforce
causal consistency. Imprecise invalidations work by (1)
replacing invalidation messages with aconsevative sum-
mary of them and (2) maintaining per-node data struc-
tures that track which objects are safe to access.

4

Invalidation log exchange. An imprecise invalidation
contains three fields:start andend, which are arrays of
accept stamps, andtarget, which describes the objects
affected by the invalidation. For every nodeα that has
one or more writes summarized by an imprecise inval-
idation, startα’s value is at most the earliest summa-
rized accept stamp andendα’s value is at least the lat-
est summarized accept stamp.Targetmay encode cov-
ered objects in any manner, as long as it is conserva-
tive and allows the receiver of the invalidation to identify
all objects affected by the summarized writes. Our im-
plementation encodestarget as a list of directory paths
where each path represents either an individual file or di-
rectory (e.g., /foo/bar) or a subtree (e.g., /flim/flam/*).
Note that a precise invalidation is a special case of an
imprecise invalidation with a single writer,start = end,
and a single object as atarget. We use the termgen-
eral invalidation to refer to either a precise or impre-
cise invalidation. A system forms an imprecise invali-
dation using the union operation on two general invali-
dations:giU = gi1 ∪ gi2 hasstart andendarrays with
entries for every server in eithergi1 or gi2’s start and
end with giU .startα = min(gi1.startα, gi2.startα),
giU .endα = max(gi1.endα, gi2.endα), andgiU .target
encompassing all objects encompassed bygi1 andgi2’s
targets.

Algorithm 1 summarizes how a node processes a
streams of general invalidations{startV V , gi1, gi2,
. . .} against one interest set of data that it wishes to be
able to access locally. For each such interest setIS, the
node maintains the interest set membership, the last pre-
cise version vectorlpV V that represents the highest ver-
sion vector for which all precise invalidations have been
applied toIS, and the current version vectorcV V that
represents the highest version vector for which a general
invalidation has been applied toIS.

We rely on the prefix property for reasoning about
messages in a stream. In particular, a stream that be-
gins with startVVensures that the subsequent invalida-
tions represent a causally consistent sequence with no
omissions starting fromstartVV. To support incremen-
tal application, our algorithm updates a per-stream, per-
interest setstartVV after processing each invalidation.
(For simplicity the pseudo-code shows a single interest
set version of our protocol; see an extended technical re-
port for the full version [8].

General invalidations are applied to an interest set in
sorted order based on their timestamps, but they are han-
dled differently depending on whether they overlap an in-
terest set or not. If an invalidation overlaps an interest set,
it is applied at its start time as it arrives from the stream,
but if it does not overlap, it is buffered until its end time is
guaranteed not to be causally dependent on any remain-
ing start time in the stream, which happens when its end

Algorithm 1 ProcessInvalStreams = {startV V , gi1,
gi2, . . .} for interest setIS

startV V = s.next()
if ∃α | startV Vα > currentV Vα then

return; //Reject stream that does not preserve prefix property
pending = new Set()
gi = s.next()
while (gi 6= null) do
∀α : nextStartV Vα = MAX(startV Vα, gi.startα)
if !(∃p ∈ pending | (∀α : p.endα ≤ nextStartV Vα)) then

// Apply overlappinggi froms at start time
log.insert(gi, startV V)
if gi.target intersectsIS then

if gi.isPrecise() AND ∀α : lpV Vα ≥ startV Vα then
// If no gaps to this precise inval, update lpVV
∀α : lpV Vα =MAX (lpV Vα, gi.startα)

∀α : currentV Vα = MAX (currentV Vα, gi.endα)
startV V = nextStartV V

if gi.isPrecise() then
storegi.objId.update(gi.start, INV ALID)

pending.insert(gi)
gi = s.next()

else// Apply non-overlappingp frompending at end time
if !(p.target intersectsIS) then

if ∀α : lpV Vα ≥ gi.startα then
∀α : lpV Vα =MAX (lpV Vα, p.endV Vα)

∀α : currentV Vα =MAX (currentV Vα, p.endV Vα)
pending.remove(p)

time is at mostnextStartV V , thestartV V value that
will hold after the next invalidation is processed at its
start time.

At gi’s start time, we first insert it into the sorted log
of all invalidations. Then, if the invalidation overlapsIS,
we advancecurrentV V to the end time of the invalida-
tion (indicating that the data inIS must reflect invali-
dations up toendin order to be considered current). We
advancelpVV for the interest only if (a)startVVis at most
the currentlpVV for IS (i.e., there is no missing precise
invalidation beforegi) and (b) this general invalidation
is, in fact, a precise invalidation (i.e.,gi does not intro-
ducing a missing precise invalidation.) Finally, if the in-
validation overlaps the interest set, we advancestartVV
for the interest set; if the invalidation is precise, we up-
date the per object state in the same way as described in
Section 2.2.

An invalidation that does not overlap an interest set
could safely be ignored since it carries no invalidations
that could make the interest set imprecise. But, the very
fact that the invalidation does not intersect the interest set
is useful—it shows that there was a period of time over
which no invalidations (precise or imprecise) intersected
the interest set; this information can help disambiguate
other general invalidations that overlap the interest set
and this one in time. Atgi’s end time, if the invalidation
target does not overlapIS, and if startT ime is at most
IS’s lpVV, updatelpVV so that all elements are at least
as great asgi.end; in any event, advanceIS’s currentVV

5

to gi.end.

Log update. Simply insertinggi into the log in sorted
order is not sufficient because interpreting a general in-
validation is done in the context of the stream in which
it is received. In particular,gi is interpreted based on the
per-streamstartV V which indicates that no causally re-
quired invalidations are missing betweenstartV V and
gi.start. So, when we insertgi into the log, we first de-
compose it into per-writer general invalidations; we then
usegap filling and theintersectionoperation to encode
this “no missing invalidations” information.

Decomposinggi into per-writer general invalidations
giα is simple: for each serverα in gi.start, generategiα
with gi.startα, gi.endα, andgi.target.

