
Copyright

by

Fei Xie

2004

The Dissertation Committee for Fei Xie

certifies that this is the approved version of the following dissertation:

Integration of Model Checking into Software

Development Processes

Committee:

James C. Browne, Supervisor

E. Allen Emerson

Robert P. Kurshan

Aloysius K. Mok

Dewayne E. Perry

Integration of Model Checking into Software

Development Processes

by

Fei Xie, M.S., B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2004

To my parents, Shengguang and Qingying

to my brothers, Hang and Xiang

to my wife, Huaiyu

Acknowledgments

During my dissertation research, many people have offered their generous help.

Without their help, I could never finish this dissertation. I am sincerely grateful to

all of them.

My advisor, Prof. James C. Browne, has been the most important person

to my dissertation research. He has offered me all the guidance and help that I

could ever ask for and more. Although he leads a very busy life, he has always

reserved three hours per week for our research meeting. He has always been patient

listening to all the wild ideas that I came up with. His broad knowledge has guided

my research through many challenges and difficulties. When I was frustrated with

my research, he has always encouraged me. He has not only helped me become a

better researcher, but also made me a better person. He has taught me the courtesy,

integrity, and responsibility in research and other aspects of life.

Dr. Robert P. Kurshan hosted me during my three summer internships at

Bell Labs. These internships laid down the foundation of my dissertation research.

Bob has always been very generous with his time, knowledge, and ideas. I could

stop by his office at any time to ask questions and he has always been patient and

given me his best answers. When I was back to school, he has always helped me with

v

my research through email and phone. Whenever I asked him a research question,

I have always gotten his prompt reply.

My dissertation committee members, Prof. James C. Browne, Prof. E. Allen

Emerson, Dr. Robert P. Kurshan, Prof. Aloysius K. Mok, and Prof. Dewayne E.

Perry, have made invaluable contributions to my dissertation. They offered their

perspectives to my research, gave feedbacks to my papers, and listened to and

commented on my rehearsal talks.

Prof. Stephen W. Keckler and Prof. C. Greg Plaxton were my mentors in the

first year of my Ph.D. study. Steve gave me an initial education on what computer

science research is about. Greg taught me the essentials for writing research papers.

They continued to offer me advice and help throughout my Ph.D. study.

Dr. Vladimir Levin worked with me during my three summers at Bell Labs

and one summer at Microsoft. Since my first internship at Bell Labs, we have been

working together remotely. He has been very generous with his ideas and knowledge.

His answers to my questions have always been insightful and comprehensive.

My life as a graduate student has been made easy by the staff members of the

Department of Computer Sciences. In particular, Nancy Macmahon, the secretary

to Prof. Browne, has spent a lot of time proof-reading my papers, arranging my

conference travels, and most importantly making sure that I have proper financial

support. Gloria Ramirez and Katherine Utz, the graduate coordinators, have walked

me through the whole process of Ph.D. study, from admission to graduation. They

have made all the logistics so easy.

The six years of my Ph.D. Study has been enriched by the interactions with

my fellow graduate students, especially, the fellow advisees of Prof. Browne: Kevin

vi

Kane, Nasim Mahmood, and Natasha Sharygina. Although our research topics

were quite different, they have always been willing to help whenever possible. I

have benefited significantly from interactions with this outstanding group of people.

This dissertation is not possible without the love, support, and encourage-

ment from my parents Shengguang Xie and Qingying Wang, my brothers Hang Xie

and Xiang Xie, and last, certainly, not least, my lovely wife Huaiyu Liu. Huaiyu is

the source of my happiness, strength, and energy. She has always been there for me

with her love, care, support, and encouragement while she was also working on her

own Ph.D. dissertation diligently.

Fei Xie

The University of Texas at Austin

August 2004

vii

Integration of Model Checking into Software

Development Processes

Publication No.

Fei Xie, Ph.D.

The University of Texas at Austin, 2004

Supervisor: James C. Browne

Testing has been the dominant method for validation of software systems. As

software systems become complex, conventional testing methods have become in-

adequate. Model checking is a powerful formal verification method. It supports

systematic exploration of all states or execution paths of the system being verified.

There are two major challenges in practical and scalable application of model check-

ing to software systems: (1) the applicability of model checking to software systems

and (2) the intrinsic complexity of model checking.

In this dissertation, we have developed a comprehensive approach to integra-

tion of model checking into two emerging software development processes: Model-

Driven Development (MDD) and Component-Based Development (CBD), and a

combination of MDD and CBD. This approach addresses the two major challenges

under the following framework: (1) bridging applicability gaps through automatic

translation of software representations to directly model-checkable formal represen-

viii

tations, (2) seamless integration of state space reduction algorithms in the transla-

tion through static analysis, and (3) scaling model checking capability and achiev-

ing state space reduction by systematically exploring compositional structures of

software systems. We have integrated model checking into MDD by applying ma-

ture model checking techniques to industrial design-level software representations

through automatic translation of these representations to the input formal repre-

sentations of model checkers. We have developed a translation-based approach to

compositional reasoning of software systems, which simplifies the proof, implementa-

tion, and application of compositional reasoning rules at the software system level by

reusing the proof and implementation of existing compositional reasoning rules for

directly model-checkable formal representations. We have developed an integrated

state space reduction framework which systematically conducts a top-down decom-

position of a large and complex software system into directly model-checkable com-

ponents by exploring domain-specific knowledge. We have designed, implemented,

and applied a bottom-up approach to model checking of component-based software

systems, which composes verified systems from verified components and integrates

model checking into CBD. We have further scaled model checking of component-

based systems by exploring the synergy between MDD and CBD, i.e., specifying

components in executable design languages, and realizing the bottom-up approach

based on model checking of software designs through translation.

ix

Contents

Acknowledgments v

Abstract viii

List of Tables xv

List of Figures xvi

Chapter 1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions and Impacts of This Dissertation 3

1.2.1 Translating Software Designs for Model Checking 4

1.2.2 Translation-Based Compositional Reasoning 6

1.2.3 Integrated State Space Reduction Framework 7

1.2.4 Verified Systems by Composition from Verified Components . 9

1.3 Dissertation Outline . 10

Chapter 2 Background 11

2.1 Model-Driven Development (MDD) 11

x

2.2 Component-Based Development (CBD) 15

2.3 Combination of MDD and CBD . 18

2.4 Model Checking . 19

Chapter 3 Model Checking Software Designs through Translation 23

3.1 Motivation and Overview . 23

3.2 Translator Architecture . 27

3.2.1 A General Architecture for Translators 27

3.2.2 Common Abstraction Representation (CAR) 28

3.3 Semantics Translation from Software Language to Formal Language 31

3.3.1 Selecting Target Formal Language 31

3.3.2 Subsetting Software Language 33

3.3.3 Mapping Source Software Language to CAR 34

3.3.4 Simulating Source Semantics with Target Semantics 34

3.4 Property Specification and Translation 36

3.4.1 Software Level Property Specification 37

3.4.2 Property Translation . 38

3.4.3 Automatic Generation of Properties 38

3.4.4 Translation Support for Compositional Reasoning 39

3.5 Transformations for State Space Reduction 40

3.5.1 Model Annotation Languages 40

3.5.2 Transition Compression . 41

3.5.3 Static Partial Order Reduction (SPOR) 42

3.5.4 Predicate Abstraction . 43

3.6 Translator Validation and Evolution 44

xi

3.6.1 Translator Validation . 44

3.6.2 Translator Evolution . 45

3.7 ObjectCheck Toolkit . 46

3.8 Case Studies Using ObjectCheck Toolkit 47

3.9 Related Work . 48

3.10 Summary . 50

Chapter 4 Translation-Based Compositional Reasoning 51

4.1 Motivation and Overview . 51

4.2 Preliminaries . 54

4.2.1 I/O-automaton Semantics . 54

4.2.2 ω-automaton Semantics . 56

4.3 Realization of TBCR for AIM Semantics 58

4.3.1 Informal Description of AIM Semantics 58

4.3.2 Formalization of AIM Semantics 58

4.3.3 Establishment of Compositional Reasoning Rules 61

4.3.4 Proof via Semantics Translation 62

4.3.5 Implementation and Application via Model Translation . . . 67

4.4 Summary . 69

Chapter 5 Integrated State Space Reduction Framework 72

5.1 Motivation and Overview . 72

5.2 Integrated State Space Reduction . 75

5.2.1 General Framework . 75

5.2.2 Major State Space Reduction Algorithms 77

xii

5.2.3 Interactions among Reduction Algorithms 81

5.2.4 Instantiation of General Framework for Application Domains 83

5.3 Automation of Integrated State Space Reduction 84

5.3.1 Extension to xUML-to-S/R Translator 84

5.3.2 Reduction Manager . 84

5.4 Framework Instantiation on Transaction Systems 85

5.4.1 Common Patterns of Transaction Systems 86

5.4.2 Domain-Specific Reduction Algorithm 87

5.4.3 Case Study: An Online Ticket Sale System 87

5.5 Evaluation of Integrated State Space Reduction 93

5.5.1 Evaluation of User-Driven Reduction Algorithms 93

5.5.2 Evaluation of SPOR, SMC, and Their Combined Application 95

5.6 Summary . 95

Chapter 6 Verified Systems by Composition from Verified Compo-

nents 97

6.1 Motivation and Overview . 97

6.2 Component Model for Verification 101

6.2.1 General Component Model 101

6.2.2 Instantiation of General Component Model on AIM Compu-

tation Model . 102

6.3 Verification of Components . 105

6.3.1 Background: Verification of a Closed AIM System 105

6.3.2 Formulation of Component Properties 106

6.3.3 Formulation of Environment Assumptions 107

xiii

6.3.4 Verification of Primitive Components 108

6.3.5 Verification of Composed Components 109

6.4 Case Study: Verification of TinyOS Components 115

6.4.1 Sensor Component . 116

6.4.2 Network Component . 118

6.4.3 Sensor-to-Network Component 119

6.4.4 Verification via Abstraction Refinement 122

6.5 Analysis of Case Study . 124

6.5.1 Detection of Coordination Error 124

6.5.2 Model Checking Complexity Reduction 125

6.6 Related Work . 126

6.7 Summary . 128

Chapter 7 Conclusions and Future Work 129

7.1 Summary of Contributions . 130

7.2 Future Research Directions . 131

7.2.1 Scalable Verification of Component-Based Systems 132

7.2.2 Software Security Assurance via Formal Verification 132

7.2.3 Domain Knowledge Driven State Space Reduction 133

7.2.4 Hardware/Software Co-Verification 133

Bibliography 135

Vita 146

xiv

List of Tables

5.1 Time and memory usage of subtasks in verifying P0 94

5.2 Model checking memory and time usage comparison 95

6.1 Verification complexity comparison 126

xv

List of Figures

2.1 A MDD process using an executable PIM specification language . . 13

3.1 Translator architecture . 27

3.2 ObjectCheck architecture . 47

4.1 xUML-to-S/R translation implements the translation from AIM to

ω-automata . 68

5.1 Reduction hierarchy of general framework 76

5.2 Recursive and interative model checking process of general framework 78

5.3 Domain specific reduction algorithm for transaction systems 88

5.4 Message sequence diagram of ticketing transaction 89

5.5 Original property and all intermediate sub-properties 91

5.6 Decomposition relations among sub-models involved in reduction . . 92

5.7 Reduction tree for verifying P0 on online ticket sale system 93

6.1 The “enabled” function . 110

6.2 The “enable” procedure . 114

6.3 Sensor component . 116

xvi

6.4 Properties of Sensor component . 117

6.5 Network component . 118

6.6 Properties of Network component . 119

6.7 Sensor-to-Network component . 120

6.8 Properties of Sensor-to-Network component 121

6.9 Properties included in abstraction 122

xvii

Chapter 1

Introduction

1.1 Problem Statement

Software is pervasive, from power plants to aircrafts and to automobiles. Our every-

day life depends on these artifacts. Therefore, we depend on the software systems

inside these artifacts. Because of this dependency, software systems must be safe,

secure, and reliable. To improve the safety, security, and reliability of software

systems, these systems must be validated. The most commonly used method for

software validation in the software industry is testing. However, conventional testing

methods have been overwhelmed by the increasing complexity of software systems.

Conventional testing methods suffer from the following problems:

• Test case coverage. For a complex software system, it is very difficult, if

not impossible, to generate all the necessary test cases to cover all possible

states or execution paths in the system.

1

• Insufficient automation support. There is insufficient tool support for

automation of traditional testing methods. For instance, testing environments

and test cases for software systems are still primarily generated manually.

• Difficulties with concurrency. Software systems are becoming increasingly

concurrent, which makes testing even harder. For instance, reproducing a spe-

cific execution path of a complex concurrent software system is often difficult.

Therefore, we need advanced validation techniques for software systems.

Model checking [15, 57] is one of such techniques. Model checking is a formal

verification method. It is able to determine the validity of a temporal property for

all possible states or execution paths in a software system to which it is applica-

ble, given enough memory and execution time. It enjoys substantial automation

support. It has been quite successful for hardware verification.

Model checking requires a model of a software system, which can be the

design model, the source code, or other executable specifications of the system. It

also requires a temporal property to be checked on the system. A sample temporal

property is that a buffer, BUF, in the system should never overflow. (To be input by

a model checker, this property must be specified in a formal property specification

language such as a temporal logic.) A model checker inputs the model and the

property, and conducts an exhaustive and intelligent search over the state space of

the system to check whether the property holds in every state or execution path of

the system. If so, the model checker reports that the property holds; otherwise, it

reports a state or execution path in which the property is violated.

There are two major challenges in practical and scalable application of model

checking to software systems. The first challenge is the applicability of model check-

2

ing. The input formal representations of model checkers and the widely used soft-

ware representations are often significantly different. In addition, software systems

often have infinite state spaces while model checkers are often restricted to finite

state systems. The second challenge is the intrinsic complexity of model checking.

The number of possible states and execution paths in a real-world software system

can be extremely large, which makes naive application of model checking to such a

system intractable and requires state space reduction.

The goal of this dissertation research is to seamlessly integrate model check-

ing into two emerging software development processes: Model-Driven Development

(MDD) [47], Component-Based Development (CBD) [61], and a combination of

MDD and CBD. The central problem to be addressed in this research is how to

overcome the two major challenges, namely, the applicability and intrinsic complex-

ity of model checking.

1.2 Contributions and Impacts of This Dissertation

We have developed a comprehensive approach to integration of model checking into

MDD, CBD, and their combination. This approach addresses the two major chal-

lenges under the following framework: (1) bridging applicability gaps through au-

tomatic translation of software representations to directly model-checkable formal

representations, (2) seamless integration of state space reduction algorithms in the

translation through static analysis, and (3) scaling model checking capability and

achieving state space reduction by systematically exploring compositional structures

of software systems. We have integrated model checking into MDD by applying ma-

ture model checking techniques to industrial design-level software representations

3

through automatic translation of these representations to the input formal repre-

sentations of model checkers [68, 69, 70]. In the translation, we have applied many

state space reduction algorithms to software representations under an integrated

model and property translation framework [70] in which the translation of a model

depends on the property to be checked and the state space reduction algorithms

to be applied. We have developed a translation-based approach [67] to composi-

tional reasoning [53, 1, 3, 46, 4, 19] of software systems, which simplifies the proof,

implementation, and application of compositional reasoning rules at the software

system level by reusing the proof and implementation of existing compositional

reasoning rules for directly model-checkable formal representations. We have de-

veloped an integrated state space reduction framework [65], which systematically

conducts a top-down decomposition of a large and complex software system into

directly model-checkable pieces by exploring domain-specific knowledge. We have

designed, implemented, and applied a bottom-up approach [66] to model checking of

component-based software systems, which composes verified systems from verified

components and integrates model checking into CBD. We have further scaled model

checking of component-based systems by exploring the synergy between MDD and

CBD, i.e., specifying components in executable design languages and realizing the

bottom-up approach based on model checking software designs through translation.

1.2.1 Translating Software Designs for Model Checking

MDD is becoming widely used, especially in the domain of embedded systems, for

instance, avionics flight control systems. In MDD, executable design-level models

of a software system are constructed and implementations of the system are com-

4

piled from these models based on predefined templates. Executable design-level

models are the foundation of MDD, and they also contribute to overcoming the

two major challenges in software model checking. These models are executable,

therefore, are amenable to automatic translation for model checking. These models

are on design level, therefore, are more abstract and have smaller state spaces than

implementation-level representations of software systems.

We have developed the ObjectCheck toolkit [69] which provides fully auto-

matic model checking support for Executable UML (xUML) [47], an executable

design-level software specification language, based on translation. A design model

in xUML and a property to be checked are translated into S/R [28], the input for-

mal language of the COSPAN [28] model checker, and the resulting S/R model and

property are model checked by COSPAN. ObjectCheck has been applied to design

models of real-world software systems: a NASA robot controller [36], a distributed

transaction system [64], and the UC Berkeley TinyOS runtime system for networked

sensors [30]. In the case study on the NASA robot controller, ObjectCheck success-

fully checked 22 properties on the robot controller, including both safety and liveness

properties, and revealed 6 serious logical errors that had not been detected by con-

ventional testing [60].

In developing the ObjectCheck toolkit, we have designed and developed an

integrated model and property translation framework, which addresses major is-

sues in translator construction: translator architecture, property specification and

translation, semantics mapping from software languages to formal languages, and

transformations for state space reduction. The framework was motivated by the ob-

servation that model checking of a property on a software system only requires that

5

the behaviors of the system, which are related to the property, be preserved in the

resulting formal model. Under this framework, the artifact to be translated consists

of a model of a software system and a property to be checked. Many state space

reduction algorithms, such as static partial order reduction [39] and transition com-

pression [40], are applied in the translation to reduce the state space of the model

with respect to the property. This framework provides a unified view for applica-

tion of various state space reduction algorithms in translation. These algorithms

basically project the software system to a formal model with a minimal state space,

with respect to the property. This framework may benefit the development of the

translators from other software specification languages to directly model-checkable

formal languages.

1.2.2 Translation-Based Compositional Reasoning

One of the most powerful state space reduction algorithms is compositional reasoning

where model checking a property on a system is accomplished by decomposing the

system into components, checking component properties locally on the components,

and deriving the property of the system from the component properties. Application

of compositional reasoning to software systems requires establishing a compositional

reasoning rule in the semantics of these systems, proving the correctness of the

rule, and implementing the rule. Directly proving the correctness of compositional

reasoning rules for software systems is often difficult since software specification

languages are complex in syntax and semantics and these languages often have

varying operational semantics.

We have developed Translation-Based Compositional Reasoning (TBCR) [67],

6

an approach to application of compositional reasoning in the context of model check-

ing software systems through translation. In this approach, given a translation from

a software semantics to a directly model-checkable formal semantics, a compositional

reasoning rule is established in the software semantics and mapped to an equiva-

lent rule in the formal semantics based on the translation. The correctness proof of

the compositional reasoning rule in the software semantics is established based on

this mapping and the correctness proof of the equivalent rule in the formal seman-

tics. The compositional reasoning rule in the software semantics is implemented and

applied based on the translation from the software semantics to the formal seman-

tics and through reusing the implementation of the equivalent rule in the formal

semantics. We have realized TBCR for a commonly used software semantics, the

Asynchronous Interleaving Message-passing (AIM) semantics, and applied it in the

integrated state space reduction framework and in composition of verified systems

from verified components. Proof, implementation, and application of compositional

reasoning rules for the AIM semantics were found to be greatly simplified.

1.2.3 Integrated State Space Reduction Framework

We have developed an integrated state space reduction framework [65] for model

checking executable software system designs. The essence of this framework is sys-

tematic decomposition and reduction of a large and complex software system into

small and directly model-checkable pieces in a top-down fashion. Model checking

of a complex software system typically requires application of many state space re-

duction algorithms and these algorithms often interact with one another. Under

this framework, state space reduction algorithms, such as compositional reasoning,

7

abstraction [17], symmetry reduction [16], and partial order reduction [25, 52, 62],

are applied in a systematic and integrated way to an executable software system

design in xUML before and during its translation and to the resulting formal model.

Interactions among these algorithms are explored to maximize the aggregate effect

of state space reduction. Although presented in the context of model checking exe-

cutable software system designs through translation, the framework can be readily

adapted to model checking of other software representations through translation.

State space reduction algorithms such as compositional reasoning, abstrac-

tion, and symmetry reduction, whose effectiveness depends on structures and behav-

iors of software systems, can be readily formulated on design models due to the fact

that execution behaviors of different components are more visible at the design level.

Many software system designs are constructed following domain-specific design pat-

terns that provide information about structures and behaviors of these systems.

These facts suggest instantiating the integrated state space reduction framework for

different application domains based on domain-specific design patterns. We have

instantiated the framework for distributed transaction systems and applied the in-

stantiation to the design model of an online ticket sale system [64]. With this

framework, we were able to greatly extend the scale of model-checkable software

system designs. For instance, in checking the online ticket sale system, a verifi-

cation task (checking a property on the system) which originally required 152.79

megabytes and 16273.7 seconds to complete was reduced to 7 verification subtasks

(checking sub-properties on components of the system), each of which required at

most 0.95 megabytes and 1.82 seconds.

8

1.2.4 Verified Systems by Composition from Verified Components

CBD, developing software systems through composition of components and reuse

of components, is one of the most important technical initiatives in software engi-

neering. CBD and model checking are synergistic. CBD introduces compositional

structures, clean component interfaces, and standard composition rules to the sys-

tems being built, which may reduce the state spaces that model checkers have to

handle. Model checking is particularly effective at detecting coordination errors

which frequently result from component compositions and are notoriously difficult

to detect. The process of CBD provides a natural means of combining compositional

reasoning and abstraction algorithms to reduce the complexities of the state spaces

that must be explored directly by model checkers.

We have developed an approach [66] to integration of model checking into

CBD. This approach assists in development of safe, secure, and reliable component-

based software systems and reduces the complexity of verifying these systems by

utilizing their compositional structures. Temporal properties of a software com-

ponent are specified, verified, and packaged with the component. Selection of a

component for reuse considers not only its functionality but also its temporal prop-

erties. When a component is composed from other components, a property of the

component is model-checked on an abstraction of the component. The abstraction

is constructed from environment assumptions of the component and verified proper-

ties of its sub-components. The essence of this approach is establishment and reuse

of temporal properties of components in the bottom-up composition of components.

We have further scaled model checking of component-based systems by ex-

ploring the synergy between MDD and CBD and realizing the bottom-up approach

9

based on the ObjectCheck toolkit. Components are specified in executable design

languages. Properties of primitive components (components that are not composed

from other components) are model-checked on the executable designs of the compo-

nents with the ObjectCheck toolkit.

This approach has been applied to improve reliability of instances (installa-

tions that can execute on sensor hardware) of TinyOS, a component-based run-time

system for networked sensors. A coordination bug in TinyOS was detected and our

approach has led to an order-of-magnitude reduction on the complexity of model

checking TinyOS components.

1.3 Dissertation Outline

The reminder of this dissertation is organized as follows. In Chapter 2, we present

background material on MDD, CBD, and model checking. In Chapter 3, we discuss

model checking software designs through translation. In Chapter 4, we present

translation-based composition reasoning. In Chapter 5, we present the integrated

state space reduction framework. In Chapter 6, we discuss composition of verified

systems from verified components. In Chapter 7, we conclude this dissertation and

discuss future research directions.