For the gap filling operation, each per-writer log main-
tains the invarient that there is no gap between the end
time of an element and the start time of the next element.
When a node insertsgiα into its per-writer log forα at
startV Vα, if gi is newer than the newest element in the
log, it fills any gap betweengi and existing element by
inserting a new gap-filling invalidation with a start stamp
one larger than the highest existing end stamp, and end
stamp one smaller thangi’s start, and an empty target.

For the intersection operation, we maintain the invari-
ent that there is at most one invalidation that covers any
moment in time in a per-writer log. We intersect two
general invalidationsgi1 andgi2 by replacing them with
up to three general invalidations: the first covers the time
from the earlier start to the later start and targets the ob-
jects targeted by the earlier start; the second covers the
time from the later start to the earlier end and covers tar-
gets represented by the intersection ofgi1 andgi2’s tar-
gets; and the third covers the time from the earlier end to
the later end and covers the targets of the later end.

When we send a stream of invalidations to another
node, we discard gap-filling invalidations and we com-
bine per-writer invalidations into multi-writer invalida-
tions using the policy described in Section 3.1.

Demand reads. When a demand read occurs, it blocks
until the interest set it targets becomes precise. This
blocking ensures the safety property that reads always
observe a causally consistent view. In Section 2.4 we de-
scribe how a reader can relax these guarantees. As with
reads of invalidated objects, a system can use any policy
for selecting one or more nodes to which to connect in
order to retrieve the precise invalidations needed to make
an interest set precise.

Example. Figure 1 illustrates these mechanisms in ac-
tion. Nodeα writes objects a, b, and c; nodeβ cares
about object a and receives fromα precise invalidations
about a and imprecise invalidations about b and c. Node
γ cares about object c and receives fromα precise in-
validations about c and imprecise invalidations about a

and b. Finally, nodeδ cares about a and c and receives
from β precise invalidations about a (but imprecise inval-
idations about b and c due toβ’s imprecision) and from
γ precise invalidations about c (but imprecise invalida-
tions about a and b.) First,α sends a stream of invalida-
tions (precise for a and imprecise for b and c) toβ. As
illustrated in the figure, each invalidation advances the
per-invalidation-stream, per-interest-setstartV V value
as well as b’s per-interest-set last precise version vector
(lpV V) and current version vector (cV V). However, be-
cause the second invalidation (4, 6, bc) intersects interest
set (b,c), that message causes that interest set to become
imprecise and subsequent invalidations fail to advance
that interest set’slpV V . After processing all four inval-
idations in that stream,β is precise for interest set a, but
imprecise for interest set bc.γ’s behavior processing the
stream of precise invalidations for c and imprecise inval-
idations for a and b is similar.

Then, whenβ andγ send their log contents toδ, we
show the case whereγ processesβ’s first three invalida-
tions, thenγ’s four invalidations, and finallyβ’s fourth
invalidation. As the figure shows, after processing the
first three invalidations fromβ, δ is precise for a, but im-
precise for b and c. The next four messages (fromγ)
makeδ precise for c but imprecise for a and b. Finally,
the last message (fromβ) bringsδ to the state one would
desire: after seeing all precise invalidations for a and c,δ
is precise for both a and c despite the fact that these pre-
cise messages were mixed with some imprecise invalida-
tions for a, b, and c. Finally, one may verify that because
of theδ’s gap filling and intersection operations,δ’s log
contains sufficient information so that a nodeε that re-
ceivesδ’s log contents could get precise updates for a or
c.3 Conversely, note that ifδ were simply to interleave
the messages it received fromα andβ without gap fill-
ing and intersection and then send them toε, information
would be lost andε would be left imprecise for a, b, and
c.

Checkpoint recovery. The above protocol describes
the common case of streaming, incremental log ex-
change. However, nodes can garbage collect their logs,
so the system must handle the case when a nodeβ re-
quests data fromα, butα’s currentVVis newer thanβ’s
lpVV for a given interest set. The protocol handles this
case by doing a full state transfer for the interest set:α
sendsβ its lpVV andcVV for the interest set along with
theacceptstamp for each object in that interest set from
α’s per-object state.β updates itslpVV andcVV for the
interest set and, if theaccepttime it receives for an ob-

3And, in this case, b. Our current log maintanence algorithm ac-
tually extracts a bit more information from the stream of incoming re-
quests than our interest set status algorithm; we are not sure if there is
a clean way to extract this information during interest set maintenance
as well.

6

ject exceeds the locally storedaccepttime, it updates the
local accepttime for the object and marks the objectIN-
VALID. Note that checkpoint recovery can be done on a
per-interest set basis, but for any interest sets not updated,
currentVVmust be advanced to at least thecurrentVVof
the checkpoint.

Analysis. This algorithm retains topology indepen-
dence and causal consistency, but it also allows partial
replication of both bodies and invalidations. In particu-
lar, to maintain an interest set in the precise state requires
O(number of writes to the interest set) precise invalida-
tions plus one imprecise invalidation summarizing inval-
idations that do not intersect the interest set. In prac-
tice, systems may send more imprecise invalidations to
limit the delay in assembling and sending an invalidation
stream as described in Section 3.1.

2.4 Tunable consistency
The basic mechanisms above provide a solid substrate
over which it is straightforward to weaken the sys-
tem’s consistency guarantees (e.g., to improve perfor-
mance [24] or availability in the face of partitions [5])
or to strengthen the system’s consistency guarantees to
meet application semantic requirements.

Weakening consistency. By default, demand reads
block until the interest set they reference is precise and
they can ensure that the data they return represents a
causally-consistent view of the system’s state. We pro-
vide an interface that overrides this behavior by allowing
imprecise readsthat skip thelpVV = cVVcheck and re-
turn data as soon as it is valid regardless of whether the
interest set in which it resides is precise or imprecise.
Nodes that use this interface observecausally coherent
data—if a node reads a versionvj of an object and then
writes another versionvj+1 of the object, than once any
node reads versionvj+1 of the object, any subsequent
read will return versionvj+1 or a later version—but they
are no longer guaranteed to observe a causally consistent
view—if a node reads versionva of objecta and then
writes versionvb of objectb, a node that reads versionvb

of objectb using an imprecise read may still observe a
version of objecta older thanva.

The potential benefit of doing an imprecise read is
that a node can read an object from a currently-imprecise
interest set without communicating with other nodes to
make that interest set precise. Imprecise reads can there-
fore reduce bandwidth consumption, improve response
time, or improve availability. Note that even if a node
α executes one or more imprecise reads and then issues
some writes, the protocol ensures thatα’s log contains
sufficient imprecise invalidations to put all of its invali-
dations into a causally consistent order: even ifα sends

its log toβ, β can continue to provide causal consistency
across all objects.

Strengthening consistency. A library interface built
over the low-level mechanisms provided by the basic
PRACTI interface can strengthen consistency guaran-
tees. In particular, thesync()interface described above
allows the construction of a write() that blocks until
the update has propagated to a specified set of ma-
chines [21, 31]. Another option for strengthening con-
sistency that we plan to explore is layering TACT over
these basic mechanisms to provide tunable consistency
guarantees [42].

Conflict detection and resolution. The simple proto-
col described above provides incremental log exchange
and last-writer-wins conflict resolution with global even-
tual consistency in the case of concurrent writes. How-
ever, it is useful to not only resolve conflicts in a globally
consistent way but also to flag them and provide informa-
tion about conflicting writes to a more flexible manual
or programmatic conflict resolution procedure. As we
discuss in an extended technical report [8], we augment
the protocol described above by including hooks to detect
write-write conflicts (by adding aprevAcceptfield in all
invalidation messages and per-object store records), stor-
ing “losing” writes in a local (unshared) per-object con-
flict file, and providing utility functions to read and delete
losing writes from conflict files as part of a “compensat-
ing transaction” for application-specific conflict resolu-
tion. Causal consistency (as opposed to coherence) is
useful for conflict detection and resolution: our protocol
ensures that all nodes agree on the same set of conflicts
and “losing” writes.

The extended report also describes how to use the
PRACTI mechanisms with Bayou’s more powerful strat-
egy of associating application-specific conflict detection
and resolution functions with writes [33]. Our reasons for
a simpler approach are (1) to support incremental (rather
than batch) log exchange for improved performance and
(2) to avoid the need for acommitprotocol that can en-
sure that late-arriving writes (which can include detec-
tion/resolution “programs” that can arbitrarily disrupt the
current state) are placed after committed writes.

3 Implementation
Our PRACTI techniques cleanly separate mechanism
from policy in order to support a broader range of repli-
cation policies than made available by current techniques
that entangle policy choices with their mechanisms for
replication, consistency, or topology. Our implemen-
tation therefore seeks to serve as a “replication micro-
kernel” that provides basic low level mechanisms over
which higher-level services can be built.

7

6 6 6

8 8 8

12 12 12

startVV

{bc}, s

IS={bc}

lpVV cVV
0 0 0

2 2 2

6 2 6

8 2 8

12 2 12

stream

s

(2,2,a)

(8,8,a)

(10,12,bc)

(4,6,bc)

startVV

{c}, s

IS={c}

lpVV cVV
0 0 0

4 4 4

6 6 6

10 10 10

12 12 12

stream

s

(2,4,ab)

(8,10,ab)

(12,12,c)

(6,6,c)

startVV

{ab}, s

IS={ab}

lpVV cVV
0 0 0

4 0 4

6 0 6

10 0 10

12 0 12

Node Gamma

start=0

start=0

Node Beta

(0,1,−), (2,2,a), (3,3,−), (4,4,b), (5,5,−), (6,6,c), (7,7,−), (8,8,a), (9,9,−), (10,10,b), (11,11,−), (12,12,c)

Delta’s final per−writer log for alpha:

IS={a}

lpVV cVV

startVV

{a},s {a},s’

IS={b}

lpVV cVV

startVV

{b},s {b},s’

IS={c}

lpVV cVV

startVV

 4 8 8

 6 8 8

(2,4,ab)

{c},s {c},s’

0 0 0

 4 2 8

 6 2 8

 4 4 8

 6 6 8

 10 8 10
(8,10,ab)

 10 2 10 10 10 10

stream

0 0 0

2 2 2

6 6 6

0 0 0

2 2 2

6 2 6

0 0 0

2 2 2

6 2 6

12 12 12 12 2 12 12 12 12

start=0

 12 8 12 12 2 12 12 12 12

8 8 8 8 2 8 8 2 8

(10,12,bc)

(2,2,a)

(4,6,bc)

start=0

(8,8,a)

(12,12,c)

 s s’

Node Delta

write(2,2,a)

(6,6,c)

write(4,4,b)

write(6,6,c)

write(8,8,a)

write(10,10,b)

write(12,12,c)

0 0

2 2

4 4

6 6

8 8

10 10

12 12

IS={a,b,c}

lpVV cVV

Node Alpha

startVV

{a}, s

IS={a}

lpVV cVV
0 0 0

2 2 2

Fig. 1: Illustration of imprecise invalidation mechanisms insplit-join scenario. Nodesα, β, γ, andδ share objects a, b, and c.
At each node, we show the per-interest-set information (last precise version vectorlpV V and current version vectorcV V), the
per-invalidation-stream information (startV V and a series of generalized invalidations), and the per-interest-set per-invalidation-
stream information (startV V as it is updated as each generalized invalidation is applied.) For clarity, we show onlyα’s component
for all version vectors and omit the node ID (α) in accept stamps.

Local API

Controller
remote cores

Requests to
Requests from

remote cores

Local
StoreLog

PRACTI Core

Mgmt.Inform

Body Streams

Inval Streams

Sync Streams

Body Streams

Inval Streams

Sync Streams

(read(), write(), delete())

Fig. 2: High level architecture of PRACTI prototype.

The PRACTI mechanisms ensure safety. Our pro-
totype uses an asynchronous style of communica-
tion in which incoming messages or streams are self-
describing—the rules for processing each incoming mes-
sage are completely defined, and interpreting a message
does not require knowledge of what request triggered its
transmission. Because message handling rules are based
on the PRACTI algorithms, they ensure safety regardless
of the policy used for sending messages: any machine
can send any legal protocol message to any other ma-
chine.