10

Chapter 2

Background

In this chapter, we first introduce the two software development processes: Model-

Driven Development and Component-Based Development, and their combination.

We then briefly discuss model checking, the COSPAN [28] model checker that we

employ in our research, and the automata-theoretic approach [37] to model checking

implemented by COSPAN.

2.1 Model-Driven Development (MDD)

MDD is an emerging approach to the development of software systems. The Model-

Driven Architecture (MDA) [51] proposed by Object Management Group (OMG)

provides a framework for MDD. The goal of MDA is to separate business or appli-

cation logics from underlying implementation platform technologies. MDD achieves

this goal by building Platform-Independent Models (PIMs) of applications. These

applications can be realized on many different platforms by implementing Platform-

Dependent Models (PDMs) of these applications from their PIMs.

11

There are many languages for specification of PIMs, for instance, various

dialects of the Unified Modeling Language (UML) [50]. These PIM languages can

be categorized as follows: non-executable and executable. A PIM language is ex-

ecutable if its syntax and semantics enable a PIM specified in this language to be

simulated in an execution simulator or to be compiled to source codes in conventional

program languages or to executables. Both non-executable PIM languages and ex-

ecutable PIM languages have their own advantages. For instance, non-executable

PIM languages may offer higher levels of abstraction and may be more expressive.

Executable PIM languages enable early validation and verification of a software

system being developed since they have complete execution semantics. Early error

detections are critical to reducing development and maintenance costs of software

systems. MDD using executable PIM languages are becoming increasingly popular

for the embedded system domain and the web-based system domain. The general

workflow of a MDD process using an executable PIM language is shown in Figure 2.1.

This MDD process has the following steps:

1. Analysis and Design. Based on the requirements of the system being devel-

oped, the system designers conduct analysis and design. The work product of

this step is an executable platform-independent design model of the system.

2. Design Validation. Since the design model built in Step 1 is executable, it

can then be validated for correctness. Conventional validation methods such as

testing through simulated execution are supported by commercial integrated

development environments for executable PIM languages, for instance, Bridge-

point [56] and iUML [9]. These validation methods are often insufficient due

to problems such as limited test case coverage: it is often difficult, if not im-

12

Executable

Validation
Design

Validated
Executable

DesignGeneration
CodeCode

(C/C++, Java)

Legend:

Generation
for Code

Templates

Design Model
(PIM)

Requirement
Analysis

and
Design

FeedbackStep Data Data Flow

Figure 2.1: A MDD process using an executable PIM specification language

possible, to generate all the necessary test cases to cover all possible states or

execution paths in a complex design model.

3. Code Generation. Once the design model is sufficiently validated, code in

conventional program languages such as C/C++ and Java can be generated

from the validated design model. Code generation is based on a set of pre-

defined templates which specify how semantic entities in the design model can

be compiled into code.

An additional step of the MDD process, which is not shown in Figure 2.1, is the

design, implementation, and validation of the templates for code generation. A new

set of templates need to be designed, implemented, and validated when a new plat-

form technology is selected. If a single system is to be developed on this platform,

13

then this step could be expensive. However, if a family of systems are to be devel-

oped on this platform, the cost for design and validation of these templates can be

amortized over these systems.

To integrate model checking into MDD, it is natural to select an executable

PIM language since model checking requires that the model to be checked have com-

plete execution semantics. The executable PIM language that we select is executable

UML (xUML) [47]. In xUML, a system is composed of instances of classes which are

either active, having dynamic behaviors, or passive, having no dynamic behaviors

and used to store data. There can be association and generalization relationships

among classes. A large system can be recursively partitioned into packages, which

are groups of classes closely coupled by associations and generalizations. Under a

generalization, subclasses inherit attributes and message types (if defined) of the su-

perclass, but the subclasses do not inherit the state model of the superclass. Every

active subclass defines its own state model.

Behaviors of instances of an active class are specified by a state model that

consists of: states, state transitions, actions, and message types. Each state tran-

sition is labeled by a message type and messages of the type enable the transition.

An action is an operation that is associated with a state and must be executed

when an instance arrives in that state. Actions can be divided into five categories:

(1) computation actions; (2) read or write actions that read or write attributes of

class instances, or create or delete class instances; (3) messaging actions that send

messages to active class instances; (4) composite actions that are control structures

and recursive structures that permit complex actions to be composed from simpler

actions; (5) collection actions that apply other actions to collections of elements.

14

xUML has an asynchronous interleaving message-passing semantics with the

following properties:

• Creation and deletion of class instances. Class instances can be created

at system initialization and can also be dynamically created or deleted during

system execution.

• Asynchronous message passing. Active class instances communicate via

asynchronous message passing. Every active class instance has a private mes-

sage queue that is FIFO and infinite.

• Active class instance scheduling. At any given point of a system exe-

cution, exactly one active class instance is nondeterministically scheduled to

execute from among all active class instances that are ready. The scheduled

active class instance either performs a state transition by consuming the first

message in its private message queue, or executes the action associated with

its current state. The execution of an action or a state transition is run-to-

completion.

• Disposition of unexpected messages. When a class instance notices the

first message in its message queue is unexpected in its current state, it can

choose to ignore the message or to flag a system error. Message disposition

rules are attached to states.

2.2 Component-Based Development (CBD)

In CBD [61], software systems are developed through composition of components.

A component is a software artifact that has a clearly defined functionality and a well

15

defined interface and can be reused across software systems. CBD has the following

appealing promises:

• Better structures for software systems. CBD introduces compositional

structures to software systems being developed, provides well defined inter-

faces for components, and specifies composition rules for components explic-

itly. These structures enable rapid construction of software systems of high

quality at a low cost.

• Reuse of development efforts. CBD supports component reuse across

software systems, which helps reuse previous development efforts and share

accumulated knowledge. It also helps amortize the cost of developing compo-

nents.

• Easy maintenance and evolution of software systems. CBD makes

software systems easy to maintain and to evolve. Since a component has a

well defined interface, if the component need to be maintained or evolved, it

can be replaced with a new one without changing other components connected

to it in a software system.

Despite the great promises of CBD, its adoption in the software industry

has been slow. There are several major impediments to adoption of CBD. First,

the state-of-art practices of software development are not rigorous enough. Soft-

ware engineers tend to start coding before they have done a thorough design of

the software systems or components being developed. The interfaces among com-

ponents are often poorly designed and frequently modified, which makes reuse of

components difficult. CBD is effective only if the set of components for a family

16

of software systems are carefully designed together. Secondly, hardware systems of

high performance were quite expensive. To develop a system that meets perfor-

mance requirements at a reasonable price, many software optimizations had to be

applied. These optimizations often blur component boundaries, change component

interfaces, and make components application-specific and difficult to reuse. The

situation has improved dramatically. As fast CPUs and large memory modules be-

come available at increasingly low prices, in many application domains, speeding

up the software development cycle, reusing previous development efforts, and im-

proving software quality have become more important than optimizing software for

performance. The demands for highly safe, secure, and reliable software systems

motivate increasing adoption of rigorous design and development procedures. These

factors encourage adoption of CBD in many application domains such as embedded

systems and web-based systems. A common characteristic of these domains is that a

family of applications often reuse a common set of components and each application

typically has only a few application-specific components.

In the embedded system domain, a family of applications are often built

upon a specific hardware platform. Design and implementation of applications on

such a platform requires domain-specific expertise. Such expertise may be scarce,

which makes reuse critical. For instance, there are increasing demands for networked

sensor systems. It is desirable for engineers in various fields to design and implement

their own sensor systems in a timely fashion without obtaining the full knowledge

of how to program on a specific sensor hardware. This has led to adoption of CBD

in networked sensor system development, for instance, the TinyOS [30] project from

the University of California, Berkeley.

17

In the web-based system domain, large-scale distributed systems are devel-

oped by reusing existing web services, aggregating web services to build larger web

service, and developing new services as necessary. Web-based systems are the foun-

dation for enterprise information and decision support systems. The business logics

of enterprises are ever-changing. New systems must be developed in a timely fash-

ion and at a low cost, which makes CBD ideal for developing such systems. In this

domain, components are web services. A web service has a well-defined interface

often specified in the Web Service Definition Language (WSDL) [63]. A basic web

service often provides a fundamental functionality such as database query process-

ing. An aggregated web service often implements a business logic such as processing

a transaction.

2.3 Combination of MDD and CBD

There is an emerging trend to combine CBD with MDD to further simplify software

development and raise the abstraction level on which software systems are being

developed. For instance, several design-level executable specification languages, such

as Business Process Definition Language for Web Services (BPEL4WS) [34], have

been proposed for specification of web services. These languages can be used to

build a web service from scratch and can also be used to aggregate existing web

services to build a larger web service. Web services specified in these languages can

be directly compiled to deployable executables.

18

2.4 Model Checking

Model checking [15, 57, 17] is an automatic technique for verifying finite state con-

current systems. It has been successfully applied to verification of both hardware

and software systems, for instance, complex circuit designs and communications

protocols. Application of model checking to a hardware or software system consists

of the following tasks:

• Model acquisition. A model of the system must be obtained either through

manual construction or automatic generation. Automatic generation has been

the main stream since manual construction is often laborious and error-prone.

In some cases, automatic generation is mainly a compilation task. However,

in many other cases due to time and memory limitations, automatic genera-

tion often involves application of state space reduction algorithms to remove

unnecessary details from the model.

• Property specification. The properties to be verified on the model must be

formulated. These properties are commonly specified in some logical formal-

ism, for instance, a temporal logic, which asserts on the behaviors of systems

over time. Property specification is a challenging task. Model checking is ca-

pable of verifying if the model conforms to the properties given enough time

and memory. However, it is incapable of verifying whether the properties are

correctly and completely specified. Properties are often specified manually.

For some properties that are common and well-understood, it is possible to

generate these properties automatically.

19

• Verification. Once the system is modeled and the properties are specified, a

model checker can be applied to verify the properties on the model. The model

checker conducts an exhaustive but intelligent search over the state space of

the model to verify if the properties hold in every possible state or execution

path of the model. If so, the model checker reports that the properties hold on

the model. If not, let that the model checking process terminates, the model

checker generates an error trace which can be used as a counterexample for the

property and help the system developers debug the system. It is possible that

the error has been introduced in model acquisition or property specification.

In such a case, the model must be fixed or the property must be corrected. If

the verification does not terminate due to time and memory limitation, it is

often required to change the parameters of the model checker or re-construct

the model using additional state space reduction algorithms.

A major advantage of model checking over other validation methods such as

testing and deductive verification is that it can be performed automatically. Model

checking is often restricted to finite-state systems. (There are model checkers for

certain types of infinite-state systems.) This restriction enables full automation

of model checking. Model checkers normally use an exhaustive search of the state

space of the system to determine if a property holds on the systems. Given sufficient

resources, the search will eventually terminate.

A major challenge to application of model checking is the state space ex-

plosion problem. As the number of components or variables in a system becomes

large, the state space of the system can become arbitrarily large. It is very memory

and time consuming to cover all the possible states or execution paths in such a

20

system and, in many cases, it is even impossible. There has been a large amount of

research [17] on state space reduction algorithms which can reduce the sizes of state

spaces that must be exhaustively searched.

There are many approaches to model checking. We choose the automata-

theoretic approach [37] to model checking. In this approach, a system is modeled

by an automaton P and a property to be checked is modeled by an automaton T .

The verification consists of checking whether the language of P is contained in the

language of T , L(P) ⊂ L(T), known as the language containment test. Typically,

P is not monolithic, but is represented as a synchronous parallel composition P =

P1⊗ . . .⊗Pk of component processes all modeled as automata. A model checker that

implements this approach is COSPAN [28]. COSPAN checks language containment

by either an explicit state space enumeration algorithm or a symbolic (BDD-based

or SAT-based) algorithm.

COSPAN inputs the S/R automaton language. In S/R, a system is com-

posed of synchronously interacting processes (or automata). A process consists of

state variables, selection variables, inputs, state transition predicates, and selection

rules. Selection variables define the outputs of the process. Each process imports a

subset of all the selection variables of other processes as its inputs. State transition

predicates update state variables as functions of the current state, selection vari-

ables, and inputs. Selection rules assign values to selection variables as functions of

state variables. Such a function is nondeterministic if several values are possible for

a selection variable in a state. The “selection/resolution” execution model of S/R is

clock-driven, synchronous, and parallel, under which a system of processes behaves

in a two-phase procedure every logical clock cycle:

21

• [1: Selection Phase] Every process “selects” a value possible in its current state

for each of its selection variables. The values of the selection variables of all

the processes form the global selection of the system.

• [2: Resolution Phase] Every process “resolves” the current global selection

simultaneously by updating its state variables upon enabled state transition

predicates.

COSPAN implements a number of state space reduction algorithms including

localization reduction, symmetry reduction, and user-defined homomorphic reduc-

tion [37]. When COSPAN applies these state space reduction algorithms, it trans-

forms a given S/R model into a semantically equivalent one with a reduced state

space, with respect to a property or a set of properties. Other state space reduction

algorithms such as predicate abstraction [26] and assume-guarantee style [1, 3, 46, 4]

of compositional reasoning have been implemented as transformations to an S/R

model before the model is model-checked by COSPAN.

22

Chapter 3

Model Checking Software

Designs through Translation

3.1 Motivation and Overview

Approaches to software model checking can be roughly categorized as follows:

1. Manually creating a model of a software system in a directly model-checkable

formal language and model checking the model in lieu of the system;

2. Subsetting a software implementation language and directly model checking

programs written in this subset;

3. Subsetting a software implementation language and translating this subset to

a directly model-checkable formal language;

4. Abstracting a system implemented in a software implementation language and

translating the abstraction into a directly model-checkable formal language;

23

5. Developing a system in an executable software design specification language

and translating the design into a directly model-checkable formal language;

6. Model checking a property on a system through systematic testing of the

execution paths associated with the property.

Categories 3, 4, and 5 cover a large fraction of the approaches to software

model checking, such as [5, 18, 29, 33, 43, 69], all of which require translation from

a software language or an abstraction specification language to a directly model-

checkable formal language. Translation helps avoid the “many models” problem: as

a system evolves, models of the system are manually created and may contain er-

rors or inconsistencies. Translation also enables application of state space reduction

algorithms by transforming the designs, implementations, and abstractions being

translated. There has, however, been little systematic consideration of issues in-

volved in translating software specification languages used in software development

to directly model-checkable formal languages.

This chapter identifies and formulates several major issues in translating

executable design level software specification languages to directly model-checkable

formal languages. Solutions to these issues are defined, described, and illustrated in

the context of developing the translator [69] from xUML [47], an executable design

level specification language, to S/R [28], the input language of the COSPAN [28]

model checker. (Another translator [42], which translates SDL [35] to S/R, is also

referred to as we discuss issues related to reuse of translator implementation.)

Model checking of a property on a software system through translation only

requires that the behaviors of the system related to the property be preserved in the

resulting formal model. The artifact to be translated consists of a model of a software

24

system and a property to be checked. This integrated model and property translation

provides a natural framework for generating a formal model that preserves only

the behaviors required for model checking a given property and has a minimal

state space. Under this framework, the following issues in translation of executable

design level software specification languages have been identified and formulated in

developing the xUML-to-S/R translator:

• Translator architecture. The architecture of translators should simplify

implementation and validation of translation algorithms and transformation

algorithms for state space reduction, and also enable reuse of these algorithms.

• Semantics translation from a software language to a formal lan-

guage. Model checking of software through translation requires correct se-

mantics translation from a software specification language to its target formal

language. The semantics of the source software language and the semantics

of the target formal language may differ significantly, which may make the

translation non-trivial.

• Property specification and translation. Effective model checking of soft-

ware requires specification of properties on the software level and also requires

integrated translation of these properties into formal languages with the sys-

tem to be checked.

• Transformations for state space reduction. Many state space reduction

algorithms can be implemented as source-to-source transformations.

• Translator validation and evolution. Translators must be validated for

correctness. They must be able to adapt to evolution of source software lan-

25

guages and target formal languages, and incorporation of new state space

reduction algorithms.

These issues arise generally in translation of software specification languages

for model checking. We have chosen executable design level software specification

languages as our representations for software systems for the following reasons:

• These languages are becoming increasingly popular in industry and develop-

ment environments for these languages are commercially available.

• These languages have complete execution semantics that enable application

of testing for validation and also enable application of model checking for

verification.

• A design in these languages can be compiled into implementation level soft-

ware specification languages and also can be translated into directly model-

checkable formal languages. This establishes a mapping between the imple-

mentation of the design and the formal model of the design that is model

checked, which avoids the “many models” problem.

• These languages require minimal subsetting to enable translation to directly

model-checkable formal languages.

The balance of this chapter is organized as follows. In Sections 3.2, 3.3,

3.4, 3.5, and 3.6, we elaborate on these issues and discuss their solutions in the

context of the xUML-to-S/R translator. We present the ObjectCheck toolkit that

encapsulates the xUML-to-S/R translator in Section 3.7, briefly touch on several

case studies using the xUML-to-S/R translator in Section 3.8, discuss related work

in Section 3.9, and summarize in Section 3.10.

26

3.2 Translator Architecture

This section presents a general architecture for translators from software specifica-

tion languages to directly model-checkable formal languages and briefly discusses

the functionality of each component in this architecture. The emphasis is on the

Common Abstraction Representation (CAR), the intermediate representation of the

translation process. Many of the important functionalities of translators are imple-

mented as source-to-source transformations on the software model to be translated

or on the CAR.

3.2.1 A General Architecture for Translators

A general architecture for translators is shown in Figure 3.1. A notable feature of

CAR

CAR
Transformed

Model

Formal
Property

Formal
Model

Translator
Backend
(Code Generator)

Property

Software

Common
Abstraction
Representation
(CAR)

Translator
Frontend
(Scanner, Parser,
Transformer)

Transformed
Abstract Syntax

Transformer

CAR
GeneratorTree

(AST)

Figure 3.1: Translator architecture

this architecture is that the software model and the property to be checked on the

27

model are processed in an integrated fashion by each component. The frontend of

the translator not only constructs the Abstract Syntax Tree (AST) of the software

model, but also transforms the AST with respect to the property by applying source-

to-source transformations such as the loop abstraction [59]. These transformations

are partially guided by directives written in an annotation language to be discussed

in Section 3.5.1. Functionalities of other components are discussed in Section 3.2.2

after we introduce the CAR.

3.2.2 Common Abstraction Representation (CAR)

A CAR is a common intermediate representation for translating several different

software languages. It captures abstract concepts of the basic semantic entities of

these languages and is designed to be a minimal representation of the core semantics

of these languages. A CAR has been derived for the development of the xUML-to-

S/R and SDL-to-S/R translations. The basic entities in this CAR include a system,

a process, a process buffer, a message type, a message, a variable type, a variable,

and an action. A process entity is structured as a graph whose nodes are states,

conditions, and actions and whose edges are transitions. Actions are input, output,

assignment, and etc.

Entities in a CAR may have parameterized definitions. Semantics of such

entities can be exactly specified only by referring to a specific source language.

For instance, in an xUML process, actions are associated with states while in a

SDL process, actions are associated with transitions. For translation of a specific

source language, a profile of the CAR is defined. The profile is a realization of

the CAR which includes the CAR entities necessary for representing the source

28

language and realizes the CAR entities with parameterized definitions according

to the semantics of the source language. Each model in the source language is

represented by an instance of the CAR profile. The CAR profile thus inherits its

semantics from the source language. This semantics is mapped to the semantics of a

target language by a translator backend. CAR profiles for different source languages

require different translation backends to a target language. These backends share

translation procedures for a CAR entity if the entity has the same semantics in the

corresponding source languages. Semantic entities of a source language that are not

in the CAR are either reduced to the entities that are in the CAR or included as

extensions in the CAR profile for the source language. Having a CAR and different

CAR profiles for different source languages offers the following benefits:

• A CAR profile only contains the necessary semantic entities for a source lan-

guage. It is easier to construct and validate the translation from the CAR

profile to the target language than the direct source-to-target translation.

• The simplicity of the CAR profile simplifies the implementation and validation

of transformations for state space reduction.

• The CAR enables reuse of the translation algorithms and the transformation

algorithms for the semantic entities shared by different profiles of the CAR.

There is often a significant semantics gap between a source language and a

target language, which makes a single-phase direct translation difficult. Having a

CAR allows us to divide the translation from a source language to a target language

into three phases: (1) the CAR instance construction phase, (2) the CAR instance

transformation phase, and (3) the target language code generation phase.

29

In the CAR instance construction phase, a model in the source language is

scanned, parsed, and transformed, and a CAR instance is then constructed. Com-

plex semantic entities in the model are reduced to basic semantic entities in the

CAR. For instance, in xUML, there are several different loop structures in the ac-

tion language such as a for loop, a while loop, and a do loop. All these loop structures

are reduced to a simple loop structure composed of a condition, the loop body, and

goto actions. Implicit semantic entities are made explicit in the CAR instance. For

instance, there is an implicit message buffer for each class instance in an xUML

model, which is not explicitly represented in the xUML model. To be translated,

such buffers are made explicit.

In the CAR instance transformation phase, the CAR instance is transformed

by source-to-source transformations for state space reduction. CAR provides a com-

mon representation on which transformations for state space reduction such as static

partial order reduction [39] can be implemented. Since the CAR profiles for differ-

ent source languages share semantic entities, transformations implemented on these

semantic entities may be reused in translation of different source languages.

In the target language code generation phase, a model in the target language

is generated from the transformed CAR instance. For each semantic entity in the

CAR, a code generation procedure is defined. As the AST of a CAR instance

is traversed, if a semantic entity is identified, the corresponding code generation

procedure is invoked to emit codes in the target language. An entity in the CAR

may have different semantics when used in translation of different source languages.

Therefore, the code generation procedures for translating this entity may be different

for different source languages. For instance, in xUML each class instance has a

30

message buffer while in SDL each process has a message buffer. However, in xUML

and SDL the message buffers have different semantics. In xUML, a class instance

can consume, discard, and throw an exception on a message in its message buffer.

In SDL, a process can save a message in its buffer and consume it in the future.

The translation procedures for translating an xUML message buffer and an SDL

message buffer are, therefore, different.

3.3 Semantics Translation from Software Language to

Formal Language

To translate a software language for model checking, a proper target formal language

is selected. After selection of the target language, a translatable subset of the

software language is derived. This subset is mapped to the CAR by reducing complex

semantic entities in the source language to simple semantic entities in the CAR. The

simplified semantics of the source language is then simulated with the semantics of

the target language. We discuss these steps in the context of the xUML-to-S/R

translation.

3.3.1 Selecting Target Formal Language

There are many directly model-checkable formal languages. Promela [32], SMV [45],

and S/R [28] are among the most widely used. These languages have various seman-

tics. Their corresponding model checkers, SPIN [32], SMV [45], and COSPAN [28],

support different sets of search algorithms and state space reduction algorithms.

Appropriate selection of a target formal language should consider three factors: ap-

plication domain, semantics similarity, and model checker support. We considered

31

these factors synergistically in selecting the target language for translating xUML.