Because the low-level mechanisms enforce safety in-
dependent of policy, higher level policies can focus on
liveness (including performance and availability con-
cerns.) Essentially, the policy layer’s job is to ensure that
the right nodes send useful data at the right time in order
to do such things as to satisfy a read miss, prefetch data
to improve performance, or provision a node’s local stor-
age so that it can make its data available while discon-
nected. Each node provides an interface for requesting
that the node send invalidations or bodies to other nodes,
but these requests can be regarded as hints: the loss of
messages or the introduction of extra messages can affect
system performance but not the correctness of responses
to application read and write requests.

Figure 2 illustrates the division of labor between
mechanism and policy in our system. A PRACTIcore
maintains local state in alog for reliability and commu-
nication and alocal store for random access. A core
receives and generates streams of general invalidations
(precise, imprecise, and bound invalidations), bodies
(demand replies and prefetched/pushed data), and sync
replies (to support unbind and consistency policies as de-
scribed in Sections 2.2 and 2.4.) The core also provides a
remote request interface that allows remotely-generated
requests to trigger outgoing streams or individual mes-
sages.

A controller’s purpose is to send requests asking other
nodes’ cores to trigger streams or messages. To aid this
task, the core informs its local controller of important
events (e.g., connection initiation/termination, local re-
quests, and message arrivals) To customize a replication
system to an environment, different controllers use dif-
ferent policies. For example, we implement a Static-
TopologyController that creates a static topology among
its nodes for propagating invalidations and bodies and for
satisfying demand requests, a BayouController that per-
manently leaves all invalidations in the bound state, and
a SDIMSController that uses the DHT-based Scalable In-
formation Management System [38] to track the state of
the distributed system.

3.1 Core implementation
The core implements procedures applying incoming re-
quests messages to its local state that ensure that the rules
described in Section 2 are enforced. A core’s local state
has two main parts: a log and a data store.

Log. A core’s log has two main purposes. First, it
acts as a replay log for reliability. Second, it maintains
causally-ordered lists of invalidations that serve as the
basis for communicaton with other nodes.

Our log implementation has two components. First,

8

it has a single on-disk append-only replay log in which
invalidation messages, local updates, and unbind mes-
sages are stored in the order they are received. Second,
it maintains an in-memory per-writer log of invalidations
and local updates sorted by accept stamp. Incoming mes-
sages are first appended to the on-disk replay log and
then, as described in Section 2.3, they are decomposed
into single-writer invalidations that are merged with the
single writer logs usinggap fillingandintersectionto en-
force the invarient that each per-writer log contains a gap-
free list of elements that do not overlap in time.

Data store. The data store maintains per-interest set
status, which tracks the last precise version vector (lpVV)
and current version vector (cVV) for each interest set as
described in Section 2.3. In our implementation, an inter-
est set is identified by a subdirectory name and includes
the path from the root to that subdirectory as well as all
enclosed subdirectories.

The data store also maintains per-object metadata and
body information. For each object in the system, one file
on the local disk holds the body of the object, with byte
i of the file corresponding to bytei of the object. A sec-
ond file holds the object’s consistency state: a series of
records with anoffsetandlengthidentifying a byterange,
acceptidentifying accept stamp of the most recent inval-
idation applied to the byterage,prevAcceptidentifying
the accept stamp of the previous write to the byterage
(for conflict detection as described in Section 2.4), and a
valid flag indicating whether the body file’s contents are
VALID or INVALID for this range. For simplicity, we
implement each object’s consistency state as a Java ob-
ject, manage an in-memory cache of these objects, and
serialize dirty objects to per-object disk files for check-
points.

Operation. Section 2 outlines how a core processes in-
coming invalidation and body messages as well as lo-
cal read requests. Local write and delete requests are
treated like incoming invalidation requests—they are first
applied to the log and then to the local store. Incoming
sync replies have no effect on the core’s state.

Each core has an interface to trigger outgoing streams
of invalidations. A request to start an invalidation stream
includes thedestinationnode ID to which to send the
data, astartVVversion vector indicating the desired start-
ing point, and a precise setP listing subdirectories for
which the receiver would prefer to receive precise invali-
dations if the sender has them available. A sender thread
has two tasks: First, it must draw requests from the per-
writer logs in a causally consistent order, and second it
should reduce network overhead by combining some in-
validations into imprecise invalidations and sending the
resulting stream of general invalidations in a causally
consistent order. It accomplishes the first task by initial-

izing sentVV = startVV, drawing from the per-writer logs
the element with the lowest accept stamp that exceeds
sentVV, and updatingsentVVto include the end time of
the element. Key to accomplishing the second task is the
following observation:

Given a causally consistent sequenceS of gen-
eral invalidationsS = (g0, g1, . . . , gn−1), se-
lect any two subsequencesS1 andS2 such that
g0 appears inS1, each element ofS appears
in eitherS1 or S2, and all elements inS1 and
S2 appear in the same relative order as inS.
Form an imprecise invalidationI that is the
union of all invalidations inS1 (as defined in
Section 2.3.) Then, the sequenceS′ = (I, S2)
represents a causally consistent sequence.

This property follows from the fact that if the imprecise
invalidationI intersects a receiver’s interest setIS, then
when it arrives, the receiver advancesIS.cV V to I.end
but does not advanceIS.lpV V ; conversely, ifI does
not intersectIS, then when it arrives, the receiver waits
until at leastI.end before advancing eitherIS.cV V or
IS.lpV V . In the either case, when processing each mes-
sagegi from S2, IS.lpV V is no higher than it would
have been ifgi were processed as part of the original se-
quenceS, andIS.cV V is at least as high, soIS is only
precise after processing messagegi underS2 if it would
have been precise after processing the message underS.

To save bandwidth while avoiding unnecessarily mak-
ing interest sets imprecise, a sender therefore buffers out-
going invalidations and aggregates ones that do not in-
tersectP. When an outgoing stream draws a sequence
S of invalidations out of the log, it adds eachgi to I if
gi does not intersect the precise setP and it appendsgi

to a sequence of pending invalidationsS2 otherwise. A
node sends and clearsI and thenS2 after one of two
timeouts occurs: eitherTprecise ms have elapsed since
the first element was placed in this instance ofS2 or
Timprecise ms have elapsed sinceI became non-empty.
TypicallyTimprecise > Tprecise since nodes may tolerate
longer delays for updates about information they don’t
care about. Note that our current prototype implements a
limited version of this logic that allowsTimprecise to be
set by the trigger request but that assumesTprecise == 0.

Generating outgoing body streams is similar but sim-
pler because the safety of the system does not depend on
the order of body messages or sync replies. When a node
receives a request for a body, the node uses data in its
local store to generate and send a body message with the
object ID, byte range, the range’s accept stamp, and as
much data beginning at the requested offset as is valid.
Note that if the local data is in the INVALID state, the
node’s reply would indicate a zero-length body, which

9

has no semantic effect at the receiver, but which will gen-
erate an event the receiver’s controller can use as a hint
that it should retry (perhaps to a different node); if the
data store does not have a record for that object/offset,
the node generates an impossibly low-numbered accept
stamp for its reply which has the same effect. For effi-
ciency, our prototype maintains a pool of TCP connec-
tions for body messages to amortize TCP setup costs and
to pipeline sends when multiple bodies are sent to a node.

A core also provides an interface to request that a
nodeα push bodies newer than some version vector to
another nodeβ for some specified object or subtree in
the object name space. In our implementationα allo-
cates a bounded-size priority queue which drains update
body messages toβ over a low-priority network connec-
tion [35], andα inserts into this priority queue a reference
to each new body matching the subtree using a per-object
priority supplied byα’s controller.

Recovery and garbage collection. In order to allow
trimming of update logs, nodes checkpoint their local
store state. A checkpoint comprises acurrentVVversion
vector that indicates the on-disk state reflects at least the
application of general invalidations up tocurrentVV, the
list of interest sets, a per interest setlpVV version vector
indicating the last time the interest set was precise, the
per-object metadata (current to at leastlpVV for each ob-
ject’s interest set), and the per-object body for at least any
bound invalidations that are reflected in the checkpoint
(a node’s controller is always free to direct the node to
discard any unbound body to limit space consumption.)
Once such a checkpoint is stored, the prefix of the log be-
fore currentVVmay be truncated, though in practice we
keep a longer prefix in the log to facilitate incremental
synchronization among nodes [29].

3.2 Controller implementation
Each core has a controller that initiates the communica-
tion that the core needs such as subscriptions to invalida-
tion streams, subscriptions to prefetch body streams, and
requests for bodies to satisfy demand read misses. Con-
trollers also issue maintenance directives to the local core
for issues like cache replacement and garbage collection.

The controller subsystem is defined by its interface.
Within this interface, we anticipate a wide range of dif-
ferent implementations providing different policies.

Interface and operation. Controllers use three inter-
faces to accomplish their work: a core calls a controller’s
inform interface to inform the controller of important
actions, a controller calls a remote core’sremote re-
questinterface to trigger sends, and a controller calls its
core’smanagementinterface for maintenance functions
like cache control. Additionally, a set of controllers im-

plementing a specific distributed policy may communi-
cate with one another using policy-specific interfaces.

A core uses its local controller’s inform interface to
inform the controller of events of interest. A core informs
it local controller of (1)stream connectioninitiation or
termination for invalidations or updates, (2) inval, sync,
and bodymessage arrivalevents, and (3)local events
like read hit, read miss, read imprecise (a read that blocks
accessing an imprecise interest set), and write.

Controllers can respond to inform events by sending
request messages to a remote core. For example, when
informed of a read miss, a controller uses some policy-
specific strategy to identify a node that can supply the
miss and sends a request to that node for the body. Then,
one of three things will happen: (1) the body arrives at
the core, unblocks the waiting read request, and causes
the core to inform its controller of the body arrive event,
(2) an empty body arrives at the core (signifying that the
sender does not have the desired data), the controller re-
ceives a body arrive event for the empty body, and the
controller sends another body read request, or (3) a time-
out event within the controller occurs and the controller
issues another body read request.

Finally, the core has a local management interface that
allows the controller to query the core to learn about in-
ternal state (e.g., the intererest set status, per-object state,
log status, and connection status) and to manage that lo-
cal state (e.g., shut down a connection, mark an object
as invalid and garbage collect its body storage, or begin
trackinglpVVandcVVfor a new interest set.)

SDIMS Controller To more concretely illustrate the
interactions between the controller and the core, we de-
scribe one of the controllers we have built. The SDIMS
controller uses the DHT-based SDIMS system [38] to
coordinate a distributed collection of controllers. Note
that the current SDIMS Controller is intended as a proof
of concept for the PRACTI mechanisms rather than as
a full-fledged replication system. Although we intend
to build complete replication system using SDIMS and
PRACTI, some desirable features are not yet imple-
mented as we detail below.

Our prototype uses SDIMS to maintain per-interest-
set spanning trees for both invalidation and update
streams. As Figure 3 illustrates, for a given interest
set IS, the node informs SDIMS of its interest inIS,
and SDIMS aggregates this information across locality-
aware and administrative-unit-aware trees, selecting an
interested node from each subtree to function as the sub-
tree’s root. A node then finds its parent using SDIMS
and creates invalidation (and optionally, body) streams
to and from its parent forIS. Note that some updates
to the interest set/foo/barare relevant to the interest set
/foo/bar/baz, so the root node of the spanning tree forIS

10

5

0 1 2 3 4 5 6 7

1 2 5 6

1 5

Fig. 3: Example invalidation/update spanning tree formed by
SDIMSController for an interest set (e.g., /foo/bar). The cir-
cles represent the virtual tree formed by SDIMS for interest set
/foo/bar, the solid nodes represent nodes interested in /foo/bar,
the numbers denote the ID of the node selected by SDIMS as
the spanning tree root for each SDIMS subtree, and the arrows
show the node-to-node connections made based on SDIMS’s
guidance.

selects as its parent any node in the spanning tree for the
shorterpath’ formed by deleting after the last “/” inIS’s
path. A controller maintains spanning tree connections
by retrying on communication failures and when SDIMS
notifies a node that its parent in in the spanning tree has
changed.