• Application domain. While this chapter is concerned only with translation

of a software design, the ultimate goal of this project is hardware/software co-

verification. xUML is widely used in development of embedded systems which

often requires hardware/software co-design and co-verification. Such a system,

on different levels of abstraction, may exhibit both hardware-specific (tighter

synchronization) and software-specific (looser synchronization) behaviors.

• Semantics similarity. The asynchronous interleaving semantics of xUML is

close to the semantics of Promela, which would simplify the translation, while

both SMV and S/R have synchronous parallel execution semantics.

• Model checker support. In practical model checking, especially in co-

verification, the widest range of search algorithms and state space reduction

algorithms is desired since it is not clear that any algorithm is superior for a

well-identified class of systems. A system that has both software and hardware

components may often benefit from symbolic search algorithms based on BDDs

and SAT solvers which are not available in SPIN. SMV provides BDDs and

SAT based symbolic search algorithms. However, Depth-First Search (DFS)

algorithms with explicit state enumeration, which have demonstrated their

effectiveness in verification of many software-intensive systems, are not avail-

able in SMV. COSPAN offers both symbolic search algorithms and DFSs with

explicit state enumeration. COSPAN supports a wide range of state space

reduction algorithms such as localization reduction [28], static partial order

reduction [39], and a prototype implementation of predicate abstraction [49].

32

Based on the above, we selected S/R as the target language at the cost of a non-

trivial xUML-to-S/R translation.

3.3.2 Subsetting Software Language

Software languages such as xUML may have multiple operational semantics and may

also have semantic entities not directly translatable to the selected target language.

For model checking purposes, a subset of the software language must be derived for

a given application domain. This subset must have a clean operational semantics

suitable for the application domain. Semantic entities that are not directly trans-

latable, such as continuous data types, must be either excluded from the subset or

discretized and simulated by other semantic entities. Infinite-state semantic entities

may be directly translated or be bounded and then translated depending on whether

the target language supports infinite-state semantic entities or not. If a target for-

mal language permits some infinite-state semantic entities, necessary annotations

may also need to be introduced for the subset so that infinite-state semantic entities

in the subset can be properly translated.

In the xUML-to-S/R translation, we adopt an asynchronous interleaving se-

mantics of xUML (see Section 3.3.4) while xUML has other semantics such as asyn-

chronous parallel. Continuous data types such as float can be simulated by discrete

data types such as integer if such a simulation does not affect the model checking

result. Since S/R does not support infinite semantic entities, infinite data types and

infinite message queues must be bounded implicitly by convention or explicitly by

user annotations.

33

3.3.3 Mapping Source Software Language to CAR

After the translatable subset of the source software language is derived, a CAR

profile is identified accordingly. The CAR profile only contains the basic entities

necessary for representing the source language subset. A mapping is then established

from the source language subset to the CAR profile. Complex semantic entities

in the source language are reduced to simple semantic entities in the CAR. For

instance, in xUML a state action can be a collection action that applies a sub-

action to elements of a collection in sequence. The collection action is reduced into

a loop action with a test checking whether there still are untouched elements in

the collection, and with the sub-action as the loop body. After the mapping is

established, the semantics of the CAR profile is decided by the semantics of the

source language and the mapping.

3.3.4 Simulating Source Semantics with Target Semantics

The mapping from the source language to the CAR profile removes complex seman-

tic entities from the source semantics. To complete the translation to the target

language, only this simplified form of the source semantics must be simulated with

the target semantics. We first sketch the semantics of xUML and S/R, then dis-

cuss how the asynchronous semantics of xUML is simulated with the synchronous

semantics of S/R and how the run-to-completion requirement of xUML is simulated.

Background: semantics of xUML and S/R

xUML has an asynchronous interleaving message-passing semantics. In xUML, a

system consists of a set of class instances. Class instances communicate via asyn-

34

chronous message-passing. The behavior of each class instance is specified by an

extended Moore state model in which each state may be associated with a state ac-

tion. A state action is a program segment that executes upon entry to the state. In

an execution of the system, at any given moment only one class instance progresses

by executing a state transition or a state action in its extended Moore state model.

S/R has a synchronous parallel semantics. In S/R, a system consists of a set of

automata. Automata communicate synchronously by exporting variables to other

automata and importing variables from other automata. The system progresses ac-

cording to a logical clock. In each logical clock cycle, each automaton moves to its

next state according to its current state and the values of the variables it imports.

Simulation of asynchrony with synchrony

The asynchronous interleaving execution of an xUML system is simulated by the

synchronous parallel execution of its corresponding S/R system as follows. Each

class instance in the xUML system is mapped an automaton in the S/R system. An

additional automaton, scheduler, is introduced in the S/R system. The scheduler

exports a variable, selection, which is imported by each S/R automaton correspond-

ing to an xUML class instance. At any given moment, the scheduler selects one of

such automata through setting selection to a particular value. Only the selected

automaton executes a state transition corresponding to a state transition or a state

action in the corresponding xUML class instance. Other automata follow a self-loop

state transition back to their current states.

The asynchronous message-passing of xUML is simulated by synchronous

variable-sharing of S/R through modeling the message queue of a class instance as a

35

separate S/R automaton. Let automata IP1 and IP2 model two class instances and

automata QP1 and QP2 model their corresponding private message queues. The

asynchronous passing of a message, m, from IP1 to IP2 is simulated as follows:

[1: IP1 → QP2] IP1 passes m to QP2 through synchronous communication; [2:

Buffered] QP2 keeps m until IP2 is ready for consuming a message and m is the

first message in the queue modeled by QP2. [3: QP2 → IP2] QP2 passes m to IP2

through synchronous communication.

Simulation of run-to-completion execution

A semantic requirement of xUML is the run-to-completion execution of state ac-

tions, i.e., the executable statements in a state action must be executed consecu-

tively without being interleaved with state transitions or executable statements from

other state actions. This run-to-completion requirement is simulated as follows. An

additional variable, in-action, is added to each S/R automaton corresponding to an

xUML class instance. All in-action variables are imported by the scheduler. When

an automaton is scheduled to execute the first statement in a state action, it sets its

in-action to true. When the automaton has completed with the last statement in

the state action, it sets its in-action to false. The scheduler continuously schedules

the automaton until its in-action is set to false.

3.4 Property Specification and Translation

Since the entire translation process is property-dependent, properties must be speci-

fied at the level of and in the name space of software systems. Additionally, software

level property specification enables software engineers who are not experts in model

36

checking to formulate properties. We discuss software level property specification

and translation of software level properties in terms of xUML and a linear-time

property specification language, but the arguments carry over for other software

specifications and temporal logics. Two issues related to property specification and

translation: (1) automatic generation of properties and (2) translation support for

compositional reasoning, conclude this section.

3.4.1 Software Level Property Specification

An xUML level property specification language, which is linear-time and with the

expressiveness of ω-automata, has been defined. This language consists of a set of

property templates that have intuitive meanings and also rigorous mappings into

the FormalCheck property specification language [38] which is written in S/R. The

templates define parameterized automata. Additional templates can be formulated

in terms of the given ones, if doing so simplifies the property specification process.

A property formulated in this language consists of declarations of propositional logic

predicates over semantic entities of an xUML model and declarations of temporal

predicates. A temporal predicate is declared by instantiating a property specifica-

tion template: each argument of the template is replaced by a propositional logic

expression composed from previously declared propositional predicates.

To further simplify property specification, for an application domain, fre-

quently used property templates and customized property templates are included

in a domain-specific property template library based on previous verification stud-

ies in the domain. These property templates are associated with domain-specific

knowledge to help software engineers select the appropriate property templates. A

37

similar pattern-based approach to property specification was proposed by Dwyer,

Avrunin, and Corbett in [20].

3.4.2 Property Translation

To support the integrated model/property translation, once the property specifica-

tion language is defined, semantic entities for representing properties are introduced

as extensions to the CAR profile for the source software language. A model and

a property to be checked on the model are integrated in an instance of the CAR

profile. In the xUML-to-S/R translation, properties are translated by a module of

the translator. Since a property refers to semantic entities in the xUML model to

be checked, this module conducts syntax and semantic checking on a property by

referring to the abstract syntax tree constructed from the model. For each property

template, a translation procedure is provided, which maps an instance of the tem-

plate to the corresponding semantic entity in the CAR profile and ultimately to a

property in S/R for use by COSPAN.

3.4.3 Automatic Generation of Properties

Certain types of properties, such as safety properties that check buffer overflows,

can be automatically generated during translation. Translators can apply static

analysis techniques that identify implicit buffers and generate properties for checking

possible overflows of these buffers. For instance, in xUML, every class instance has

an implicit message buffer, which has the risk of buffer overflow. The xUML-to-S/R

translator automatically generates a safety property for each message buffer. When

the resulting S/R model is model checked, the safety property will catch any buffer

38

overflow related to the message buffer being monitored. Automatically generated

properties are integrated into translation in the same way as user-defined properties.

3.4.4 Translation Support for Compositional Reasoning

Another application of the software level property specification language is in con-

structing abstractions of components to be used in compositional reasoning [19]

where model checking a property on a system is accomplished by decomposing the

system into components, checking component properties locally on the components,

and deriving the property of the system from the component properties. A prop-

erty of a component is model-checked on the component by assuming that a set of

properties hold on other components in the system. These assumed properties are

abstractions of other components in the system and are used to create the closed sys-

tem on which the property of the target component to be verified is model checked.

These properties are formulated in the software level property specification language.

The assumed properties on other components are called the environment assump-

tions of the target component. To support compositional reasoning, the translator

is required to support translation of a closed system that consists of a component

of a system and the environment assumptions of the component. This is in contrast

to model checking without compositional reasoning where the translator is only re-

quired to translate a closed system that consists purely of entities specified in the

software language, xUML in our case.

39

3.5 Transformations for State Space Reduction

The ultimate goal of integrated model/property translation is to generate a formal

model which preserves only the behaviors of the source software model required for

model checking a specific property and which has a minimal state space. Many state

space reduction algorithms can be implemented as source-to-source transformations

in the translation. This section describes model transformations implemented in

the xUML-to-S/R translation and a model annotation language used to specify

some types of transformations. Similar transformations will surely be applied in

translation from most software specification languages to directly model-checkable

formal languages.

3.5.1 Model Annotation Languages

There is often domain-specific information that is not available in a software model,

but can facilitate transformations for state space reduction, for instance, bounds

for variables in the software model. Software engineers can introduce such infor-

mation by annotating the model with an annotation language before the model is

translated. Such annotations are introduced in an xUML model as comments with

special structures so that they will not affect other tools for xUML, for instance,

xUML model execution simulators. The annotations must be updated accordingly

as the model is updated.

Variable bounds are introduced in an xUML model as annotations associ-

ated with the variables or the data types of the variables. Annotation-based vari-

able bounding indirectly enables symbolic model checking with COSPAN and also

directly reduces state spaces. If tight bounds can be provided for variables in a soft-

40

ware model, it can often significantly reduce the state space of the resulting formal

model that is to be explored by either an explicit state space enumeration algorithm

or a symbolic search algorithm. Model checking guarantees the consistency among

variable bounds by automatically detecting any possible out-of-bound variable as-

signments. The annotation language is also used to specify directives for guiding

the loop abstraction [59].

Model annotations not only enable transformations, but also are indispens-

able to translation of continuous or infinite semantic entities in a software model.

For instance, in the xUML-to-S/R translation, the information about how to dis-

cretize a float type and about the bounds for message buffers of class instances is

also provided as annotations.

3.5.2 Transition Compression

A sequence of transitions in a software model can often be compressed and translated

into a single transition in the formal model if verification of the property does not

require intermediate states in the sequence. A transition compression algorithm can

be generic, i.e., can be applied to many software languages, or language-specific, i.e,

utilizes language-specific information to facilitate transition compression.

Generic transition compression

We use a simple example to illustrate generic transition compression. Suppose a

simple program segment is of the form x = 1; x = x + 1. If a property to be

checked is not relevant to the interleavings of the two statements with statements

from other program segments, to the interim state between the two statements, or

41

to the variable, x, the program segment can be compressed into a single statement

x = 2 without affecting the model checking result. Similar transition sequences

appear in almost all programs in various software specification languages. Detailed

discussions on generic transition compression can be found in [40].

Language-specific transition compression

There will be language-specific opportunities for transition compression in most

software specification languages. An illustration of language-specific transition com-

pression in the xUML-to-S/R translation is the identification and translation of self-

messages. A self-message is a semantic feature specific to xUML and some other

message-passing semantics: a class instance can send itself a message so that it can

move from its current state to some next state according to a local decision. (It

is assumed that self-messages have higher priority than other messages.) Sending

and consuming of a self-message can be translated in a similar way as how sending

and consuming of common messages among class instances are translated. This

straightforward translation results in several S/R state transitions that simulate

sending and consuming of a self-message. We developed a static analysis algorithm

that identifies self-messages and translates sending and consuming of a self-message

to a single S/R state transition.

3.5.3 Static Partial Order Reduction (SPOR)

Partial order reduction (POR) [25, 52, 62] is readily applicable to asynchronous

interleaving semantics. POR takes advantages of the fact that in many cases, when

components of a system are not tightly coupled, different execution orders of actions

42

or transitions of different components may result in the same global state. Then,

under some conditions [25, 52, 62], in particular, when the interim global states are

not relevant to the property being checked, model checkers need only to explore

one of the possible execution orders. This may radically reduce model checking

complexity.

The asynchronous interleaving semantics of xUML suggests application of

POR. POR is applied to an xUML model through SPOR [39], a static analysis pro-

cedure that transforms the model prior to its translation into S/R by restricting its

transition structure with respect to a property to be checked. For different proper-

ties, an xUML model may be translated to different S/R models if SPOR is applied

in translation. Application of symbolic model checking to an S/R model translated

from an xUML model transformed by SPOR enables integrated application of POR

and symbolic model checking.

3.5.4 Predicate Abstraction

Predicate abstraction [26] maps the states of a concrete system to the states of

an abstract system according to their evaluation under a finite set of predicates.

Predicate abstraction is currently applied in model checking of software designs in

xUML by application of the predicate abstraction algorithms proposed in [49] to

the S/R models translated from these designs. It should be possible, however, to

implement some forms of predicate abstraction as transformations in translation.

Research on application of predicate abstraction to software system designs as they

are translated is in progress.

43

3.6 Translator Validation and Evolution

Correctly model checking a software model through translation depends on correct-

ness of (1) the conceptual semantics mapping from the source software language

to the target formal language, (2) the translator that implements the semantics

mapping, and (3) the underlying model checker that checks the resulting formal

model. Correctness of a semantics mapping can sometimes be proved rigorously.

A proof for the semantics mapping from xUML to S/R can be found in [67]. The

translator must be validated to ensure that it correctly implements the translation

from the source language to the target language and also the state space reduction

algorithms incorporated. The correctness of the model checker is out of the scope of

this chapter. As the source language and the target language evolve, the translator

must also evolve to handle (or utilize, respectively) semantic entities that are newly

introduced to the source (or target) language. The translator also must evolve to

incorporate new state space reduction algorithms.

3.6.1 Translator Validation

Testing is the most commonly used method for validating a translator. Testing of

a translator is analogous to, but significantly different from, testing of a conven-

tional compiler. Testing of a conventional compiler is most often done by use of a

suite of programs which are intended to cover a wide span of programs and paths

through the compiler. Testing of a translator from a software specification language

to a model-checkable formal language is a multi-dimensional problem. The test

suite must be a cross-product of models, properties, and selections of state space

reduction transformations. The correctness of a compilation can be validated by

44

running the compiled program for a spectrum of inputs and initial conditions and

determining whether the outputs generated conform to known correct executions.

While a translated model can be model checked, it is far more difficult to generate

a suite of models and properties for which it is known whether or not a property

holds on a model. We have a partial test suite for the xUML-to-S/R translation and

development of a systematic test suite is in progress. Development of test suites is

one of the most challenging problems faced by developers of translation-based model

checking systems. We believe this is a problem which requires additional attention.

Recently, there has been progress on formal validation of the correctness of

translators. The technique of translation validation is proposed in [54], whose goal is

to check the result of each translation against the source program and thus to detect

and pinpoint translation errors on-the-fly. This technique can improve, however

cannot entirely replace the testing approach discussed above since the correctness of

translation validation depends on the correctness of the underlying proof checker.

3.6.2 Translator Evolution

The key to the evolution of a translator is the evolution of the CAR of the translator

since the CAR bridges the source software language to the target formal language

and connects the translator frontend to the translator backend. Translation from

the source language to the CAR is relatively straightforward since the CAR is quite

simple. The complexity of the translation from the CAR to the target model-

checkable language depends on the complexity of the target language, but the latter

are also usually simple and well structured. The transformations conducted on the

CAR are much more complex. The principle for the CAR evolution is that the

45

CAR should be kept stable as possible, and existing translation algorithms and

state space reduction algorithms should be reused as much as possible. The CAR

is extended (1) if there is no efficient way to translate some semantic entities of a

new source language, (2) if some semantic entities of a new target language are hard

to utilize, or (3) if implementation of new state space reduction algorithms requires

introduction of new semantic entities in the CAR.

3.7 ObjectCheck Toolkit

To provide comprehensive automation support for model checking of xUML models,

we have constructed the ObjectCheck toolkit that encapsulates the xUML-to-S/R

translator. ObjectCheck supports xUML level property specification, xUML-to-S/R

translation and optimization, error report generation, and error visualization. The

architecture of ObjectCheck is shown Figure 3.2, under which we selected industrial

tools such as Bridgepoint [56] or Objectbench [58], as the xUML Integrated Develop-

ment Environment (IDE). Furthermore, we implemented the following components:

Property Specification Interface. The property specification interface enables

formulation of properties to be checked on xUML models using the property speci-

fication language introduced in Section 3.4.1.

Error Report Generator. When an S/R query fails on an S/R model, COSPAN

generates an error track specifying an execution trace that violates the query. The

error report generator compiles an error report in xUML notations from the error

track. The error report consists of an execution trace of the corresponding xUML

model, which violates the corresponding xUML level property.

Error Visualizer. To facilitate debugging an error found by COSPAN in an xUML

46

Error Report

Error Report Generator

xUML Model

Designer

COSPAN Model Checker

S/R Model Error Track

Error VisualizerProperty Specification Interface

Property

xUML−to−S/R Translator

S/R Query

Dataflow CompoentLengend: User Interaction

xUML IDE

Data

Figure 3.2: ObjectCheck architecture

model, an error visualizer is provided, which generates a test case from the error

report and reproduces the error by executing the xUML model with the test case in

a simulator included in the xUML IDE.

3.8 Case Studies Using ObjectCheck Toolkit

The ObjectCheck toolkit has been applied in model checking the design models of

real-world software systems: a robot control system [36] from the robotics research

group at the University of Texas at Austin, a prototype online ticket sale system [64],

the TinyOS run-time system [30] for networked sensors from University of Califor-

nia, Berkeley. The robot control system case study, presented in [60], demonstrates

model checking of non-trivial software design models with the xUML-to-S/R trans-

47

lator. In online ticket sale system case study, presented in Section 5.4.3, state

space reduction capabilities of model transformations in the xUML-to-S/R transla-

tor and interactions of these transformations have been investigated. The TinyOS

case study, presented in Section 6.4, demonstrates the translation support for com-

positional reasoning. Co-design and co-verification studies on TinyOS using the

xUML-to-S/R translator are in progress.

3.9 Related Work

Most automatic approaches to model checking of design level software specifications

are based on translation. Translators have been implemented for various design

level specification languages such as dialects of UML, SDL, and LOTOS [6]. The

vUML tool [43] translates a dialect of UML into Promela. The translation is based

on ad-hoc execution semantics which did not include action semantics, and does not

support specification of properties to be checked on the UML model level. There is

also previous work [24, 48] on verification of UML Statecharts by translating State-

charts into directly model-checkable languages. The CAESAR system [22] compiles

a subset of LOTOS into extended Petri nets, then into state graphs which are then

model-checked by using either temporal logics or automata equivalences. The IF

validation environment [8] proposes IF [7], an intermediate language, and presents

tools for translating dialects of UML and SDL into IF and tools for validation and

verification of IF specifications.

The translator architecture presented in this chapter extends the architec-

ture for conventional compilers. Similar extensions have been proposed in [22, 8].

In these architectures, intermediate representations that have fixed and complete

48

semantics are adopted while in our approach, the CAR does not have fixed and

complete semantics. It only specifies semantics of the generally shared semantic

entities and for other semantic entities, their semantics are decided when a CAR

profile is defined for a specific source language. This enables reuse of translator de-

velopment efforts while allowing flexible translator development via a customizable

intermediate representation.

A recent approach to model checking implementation level software repre-

sentations is an integrated approach based on abstraction and translation. Given a

program in C/C++ or Java, an abstraction of the program is created with respect

to the property to be checked. This abstraction is constructed in a conservative

way, i.e., if the property holds on the abstraction, the property also holds on the

program. The abstraction is then translated into a model-checkable language and

model checked. If the property does not hold on the abstraction, the error trace

from model checking the abstraction is used to determine if the error is introduced

by the abstraction process. If so, the abstraction is refined based on the error trace.

The SLAM [5] tool from Microsoft, the FEAVER [33] tool from Bell Labs, and the

Bandera [18] tool from Kansas State University are sample projects of this approach.

SLAM abstracts a boolean program from a C program, then directly model-checks

the boolean program or translates the boolean program into other model-checkable

languages. FEAVER abstracts a state machine model from a C program with user

help and translates the state machine model into Promela. Bandera abstracts a state

machine model from a Java program and translates the state machine model into

Promela, SMV, and other model-checkable languages. Many of translation issues

identified in our project also appear in the translation phase of these three tools.

49

3.10 Summary

Translation plays an increasingly important role in software model checking and

enables reuse of mature model checking techniques. This chapter identifies and

formulates issues in translation of executable software designs for model checking.

Solutions to these issues are presented in the context of the xUML-to-S/R translator.

These solutions can be adapted to address similar issues in translation of other design

level or implementation level software representations for model checking.

50

Chapter 4

Translation-Based

Compositional Reasoning

4.1 Motivation and Overview

On account of the intrinsic computational complexity of model checking, we need to

support compositional reasoning [53, 1, 3, 46, 4, 19] where model checking a property

on a system is accomplished by decomposing the system into components, check-

ing component properties locally on the components, and deriving the property of

the system from the component properties. Application of compositional reason-

ing to software systems requires establishing a compositional reasoning rule in the

semantics of these systems, proving the correctness of the rule, and implementing

the rule. A rule is implemented when methods have been provided for discharging

its premises which are usually verification of component properties, validity check

of possible circular dependencies among component properties, and derivation of a

51

system property from component properties.

Directly proving the correctness of compositional reasoning rules for software

systems is often difficult. Software systems are usually modeled in specification

languages such as Executable UML [47] and SDL [35], or coded in programming

languages such as Java and C/C++. These languages are sufficiently complicated

in syntax and semantics so that it is very difficult (if not infeasible) to directly prove

for these languages that a compositional reasoning rule is sound. Additionally,

such a language often has varying operational semantics. A formal semantics is

only formulated for software systems specified in this language when these systems

are to be translated into a model-checkable formalism and verified. On the other

hand, proof and implementation of compositional reasoning rules for directly model-

checkable formal semantics such as the semantics of Promela [31], SMV [45], and

S/R [28] is often easier due to the formality and simplicity of these semantics. It is

often the case that a set of compositional reasoning rules have already been proven

and implemented for these semantics.