We use a similar approach for maintaining a dis-
tributed directory for satisfying local read misses. Each
node informs SDIMS of the valid byte ranges it caches
and queries SDIMS on misses to find a nearby copy of
data [30].

Note that SDIMS ensures only eventual consistency,
so a spanning tree parent or body supplier suggested by
SDIMS may not be the correct parent, may not have the
desired data, or may be unreachable. The first problem
is handled by using SDIMS’scontinuous probeinter-
face to notify a controller when its parent changes. A
controller handles stale values and timeouts by retrying
SDIMS queries with a flag toreaggregatestored values
from children in the distributed tree [38].

A complete version of an SDIMS-based distributed
file system would require several additional features.
First, we plan to use SDIMS to allow a node to locate
a nearby node whose interest set status for some inter-
est set is precise up to a specified point in time. This
information is useful for “filling holes” when a node re-
ceieves an imprecise invalidation for an interest set it
wishes to maintain as precise. Providing this information
will entail maintaining per-interest set, per-writer aggre-
gation functions so that an SDIMS subtree will identify
the node in the subtree with the highest accept stamp for
a given interest set and writer. Second, we plan to use
SDIMS to track the read and write rates to different ob-
jects. Prefetch algorithms use this information to prior-
itize replication [36, 37]. Third, a complete controller
should implement policies for local cache replacement
and log garbage collection.

Full replication

Partial replication Dirs

Partial replication Files

0

1

2

3

T
ot

al
 B

yt
es

 T
ra

ns
fe

rr
ed

 (M
B

)

Invalidate traffic

Data traffic

Fig. 4: Scalability of PRACTI

FR (Bayou)

PR Dirs

PR Files

0

5000000

10000000

T
ot

al
 B

yt
es

 T
ra

ns
fe

rr
ed

Bandwidth consumed

Invalidate traffic
Data traffic

Fig. 5: Scalability of PRACTI

4 Evaluation
In this section we evaluate the properties of our PRACTI
prototype. Our primary conclusions are (1) the separa-
tion of invalidations from updates can reduce bandwidth
consumption by an order of magnitude compared to full-
replication systems when workloads have locality of in-
terest, (2) the use of imprecise invalidations can provide
a further significant reduction in synchronization over-
heads in systems with large numbers of files when some
nodes only care about subsets of those files, (3) flexible
topologies can significantly reduce synchronization de-
lays, particularly in mobile or low-bandwidth environ-
ments, and (4) imprecise invalidations make the band-
width cost of providing consistency guarantees approach
the cost of providing weaker coherence guarantees.

We show in figure 4 and 5 the number of bytes trans-
ferred for each of our various replication strategies. We
run our experiments on two machines - a sender, which
writes to random files, and a receiver that reads random
files. At the sender, we generate 1000 files with 10000
bytes each, and perform 10000 random writes. The re-

11

Laptop/PDA/Phone All
BW BW

Replicate all 2521KB 35125KB
All-inval, interest-update 483KB 3612KB
Interest-update, interest-inval 443KB 2991KB
Hierarchy impossible 1588KB

Table 1: Bandwidth consumption for synchronization.

ceiver then reads 10 of those files. We assume that the
receiver replicates 10% of the directories in the system,
and for each directory, we assume that the receiver repli-
cates 10% of the files in that directory.

We evaluate the bandwidth consumed by PRACTI
under 3 configurations: (1) Full replication, where the
sender sends precise invalidates for all modified files (de-
notedFR) in the figures, (2)PR Dirs, where the sender
sends a precise invalidate message for each modified file
f if f lies in a directoryd that is replicated at the receiver
(even if only a subset ofd is replicated at the receiver)
and (3)PR Files, where the sender sends precise invali-
date messages for exactly only those files that are repli-
cated at the receiver.

In figure 4 we evaluate the bandwidth consumed
by PRACTI underconservativealgorithms, where the
sender does not push any files to the receiver but instead
forces the receiver to demand-fetch files as necessary. We
note that by restricting the sender to sending precise in-
validate messages for only those files that lie in replicated
directories, we successfully reduce bandwidth consump-
tion by a factor of 3.1. When we restrict the sender to
sending invalidate messages only for exactly those files
that lie in the receiver’s interest set, we successfully re-
duce bandwidth consumption by a factor of 8.1. Due to
the large difference between the number of files written at
the sender and the number of reads at the receiver, most
of the bandwidth (> 97.6%) is spent sending invalidate
messages. If transferring file data consumes more band-
width, the relative benefits yielded by sending imprecise
invalidates would be reduced.

Figure 5 shows the bandwidth consumed by PRACTI
when usingaggressivealgorithms, where for each modi-
fied file for which the sender sends an invalidate message
it also sends the modified data. The first line in the figure
represents the case where the sender pushes all updates
to the receiver, as is done byBayou[29]. However, we
note that by restricting the sender to sending only those
updates that occur in files that lie in replicated directo-
ries, the sender consumes a factor of 8.7 less bandwidth.
Furthermore, by restricting the sender to sending only
those updates that are to files replicated at the receiver,
the sender uses a factor of 20 less bandwidth compared
to the fully replicated configuration.

Table 4 shows the bandwidth costs of synchronizing
a collection of machines using various mechanisms and
policies. In this (emulated via NistNet) scenario, a user

in a hotel room has a laptop, PDA, and phone that share
a 1Mbit/s wireless connection, and the user also has an
account on a fixed server that the laptop can access via
a 50Kbit/s modem link (when it is available). We use
a synthetic workload in which 100K files each of 10KB
size exist at the server, with 10K of those files at the lap-
top, 1K at the PDA, and 100 at the phone. We assume
that since the last synchronization event, 1% of the files
at each location have changed. We compare synchroniza-
tion costs under two scenarios: (1) no connection to the
server is available and the laptop, PDA, and phone are
only able to communicate with one another and (2) a con-
nection to the server is available.

The table compares four protocols for synchronizing
the devices. First, the replicate-all approach replicates all
data and distributes all updates to all devices (similar to
Bayou). The second strategy separates invalidations and
updates, has the devices subscribe for all invalidations,
but has them only subscribe to (i.e., hoard [20]) updates
for the files in their interest sets. The third strategy re-
stricts subscriptions to the interest sets for both metadata
and data. And, the fourth strategy requires all communi-
cation to be between the server and a client as in tradi-
tional client-server systems; like the third approach, our
client-server toplogy system restricts subscriptions to the
interest set for both data and metadata.

As the table illustrates, separating invalidations from
update bodies and providing nodes with the flexabity to
only access the bodies they care about significantly re-
duces bandwidth requirements. In this example, the sec-
ond strategy uses about an order of magnitude less band-
width than the first. Also note that allowing nodes to
observe only subsets of invalidations provides significant
further reductions. In this example, where the laptop and
server share 10% of their data, the third strategy reduces
bandwidth by about 10%; if the universe of data were
larger than the 1GB used here and as if devices shared
smaller subsets of data, this number would increase.

Finally note the advantage of topology independence.
The centralized synchronization of metadata required by
some replication systems would force the user in this sce-
nario to dial in in order to synchronize her PDA and lap-
top, even if the two devices are in the same room, thou-
sands of miles away from the server; clearly such restric-
tions are burdensome.

Table 4 further illustrates this scenario. This table
shows the synchronization times for an unoptimized ver-
sion of our system, using NistNet to restrict bandwidths
to the values listed above. Compared to a replicate-all
strategy, partial replication reduces synchronization de-
lay by over a factor of five, and we would expect that gap
to widen as we tune our system. The optimized peer-to-
peer exchange of data also reduces time compared to a
hierarchical system, even when the network to the server

12

Laptop/PDA/Phone All
Sync Time Sync Time

Replicate all 26s >1200s(*)
All-inval, interest-update 7.5s 402.2s
Interest-update, interest-inval 7.4s 400.3s
Hierarchy impossible 427.4s

Table 2: Synchronization delays. (*) Due to time limitations,
we were unable to complete the replicate-all run over the slow
network link for this submission, and we cut the run short after
1200 seconds. Given these bandwidth constraints, the full run
must take at least 1873 seconds.

is available.
The following table illustrates the efficiencies that

come from imprecise invalidations as well as the bene-
fits of having the flexibility to choose which data to track
in detail:

Precise Imprecise
Subscribe 10000 349723 bytes 1769 bytes
Subscribe 1000 4546 bytes 3122 bytes

In this experiment, a node that had been imprecise for
a directory subtree containing 100,000 files references a
file in that subtree. To do so, the node must become pre-
cise for at least the file in question, but since the process
is likely to reference other data in that subtree, it may
also make the directories that include that file precise for
several levels of ancestors. We show two cases: where
the node makes the nearest 10,000 files (10% of the data)
precise and where the node makes the nearest 1,000 files
(1% of the data) precise. Note that the first case requires
about an order of magnitude more bandwidth than the
second approach due to imprecise invalidations’ ability
to stand in for large numbers of precise invalidations.
Note also that the additional overheads required to carry
imprecise invalidations (and thereby provide consistency,
not just coherence) are small compared to both the pre-
cise information and (not shown) compared to the body
data of the files being accessed. And finally note that the
imprecise invalidations reduce the metadata bandwidth
cost of synchronizing a subset of this volume by orders
of magnitude compared to synchronizing all items pre-
cisely.

The experiments described above demonstrate the key
properties of the PRACTI approach. Our evaluation ef-
forts are ongoing and we expect to complete additional
experiments in the immediate future.

5 Related work
Replication is fundamentally hard. For example Brewer
describes the CAP dilemma [5]: a replication system
that provides sequentialConsistency cannot simultane-
ously provide 100%Availability in a system that can
bePartitioned. Similarly, Lipton and Sandberg describe
fundamental limitations on performance for distributed

systems that provide sequential consistency [24]. As
a result, systemsmustmake compromises or optimize
for specific workloads. Unfortunately, these workload-
specific compromises are often reflected in system mech-
anisms, not just their policies.

In particular, state of the art mechanisms allow a sys-
tem designer to retain full flexibility along at most two of
the three dimensions of replication, consistency, or topol-
ogy policy.

A first set of systems such as Sprite [28], AFS [18],
and Coda [20] support arbitrary replication policies and
in principle could support a range of consistency poli-
cies [39] (though, in practice, such systems typically im-
plement a specific consistency policy), but these pro-
tocols fundamentally assume a topology policy that re-
stricts communications to hierarchical paths. Even when
client-server systems permit limited client-client commu-
nication for cooperative caching [2, 10, 12] serialization
of control messages at the server is vital for reasoning
about consistency [6].

A second set of systems such as Bayou [29],
TACT [41], and Ivy [27] use a log-propagation mecha-
nism that is capable of providing a range of consistency
guarantees [41] and that supports arbitrary topologies.
However, these mechanisms assume a replicate-all place-
ment policy that maintains a copy of all objects in a vol-
ume on each node that participates in the volume’s repli-
cation system.

A third set of systems such as Ficus [16] and Pan-
gaea [31] maintain synchronization information sepa-
rately for each object and support arbitrary topology poli-
cies and arbitrary replication policies. However, although
these systems can provide some coherence guarantees on
the order of reads and writes when an individual object is
considered, they provide limited consistency guarantees
regarding the ordering of reads and writes across objects.

6 Conclusion
In this paper, we present the first PRACTI (Partial Repli-
cation, Arbitrary Consistency, and Topology Indepen-
dence) mechanism for replication in large scale systems.
These new mechanisms allow construction of systems
that replicate or cache any data on any node, that pro-
vide a broad range of consistency and coherence guaran-
tees, and that allow any node to communicate with any
other node at any time. Our evaluation of our prototype
suggests thatby disentangling mechanism from policy,
PRACTI replication enables better trade-offs for system
designers than possible with existing mechanisms.By
cleanly separating mechanism from policy, we speculate
that PRACTI may serve as the basis for aunified repli-
cation architecturethat simplifies the design and deploy-
ment of large-scale replication systems.