This chapter defines, describes, and illustrates Translation-Based Composi-

tional Reasoning (TBCR), an approach to application of compositional reasoning

in the context of model checking software systems through model translation. This

approach has two phases: (i) establishment of compositional reasoning rules in the

semantics of software systems and correctness proof of the rules; (ii) application of

the proven rules in model checking software systems. Given a translation from a

software semantics to a directly model-checkable formal semantics, a compositional

reasoning rule in the software semantics is established and proven for correctness as

follows:

52

• The compositional reasoning rule is defined in the software semantics.

• The rule in the software semantics is mapped to an equivalent rule in the

formal semantics based on the translation.

• The correctness proof of the rule is established based on the above mapping

and on the correctness proof of the equivalent rule in the formal semantics.

Given a software system and a property to be checked on the system, the proven

compositional reasoning rule in the software semantics is then applied as follows:

• The system is decomposed into components on the software semantics level.

• Premises of the rule are formulated in the software semantics. These premises

are discharged by translating them to their counterparts in the formal seman-

tics and discharging their counterparts in the formal semantics through reusing

the implementation of the equivalent rule in the formal semantics.

• If these premises are successfully discharged, then it can be concluded on the

software semantics level that the system has the property to be checked.

There has been a large body of research [53, 1, 3, 46, 4, 19] on compositional

reasoning in the formal methods community, which mostly focuses on developing

compositional reasoning rules and proving their correctness. Our research, instead,

focuses on effective application of compositional reasoning to software systems in

the context of model checking these systems via model translation. Rationales for

our approach are:

• Software systems, to be model checked, usually have to be translated into a

directly model-checkable formalism.

53

• Formulation of and reasoning about the properties of software systems and

their components are more naturally accomplished in the software semantics.

• Compositional reasoning rules have already been established, proven, and im-

plemented for several directly model-checkable formalisms.

We have realized TBCR for a commonly used semantics for software, the

Asynchronous Interleaving Message-passing (AIM) semantics. In this realization,

compositional reasoning rules in the AIM semantics are proven, implemented, and

applied in the context of a translation from the AIM semantics to the ω-automaton

semantics [37] using the I/O-automaton semantics [44] as an intermediate seman-

tics. (We choose I/O-automata as the intermediate semantics to reuse a translation

from the I/O-automaton semantics to the ω-automaton semantics, established by

Kurshan, Merritt, Orda, and Sachs [41].) This realization has been applied in an

integrated state space reduction framework [65] and in model checking of component-

based software systems [66].

The balance of this chapter is organized as follows. In Section 4.2, we give

the preliminaries of the I/O-automaton semantics and the ω-automaton semantics.

A realization of TBCR for the AIM semantics is defined and described in detail in

Section 4.3. We summarize in Section 4.4.

4.2 Preliminaries

4.2.1 I/O-automaton Semantics

The following definitions for I/O-automaton are from [41].

Definition 4.2.1 An I/O automaton A is a quintuple (ΣA, SA, IA, δA, RA) where:

54

• the signature ΣA is a triple ΣA = (ΣA
IN ,ΣA

OUT ,ΣA
INT), where ΣA

IN , ΣA
OUT ,

ΣA
INT are pairwise disjoint finite sets of elements, called input, output, internal

actions, respectively. We denote by ΣA
EXT = ΣA

IN ∪ ΣA
OUT the set of external

actions, by ΣA
LOC = ΣA

OUT ∪ ΣA
INT the set of local actions, and we abuse

notation, denoting by ΣA also the set of all actions ΣA
LOC ∪ ΣA

IN ;

• SA is a finite set of states;

• IA ⊂ SA is a set of initial states;

• δA ⊂ SA × ΣA × SA is a transition relation which is complete in the sense

that for all a ∈ ΣA
IN , s ∈ SA there exists s′ ∈ SA with (s, a, s′) ∈ δA. For

a ∈ ΣA
LOC and s, s′ ∈ SA such that (s, a, s′) ∈ δA, we say that a is enabled at

s and enables the transition (s, s′); Each element of δA is called a step of A;

• RA is a partition of ΣA
LOC, each element of which is termed a fairness con-

straint of A.

Definition 4.2.2 An execution of A is a finite string or infinite sequence of state-

action pairs ((s1, a1), (s2, a2), . . .), where s1 ∈ IA and for all i, si ∈ SA, ai ∈ ΣA

and (si, ai, si+1) ∈ δA.

Definition 4.2.3 An execution x of A is fair if, for all C ∈ RA:

• if x is finite then no action in C is enabled in the final state in x;

• if x is infinite then either some action in C occurs infinitely often in x or else

infinitely many states in x have no enabled action which is in C.

55

Definition 4.2.4 Given a set 4 ⊂ ΣA, the projection of an execution x= ((si, ai))

of A onto 4, denoted by Π4(x), is the subsequence of actions obtained by removing

from the action sequence (ai) all actions ai 6∈ 4.

Definition 4.2.5 A behavior of A is the projection of a fair execution of A on the

set ΣA
EXT (i.e., the fair execution, with states and internal actions removed). The

language L(A) of A is the set of all behaviors of A.

Definition 4.2.6 Of two I/O automata A and B, we say that A implements B

(denoted by A ≤ B) if, for 4 = ΣA
EXT ∩ ΣB

EXT , 4 6= ∅, Π4(L(A)) ⊂ Π4(L(B)).

Definition 4.2.7 For I/O automata A1, A2, . . . , Ak, with respective pairwise dis-

joint sets of local actions, their parallel composition, denoted by A1||A2|| . . . ||Ak, is

an I/O automaton A defined as follows. The set of internal actions of A is the

union of the respective sets of internal actions of the component automata, and like-

wise for the output actions; the input actions of A are the remaining actions of the

components not thus accounted for. The set of states of A, SA, is the Cartesian

product of the component state sets, likewise for the initial states IA. The transition

relation δA is defined as follows: for s = (s1, . . . , sk), s′ = (s′1, . . . , s′k) and a ∈ ΣA,

(s, a, s′) ∈ δA if and only if for all i = 1, . . . , k, (si, a, s′i) ∈ δAi
or a 6∈ ΣAi

and

s′i = si. RA is the union of the fairness partitions of the respective components.

4.2.2 ω-automaton Semantics

We use the L-process model of ω-automaton semantics. Detailed specification of this

model can be found in [37]. The concepts essential for understanding this chapter

are given below for the convenience of the reader.

56

Definition 4.2.8 For an L-process, ω, its language, L(ω), is the set of all infinite

sequences accepted by ω.

Definition 4.2.9 For L-processes, ω1, . . . , ωn, their synchronous parallel composi-

tion ω = ω1 ⊗ . . . ⊗ ωn, is also an L-process and L(ω) = ∩L(ωi).

Definition 4.2.10 For L-processes, ω1, . . . , ωn, their Cartesian sum, ω = ω1⊕. . .⊕
ωn, is also an L-process and L(ω) = ∪L(ωi).

For a language, L, let CL(L) denote the safety closure [2] of L. 1

Definition 4.2.11 The safety closure CLω(ω) of an L-process ω is an L-process

whose language is the safety closure of the language of ω, L(CLω(ω)) = CL(L(ω)).

Given an L-process ω, CLω(ω) can be derived from ω by computing the Strong

Connected Components (SCCs) of the state graph of ω and for each SCC with an

accepting state, marking every state of that SCC as accepting.

Under the ω-automaton semantics model checking is reduced to checking L-

process language containment. Suppose a system is modeled by the composition

ω1⊗ . . .⊗ωn of L-processes, ω1, . . . , ωn, and a property to be checked on the system

is modeled by an L-processes, ω. The property holds on the system if and only if the

language of ω1⊗ . . .⊗ωn is contained by the language of ω, L(ω1⊗ . . .⊗ωn) ⊂ L(ω).

Definition 4.2.12 Given two L-processes ω1 and ω2, ω1 implements ω2 (denoted

by ω1 � ω2) if L(ω1) ⊂ L(ω2).
1For a language L of sequences over a set of variables, V , the safety closure of L, denoted by

CL(L), is defined as the set of sequences over V where x ∈ CL(L) if and only if for all j < |x| there
exists y such that x[0..j] : y belongs to L [4]. (|x| denotes the length of x and x : y denotes the
concatenation of x and y where x and y are sequences over V .) In [37], CL(L) is termed as the
smallest limit prefix-closed language that contains L.

57

4.3 Realization of TBCR for AIM Semantics

This section presents how TBCR is realized for the AIM semantics. First, we infor-

mally describe the AIM semantics. Then, we formalize the AIM semantics, which

enables the establishment, correctness proof, implementation, and application of

compositional reasoning rules. After that, we describe how a compositional rea-

soning rule for the AIM semantics is established. Then, we prove this rule based

on a translation from the AIM semantics to the ω-automaton semantics using the

I/O-automaton semantics as an intermediate semantics. Finally, we present the

implementation of this rule through the translation from the AIM semantics to the

ω-automaton semantics.

4.3.1 Informal Description of AIM Semantics

Under the AIM semantics, a system is a composition of processes which interact

asynchronously via message-passing. Every process has a private message queue and

locally defined variables. Behaviors of a process are captured by an extended Moore

state model and each state in the state model may have an associated state action

that is composed from executable statements such as an assignment statement, a

messaging statement, and an “if” statement. At any given moment of a system

execution, there is exactly one process that is executing either a state action or a

state transition in a run-to-completion fashion.

4.3.2 Formalization of AIM Semantics

A state in the extended Moore state model of an AIM process represents a set

of states in the state space of the process. A state action in the extended Moore

58

state model represents multiple sequences of state transitions in the state transition

structure of the process. To formally represent the extended Moore state model, we

introduce a variable, pc, whose current value captures the current state in the Moore

state model and the current position in the state action associated with the state.

The message queue of the process is also formally represented by a variable, queue,

whose domain includes all possible message permutations that may appear in the

queue. Under this representation of message queues, the execution of a messaging

statement in a process modifies the queue variable of the receiver process. With the

above representations, we formally define an AIM process.

Definition 4.3.1 An AIM process, P , is a six-tuple, (S, I, M, E, T, F), where:

• S, the state space of P , is the Cartesian product of the domains of the variables

defined in the process and the two additional variables, pc and queue.

• I is a set of initial states.

• M is a messaging interface which is a pair, (M i, Mo), where M i is the set of

messages that P inputs and Mo is the set of messages that P outputs.

• E is a set of events each of which is a state transition of the Moore state

model, or an executable statement (such as an assignment statement, a mes-

saging statement sending a message defined in Mo, or an “if” statement),

or a reception of a message defined in M i. ELOC is a subset of E including

all state transitions and executable statements in E. EEXT is a subset of E

including all messaging statements and message receptions in E.

• T is a set of state transitions defined on S and E, each of which is of the form,

(s, e, s′), where s, s′ ∈ S and e ∈ E.

59

• F is a partition of ELOC . Each element of F is termed a fairness constraint.

Definition 4.3.2 An execution of P is a finite string or an infinite sequence of

state-event pairs ((s0, e0), (s1, e1), . . .) which conforms to the run-to-completion

requirement (i.e., the action statements from a state action appear adjacently in the

execution), where s0 ∈ I and for all i, si ∈ S, ei ∈ E and (si, ei, si+1) ∈ T . Fair

executions of P are defined analogously to fair executions of an I/O-automaton.

Definition 4.3.3 A behavior of P is the projection of a fair execution of P on

EEXT of P . The language of S, L(S), is the set of all behaviors of S.

Definition 4.3.4 Given two AIM processes P and Q, P implements Q (denoted by

P |= Q) if for 4 = EEXT (P) ∩ EEXT (Q) and 4 6= ∅, Π4(L(P)) ⊂ Π4(L(Q)).

Definition 4.3.5 The interleaving composition of a finite set of interacting AIM

processes, P0, P1, . . ., and Pn, denoted by P0[]P1[] . . . []Pn, is an AIM process, P ,

derived as follows. S is the Cartesian product of S0, S1, . . ., and Sn. I is the

Cartesian product of I0, I1, . . ., and In. M i includes the remaining messages in

M i
0, M i

1, . . ., and M i
n that are not accounted for in the composition, and Mo is the

union of Mo
0 , Mo

1 , . . ., and Mo
n. E is the union of E0, E1, . . ., and En. T is defined

as follows: for s = (s0, s1, . . . , sn), s′ = (s′0, s′1, . . . , s′n), and e ∈ E, (s, e, s′) ∈ T

if and only if for all i ∈ [0, n], e ∈ Ei and (si, e, s′i) or e 6∈ Ei and s′i = si. F is

the union of the fairness partitions of the respective components.

In this formalized AIM semantics, a system, components of the system, and

properties of the system and the components are all represented by processes.

60

4.3.3 Establishment of Compositional Reasoning Rules

We establish compositional reasoning rules for the AIM semantics by porting ex-

isting rules in directly model-checkable formal semantics to the AIM semantics.

We have ported to the AIM semantics two rules that have already been established,

proven, and implemented in the ω-automaton semantics, the rule proposed by Amla,

Emerson, Namjoshi, and Trefler in [4], Rule 1, and the rule proposed by McMillan

in [46]. Below we show how Rule 1 is ported to the AIM semantics.

Rule 1 For AIM processes P1, P2, and Q, to show that P1[]P2 |= Q, find AIM

processes Q1 and Q2 such that the following conditions are satisfied.

C1: P1[]Q2 |= Q1 and P2[]Q1 |= Q2

C2: Q1[]Q2 |= Q

C3: Either P1[]CLP (Q) |= (Q + Q1 + Q2) or P2[]CLP (Q) |= (Q + Q1 + Q2)

Let P1[]P2 denote a system composed from two components, P1 and P2. Q is a

property to be checked on the system. Q1 and Q2 are properties of P1 and P2,

respectively. Condition C1 checks if P1 has the property, Q1, assuming Q2 holds on

P2, and if P2 has the property, Q2, assuming Q1 holds on P1. Condition C2 checks

if Q can be derived from Q1 and Q2. Condition C3 conducts the validity check of

circular dependencies between Q1 and Q2. (The counterpart of Rule 1 in the ω-

automaton semantics, denoted by Rule 1ω, is of the same form but with processes,

|=, [], CLP , and + replaced by their ω-automaton counterparts.)

To port compositional reasoning rules to the AIM semantics, additional se-

mantics concepts may need to be introduced for the AIM semantics. In the case of

61

Rule 1, the concepts of safety closure of an AIM process and sum of AIM processes

were defined:

Definition 4.3.6 For an AIM process, Q, the safety closure of Q, CLP (Q), is

an AIM process whose language is the safety closure [2] of the language of Q,

L(CLP (Q)) = CL(L(Q)). (CLP (Q) can be derived from Q by removing the fairness

constraints of Q.)

Definition 4.3.7 The Cartesian sum of AIM processes P and Q, denoted by P +

Q, is the AIM process that behaves either as P or as Q and with the property of

L(P + Q) = L(P) ∪ L(Q).

4.3.4 Proof via Semantics Translation

We first establish a translation from the AIM semantics to the ω-automaton se-

mantics and then prove the soundness of Rule 1 based on the translation and the

soundness proof of Rule 1ω. To establish the translation from the AIM semantics to

the ω-automaton semantics, we use the I/O-automaton semantics as an intermediate

semantics.

Translation of AIM Processes to I/O-automata

An AIM process, P , is translated to an I/O-automaton, A, through a two-step

procedure. The first step maps semantic constructs of P to semantic constructs of

A and the second step implements the run-to-completion requirement in A.

Step 1: Mapping semantic constructs

• The state space and the initial state set of P are mapped to the state space

and the initial state set of A correspondingly, which is achieved by mapping

62

the variables of P to the corresponding variables of A. (Note that the state

space of an I/O automaton is also encoded by the domains of its variables.)

• Events of P are translated to actions of A as follows:

– A state transition in the extended Moore state model of P is mapped to

an internal action of A that simulates the state transition by modifying

the variables, pc and queue, accordingly.

– An assignment statement is mapped to an internal action that modifies

the variable to be assigned by the assignment and the variable, pc.

– An “if” statement is mapped to an internal action that modifies the

variable, pc, to reflect the decision made in the “if” statement.

– A messaging statement is mapped to an output action that is also an

input action of the I/O-automaton corresponding to the receiver.

– A message reception is mapped to an input action that modifies the

variable, queue, and is also an output action of the sender I/O-automaton.

• Messages in the input (or output, respectively) interface of P are mapped to

input (or output) actions of A.

• A state transition of P , (sP , eP , s′P), is mapped to a state transition of A,

(sA, aA, s′A), where sA, aA, and s′A are the corresponding translations of sP ,

eP , and s′P as described above.

Step 2: Implementing run-to-completion requirement

• The I/O-automaton, A, resulting from Step 1 is extended with an additional

boolean variable, RtC, and two output actions, Enter and Leave. The Enter

63

action cannot be enabled unless the value of RtC is false.

• When A is composed with A′, the I/O-automaton translation of another AIM

process, P ′, the Enter and Leave actions of A are included by A′ as input

actions and vice versa.

• The transition relation of A is extended so that before A executes the first

I/O-automaton action in the sequence of I/O-automaton actions correspond-

ing to a state action of P , A executes the Enter action and after A executes

the last I/O-automaton action in the sequence of I/O-automaton actions cor-

responding to a state action of P , A executes the Leave action. (A′ is extended

in the same way.)

• The transition relation of A′ is extended so that as A executes the Enter action,

A′ sets its RtC to true and as A executes the Leave action, A′ sets its RtC to

false and vice versa.

Therefore, when a set of I/O-automata translated from AIM processes are ready to

execute their Enter actions, only one of them can proceed, execute its Enter action,

and get into the run-to-completion section. The automaton signals its leaving the

run-to-completion section by executing its Leave action. We refer to the translation

from an AIM process to its corresponding I/O-automaton as TP
A .

Theorem 4.3.1 Given an AIM process, P = P1[] . . . []Pn, and its I/O automaton

translation, A = TP
A (P1)|| . . . ||TP

A (Pn), for 4 = ΣA
P where ΣA

P is the set of external

actions of A excluding all Enter and Leave actions and 4 6= ∅, L(P)=Π4L(A).

Proof of Theorem 4.3.1: By the construction of A from P , L(P) = Π4L(A).

64

Translation of AIM Processes to ω-automata

Kurshan, Merritt, Orda, and Sachs [41] have established a translation from I/O-

automata to ω-automata, TA
ω , and proved that the translation is linear-monotone

with respect to language containment (shown in Theorem 4.3.2).

Theorem 4.3.2 For two I/O-automata, A = A1|| . . . ||Am and B = B1|| . . . ||Bn,

A ≤ B ⇐⇒ L(TA
ω (A1) ⊗ . . . ⊗ L(TA

ω (Am)) ⊂ L(TA
ω (B1) ⊗ . . . ⊗ L(TA

ω (Bn)).

Based on the translation from AIM processes to I/O-automata, TP
A , and the

translation from I/O-automata to ω-automata, TA
ω , we constructed a translation

from AIM processes to ω-automata, TP
ω . For a given AIM process, P ,

• P is first translated to an I/O-automaton TP
A (P);

• TP
A (P) is then translated to an ω-automaton TA

ω (TP
A (P)).

We demonstrate with Theorem 4.3.3 that TP
ω is also linear-monotone with respect

to language containment.

Theorem 4.3.3 For two AIM processes, P = P1[] . . . []Pm and Q = Q1[] . . . []Qn,

P |= Q ⇐⇒ L(TP
ω (P1) ⊗ . . . TP

ω (Pm)) ⊂ L(TP
ω (Q1) ⊗ . . . TP

ω (Qn)).

Proof of Theorem 4.3.3: Follows directly from Theorem 4.3.1 and Theo-

rem 4.3.2.

Lemma 4.3.1 For an AIM process P, CLω(TP
ω (P)) � TP

ω (CLP (P)).

Proof of Lemma 4.3.1:

⇒ {Definition 4.3.6, Definition 4.3.4}

65

P |= CLP (P)

⇒ {Theorem 4.3.3}

L(TP
ω (P)) ⊂ L(TP

ω (CLP (P)))

⇒ {Monotonicity of language closure}

CL(L(TP
ω (P))) ⊂ CL(L(TP

ω (CLP (P))))

⇒ {Definition 4.2.11}

L(CLω(TP
ω (P))) ⊂ CL(L(TP

ω (CLP (P))))

⇒ {A safety property is the safety closure of itself.}

L(CLω(TP
ω (P))) ⊂ L(TP

ω (CLP (P)))

⇒ {Definition 4.2.12}

CLω(TP
ω (P)) � TP

ω (CLP (P))

Lemma 4.3.2 For AIM processes P1, . . . , Pn, TP
ω (P1 + . . . + Pn) � TP

ω (P1)⊕ . . .⊕
TP

ω (Pn).

Proof of Lemma 4.3.2: Follows directly from Definition 4.3.7, Theorem 4.3.3,

Definition 4.2.10, and Definition 4.2.12.

Theorem 4.3.4 Rule 1 is sound for arbitrary AIM processes, P1, P2, and Q.

Proof Sketch of Theorem 4.3.4: Suppose Conditions C1, C2, and C3 hold

on P1, P2, and Q. Due to Theorem 4.3.3, Lemma 4.3.1, and Lemma 4.3.2, the

counterparts of Conditions C1, C2, and C3 in the ω-automaton semantics hold on

TP
ω (P1), TP

ω (P2), and TP
ω (Q). Therefore, by Rule 1ω (the counterpart of Rule 1 in

66

the ω-automaton semantics), TP
ω (P1) ⊗ TP

ω (P2) � TP
ω (Q). By Theorem 4.3.3, we

conclude that P1[]P2 |= Q. (Detailed proof of this theorem can be found in the

appendix.)

4.3.5 Implementation and Application via Model Translation

TBCR suggests that a compositional reasoning rule in the AIM semantics be imple-

mented based on the translation from the AIM semantics to the ω-automaton se-

mantics and by reusing the implementation of its equivalent rule in the ω-automaton

semantics. We first introduce an implementation of the AIM-to-ω-automaton trans-

lation and an implementation of Rule 1ω (the ω-automaton semantics counterpart of

Rule 1) in the ω-automaton semantics. We then discuss how Rule 1 is implemented

and applied.

Translation from xUML to S/R

xUML [47] is an executable dialect of UML whose semantics conforms to the AIM

semantics given in this chapter. S/R [28] is an automaton language whose semantics

conforms to the ω-automaton semantics. In Chapter 3, we have presented a transla-

tor from xUML to S/R. Given a system modeled in xUML and a property specified in

an xUML level property specification language, the translator automatically trans-

lates the design and the property to an S/R model and an S/R property. The S/R

property is then checked on the S/R model by the COSPAN [28] model checker. The

property holds on the system if and only if the S/R property is successfully verified

on the S/R model. As shown in Figure 4.1, the xUML-to-S/R translation syntac-

tically translates an xUML model into S/R, which also implements the semantics

67

Semantics
Conformance

Semantics Mapping

Semantics
Conformance

AIM

xUML S/R
xUML−to−S/R translation

Omega−automata

Figure 4.1: xUML-to-S/R translation implements the translation from AIM to ω-
automata

mapping from the AIM semantics to the ω-automaton semantics.