13

References
[1] Tivoli data exchange data sheet.http://www.tivoli.

com/products/documents/datasheets/data_
exchange_ds.pd%f , 2002.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and
R. Wang. Serverless Network File Systems.ACM Trans. on Com-
puter Systems, 14(1):41–79, February 1996.

[3] Bent and Voelker. Whole page performance. InWorkshop on Web
Caching and Content Distribution, September 2002.

[4] M. Blaze and R. Alonso. Dynamic Hierarchical Caching in
Large-Scale Distributed File Systems. InProceedings of the
12th International Conference on Distributed Computing Sys-
tems, pages 521–528, June 1992.

[5] E. Brewer. Lessons from giant-scale services.IEEE Internet
Computing, July/August 2001.

[6] S. Chandra, M. Dahlin, B. Richards, R. Wang, T. Anderson, and
J. Larus. Experience with a Language for Writing Coherence Pro-
tocols. InUSENIX Conference on Domain-Specific Languages,
October 1997.

[7] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end
WAN service availability.ACM/IEEE Transactions on Network-
ing, 11(2), April 2003.

[8] M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yala-
gandula, and J. Zheng. PRACTI replication for large-scale
systems. http://www.cs.utexas.edu/users/dahlin/papers/2004-
PRACTI-osdi-submission-extended.pdf, May 2004.

[9] M. Dahlin, C. Mather, R. Wang, T. Anderson, and D. Patterson.
A Quantitative Analysis of Cache Policies for Scalable Network
File Systems. InProc. SIGMETRICS, pages 150–160, May 1994.

[10] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative
Caching: Using Remote Client Memory to Improve File System
Performance. InProc. OSDI, pages 267–280, November 1994.

[11] B. Duska, D. Marwood, and M. Feeley. The Measured Access
Characteristics of World-Wide-Web Client Proxy Caches. InProc
USITS, December 1997.

[12] M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and
C. Thekkath. Implementing Global Memory Management in a
Workstation Cluster. InProc. SOSP, pages 201–212, December
1995.

[13] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Appli-
cation specific data replication for edge services. InInternational
World Wide Web Conference, May 2003.

[14] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. InProc.
SOSP, pages 202–210, 1989.

[15] J. Griffioen and R. Appleton. Reducing File System Latency
Using A Predictive Approach. InUSENIX Summer Conf., June
1994.

[16] R. Guy, J. Heidemann, W. Mak, T. Page, Gerald J. Popek, and
D. Rothmeier. Implementation of the Ficus Replicated File Sys-
tem. InUSENIX Summer Conf., pages 63–71, June 1990.

[17] J. Gwertzman and M. Seltzer. The case for geographical push-
caching. InHOTOS95, pages 51–55, May 1995.

[18] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West. Scale and Performance in a Dis-
tributed File System.ACM Trans. on Computer Systems, 6(1):51–
81, February 1988.

[19] P. Hutto and M. Ahamad. Slow memory: Weakening consistency
to enhance concurrency in distributed shared memories. InProc.
ICDCS, pages 302–311, 1990.

[20] J. Kistler and M. Satyanarayanan. Disconnected Operation in the
Coda File System.ACM Trans. on Computer Systems, 10(1):3–
25, February 1992.

[21] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replication.ACM Trans. on Computer Sys-
tems, 10(4):360–391, 1992.

[22] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system.Comm. of the ACM, 21(7), July 1978.

[23] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs.IEEE Transactions on
Computers, C-28(9):690–691, September 1979.

[24] R. Lipton and J. Sandberg. PRAM: A scalable shared memory.
Technical Report CS-TR-180-88, Princeton, 1988.

[25] P. Maniatis, M. Roussopoulos, TJ Giuli, D. Rosenthal, M. Baker,
and Y. Muliadi. Preserving peer replicas by rate-limited sampled
voting. InProc. SOSP, October 2003.

[26] D. Muntz and P. Honeyman. Multi-level Caching in Distributed
File Systems or Your cache ain’t nuthin’ but trash. InUSENIX
Winter Conf., pages 305–313, January 1992.

[27] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
read/write peer-to-peer file system. InProc. OSDI, December
2002.

[28] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite
Network File System.ACM Trans. on Computer Systems, 6(1),
February 1988.

[29] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers.
Flexible Update Propagation for Weakly Consistent Replication.
In Proc. SOSP, October 1997.

[30] G. Plaxton, R. Rajaram, and A. Richa. Accessing nearby copies
of replicated objects in a distributed environment. InProceedings
of the Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 311–320, June 1997.

[31] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam.
Taming aggressive replication in the pangaea wide-area file sys-
tem. InProc. OSDI, December 2002.

[32] P. Sarkar and J. Hartman. Efficient Cooperative Caching using
Hints. InProc. OSDI, pages 35–46, October 1996.

[33] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and
C. Hauser. Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. InProc. SOSP, pages 172–
183, December 1995.

[34] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations
for Distributed Caching on the Internet. InProc. ICDCS, May
1999.

[35] A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice: A
mechanism for background transfers. InOSDI02, December
2002.

[36] A. Venkataramani, P. Weidmann, and M. Dahlin. Bandwidth con-
strained placement in a wan. InProceedings of the Twentieth
Symposium on the Principles of Distributed Computing, August
2001.

[37] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and
M. Dahlin. Potential costs and benefits of long-term prefetch-
ing for content-distribution.Elsevier Computer Communications,
25(4):367–375, March 2002.

[38] P. Yalagandula and M. Dahlin. A scalable distributed informa-
tion management system. InACM SIGCOMM 2004 Conference,
August 2004.

[39] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering web
cache consistency.ACM Transactions on Internet Technologies,
2(3):224–259, 2002.

[40] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache Con-
sistency in a WAN. InProc USITS, October 1999.

[41] H. Yu and A. Vahdat. The costs and limits of availability for
replicated services. InProc. SOSP, 2001.

[42] H. Yu and A. Vahdat. Design and evaluation of a conit-based con-
tinuous consistency model for replicated services.ACM Trans. on
Computer Systems, 20(3), August 2002.

14