Existing Implementation of Rule 1ω in S/R

Rule 1ω has been implemented in S/R [4]. Since in S/R, systems, components,

assumptions, and properties are all modeled as ω-automata which can be trivially

composed, verification of component properties (Condition C1) and derivation of a

system property from component properties (Condition C2) are discharged in the

same way as a property is checked on a system. Validation of circular dependencies

(Condition C3) additionally requires construction of the safety closure of an ω-

automaton (which has been discussed in Section 4.2.2).

Implementation and Application of Rule 1 in xUML

The xUML-to-S/R translator requires that an xUML model to be translated specify

a closed system. To support Rule 1, the translator is extended to allow a closed

system formed by a component of a system and its assumptions on the rest of

the system (i.e. properties that the component assumes the rest of the system to

68

have). The extension is simplified by the fact that in S/R, systems, components,

assumptions, and properties to be checked are all modeled as ω-automata which

can be trivially composed. Based on the implementation of Rule 1ω in S/R and the

extended xUML-to-S/R translator, compositional reasoning using Rule 1 is applied

in model checking software systems modeled in xUML as follows:

• Given a system in xUML and a property to be checked, the system is decom-

posed on the xUML level and premises of Rule 1 are formulated in xUML.

• These premises are discharged by translating them to their counterparts in

S/R using the extended xUML-to-S/R translator and discharging their coun-

terparts using the implementation of Rule 1ω in S/R.

Correct application of Rule 1 then depends on the correctness of the translation

from xUML to S/R and the correctness of the implementation of Rule 1ω in S/R.

4.4 Summary

TBCR is a simple and effective approach to application of compositional reasoning in

the context of model checking software systems through translation. It simplifies the

correctness proof of compositional reasoning rules in software semantics and reuses

existing proofs and implementations of compositional reasoning rules in directly

model-checkable semantics. Its feasibility and effectiveness has been demonstrated

by its realization for the AIM semantics and two applications of this realization: (1)

in the integrated state space reduction framework, presented in Chapter 5, and (2)

in the approach to component verification, presented in Chapter 6.

69

Appendix: Detailed Proof of Theorem 4.3.4

Proof of Theorem 4.3.4:

P1[]Q2 |= Q1

⇒ {Theorem 4.3.3}

TP
ω (P1) ⊗ TP

ω (Q2) � TP
ω (Q1) (4.1)

P2[]Q1 |= Q2

⇒ {Theorem 4.3.3}

TP
ω (P2) ⊗ TP

ω (Q1) � TP
ω (Q2) (4.2)

Q1[]Q2 |= Q

⇒ {Theorem 4.3.3}

TP
ω (Q1) ⊗ TP

ω (Q2) � TP
ω (Q) (4.3)

P1[]CLP (Q) |= (Q + Q1 + Q2)

⇒ {Theorem 4.3.3}

TP
ω (P1) ⊗ TP

ω (CLP (T)) � (TP
ω (Q + Q1 + Q2))

⇒ {Lemma 4.3.1, Lemma 4.3.2}

TP
ω (P1) ⊗ CLω(TP

ω (T)) � (TP
ω (Q) ⊕ TP

ω (Q1) ⊕ TP
ω (Q2)) (4.4)

P2[]CLP (Q) |= (Q + Q1 + Q2)

70

⇒ {Theorem 4.3.3}

TP
ω (P2) ⊗ TP

ω (CLP (Q)) � (TP
ω (Q + Q1 + Q2))

⇒ {Lemma 4.3.1, Lemma 4.3.2}

TP
ω (P2) ⊗ CLω(TP

ω (Q)) � (TP
ω (Q) ⊕ TP

ω (Q1) ⊕ TP
ω (Q2)) (4.5)

{(1), (2), (3), (4), (5)}

⇒ {Rule 1ω}

TP
ω (P1) ⊗ TP

ω (P2) � TP
ω (Q)

⇒ {Theorem 4.3.3}

P1[]P2 |= Q (4.6)

71

Chapter 5

Integrated State Space

Reduction Framework

5.1 Motivation and Overview

Executable software system designs are ideal candidates for model checking due to

their complete execution semantics and natural incorporation of state models. Their

major features potentially enable effective state space reductions, for instance, com-

positional structures may lead to effective decompositions, inheritance relationships

may facilitate abstractions, and multiple instances of a class may simplify the iden-

tification of symmetries.

This chapter defines and describes a general framework for integrated state

space reduction in model checking executable software system designs. The frame-

work assumes that the executable system designs can be translated into model-

checkable languages and is discussed using system designs modeled in xUML. Under

72

the framework, state space reduction algorithms are applied in an integrated way to

xUML models before and during the translation and to the resulting S/R models.

Interactions among these algorithms are explored to maximize the aggregate effect

of state space reduction.

Many software system designs are constructed following domain-specific de-

sign patterns that provide information about structures and behaviors of these sys-

tems. Reduction algorithms such as compositional reasoning [53, 1, 3, 46, 4, 19]

abstraction [17], and symmetry reduction [16], whose effectiveness depends on struc-

tures and behaviors of software systems, can be readily formulated on design models

due to the fact that execution behaviors of different components are more observ-

able at the design level and due to the existence of domain-specific design patterns.

State space reduction algorithms are often applied in combinations. These facts

taken together suggest instantiating the general state space reduction framework

for different application domains based on domain-specific design patterns.

Distributed transaction systems, which are commonly constructed in a de-

sign pattern of dispatchers, agents, and servers with customer initiated transactions

as observable units of work, are examples of a family of systems for which a struc-

tured process for applying state space reduction algorithms at the design model

level can be formulated. We illustrate the general framework with its instantia-

tion for distributed transaction systems, a systematic process for reducing model

checking a property on the design model of a transaction system to discharging a

well-defined set of less complex model checking problems. The process represents

a transaction as message sequences, associates the property to be checked with a

transaction, partitions the model into sub-models, and decomposes the property

73

into sub-properties and assumptions defined over these sub-models. The process is

evaluated by its application in model checking an online ticket sale system [64]. The

dimension of transaction systems that can be model checked is materially extended

by this process.

There has been extensive research on state space reduction algorithms for

either hardware systems or software systems, which is surveyed in [17]. Our work,

instead of focusing on particular state space reduction algorithms, explores the inte-

grated application of reduction algorithms in the context of the general framework

and investigates how domain-specific design patterns can help adapt the general

framework to different application domains to achieve more automatic and effective

state space reduction. Our work is distinguished from the integrated state space re-

duction for hardware systems [46] by focusing on software systems and incorporating

both reduction algorithms effective for asynchronous semantics and those effective

for synchronous semantics.

Section 5.2 defines the general framework, briefly describes the state space

reduction algorithms applied in the context of the framework, and gives some guide-

lines for when to apply each state space reduction algorithm and for the application

order of these algorithms. Section 5.3 sketches the partially implemented automa-

tion support for the general framework. Section 5.4 defines, describes, and illustrates

the instantiation of the general framework on distributed transaction systems. Sec-

tion 5.5 evaluates the instantiation with results from model checking an online ticket

sale system. Section 5.6 summarizes.

74

5.2 Integrated State Space Reduction

In this section, a structured framework for integrated application of state space

reduction algorithms to executable object-oriented software system designs is de-

fined. The framework is presented for system designs modeled in xUML, but can

be used to structure integrated state space reduction for other representations. The

state space reduction algorithms being applied in the context of this framework are

described and interactions among these algorithms are discussed.

5.2.1 General Framework

The model checking process for an xUML model, presented in Chapter 3, is a se-

quential application of the following two procedures:

• xUML-to-S/R translation that translates the xUML model and an xUML level

property to be checked on the model to an S/R model and an S/R property;

• S/R level model checking that checks the S/R property on the S/R model by

invoking the COSPAN model checker.

The process, referred to as the basic model checking process in Figure 5.1, works

effectively on xUML models with small numbers of class instances, but cannot scale

due to the state space explosion problem. On the other hand, for well-structured

xUML models, there are system structure and property specific reduction algo-

rithms at the xUML model level, which cannot be recognized by the xUML-to-S/R

translator and the COSPAN model checker, but which can effect major state space

reduction on the resulting S/R model that is to be model checked. Therefore, the

general framework prefaces the basic model checking process with a user-driven state

75

xUML−to−S/R Translation

Verification Task

Basic Model Checking Process

Subtask

Reduced
xUML Model xUML Query

Reduced

Partial Order Reduction

Abstraction
Symmetry Reduction

Symbolic Verification
Localization Reduction

xUML Property

Decomposition
User−driven State Space Reduction

S/R Model S/R Query

S/R Model Checking

Success Report / Error Track

xUML Model

Figure 5.1: Reduction hierarchy of general framework

reduction procedure.

The general framework establishes a three-level hierarchy for integrated state

space reduction, as shown in Figure 5.1. Different reduction algorithms are invoked

on different levels of the hierarchy and applied to models of different forms:

• In the user-driven state space reduction procedure, user-driven reduction al-

gorithms such as decomposition, abstraction, and symmetry reduction are

applied to reduce a complex model checking task T , a complex property on

a complex xUML model, into a set of subtasks. Each subtask checks a sub-

property of the original property on a sub-model of the original model. A

sub-model is either a component or an abstraction of the original model. Each

76

subtask is either discharged by invoking the basic model checking process or

further reduced. The reductions applied are validated by invoking the basic

model checking process or conducting a simple theorem proving.

• In the xUML-to-S/R translation procedure, automatic reduction algorithms,

such as static partial order reduction, are applied, which transform an xUML

model prior to its translation into S/R with respect to a given xUML property

and construct an equivalent model that has a smaller state space.

• In the S/R level model checking procedure, automatic reduction algorithms

implemented by COSPAN, such as symbolic model checking and localization

reduction, are applied. These algorithms make use of the semantic information

of an S/R model to reduce the state space to be explored by COSPAN.

Under the general framework, the extended model checking process for xUML

models operates recursively and interactively as shown in Figure 5.2. A model

checking task, T0, is recursively reduced into subtasks. A reduction conjecture from

users is always validated before its resulting model checking subtasks are discharged.

The basic model checking process becomes a model checking engine for discharging

subtasks. When a reduction conjecture or a subtask is verified to be false, user

interaction is requested. Upon user inputs, either a new reduction conjecture is

introduced, or the process is aborted.

5.2.2 Major State Space Reduction Algorithms

There are many possible state space reduction algorithms that can be applied to

xUML models under the general framework. Some of them are summarized below.

77

Enqueue(ToDo, T0); Done ={ }; /* ToDo is a queue and Done is a set. */
Do

T = Dequeue(ToDo);
If (T is Directly Model-Checkable) Then

If (Basic-model-checking-process(T)) Then
Done = Done + {T}; Continue;

Else
Error-report-generation(T); Invoke-user-interface ();

End;
< T1, . . . , Tn > = User-driven-state-space-reduction(T);
If (Valid(T , < T1, . . . , Tn >) Then Enqueue(ToDo, T1, . . . , Tn);
Else

Error-report-generation(T , < T1, . . . , Tn >); Invoke-user-interface();
End;

Until (Empty(ToDo));

Figure 5.2: Recursive and interative model checking process of general framework

Decomposition

The compositional hierarchy, the asynchronous message communication semantics,

and the interleaving execution semantics of xUML make decomposition a natural

state space reduction algorithm for xUML models.

• Compositional Reasoning [53, 1, 3, 46, 4, 19] The hierarchical structure of

an xUML model may be explored to decompose the model into components

that have simple and clear interfaces. A property on the xUML model can

often be broken into a set of sub-properties on the model, its components,

or its abstractions. Checking the sub-properties is simpler than checking the

original property and verification of the sub-properties guarantees verifica-

tion of the original property. Dependencies among components are formu-

lated as assumptions of each component on other components. Therefore, a

sub-property can be checked on a component under its assumptions, which

78

consumes less memory and time than checking the sub-property on the origi-

nal model. Compositional reasoning is applied following the translation-based

approach presented in Chapter 4.

• Case Splitting [46] In many xUML models, concurrent operations may often

be grouped into units of work, for example, transactions in an e-business

system. There may be little or no interaction among these units of work.

If a property on the whole system can be decomposed into sub-properties on

units of work and the units of work can be decoupled when these sub-properties

are checked, significant state space reduction can often be achieved.

Abstraction

Three abstraction algorithms can be applied:

• State Model Abstraction [37] If a property is over one or several compo-

nents of a system, state models in the components not directly involved in the

property may be abstracted to reduce the state space to be explored for check-

ing the property. If the abstraction is sound (Executions of the abstract system

contain all behaviors of the original system.), then if the property is verified

to be true on the abstract system, it will also be true on the original system.

The most common form of state model abstraction is the non-deterministic

abstraction. For instance, a decision point in a state model may be made non-

deterministic and a set of state models that are only differentiated by their

unique identifiers may be simulated by a state model with a non-deterministic

identity. A major advantage of non-deterministic abstraction over other kinds

of state model abstraction is that its correctness is automatically guaranteed.

79

• Data Abstraction [17] If a mapping can be found between data values of an

xUML model and a small set of abstract data values, then an abstract xUML

model that simulates the original model can be constructed by extending the

mapping to states and transitions. Since the state space of the abstract model

is usually smaller, it is often easier to check properties on the abstract model.

• Localization Reduction [37] Given a model and a property, localization

reduction, also known as cone of influence reduction [17], eliminates variables

in the model that do not influence the variables in the property. The checked

property is preserved, but the size of the model to be checked is smaller.

Symmetry Reduction

Symmetry reduction can often reduce the number of properties to be checked on an

xUML model or the state space size of the model.

• Symmetric Property Reduction [37] Given two properties on an xUML

model, if a nontrivial mapping can be defined among variables in the model

or among values of variables, which maps the model to itself and the two

properties to each other, then only one of the two properties need to be checked

on the model.

• Quotient Model Reduction [16] Having symmetry in a model implies the

existence of nontrivial permutation groups that preserve both the state label-

ing and the transition relation. The quotient model induced by this relation is

often smaller than the original model. Moreover it is bisimulation equivalent

to the original model. Therefore, all properties on the original model can be

instead checked on the quotient model.

80

Partial Order Reduction

Partial order reduction [25] [52] [62] takes advantages of the fact that, in many cases,

when components of a system are not tightly coupled, different execution orders of

actions or transitions of different components may result in the same global state.

Then, under some conditions, in particular, when the interim global states are not

relevant to the property being checked, model checkers only need to explore one of

the possible execution orders. This may radically reduce model checking complexity.

Asynchronous interleaving semantics of xUML suggest application of static

partial order reduction [39] to an xUML model prior to its translation into S/R,

which transforms the xUML model by restricting its transition structure with respect

to a property to be checked. This enables integrated application of partial order

reduction while applying symbolic model checking to the S/R model.

Symbolic Model Checking

Symbolic model checking [45] represents the state transition structure of an xUML

model with binary decision diagrams, which enables manipulation of entire sets of

states and transitions instead of individual states and transitions. This heuristic

is fully automatic and has shown encouraging reduction promise on some xUML

models. (To be elaborated in Section 5.5).

5.2.3 Interactions among Reduction Algorithms

Under the general framework, state space reduction algorithms are applied to xUML

models in an integrated way. To maximize the aggregate effect of state space reduc-

tion, the selection of reduction algorithms and the application order of the selected

81

reduction algorithms need to be carefully considered.

Selection of Reduction Algorithms

The structure of an xUML model and the knowledge of its execution behavior can

help select the reduction algorithms to be applied to the model:

a. Symmetry reduction is often selected if there exist many instances of the same

class;

b. Partial order reduction is often selected if there is intensive execution inter-

leaving;

c. Symbolic model checking is often selected if there is much randomness.

d. Localization reduction is always applied to S/R models.

xUML models from different application domains, different xUML models from the

same application domain, or different properties on the same xUML model may

lead to different selections of reduction algorithms. Therefore, domain, model, and

property specific knowledge need to be involved in the algorithm selection besides

the selection guidelines provided.

Application Order of Reduction Algorithms

To maximize the state space reduction effect, it is always attempted to apply each

reduction algorithm to the minimum models with which the algorithm has to deal.

Therefore, the framework hard-codes some application ordering relations among

reduction algorithms:

82

• Algorithms in the user-driven reduction procedure are always applied prior to

algorithms in the xUML-to-S/R translation procedure.

• Algorithms in the xUML-to-S/R translation procedure are always applied prior

to algorithms in the S/R level model checking procedure.

• In the S/R level model checking procedure, localization reduction is always

applied prior to symbolic model checking.

There is no ordering relation defined among reduction algorithms applied in the user-

driven reduction procedure because the ordering relations among these algorithms

are also domain, model, and property specific.

5.2.4 Instantiation of General Framework for Application Domains

The framework defines a general process for structuring integrated state space re-

ductions, but requires certain amount of user interaction. System designs from the

same application domains commonly follow a set of domain-specific design patterns

and require satisfaction of properties in similar formats. Therefore, domain-specific

design patterns and property patterns can often be explored to establish an instanti-

ation of the general framework for a given domain. The instantiation should provide

additional guidelines for selecting reduction algorithms and additional relations for

ordering these reduction algorithms. With these extra efforts, the instantiation

may significantly reduce the user interaction required and make the integrated state

space reduction for the given domain more automatic and effective. In Section 5.4,

we demonstrate how the general framework is instantiated by instantiating it for

distributed transaction systems.

83

5.3 Automation of Integrated State Space Reduction

Automation support, which is crucial to the wide application of the general frame-

work, is provided by extending the xUML-to-S/R translator and introducing a re-

duction manager.

5.3.1 Extension to xUML-to-S/R Translator

The xUML-to-S/R translator was extended by incorporating the optimization mod-

ule of SDLCheck [42] that implements static partial order reduction and other

software-specific model checking optimizations. These optimizations transforms the

xUML model with respect to the xUML property before the translation into S/R

and can be switched on or off without affecting the translation.

5.3.2 Reduction Manager

A reduction manager has been designed and partially developed, which coordinates

the recursive model checking process in Figure 5.2. If the current subtask is not

directly model-checkable, the manager invokes a user interface to input:

• Selected reduction algorithms and their application order;

• Sub-properties of a complex xUML property;

• Boundaries and environment assumptions of a system component;

• Correspondence between sub-properties and components (or units of work);

• Class instances involved in a unit of work;

• Abstract state models and their corresponding concrete state models;

84

• Abstract data types and their mapping relations to concrete data types;

• Symmetries among class instances (or properties).

The inputs form a reduction conjecture. The manager applies the selected user-

driven reduction algorithms in the user-defined order and generates subtasks. The

manager then validates the reduction conjecture by invoking either the basic model

checking process or a theorem prover. If the reduction conjecture is not valid,

an error handling user interface is invoked to report the error and request a new

reduction conjecture or termination of the model checking process.

If the current subtask is model-checkable, the manager invokes the basic

model checking process to discharge the task. Several tasks can be discharged si-

multaneously if there is no dependency among them. If a subtask is checked to be

false, the manager rolls the whole model checking process back to the reduction that

generates the false task and invokes the error handling interface.

5.4 Framework Instantiation on Transaction Systems

Transaction systems such as banking systems and online sale systems play more

and more important roles in the electronic infrastructure of our society. These

systems are complex and require high reliability. Their designs follow similar pat-

terns. Therefore, it is worthwhile to instantiate the integrated state space reduction

framework for model checking xUML models of transaction systems.

85

5.4.1 Common Patterns of Transaction Systems

A transaction system executes transactions concurrently. A transaction consists of

sequences of interactions among system components. Transactions may be of differ-

ent types and transactions of the same type are often symmetric. The correctness

of the system can be established by determining the correctness of each transaction

it performs and the correctness of interactions among transactions.

Definition 5.4.1 The model, M , of a transaction system, S, is the xUML model of

S, which consists of a set of interacting class instances. A model, M ′, is a sub-model

of M if M ′ consists of a subset of class instances of M .

Definition 5.4.2 A transaction type, T , of M is a message sequence template,

which consists of sequences of message types defined in M . An instance of T is

a transaction executed by M , whose message sequences follow T . A type, T ′, is a

subtype of T if each sequence in T ′ is a sub-sequence of a sequence in T .

Definition 5.4.3 A transaction property, P , is a temporal logic predicate over all

instances of a transaction type, T , or over an instance of T .

Definition 5.4.4 A model checking task is a tuple, < M,T, P,A >, where M is a

model, T is a transaction type defined on M , P is a transaction property defined on

T , and A is the set of assumed temporal properties defined on the environment of

M . The environment of M is the aggregation of all inputs to M . A model checking

task, < M ′, T ′, P ′, A′ >, is a subtask of < M,T, P,A > if M ′ is a sub-model of

M , T ′ is a subtype of T , and P ′ is a temporal predicate that is defined on M ′ and

derived from P through reductions such as decompositions, and A′ is the union of

86

A and a set of assumed properties on M − M ′. Each assumed property in A or A′

is a tuple of a temporal predicate and a model (or the environment) on which the

predicate is defined.

Definition 5.4.5 A model checking task, < M,T, P,A >, is directly model-checkable

if it can be discharged by the basic model checking process using a reasonable amount

of time and memory.

5.4.2 Domain-Specific Reduction Algorithm

The domain-specific reduction algorithm for checking a task, < M̂, T̂ , P̂ , Â >, on a

transaction system is given in Figure 5.3. For simplicity, only the reduction aspect

of the algorithm is covered in Figure 5.3. The algorithm constructs the reduction

tree for < M̂, T̂ , P̂ , Â > on-the-fly. The root of the tree is < M̂, T̂ , P̂ , Â >. Each

non-root node in the tree is a subtask of its parent. The tree is expanded in a

breadth first fashion. Every execution of the do loop either discharges a task at a

leaf of the tree or expands the tree by reducing the task into its subtasks through

symmetry reduction, decomposition, or case splitting. The expansion stops when

all subtasks at the leaves of the tree are directly model-checkable.

5.4.3 Case Study: An Online Ticket Sale System

The xUML model of an online ticket sale system [64], M0, is employed to illustrate

the domain specific reduction algorithm for transaction systems. There are four

classes in the system: Customer, Dispatcher, Agent, and Ticket Server. Both the

Dispatcher class and the Ticket Server class have only one instance. The Agent class

and the Customer class may have an arbitrary number of instances. The system

87

Enqueue(ToDo, < M̂, T̂ , P̂ , Â >); Done ={ };
Do

< T,M,P,A > = Dequeue(ToDo);
If (< T,M,P,A > is Directly Model-Checkable) Then
Model check < T,M,P,A >; Done = Done + {< T,M,P,A >}; Continue;
End;
If (P is a property over all instances of T) Then
Reduce P with Symmetry Reduction to P1 where P1 is on Instance 1 of T ;
Enqueue(ToDo, < T,M,P1, A >); Continue;
End;
If (M consists of instances from different classes) Then
Current = The first class that appears in T ;
Decompose M into M1={All instances of Current} and M2=M − M1;
Decompose T into T1 performed by M1 and T2 performed by M2;
Decompose P into P1, . . . , Pi on M1 and Pi+1, . . . , Pm on M2;
U1 = {P1, . . . , Pi}; U2 = {Pi+1, . . . , Pm}; D1 = { }; D2 = { };
While(!Empty(U1) or !Empty(U2))

If (!Empty(U1)) THEN
P ′ = Remove-an-element(U1); A′ = {Assumptions of P ′ on M2}
Enqueue(ToDo, < T1,M1, P

′, A′ >); D1 = D1 + {P ′};
U2 = U2 + A′ − D2;
End;
If (!Empty(U2)) THEN
P ′′ = Remove-an-element(U2); A′′ = {Assumptions of P ′′ on M1}
Enqueue(ToDo, < T2,M2, P

′′, A′′ >); D2 = D2 + {P ′′};
U1 = U1 + A′′ − D1;

End;
End;
End;
If (M consists only of all instances of a class, C) Then
Reduce M with Case Splitting to M1 where M1 = {Instance 1 of C};
Enqueue(ToDo, < T,M1, P,A >); Continue;
End;

Until (Empty(ToDo));

Figure 5.3: Domain specific reduction algorithm for transaction systems

88

Hold

Held / Later / Out

Request

TryLater

Buy / Release

Payment

Ticket
Reset

Assignment

Branching Point 1

Branching Point 2

TicketHeld / TryLater / SoldOutBranching Point 3

Branching Point 4

Customer (C) Ticket_Server (TS)Agent (A)Dispatcher (D)

Figure 5.4: Message sequence diagram of ticketing transaction

processes ticketing transactions of the type, T0, concurrently for many customers.

The message sequence diagram of T0 is shown in Figure 5.4. T0 has four branching

points where the decisions made affect the message sequences:

1. Upon processing a request message from a customer, the dispatcher assigns an

idle agent to the customer if there is an idle agent; Otherwise, the dispatcher

replies to the customer with a TryLater message;

2. Upon processing a Hold message from an agent, the ticket server replies to the

agent with: A Held message if the number of tickets available is greater than

the requested number; A Later message if the sum of tickets available or being

held is greater than the requested number; An Out message otherwise;

89

3. Upon receiving a TicketHeld message from an agent, the customer may or may

not reply to the agent with its payment;

4. If the valid payment from the customer is received before the agent times out,

the agent sends a Ticket message to the customer and a Buy message to the

ticket server; Otherwise, it sends a Release message to the ticket server.

A property which should hold on each transaction of the type, T0, is that

after a request message from a customer is processed by the dispatcher, eventually

the system will send a TicketHeld message, or a TryLater message, or a SoldOut

message back to the customer. The property is formulated as P0 in Figure 5.5

using the xUML level property specification language introduced in Section 3.4. For

simplicity, in Figure 5.5 some details are left out and i (or j, respectively) is used

to index a general instance of the Customer class (or the Agent class).

Although the structure of the system is simple, the arbitrary number of

customers and agents make directly model checking P0 infeasible even for the most

powerful model checkers. Therefore, the domain specific reduction algorithm is

applied to reduce the model checking task, < M0, T0, P0,Φ >. The assumption set is

empty since customers are also modeled as class instances in M0. The sub-properties

involved in the reduction process are defined in Figure 5.5. The sub-transactions

and the sub-models involved in the process are shown in Figure 5.6. The reduction

tree generated by the process is shown in Figure 5.7. Assumptions of a subtask are

represented in Figure 5.7 by dashed arrows which lead to the subtasks that check

the assumed properties on the corresponding sub-models. Reductions applied in the

process are grouped into six general steps as follows:

90

P0 : After Request(i) Eventually TicketHeld(i) or TryLater(i) or SoldOut(i)

P1 : After Request(1)
Eventually TicketHeld(1) or TryLater(1) or SoldOut(1)

P21: After Request(1) and Forall k { D.Agent Free[k] = FALSE }
Eventually TryLater(1)

P22: After Request(1) and Exists k { D.Agent Free[k] = TRUE }
Eventually Assignment(j, 1) and A(j).$ = Idle
/* A(j).$ represents the current state of the class instance, A(j). */

P23: After Assignment(j, 1) and A(j).$ = Idle
Eventually TicketHeld(1) or TryLater(1) or SoldOut(1)

P31: After A(j).$ = Idle Always A(j).$ = Idle UntilAfter Assignment(j)
P32: After Assignment(j) and A(j).$ = Idle Eventually Reset(j)
P33: After Reset(j) Eventually A(j).$ = Idle

P41: After A(1).$ = Idle Always A(1).$ = Idle UntilAfter Assignment(1)
P42: After Assignment(1) and A(1).$ = Idle Eventually Reset(1)
P43: After Reset(1) Eventually A(1).$ = Idle
P44: After Assignment(1) and A(1).$ = Idle

Eventually TicketHeld(1) or TryLater(1) or SoldOut(1)

P5 : After Hold(j) Eventually Held(j) or Later(j) or Out(j)

P6 : After Hold(1) Eventually Held(1) or Later(1) or Out(1)

Figure 5.5: Original property and all intermediate sub-properties

Step 1: Symmetry Reduction P0 is a temporal predicate over all transactions

of the type T0. Since customers are symmetric to each other, checking P0 on M0

is reduced to checking P1 on M0 where P1 is a predicate only over the transaction

that involves Customer 1.

Step 2: Compositional Reasoning T0 is decomposed into three sub-transaction

types, T11, T12 and T13. M0 is decomposed into three sub-models, M11, M12, and

M13. Transactions of the types, T11, T12 or T13, are conducted by M11, M12, or M13

91

Customers
Dispatcher
Agents
Ticket Server

Agent

Customers

Dispatcher

Agents
Ticket Server

Agents

Ticket Server

T0, M0

T11, M11

T12, M12

T13, M13

T22, M22

T21, M21 T3, M3

Figure 5.6: Decomposition relations among sub-models involved in reduction

respectively. P1 is decomposed into three sub-properties: P21, P22, and P23. P21

is directly model-checkable on M12 without any assumption on M11 or M13. P22 is

directly model-checkable on M12 by assuming that P31, P32, and P33 hold on M13.

Step 3: Symmetry Reduction In M13, agents are symmetric. P31, P32, P33, and

P23 have no assumption on M11 and M12. Therefore, checking P31, P32, P33, and

P23 on M13 is reduced to checking P41, P42, P43, and P44 on M13.

Step 4: Compositional Reasoning T13 is further decomposed into two subtypes:

T21 and T22. Accordingly, M13 is decomposed into two sub-models: M21 and M22.

Transactions of the types T21 or T22 are conducted by M21 or M22 respectively.

Checking P41, P42, P43, and P44 on M13 is reduced to checking P41, P42, P43, and

P44 on M22 by assuming P5 holds on M22.

Step 5: Case Splitting In M21, under the assumption P5 on M22, transactions

of the type T21 and performed by agents are independent of each other. Therefore

P41, P42, P43, and P44 is instead checked over M3 by assuming P5 on M22.

Step 6: Symmetry Reduction In M22, transactions of the type, T22, are sym-

metric. Therefore, checking P5 on M22 is reduced to checking P6 on M22.

92

<T13, M13, P23><T12, M12, P21> <T12, M12, P22>

Reduction Step

Assumption Relation

Reduction Relation

< ... > Verification Subtask

Legend

<T0, M0, P1>

<T13, M13, P31> <T13, M13, P32> <T13, M13, P33>

(3)

<T13, M13, P41>

<T21, M21, P43><T21, M21, P42>

<M22, T22, P5>

<T21, M21, P41>

<T13, M13, P42> <T13, M13, P43>

<T21, M21, P44>

<T13, M13, P44>

<M22, T22, P6>

(6)

<T0, M0, P0>

(1)

(2)

(4)

(5)

<T21, M3, P41> <T21, M3, P42> <T21, M3, P43> <T21, M3, P44>

Figure 5.7: Reduction tree for verifying P0 on online ticket sale system

5.5 Evaluation of Integrated State Space Reduction

Under the general framework, reduction algorithms applied in the user-driven re-

duction procedure recursively break a complex model checking task into subtasks

that are directly model-checkable while reduction algorithms applied in the other

two procedures facilitate directly model checking larger tasks. In this section, ex-

periment results from the model checking study of the online ticket sale system are

employed to evaluate the integrated application of these algorithms.

5.5.1 Evaluation of User-Driven Reduction Algorithms

Statistics from model checking Property P0 in Figure 5.5 on the xUML model of

the online ticket sale system are employed to demonstrate the effectiveness of the

user-driven reduction algorithms. The memory and time usage for directly model

checking P0 is compared with the memory and time usage for checking the subtasks

93

generated by applying these reduction algorithms.

Directly model checking P0 on the xUML model with two customer instances

and two agent instances requires two separate model checking runs, one for each

customer instance. With state partial order reduction (SPOR) and symbolic model

checking (SMC) applied, each run takes 152.79 megabytes and 16273.7 seconds.

The complexity of the xUML model increases rapidly as the number of customers

increases. Directly model checking P0 on the xUML model with 6 customer in-

stances cannot be fulfilled. Therefore, directly model checking the xUML model

with arbitrary number of customers is not feasible.

The memory and time usage for model checking each subtask from the re-

duction tree in Figure 5.7 is shown in Table 5.1. It can be observed that the memory

Criteria P21 P22 P41 P42 P43 P44 P6

Memory 0.30M 0.95M 0.28M 0.29M 0.28M 0.29M 0.35M
Time 0.02S 1.81S 0.01S 0.04S 0.01S 0.04S 0.63S

Table 5.1: Time and memory usage of subtasks in verifying P0

and time usage for each subtask is substantially lower than that for directly model

checking P0 on the xUML model with two customers. The model checking result

from the reduction process can be scaled up to xUML models with arbitrary number

of customer and agent instances by further applying non-deterministic abstraction

and symmetry reduction. The complexity of symmetric property reduction is not

shown due to an unfinished feature of our reduction system. However, the complex-

ity is theoretically bounded by the complexity of the static structure of an xUML

model because the reduction only checks the static structure of the model instead

of exploring the full state space of the model.

94

5.5.2 Evaluation of SPOR, SMC, and Their Combined Application

Being able to directly discharge larger model checking tasks reduces user interaction

and makes the integrated state space reduction more automatic. Currently, to scale

up directly model-checkable tasks, SPOR is applied in the xUML-to-S/R translation

and SMC is applied in the S/R level model checking. To demonstrate the reduction

SPOR SMC Memory Usage Time Usage
Off Off 167.072M 193748S
On Off 16.0604M 10476.5S
Off On 142.746M 471.32S
On On 102.527M 280.1S

Table 5.2: Model checking memory and time usage comparison

ability of SPOR and SMC, Property P21 in Figure 5.5 is directly checked on the

whole model under the four possible on/off combinations of SPOR and SMC. The

model checking complexities under the four combinations are compared in Table 5.2.

It can be observed that both SPOR and SMC lead to significant reduction on the

model checking complexity. SPOR offers a better memory usage while SMC offers

a better time usage. Their combined application achieves the best time usage with

a medium memory usage.

5.6 Summary

This chapter defines and describes a general framework for integrated state space

reduction in model checking executable software system designs. The framework is

presented for system designs modeled in xUML, but is readily applicable to other

representations. Partially implemented automaton support for the framework is

95

discussed. The framework is illustrated by its instantiation for distributed transac-

tion systems and is evaluated by applying the instantiation in model checking an

online ticket sale system. The dimension of the software system designs that are

model-checkable is found to be substantially extended.

In essence, the integrated state space reduction framework conducts a sys-

tematic top-down decomposition of a complex software system into directly model-

checkable components by exploring domain-specific knowledges. The framework

explores the compositional structures of software systems. In CBD, a system is

developed through bottom-up component composition and the compositional struc-

tures of the system and its recursive components are intentionally introduced. In

Chapter 6, we discuss how to integrate model checking into CBD by exploring the

compositional structures introduced by CBD.

96

Chapter 6

Verified Systems by

Composition from Verified

Components

6.1 Motivation and Overview

Component-Based Development (CBD) [61], developing software systems through

composition of components, is one of the most important technical initiatives in soft-

ware engineering. Model checking provides exhaustive state space coverage for the

systems being checked and is particularly effective at detecting coordination errors

which frequently result from component compositions and are notoriously difficult

to detect. However, model checking often cannot handle large-scale software sys-

tems due to state space explosions. Model checking and CBD are synergistic. Model

checking can potentially enable effective development of more reliable component-

97

based software systems. CBD introduces compositional structures, clean component

interfaces, and standard composition rules to the systems being built, which may

reduce the state spaces that model checkers have to handle.

This chapter defines, discusses, and illustrates an approach to integration of

model checking into the CBD of software systems, which contributes to solution of

the following fundamental problems in CBD and model checking:

• Developing components which can be reused with certainty that their behav-

iors will meet their specifications in a proper composition;

• Identifying proper components for a composition;

• Establishing that a component composed from “correct” components will meet

its specifications;

• Alleviating the state space explosion problem.

This approach can be summarized as follows:

• As a software component is built, temporal properties of the component are

specified, verified, and then packaged with the component.

• Selecting a component for reuse considers not only its functionality but also

its temporal properties.

• Verification of properties of a composed component reuses verified properties of

its sub-components and is based on compositional reasoning [53, 1, 3, 46, 4, 19].

A general component model that enables component verification is defined.

This model provides a framework for representing components and their properties

98

and for composing components. In this model, a property of a component is defined

with assumptions on the environment of the component. The property is verified on

the component under these assumptions. When the component is reused in the com-

position of a larger component, the verified property is enabled if the environment

assumptions made in its verification hold on other components in the composition

and/or the environment of the composed component. (The formal definition of an

enabled property is given in Section 6.3.5).

The general component model can be instantiated on existing computation

models upon which syntax and semantics for components, properties, and compo-

nent compositions are precisely defined. These computation models also provide

semantics for component execution and interaction. We demonstrate the general

component model with its instantiation on an Asynchronous Interleaving Message-

passing (AIM) computation model. In this instantiation, executable representations

of components are specified in xUML [47], an executable dialect of UML, whose se-

mantics conform to the AIM model. This instantiation is of interest because the

AIM model captures the essential nature of a broad range of concurrent software

systems.

Components are categorized as primitive components (components that are

built from “scratch” and not composed from other components) or as composed

components. A property of a primitive component is verified by directly model

checking an executable representation of the component, for instance, checking the

executable design model (specified in xUML) of the component using methods es-

tablished in Chapters 3, 4, and 5. A property of a composed component, instead of

being model checked on the executable representation of the component, is checked

99

on an abstraction of the component. The abstraction is composed of simple au-

tomata corresponding to environment assumptions of the composed component and

verified properties of its sub-components. A verified sub-component property is in-

cluded in the abstraction if it is enabled in the composition, related to the property

to be checked by cone-of-influence analysis [17], and not involved in invalid circular

dependencies [46] among sub-component properties. If the abstraction is still too

complex to be checked directly, compositional reasoning is applied to decompose the

abstraction. If the abstraction is too abstract to enable the verification of the desired

property, it is refined as follows: decomposing the property into a set of properties

of the sub-components, verifying these properties on the sub-components, and then

including these verified properties into the abstraction. Algorithms for abstraction

construction and refinement are based on compositional reasoning.

Our approach is most suitable for application to a product line of software

systems that are built from a growing set of software components. We have identi-

fied two major application domains: product lines of software systems based on a

specific hardware/software architecture, such as the TinyOS [30] run-time system,

and product lines of distributed large-scale software systems based on component

platforms such as CORBA and DCOM.

The rest of this chapter is organized as follows. Section 6.2 defines the general

component model for component verification and instantiates it on the AIM com-

putation model. Section 6.3 elaborates on how to verify properties of components,

either primitive or composed. Section 6.4 illustrates our approach with a case study

on TinyOS. Section 6.5 analyzes the effectiveness of our approach in the context of

the case study. Section 6.6 presents the related work. Section 6.7 summarizes.

100

6.2 Component Model for Verification

In this section, we first define the general component model, which is a template

that can be instantiated on a computation model to enhance it with components,

properties, and component compositions which enable component verification. After

that, we instantiate the general component model on the AIM computation model.

6.2.1 General Component Model

Component

A component, C, is a four-tuple, (E, I, V, P), where

• E is an executable representation of C.

• I is an interface through which C interacts with other components, for in-

stance, a messaging interface or a procedural interface.

• V is a set of variables defined in E and referenced by the properties defined

in P .

• P is a set of temporal properties that are defined on I and V , and have been

verified on E. A temporal property is denoted by a pair, (p, A(p)), where p is

a temporal formula defined on I and V , and A(p) is a set of temporal formulas

defined on I and V . The property, p, holds on C if the temporal formulas in

A(p) hold on the environment of C (see the next paragraph for the definition

of the environment of a component). P is extended incrementally by including

properties that are newly verified. A property is included in P only when it

is verified.

101

A system is a component. The environment with which the system interacts

is also modeled as a set of components. The set of components with which a compo-

nent interacts is referred to as the environment of the component. The environment

of a component varies as the component is reused in different compositions. Given

a component and its property, (p, A), the temporal formulas in A are referred to as

the environment assumptions of the component for enabling p.

Component Composition

A component, C = (E, I, V, P), can be composed from a set of simpler components,

(E0, I0, V0, P0), . . ., (En−1, In−1, Vn−1, Pn−1), as follows:

• E is constructed from E0, . . ., En−1 by connecting E0, . . ., En−1 through their

interfaces.

• I is derived from I0, . . ., In−1: An operation in Ii, 0 ≤ i < n, is included in I

if and only if it is used when C interacts with other components.

• V is a subset of
⋃n−1

i=0 Vi. A variable in
⋃n−1

i=0 Vi is included in V if and only if

the variable is referenced by the properties defined in P .

• P is a set of temporal properties defined on I and V , and verified on E.

Properties in P are verified on E by utilizing the properties in P0, . . ., Pn−1.

6.2.2 Instantiation of General Component Model on AIM Compu-

tation Model

The AIM computation model is basically the AIM semantics, which is informally

described in Section 4.3.1 and formalize in Section 4.3.2, and the simple syntax used

102

in Section 4.3.2 to present the AIM semantics. This section discusses the instan-

tiation of the general component model on the AIM computation model with the

focus on how to derive the executable specification and the interface of a composed

component from its sub-components.

Component

A component, C, is a four-tuple, (E, I, V, P), where

• E is an executable representation of C with syntax and semantics conforming

to the AIM computation model. E can be either an AIM specification that

consists of a set of interacting AIM processes, or an implementation of the

AIM specification in a programming language.

• I is the messaging interface through which C interacts with other components

and is a pair, (R, S), where R (or S, respectively) is a set of input (or output)

message types whose instances may be input (or output) by C, more precisely

by processes in C, when C interacts with other components.

• V and P inherit their definitions from the general component model and refer-

ence semantic entities in the instantiations of E and I on the AIM computation

model.

Component Composition

A component, C = (E, I, V, P), can be composed from a set of simpler components,

(E0, I0, V0, P0), . . ., (En−1, In−1, Vn−1, Pn−1), as follows:

• E is constructed from E0, . . ., En−1, by mapping output message types in

103

S0, . . ., Sn−1 to input message types in R0, . . ., Rn−1. If there is a mapping

defined between an output message type, s, in Si, 0 ≤ i < n, and an input

message type, r, in Rj, 0 ≤ j < n, the following steps are executed:

– A conformance check is performed on the parameter lists of s and r;

– All occurrences of s in Ei are replaced by r, except the occurrences where

messages of the type, s, are output to components outside C;

– If s is mapped to more than one input message type, a messaging state-

ment that outputs s is replicated for each input message type.

• I = (R, S) is derived from Ii = (Ri, Si), 0 ≤ i < n. R (or S, respectively)

is a subset of
⋃n−1

i=0 Ri (or
⋃n−1

i=0 Si). A message type in
⋃n−1

i=0 Ri (or
⋃n−1

i=0 Si)

is included in R (or S) if and only if messages of that type may be input (or

output) by C when C interacts with other components.

• V is derived by following the corresponding rule in the general component

model.

• Formulation of the properties in P and verification of these properties by

utilizing the properties in P0, . . ., Pn−1 are discussed in Section 6.3 in detail.

Component Execution and Interaction

The execution semantics of components are defined recursively (assuming bounded

recursion). When a component executes, if the component has no sub-components,

then at any given moment exactly one AIM process in the component executes; if

the component has sub-components, then at any given moment exactly one sub-

component executes.

104

Components interact with each other through message-passing. A compo-

nent can only input (or output, respectively) messages of the types listed in its

input (or output) messaging interface. Messages input (or output) by a component

are consumed (or generated) by AIM processes in the component or its recursively

nested sub-components.

6.3 Verification of Components

This section discusses verification of components under the instantiation of the gen-

eral component model on the AIM computation model. First, we introduce how

a closed AIM system is verified. Then, we discuss how component properties are

formulated. Finally, we differentiate components into two categories, primitive and

composed, and present procedures for verifying components of the two categories

respectively.

6.3.1 Background: Verification of a Closed AIM System

There are many software design specification languages whose semantics conform

to the AIM model, such as xUML [47] and SDL [35]. A closed AIM system can be

specified in these languages. In Chapter 3, we have presented a translation-based

approach to model checking executable software system designs in xUML, which is

supported by the the ObjectCheck toolkit. This approach requires that a system

design to be checked specify a closed system. A system is made closed by modeling

its environment as part of the system.

This approach suffers from the state space explosion problem. To verify

large-scale software system designs, we have extended the approach with an inte-

105

grated state space reduction framework, presented in Chapter 5. This framework

features a top-down application of compositional reasoning, where model checking

a property on a system is accomplished by decomposing the system into modules,

checking module properties locally on the modules, and deriving the system property

from the module properties. We applied compositional reasoning in model checking

xUML specifications by following the Translation-Based Compositional Reasoning

approach, presented in Chapter 4, where compositional reasoning rules are estab-

lished in the semantics of software systems, but are proved and implemented based

on translation of software systems to formal representations for which compositional

reasoning rules have already been established, proved, and implemented.

6.3.2 Formulation of Component Properties

After the AIM specification and the messaging interfaces of a component are con-

structed, properties of the component can then be formulated. Properties are mainly

derived from functional specifications of the component such as input and output re-

lationships through domain analysis. However, it is not required that all properties

of the component be packaged initially. Additional properties may be introduced

incrementally as the component is reused in composing other components. Verifi-

cation of a property on a composed component may require top-down application

of compositional reasoning to decompose the property into a set of properties on

its sub-components. The sub-component properties are then verified on the sub-

components and packaged with the sub-components for future reuse. This top-down

application of compositional reasoning requires that system/component developers

manually guide the property decomposition, however, it enables verification of large-

106

scale components that cannot otherwise be verified.

Since our approach targets a product line of software systems constructed

from a set of components, we assume that the AIM specifications of the compo-

nents are available to system/component developers, which facilitates incremental

introduction and verification of component properties. The set of properties of a

component is expected to become quite stable after a few reuses.

6.3.3 Formulation of Environment Assumptions

Our approach requires that a property of a component be specified with its assump-

tions on the environment of the component. We have investigated both automatic

generation and manual formulation of environment assumptions. Given a compo-

nent and a property, an assumption that enables the property on the component

can be automatically generated by taking the complement of the product of the

property and its cone-of-influence on the component. (Various optimizations are

possible.) Construction of the complement, the product, and the cone-of-influence

is supported by COSPAN. The assumption generated is the weakest assumption

that enables the property on the component, however, it is usually a complex and

non-intuitive assumption which is difficult to check on other components composed

with the component in a composition. A desired set of assumptions for the prop-

erty is a set of simple and intuitive assumptions formulated on the interface of the

component. Each of these assumptions is weaker than the automatically generated

assumption, however, the conjunction of these assumptions is stronger than the

automatically generated assumption. These assumptions are often easier to check

on other components. Domain-specific knowledge of system/component developers

107

is expected to facilitate the formulation of such a set of assumptions. Therefore,

currently in our approach environment assumptions are formulated manually. In-

vestigation of heuristics that can reduce or decompose the automatically generated

assumption by utilizing domain-specific knowledge is in progress.

6.3.4 Verification of Primitive Components

A primitive component often has limited functionality. As a result, the state space

of a primitive component is often of modest size and suitable for direct application

of model checking. The approach in Section 6.3.1 is employed to verify a primitive

component. However, the AIM specification of a primitive component often does

not specify a closed system and the approach cannot be readily applied. There-

fore, we construct a closed system from the AIM specification and the environment

assumptions of the component.

Given a primitive component, C = (E, I, V, P), and a property, (p, A(p)),

specified on I and V , in order to check whether p holds on E assuming that assump-

tions in A(p) hold on the environment of C, the following steps are executed:

1. Create an AIM process, ENV , whose input message types are the same as the

output message types defined in I and whose state model outputs messages of

the input message types defined in I;

2. Build an AIM system from ENV and the AIM processes in E and translate

the system into S/R;

3. Free all variables of the automata corresponding to ENV in the S/R model

obtained in Step 2 so that these variables may obtain any value in their do-

108

mains non-deterministically; (Discussions on freeing variables in an S/R model

can be found in [28, 37].)

4. Translate assumptions in A(p) to S/R automata and compose them with the

S/R model obtained in Step 3 so that the free variables introduced in Step 3

are now constrained by the assumptions in A(p);

5. Translate p to an S/R property and check the S/R property on the S/R model

gotten in Step 4.

These steps construct a closed system by using the ENV process as a translation

stub and replacing ENV with the assumptions in A(p) in the resulting S/R model,

and then verify p on the closed system. Construction of the closed system is simpli-

fied by the fact that in S/R, models, properties, and assumptions are all specified

as automata that are of the same form and can be trivially composed.

6.3.5 Verification of Composed Components

In this section, we present a method for verification of a property, (p, A(p)), on

a composed component, C = (E, I, V, P), where C is composed from C0 =

(E0, I0, V0, P0) and C1 = (E1, I1, V1, P1). This method reuses the properties that

have been verified on the sub-components, C0 and C1. It can be readily extended

to the case that C is composed from C0, . . ., Cn−1.

Component Abstraction Construction

Since the AIM specification of a composed component often has a large state space

that hinders direct application of model checking, we construct an abstraction of

109

the component based on the composition, the environment assumptions of the com-

ponent, the messaging interfaces of the sub-components, and the verified properties

of the sub-components.

Before discussing how to construct the abstraction, we first elaborate on the

concept of enabled property. A property of a component is defined with assumptions

on the environment of the component. The property is verified on the component

under these assumptions. When the component is reused in the composition of a

larger component, the property is enabled if the environment assumptions made in

its verification hold on other components in the composition and/or the environment

of the composed component. We now formally define an enabled property.

Definition 6.3.1 Enabled Property A property (pi, A(pi)) of Ci, where i ∈ {0, 1}
and (pi, A(pi)) ∈ Pi, is enabled in the composition of C0 and C1 if and only if either

A(pi) is empty or for each q, q ∈ A(pi), q is implied by the assumptions in A(p) and

the properties in P1−i that are enabled in the composition.

The function in Figure 6.1 can be used to determine whether a property (pi, A(pi))

boolean function enabled ((pi, A(pi))) begin
while (!empty(A(pi))) do

q = remove-an-element (A(pi)); P ′={ };
foreach ((p′, A(p′)) ∈ cone(A(P) ∪ P1−i, q) ∩ P1−i)
if (enabled ((p′, A(p′))) then

P ′=P ′ ∪ {(p′, A(p′))};
endif;

endfor;
if (q is implied by cone(A(p) ∪ P ′, q)) then continue;
else return false;
endif;

endwhile;
return true;

end;

Figure 6.1: The “enabled” function

110

of Ci, i ∈ {0, 1}, is enabled in the composition of C0 and C1 assuming that the

assumptions in A(p) hold on the environment of the composition. For each as-

sumption q, q ∈ A(pi), the function first identifies the set P ′ of properties that

are in P1−i, related to q according to cone-of-influence analysis, and enabled. (In

Figure 6.1, cone(A(p) ∪ P1−i, q) denotes the cone-of-influence of q on A(p) ∪ P1−i.

cone(A(p) ∪ P1−i, q) includes assumptions in A(p) and properties in P1−i, which

reference the semantics entities in C that influence the semantics entities referenced

by q.) If q is implied by cone(A(p) ∪ P ′, q), then the function continues with the

next assumption in A(pi); otherwise, the function returns false. The implication

can be decided by either matching q to an element of cone(A(p) ∪ P ′, q), or model

checking q on the product of the elements of cone(A(p) ∪ P ′, q). If a property,

(pi, A(pi)), of Ci is not currently enabled in the composition of C0 and C1, it does

not indicate that pi does not hold on Ci under the composition. (pi, A(pi)) can

become enabled when all assumptions in A(pi) become enabled, which may require

checking additional properties of C0 and C1.

The abstraction of the composed component, C, upon which the property,

p, is to be verified, is derived as follows:

• Realize the output message interfaces of C0 (or C1, respectively) in the context

of C by replacing the output message types of C0 (or C1) with the correspond-

ing input message types of C1 (or C0) according to the mappings among the

output message types of C0 (or C1) and the input message types of C1 (or

C0);

• Create an AIM system, SYS, which consists of three stub AIM processes, CP0,

CP1, and ENV , where: (i) CP0 (or CP1, respectively) is corresponding to C0

111

(or C1), whose variables have the same names and domains as the variables

in V0 (or V1), whose input message types are the same as the input message

types of C0 (or C1), and whose state model outputs messages of the output

message types of C0 (or C1); (ii) ENV is corresponding to the environment

of C, whose input message types are the same as the output message types of

C and whose state model outputs messages of the input message types of C;

• Run the “enabled” function in Figure 6.1 on each property in P0 and P1, and

include the property into SYS if the function returns true;

• Include the assumptions in A(p) into SYS;

• Run the cone-of-influence analysis on SYS to exclude properties and assump-

tions not related to p.

There may exist circular dependencies among the sub-component properties.

Circular dependencies among the sub-component properties may be invalid, i.e.,

may lead to circular reasoning. Suppose we have verified that a property, P, holds

on C0 assuming that a property, Q, holds on C1 and vice versa. We cannot conclude

that P and Q hold on C unless we can show that the circular dependency between

P and Q is valid, i.e., circular reasoning can be avoided. Circular reasoning can be

avoided using the following methods (but not limited to these methods):

• avoid using an assumption that creates a dependency cycle;

• use temporal induction [46] proposed by McMillan; or

• use the composition reasoning rule [4] proposed by Amla, et al.

Circular reasoning avoidance can be readily included in the “enabled” function.

112

Verification of Component Abstraction

Instead of checking the property, p, on the AIM specification of C, we check p on

the abstraction, SYS:

• Translate SYS into S/R;

• Free all variables of the automata corresponding to CP0, CP1, and ENV in the

resulting S/R model; (These free variables are now constrained by properties

from P0 and P1 and assumptions from A(p).)

• Translate p into S/R and check the S/R query corresponding to p on the S/R

model corresponding to SYS;

• Include (p, A(p)) in P if p holds on SYS; otherwise, refine SYS as discussed

in Section 6.3.5.

The complexity of model checking p on the abstraction, SYS, is often much lower

than the complexity of directly checking p on the AIM specification of C (see Sec-

tion 6.5.2).

Refinement of Component Abstraction

If p does not hold on the abstraction, SYS, then either p does not hold on C assuming

assumptions in A(p) hold on the environment of C, or SYS is too abstract. It is

often possible to differentiate the two cases by analyzing the error traces generated

by the model checker. If p does not hold on C under the assumptions in A(p), then

either more assumptions have to be added to A(p) or C has to be re-composed. If

SYS is too abstract, it must be refined.

113

The abstraction can be refined by including additional properties of C0 and

C1. These properties are either properties that are newly introduced, but have not

been verified, or properties that have been verified, but are not currently enabled

in the composition. If a property to be included has not been verified, it is first

verified. If a property to be included has been verified, but is not currently enabled,

the procedure in Figure 6.2 is applied to enable the property. The procedure enables

boolean procedure enable ((pi, A(pi))) begin
while (!empty (A(pi))) do

q = remove-an-element (A(pi)); P ′ = { };
foreach ((p′, A(p′)) ∈ cone(A(p) ∪ P1−i, q) ∩ P1−i)
if (enabled ((p′, A(p′)))) then P ′ = P ′ ∪ {(p′, A(p′))};
elseif (enable ((p′, A(p′)))) then

P ′ = P ′ ∪ {(p′, A(p′))};
endif;

endfor;
if (q is implied by cone(A(p) ∪ P ′, q)) then continue;
elseif (q is expected to hold on C1−i) then

A′ = { assumptions of q };
if (!verify ((q, A′), 1 − i)) then return false; endif;
return enable ((q, A′));

else return false;
endif;

endwhile;
return true;
end;

Figure 6.2: The “enable” procedure

a property, (pi, A(pi)), of Ci by enabling all its assumptions. For each assumption,

q, the procedure first attempts to enable the properties that are in cone(A(p) ∪
P1−i, q) ∩ P1−i and not enabled, by calling itself recursively. After the foreach

loop, P ′ contains all the properties in cone(A(p) ∪ P1−i, q) ∩ P1−i that have been

enabled. If q is implied by cone(A(p)∪P ′, q), the procedure continues with the next

assumption; otherwise, if q is expected to hold on C1−i
1, a set of assumptions, A′, of

1If q is expected to hold on the conjunction of C1−i and A(p), it is first decomposed into sub-
assumptions on C1−i and A(p) respectively, which is guided by system/component developers.

114

q is introduced and (q, A′) is verified on C1−i. If (q, A′) is successfully verified, the

“enable” procedure is called on (q, A′) recursively. The “enable” procedure returns

false if a call to the “verify” procedure returns false or if q is neither an assumption

of the composed component, C, on its environment nor q is a property that is

expected to hold on C1−i. Circular dependencies among properties, introduced by

the refinement, must be validated as discussed in Section 6.3.5.

6.4 Case Study: Verification of TinyOS Components

We have applied the approach to integration of model checking into CBD to im-

prove reliability of instances of TinyOS [30]. We now illustrate this approach with a

case study on TinyOS. TinyOS is a component-based run-time system designed to

provide support for deeply embedded systems which require concurrency-intensive

operations while constrained by minimal hardware resources. Hardware constraints

of deeply embedded systems prohibit loading all TinyOS modules into a single in-

stance and different requirements of these systems require different configurations

of TinyOS modules, which makes CBD an appropriate development approach for

TinyOS. TinyOS instances are usually loaded to a large number of deeply embedded

systems such as networked sensors, which makes correction of software bugs very

expensive. Locks and monitors, which are often used to safeguard concurrent opera-

tions, are not used in TinyOS due to their computational expenses and the hardware

constraints of TinyOS. This combination of complexity and the requirement for high

reliability justifies the application of our approach to improve reliability of instances

of TinyOS.

115

6.4.1 Sensor Component

We sketch how primitive components are specified and verified with the Sensor com-

ponent. We first introduce the (E, I, V, P) specification of the Sensor component.

The executable representation, E, of the Sensor component is specified in xUML.

The communication diagram of the Sensor component is shown in Figure 6.3. (Space

Clock

SO_Task

ADC

Photo STQ

Sensor−Output

Component Boundary

A_IntrC_Intr C_Ret

Done_Ack Done

A_Ret S_Schd S_Ret Message Communication

OP_Ack

Output

AIM Process

Figure 6.3: Sensor component

limitations prohibit showing all xUML diagrams of E.) The component consists of

six AIM processes that interact with each other and the environment of the compo-

nent through messages. The messaging interface, I, of the component is as follows:

• R={C Intr, A Intr, S Schd, OP Ack, Done};

• S={C Ret, A Ret, S Ret, Output, Done Ack}.

Message types in R are defined in the AIM processes of the Sensor component

and the message types in S are to be realized when the component is composed

with other components. C Intr, A Intr, and S Schd are the hardware interrupts

116

the Sensor component must handle while C Ret, A Ret, and S Ret are the corre-

sponding replies. The Sensor component outputs Sensor readings as messages of

the type, Output. The properties to be checked on the Sensor component are listed

in Figure 6.4 with their assumptions. (In Figure 6.4, the “+” operator denotes a

Properties:
Repeatedly (Output);

After (Output) Never (Output) UntilAfter (OP Ack);

After (Done) Eventually (Done Ack);
Never (Done Ack) UntilAfter (Done);
After (Done Ack) Never (Done Ack) UntilAfter(Done);

Assumptions:
After (Output) Eventually (OP Ack);
Never (OP Ack) UntilAfter (Output);
After (OP Ack) Never (OP Ack) UntilAfter (Output);

After (Done) Never (Done) UntilAfter (Done Ack);

Repeatedly (C Intr);
After (C Intr) Never (C Intr + A Intr + S Schd) UntilAfter (C Ret);

After (ADC.Pending) Eventually (A Intr);
After (A Intr) Never (C Intr + A Intr + S Schd) UntilAfter (A Ret);

After (STQ.Empty = FALSE) Eventually (S Schd);
After (S Schd) Never (C Intr + A Intr + S Schd) UntilAfter (S Ret);

Figure 6.4: Properties of Sensor component

logical OR. Detailed discussions of the property specification language are given in

Section 3.4.) These properties assert that the component repeatedly outputs sensor

readings and correctly handles the signal-and-reply relationship between Output and

OP Ack and between Done and Done Ack assuming that the assumptions hold on its

environment. The set, V , consists of two variables, ADC.Pending and STQ.Empty,

referenced by the properties and the assumptions listed in Figure 6.4.

117

The Sensor component has a state space of modest size. The properties listed

in Figure 6.4 were successfully verified on the component by following the steps in

Section 3.4 and were included into P for future reuse.

6.4.2 Network Component

The communication diagram of the Network component is shown in Figure 6.5. The

Int_to_RFM

Generic_Comm

GC_Task RFM

Data_Ack

Data

Sent Sent_Ack

N Ret

NTQ

N Schd R Intr R Ret

Figure 6.5: Network component

messaging interface, I, of the Network component is as follows:

• R={N Schd, R Intr, Sent Ack, Data};

• S={N Ret, R Ret, Sent, Data Ack}.

The properties that have been verified on the Network component are listed in Fig-

ure 6.6 with their assumptions. These properties assert that the Network component

transmits on the physical network repeatedly if it receives inputs repeatedly, and it

118

Properties:
IfRepeatedly (Data) Repeatedly (RFM.Pending);
IfRepeatedly (Data) Repeatedly (Not RFM.Pending);

After (Data) Eventually(Data Ack);
Never (Data Ack) UntilAfter (Data);
After (Data Ack) Never (Data Ack) UntilAfter (Data);

After (Sent) Never (Sent) UntilAfter (Sent Ack);

Assumptions:
After (Data) Never (Data) UntilAfter (Data Ack);

After (Sent) Eventually (Sent Ack);
Never (Sent Ack) UntilAfter (Sent);
After (Sent Ack) Never (Sent Ack) UntilAfter (Sent);

After (NTQ.Empty = FALSE) Eventually (N Schd);
After (N Schd) Never (N Schd + R Intr) UntilAfter(N Ret);

After (RFM.Pending) Eventually (R Intr);
After (R Intr) Never (N Schd + R Intr) UntilAfter (R Ret);

Figure 6.6: Properties of Network component

correctly handles the signal-and-reply relationship between Data and Data Ack and

between Sent and Sent Ack. The set, V , of the Network component consists of two

variables, RFM.Pending and NTQ.Empty.

6.4.3 Sensor-to-Network Component

This section introduces how an instance of TinyOS, the Sensor-to-Network compo-

nent, is composed from the Sensor component and the Network component, and

discusses how properties of the composed component are verified by utilizing the

properties that have been verified on its sub-components.

The executable representation, E, of the Sensor-to-Network component is

composed from the executable representations of the Sensor component and the Net-

work component. The abstracted communication diagram of the Sensor-to-Network

119

component is shown in Figure 6.7, where an annotation of the form of “input mes-

Network Component

Data (Output)

Sensor Component

Done (Sent)

Sent_Ack (Done_Ack)
Sensor−to−Network Component

OP_Ack (Data_Ack)

Figure 6.7: Sensor-to-Network component

sage type (output message type)” denotes the mapping of an output message type

of a component to an input message type of the other component. The messaging

interface, I, of the Sensor-to-Network component is as follows:

• R={C Intr, A Intr, S Schd, N Schd, R Intr};

• S={C Ret, A Ret, S Ret, N Ret, R Ret}.

The properties to be checked on the Sensor-to-Network component are listed in Fig-

ure 6.8 with their assumptions. These properties assert that the Sensor-to-Network

component repeatedly transmits on the physical network if the assumptions hold on

its environment. We refer to these properties together as the “repeated transmis-

sion” property hereafter. The set, V , of the Sensor-to-Network component consists

of four variables, ADC.Pending, STQ.Empty, RFM.Pending, and NTQ.Empty.

In order to check the “repeated transmission” property on the Sensor-to-

Network component, we constructed an abstraction of the component following the

steps given in Section 6.3.5:

• Replace the output message types of the Sensor (or Network, respectively)

120

Properties:
Repeatedly (RFM.Pending);
Repeatedly (Not RFM.Pending);

Assumptions:
Repeatedly (C Intr);
After (C Intr) Never (C Intr+A Intr+S Schd+N Schd+R Intr) UntilAfter (C Ret);

After (ADC.Pending) Eventually (A Intr);
After (A Intr) Never (C Intr+A Intr+S Schd+N Schd+R Intr) UntilAfter (A Ret);

After (STQ.Empty = FALSE) Eventually (S Schd);
After (S Schd) Never (C Intr+A Intr+S Schd+N Schd+R Intr) UntilAfter (S Ret);

After (NTQ.Empty = FALSE) Eventually (N Schd);
After (N Schd) Never (C Intr+A Intr+S Schd+N Schd+R Intr) UntilAfter (N Ret);

After (RFM.Pending) Eventually (R Intr);
After (R Intr) Never (C Intr+A Intr+S Schd+N Schd+R Intr) UntilAfter (R Ret);

Figure 6.8: Properties of Sensor-to-Network component

component with the corresponding input message types of the Network (or

Sensor) component as shown in Figure 6.7;

• Create an AIM system, SN , which consists of the following three stub AIM

processes: (i) SP , whose input message types are C Intr, A Intr, S Schd,

OP Ack, and Done, whose state model outputs messages of the types, C Ret,

A Ret, S Ret, Data, and Sent Ack, and whose variables are Pending and

Empty; (ii) NP , whose input message types are N Schd, R Intr, Data, and

Sent Ack, whose state model outputs messages of types N Ret, R Ret, OP Ack,

and Done, and whose variables are Pending and Empty; (iii) ENV , whose

input message types are C Ret, A Ret, S Ret, N Ret, and R Ret, and whose

state model outputs messages of the types, C Intr, A Intr, S Schd, N Schd,

and R Intr;

• Execute the cone-of-influence analysis, the “enabled” function in Figure 6.1,

121

and the validity check of circular dependencies on the properties of the Sensor

component and the Network component, and execute the cone-of-influence

analysis on the assumptions in Figure 6.8, which leads to inclusion of the

properties in Figure 6.9 into the abstraction.

Repeatedly (Data);
After(Data) Never (Data) UntilAfter (OP Ack);

IfRepeatedly (Data) Repeatedly (RFM.Pending);
IfRepeatedly (Data) Repeatedly (Not RFM.Pending);
After (Data) Eventually(OP Ack);
Never (OP Ack) UntilAfter (Data);
After (OP Ack) Never (OP Ack) UntilAfter (Data);

Figure 6.9: Properties included in abstraction

We then checked the “repeated transmission” property on SN by following the steps

given in Section 6.3.5. It is easy to observe that the property holds on the abstraction

under the assumptions in Figure 6.8. Therefore, we concluded that the property also

holds on the executable representation of the Sensor-to-Network component under

the given assumptions.

6.4.4 Verification via Abstraction Refinement

An abstraction of a composed component may be refined by introducing, verifying,

and enabling properties of the sub-components of the composed component or even

by revising and re-verifying the sub-components. We illustrate how an abstraction is

refined with the verification of Property 6.4.1 on the Sensor-to-Network component.

(Space limitations prohibit showing the formal specifications of the properties given

hereafter.)

122

Property 6.4.1 The Sensor-to-Network component transmits any hardware sensor

reading exactly once.

For checking Property 6.4.1, an abstraction of the Sensor-to-Network compo-

nent was constructed. Model checking of Property 6.4.1 on the abstraction returned

false. By analyzing the error trace from COSPAN, we observed that the abstraction

is too abstract to enable model checking of Property 6.4.1 and has to be refined. To

refine the abstraction, we introduced and checked Property 6.4.2 on the Network

component.

Property 6.4.2 The Network component transmits any of its inputs exactly once

assuming that a new input arrives only after it outputs a Sent message to indicate

its last input has been successfully transmitted.

Property 6.4.2 was successfully verified on the Network component, but it was not

enabled in the composition of the Sensor-to-Network component. To enable the

property on the Network component, we introduced and verified Property 6.4.3 on

the Sensor component.

Property 6.4.3 The Sensor component outputs any hardware sensor reading ex-

actly once and after an output, it will not output again until after a message of the

type, Done, is received.

The verification of Property 6.4.3 on the sensor component returned false due to

a bug of the Sensor component. In the Sensor component, each time a hardware

sensor reading is put in the output buffer, a thin thread [30] is created to output the

data. There is a flag that should be set when a sensor reading has been output and

a Done message has not been received. However, the thin thread fails to set the flag

123

correctly. When the physical sensor outruns the physical network, since the output

flag is not set, the sensor component may output again before it receives the Done

message for its last output. This violates the second assertion in Property 6.4.3.

The bug was corrected and all properties of the Sensor component, including

Property 6.4.3, were re-verified. A new Sensor-to-Network component was composed

from the corrected Sensor component and the Network component. An abstraction

of the newly composed component was constructed, on which Property 6.4.1 was

successfully verified.

Remarks: In this example, the verification of Property 6.4.1 on the Sensor-

to-Network component requires introducing and verifying additional properties of

its sub-components, which is only for the purpose of demonstrating abstraction

refinement and does not indicate that we frequently need to introduce and verify

additional properties of a component. Since our approach targets software product

lines, careful domain analysis and a few reuses often could lead to a quite stable set

of properties for a component.

6.5 Analysis of Case Study

Application of our approach to integration of model checking into CBD to the

TinyOS components leads to the detection of a coordination error which is related to

component composition, and a significant reduction in model checking complexity.

6.5.1 Detection of Coordination Error

By model checking of the “repeated transmission” property and Property 1 on the

Sensor-to-Network component, we have detected a coordination error as described

124

in Section 6.4.4. This error would be hard to detect with conventional test-case

based testing methods.

6.5.2 Model Checking Complexity Reduction

Direct verification of a property on a composed component with model checking is

often infeasible due to state space explosions. In our approach, model checking of a

property on a composed component is reduced to three sub-tasks: model checking

of the properties of the sub-components, construction and refinement of an abstrac-

tion of the component, and model checking of the property on the abstraction.

Complexities of these sub-tasks are often significantly lower than the complexity of

directly model checking the property on the component. Verified properties of the

sub-components can often be reused. The complexity of model checking a newly

introduced property of a sub-component is lower since the sub-component has a

smaller state space, and may be further reduced if the sub-component is also a

composed component. Since the abstraction construction usually only involves a

few environment assumptions and verified sub-component properties, it often has a

modest complexity. Although the abstraction refinement may require user interac-

tions, it is expected to be facilitated by domain-specific knowledge. An abstraction

of a component only captures the aspect of the component required for verification

of a specific property and usually consists of a few simple automata, therefore the

verification of the property on the abstraction finishes fairly fast.

We illustrate the reduction attained in our approach on model checking com-

plexity with the statistics from the TinyOS case study. Table 6.1 shows four model

checking runs for verifying the “Repeated transmission” property on the Sensor-

125

Run Component Time Memory
1 Sensor-to-Network 89m15.45s 208.48M
2 Sensor 10m41.01s 33.673M
3 Network 18.0s 6.8239M
4 Abstraction of SN 0.1s 0.1638M

Table 6.1: Verification complexity comparison

to-Network component. Run 1 checks the property on the composed component

directly for comparison purposes. Run 2 (or Run 3, respectively) checks the prop-

erties in Figure 6.4 (or Figure 6.6) on the Sensor (or Network) component. Run

4 checks the “Repeatedly transmission” property on the abstraction of the Sensor-

to-Network component. The complexities for model checking the sub-components

and the abstraction are an order-of-magnitude lower than the complexity of directly

checking the composed component. Furthermore, the verification results for the

Sensor and Network components were reused from previous studies. The statistics

shown in Table 6.1 only involves one level of composition. In a multi-level composi-

tion, this approach can model check higher level composed components that cannot

be directly model checked due to state space explosions.

6.6 Related Work

There has been extensive research [53, 1, 3, 46, 4, 19] on compositional reasoning

in the formal methods community. Most prior work applies compositional reason-

ing in a top-down approach: To check properties of a large system, the system is

decomposed into modules recursively in a top-down fashion. Our research is based

on the prior work, but combines the top-down approach with the bottom-up com-

126

ponent composition process of CBD. Properties of components are verified as they

are composed from simpler components in a bottom-up fashion and verification of

these properties is based on compositional reasoning.

A closely related work to our research is Compositional Reachability Analysis

(CRA) by Graf and Steffen [27], Yeh and Young [71], Cheung and Kramer [11, 12,

13, 10, 14], et al. CRA analyzes a system or its modules in the context of the system.

Modules are represented by Labeled Transition Systems (LTSs) or similar compo-

sitional representations of state space graphs. It is assumed that there exist LTSs

of the lowest level modules. The LTS of a higher level module is composed from

LTSs of its sub-modules and is minimized according to the property to be checked

and context constraints. Property decomposition has not yet been supported in

CRA, therefore a property involving multiple modules may lead to a complex global

LTS. Another related work is Modular Feature Verification by Fisler and Krish-

namurthi [21], which targets systems developed by Feature-Oriented Programming

(FOP). In FOP, components are features that are orthogonal to the component

concepts used in this chapter. Our approach supports both component verification

in the context of a system, and component verification with only environment as-

sumptions and without a specific composition context. A component is represented

by a set of verified temporal properties. Properties of a primitive component are

obtained by directly model checking its original representation that can be in any

model-checkable languages such as model-checkable subsets of UML, SDL, JAVA,

or C/C++. Properties of a composed component are obtained by model checking

its abstractions constructed from its environment assumptions and verified proper-

ties of its sub-components. Our approach also supports property decomposition by

127

applying top-down compositional reasoning.

There is also related research on automatic generation of assumptions in

compositional reasoning, such as [23]. [23] proposes an approach to automatic gen-

eration of assumptions for safety properties in the context of representing systems

and their components using LTSs. In this approach, an automatically generated

assumption can be quite complex and hard to check on other components.

6.7 Summary

An approach to integration of model checking into the CBD of software systems has

been presented. The case study on TinyOS demonstrates the applicability of this

approach, the detection of a coordination error, and a significant reduction in model

checking complexity. The reduction in model checking complexity seems scalable.

This approach can be readily applied on many software computation models.

We have further scaled model checking of component-based systems by ex-

ploring the synergy between MDD and CBD. Components are developed following a

combination of MDD and CBD: specifying the executable representations of compo-

nents using an executable design language, in our case, xUML. We have realized the

bottom-up approach to component verification based on model checking of software

designs through translation. Properties of primitive components are model-checked

on the xUML models of these components using the ObjectCheck toolkit. Properties

of composite components are model-checked on the abstractions of these components

also using the ObjectCheck toolkit.

128

Chapter 7

Conclusions and Future Work

Practical and scalable model checking of software systems demands seamless inte-

gration of model checking and software development. Model checkers must become

an integral part of software development processes similar to the role played by de-

buggers. This dissertation research has successfully integrated model checking into

two emerging software development processes, MDD and CBD, and furthermore

into a comprehensive software development process that combines MDD and CBD.

This combined software development process yields a well-structured representation

of a software system at a level of abstraction where scalable model checking is feasi-

ble, and also leads directly to production software. The translation-based approach,

taken in this research, enables reuse of much of the model checking apparatus for

different representations at the MDD level and facilitates structured, orderly appli-

cation of state space reduction algorithms. The effectiveness of the integration and

supporting tools and methods has been demonstrated by their successful applica-

tion to model checking of interesting systems such as a NASA robot controller, an

129

online ticket sale system, and the TinyOS run-time system for networked sensors.

Section 7.1 summarizes the individual research results which justify these conclu-

sions. The results of this research have also established a foundation for continued

development of concepts and methods for application of model checking as a prac-

tical approach to verification of software systems for safety, security and reliability

properties. Section 7.2 enumerates some of the possible future research directions

enabled or suggested by the results of this research.

7.1 Summary of Contributions

In this dissertation, we have developed a comprehensive approach to integration

of model checking into two emerging software development processes, MDD and

CBD, and their combination. This approach addresses the two major challenges

for practical and scalable model checking of software systems: applicability and

intrinsic complexities of model checking, under the following framework: (1) bridg-

ing applicability gaps through automatic translation of software representations to

directly model-checkable formal representations, (2) seamless integration of state

space reduction algorithms in the translation via static analysis, and (3) scaling

model checking capability and achieving state space reduction by systematically

exploring compositional structures of software systems.

We have integrated model checking into MDD by applying mature model

checking techniques to industrial design-level software representations through au-

tomatic translation of these representations to the input formal representations of

model checkers [68, 69, 70]. In the translation, we have applied many state space

reduction algorithms to software representations under an integrated model and prop-

130

erty translation framework [70] in which the translation of a model depends on the

property to be checked and the state space reduction algorithms to be applied. We

have developed a translation-based approach [67] to compositional reasoning of soft-

ware systems, which simplifies the proof, implementation, and application of com-

positional reasoning rules at the software system level by reusing the proof and im-

plementation of existing compositional reasoning rules for directly model-checkable

formal representations. We have developed an integrated state space reduction frame-

work [65], which systematically conducts a top-down decomposition of a complex

software system into directly model-checkable pieces by exploring domain-specific

knowledge. We have designed, implemented, and applied a bottom-up approach [66]

to model checking of component-based software systems, which composes verified

systems from verified components and integrates model checking into CBD. We have

further scaled model checking of component-based systems by exploring the synergy

between MDD and CBD, i.e., specifying components in executable design languages,

and realizing the bottom-up approach based on model checking of software designs

through translation.

7.2 Future Research Directions

A grand challenge in software engineering research is to provide methods and tools

that (1) facilitate development of safe, secure, and reliable software systems of in-

creasing complexity and (2) can be seamlessly integrated in the routine development

efforts of software engineers. Our future research aims at technology advances to-

wards address of this challenge and will be focused on developing such methods and

tools and on extending them to hardware/software co-design and co-verification.

131

We will pursue our future research through exploring synergistic integration of sys-

tematic testing, formal methods, static program analysis, and run-time analysis. In

the near future, We would like to focus our research in the following directions.

7.2.1 Scalable Verification of Component-Based Systems

Our approach to component verification will be extended to support verification of

large-scale software components conforming to industrial standards such as CORBA

and DCOM. This requires appropriate formalization of the component models sup-

ported by these standards and adequate tool supports for discharging direct verifi-

cation of modest-size components that are specified in their native representations

such as Java and C++.

In a future product line of software systems, besides the conventional compo-

nent paradigm, emerging component paradigms such as feature-oriented program-

ming [55] may also be involved. How to effectively verify a product line that involves

several different component paradigms is an open problem.

7.2.2 Software Security Assurance via Formal Verification

Our previous research is applicable to security assurance of software systems. A sam-

ple application is security assurance of web service contracts. Web service contracts

are widely used in both the academia and the business world, for instance, in forming

virtual organizations over computational grids and in defining business-to-business

solutions. These contracts are amenable to application of our previous research

results since they have the following characteristics: first, they specify concurrency-

intensive interactions among web services; second, they are often formulated using

132

high-level executable representations, such as Business Process Execution Language

for Web Services [34]; third, they are highly modularized. Security is a great concern

about these contracts, for instance, whether these contracts respect security policies

of the participants. We am planning to investigate how security policies can be

represented in an integrated fashion with these contracts, how security properties

such as information flow security can be formulated on these contracts, and how

these properties can be established through formal verification.

7.2.3 Domain Knowledge Driven State Space Reduction

The complexities of software systems keep growing, which makes state space reduc-

tion a long-lasting theme in software model checking. On the other hand, these

systems become increasingly customized to specific application domains. Our previ-

ous work on integrated state space reduction and on model checking of component-

based systems has demonstrated the importance of domain-specific knowledge in

state space reduction. We am planing to further explore how a verification system

can adapt to different application domains and utilize the knowledge about these

domains to effectively conduct state space reduction.

7.2.4 Hardware/Software Co-Verification

High safety, security, and reliability requirements of embedded systems such as

TinyOS demand a tight integration of co-verification capability into the design and

development of such embedded systems. Our previous research on the ObjectCheck

toolkit has established a foundation for hardware/software co-verification. When

combined with FormalCheck [38], an industrial model checking tool for hardware

133

designs from Cadence Design Systems, ObjectCheck supports hardware/software co-

verification where both hardware designs in VHDL or Verilog and software designs

in xUML are translated into S/R and model checked by COSPAN in an integrated

fashion. A clearly defined research project is to design and implement highly reliable

networked sensors with a co-verification capability that integrates ObjectCheck and

FormalCheck.

134

Bibliography

[1] Martin Abadi and Leslie Lamport. Conjoining specifications. ACM Transac-

tions on Programming Languages and Systems (TOPLAS), 17(3):506–534, May

1995.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing

Letters, 21(4):181–185, October 1985.

[3] Rajeev Alur and Thomas Henzinger. Reactive modules. Formal Methods in

System Design, 15(1):7–48, July 1999.

[4] Nina Amla, Ellen. A. Emerson, Kedar S. Namjoshi, and Richard Trefler.

Assume-guarantee based compositional reasoning for synchronous timing di-

agrams. In Proc. of 7th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), volume 2031 of Lecture

Notes in Computer Science, pages 465–479, Genova, Italy, April 2001.

[5] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system

software via static analysis. In Proc. of 29th SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL), pages 1–3, Portland, Oregon,

USA, January 2002.

135

[6] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language

LOTOS. Computer Networks and ISDN Systems, 14(1), 1988.

[7] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne Graf, Jean-

Pierre Krimm, Laurent Mounier, and Joseph Sifakis. IF: An intermediate rep-

resentation for SDL and its applications. In Prof. of 9th International SDL

Forum, pages 423–440, Montreal, Quebec, Canada, June 1999.

[8] Marius Bozga, Susanne Graf, and Laurent Mounier. Automated validation of

distributed software using the IF environment. In Proc. of LACPV’2001 Logical

Aspects of Cryptographic Protocol Verification, volume 55 of Electronic Notes

in Theoretical Computer Science (ENTCS), Paris, France, July 2001.

[9] Kennedy Carter. http://www.kc.com. kennedy Carter, 2004.

[10] Shing-Chi Cheung, Dimitra Giannakopoulou, and Jeff Kramer. Verification

of liveness properties using compositional reachability analysis. In Proc. of

6th European Software Engineering Conference Held Jointly with the 5th ACM

SIGSOFT Symposium on Foundations of Software Engineering (ESEC/FSE),

pages 227–243, Zurich, Switzerland, September 1997.

[11] Shing-Chi Cheung and Jeff Kramer. Enhancing compositional reachability anal-

ysis with context constraints. In Proc. of 1st ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 115–125, Los Angeles, California,

USA, December 1993.

[12] Shing-Chi Cheung and Jeff Kramer. Compositional reachability analysis of

finite-state distributed systems with user-specified constraints. In Proc. of 3rd

136

ACM SIGSOFT Symposium on Foundations of Software Engineering, pages

140–150, Washington, D.C., USA, October 1995.

[13] Shing-Chi Cheung and Jeff Kramer. Context constraints for compositional

reachability analysis. ACM Transactions on Software Engineering and Method-

ology (TOSEM), 5(4):334–377, October 1996.

[14] Shing-Chi Cheung and Jeff Kramer. Checking safety properties using compo-

sitional reachability analysis. ACM Transactions on Software Engineering and

Methodology (TOSEM), 8(1):49–78, January 1999.

[15] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-

nization skeletons using branching time temporal logic. In Proc. of Logic of

Programs Workshop, pages 52–71, Yorktown Heights, New York, USA, May

1981.

[16] Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and A. Prasad Sistla.

Symmetry reductions in model checking. In Proc. of 10th International Con-

ference on Computer Aided Verification (CAV), number 1427 in Lecture Notes

in Computer Science, pages 147–158, Vancouver, British Columbia, Canada,

June 1998.

[17] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. The

MIT Press, 1999.

[18] James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. Bandera:

a source-level interface for model checking Java programs. In Proc. of 22nd

137

International Conference on Software Engineering, pages 762–765, Limerick,

Ireland, June 2000.

[19] Willem-Paul de Roever, Frank de Boer, Ulrich Hanneman, Jozef Hooman, Yas-

sine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification: In-

troduction to Compositional and Non-compositional Proof Methods. Cambridge

University Press, 2001.

[20] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in

property specifications for finite-state verification. In Proc. of International

Conference on Software Engineering, pages 411–420, Los Angeles, California,

USA, May 1999.

[21] Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-

based software designs. In Proc. of 8th European Software Engineering Confer-

ence held jointly with 9th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, pages 152–163, Vienna, Austria, September

2001.

[22] Hubert Garavel and Joseph Sifakis. Compilation and verification of LOTOS

specifications. In Proc. of the IFIP WG6.1 Tenth International Symposium on

Protocol Specification, Testing and Verification, pages 379–394, Ottawa, On-

tario, Canada, June 1990.

[23] Dimitra Giannakopoulou, Corina S. Pasareanu, and Howard Barringer. As-

sumption generation for software component verification. In Proc. of 17th IEEE

International Conference on Automated Software Engineering (ASE), pages 3–

12, Edinburgh, Scotland, UK, September 2002.

138

[24] Stefania Gnesi, Diego Latella, and Mieke Massink. Model checking uml state-

chart diagrams using jack. In Prof. of 4th IEEE International Symposium on

High-Assurance Systems Engineering (HASE), pages 46–55, Washington, D.C.,

USA, November 1999.

[25] Patrice Godefroid and Didier Pirottin. Refining dependencies improves partial-

order verification methods. In Proc. of 5th International Conference on Com-

puter Aided Verification (CAV), volume 697 of Lecture Notes in Computer Sci-

ence, pages 438–449, Elounda, Greece, June 1993.

[26] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with

pvs. In Proc. of 9th International Conference on Computer Aided Verification

(CAV), volume 1254 of Lecture Notes in Computer Science, pages 72–83, Haifa,

Israel, June 1997.

[27] Susanne Graf and Bernhard Steffen. Compositional minimization of finite state

systems. In Proc. of 2nd International Conference on Computer Aided Verifica-

tion (CAV), volume 531 of Lecture Notes in Computer Science, pages 186–196,

New Brunswick, New Jersey, USA, June 1990.

[28] R. H. Hardin, Z. Har’El, and Robert P. Kurshan. Cospan. In Proc. of 8th Inter-

national conference on Computer-Aided Verification (CAV), New Brunswick,

New Jersey, USA, July 1996.

[29] Klaus Havelund and Jens U. Skakkebak. Applying model checking in java veri-

fication. In Proc. of 6th International SPIN Workshops, volume 1680 of Lecture

Notes in Computer Science, pages 216–231, Toulouse, France, September 1999.

139

[30] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and

Kristofer S. J. Pister. System architecture directions for networked sensors.

In Proc. of 9th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 93–104, Cambridge, Mas-

sachusetts, USA, November 2000.

[31] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1991.

[32] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software

Engineering (TSE), 23(5):279–295, 1997.

[33] Gerard J. Holzmann and Margaret H. Smith. An automated verification method

for distributed systems software based on model extraction. IEEE Transactions

on Software Engineering (TSE), 28(4), 2002.

[34] IBM. http://www.ibm.com/developerworks/library/ws-bpel. IBM, 2004.

[35] ITU. ITU-T Recommendation Z.100 (03/93) - Specification and Description

Language (SDL). ITU, 1993.

[36] C. Kapoor and Delbert Tesar. A reusable operational software architecture for

advanced robotics (OSCAR). The University of Texas at Austin, Report to

U.S. Dept. of Energy, Grant No. DE-FG01 94EW37966 and NASA Grant No.

NAG 9-809, 1998.

[37] Robert P. Kurshan. Computer-Aided Verification of Coordinating Processes:

The Automata-Theoretic Approach. Princeton University Press, 1994.

140

[38] Robert P. Kurshan. FormalCheck User’s Manual. Cadence Design Systems,

1998.

[39] Robert P. Kurshan, Vladimir Levin, Marius Minea, Doron Peled, and Husnu

Yenigun. Static partial order reduction. In Proc. of 4th International Con-

ference on Tools and Algorithms for Construction and Analysis of Systems

(TACAS), volume 1384 of Lecture Notes in Computer Science, pages 345–357,

Lisbon, Portugal, March 1998.

[40] Robert P. Kurshan, Vladimir Levin, and Husnu Yenigun. Compressing transi-

tions for model checking. In Proc. of 14th International Conference on Com-

puter Aided Verification (CAV), volume 2404 of Lecture Notes in Computer

Science, pages 569–581, Copenhagen, Denmark, July 2002.

[41] Robert P. Kurshan, Michael Merritt, Ariel Orda, and Sonia R. Sachs. Modelling

asynchrony with a synchronous model. Formal Methods in System Design,

15(3):175–199, November 1999.

[42] Vladimir Levin and Husnu Yenigun. Sdlcheck: A model checking tool. In Proc.

of 13th International Conference on Computer Aided Verification (CAV), vol-

ume 1680 of Lecture Notes in Computer Science, pages 378–381, Paris, France,

July 2001.

[43] Johan Lilius and Ivan Paltor. vUML: a tool for verifying UML models. In Proc.

of 14th IEEE International Conference on Automated Software Engineering

(ASE), pages 255–258, Cocoa Beach, Florida, USA, October 1999.

[44] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

141

[45] Ken L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.

[46] Ken L. McMillan. A methodology for hardware verification using compositional

model checking. Cadence Design Systems Technical Reports, 1999.

[47] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for

Model Driven Architecture. Addison Wesley, 2002.

[48] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J. Holzmann. Imple-

menting statecharts in Promela/Spin. In Prof. of 2nd Workshop on Industrial-

Strength Formal Specification Techniques (WIFT), pages 90–101, Boca Raton,

Florida, USA, October 1998.

[49] Kedar Namjoshi and Robert P. Kurshan. Syntactic program transformations for

automatic abstraction. In Proc. of 12th International Conference on Computer

Aided Verification (CAV), volume 1855 of Lecture Notes in Computer Science,

pages 435–449, Chicago, Illinois, USA, July 2000.

[50] Object Management Group (OMG). Unified Modeling Language Specification,

Version 1.3. OMG, 1999.

[51] Object Management Group (OMG). http://www.omg.org/mda. OMG, 2004.

[52] Doron Peled. Combining partial order reductions with on-the-fly model-

checking. Formal Methods in System Design, 8(1):39–64, 1996.

[53] Amir Pnueli. In transition from global to modular reasoning about programs.

Logics and Models of Concurrent Systems, 1985.

142

[54] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In

Proc. of 4th International Conference on Tools and Algorithms for Construction

and Analysis of Systems (TACAS), volume 1384 of Lecture Notes in Computer

Science, pages 151–166, Lisbon, Portugal, March 1998.

[55] Christian Prehofer. Feature-oriented programming: A fresh look at objects. In

Proc of 11th European Conference on Object-Oriented Programming, volume

1241 of Lecture Notes in Computer Science, pages 419–443, Jyväskylä, Finland,

June 1997.

[56] Project Technology. http://www.projtech.com. Project Technology, 2004.

[57] Jean-Pierre Quielle and Joseph Sifakis. Specification and verification of concur-

rent systems in cesar. In Proc. of Symposium on Programming, pages 337–351,

Torino, Italy, April 1982.

[58] SES. Objectbench User Manual. SES, 1996.

[59] Natasha Sharygina and James C. Browne. Model checking software via ab-

straction of loop transitions. In Proc. of 6th International Conference on Fun-

damental Approaches to Software Engineering (FASE), volume 2621 of Lecture

Notes in Computer Science, pages 325–340, Warsaw, Poland, April 2003.

[60] Natasha Sharygina, James C. Browne, Fei Xie, Robert P. Kurshan, and

Vladimir Levin. Lessons learned from model checking a nasa robot controller.

Journal of Formal Methods in System Design (FMSD), 2004.

[61] Clemens Szyperski. Component Software - Beyond Object-Oriented Program-

ming. Addison-Wesley, 2002.

143

[62] Antti Valmari. A stubborn attack on state explosion. In Proc. of 2nd In-

ternational Conference on Computer Aided Verification (CAV), volume 531 of

Lecture Notes in Computer Science, pages 156–165, New Brunswick, New Jer-

sey, USA, June 1990.

[63] W3C. http://www.w3.org/TR/wsdl. W3C, 2004.

[64] Wenli Wang, Zoltan Hidvegi, Andrew D. Bailey Jr., and Andrew B. Whin-

ston. E-processes design and assurance using model checking. IEEE Computer,

33(10):48–53, 2000.

[65] Fei Xie and James C. Browne. Integrated state space reduction for model

checking executable object-oriented software system designs. In Proc. of 5th

International Conference on Fundamental Approaches to Software Engineering

(FASE), volume 2306 of Lecture Notes in Computer Science, pages 331–335,

Grenoble, France, April 2002.

[66] Fei Xie and James C. Browne. Verified systems by composition from verified

components. In Proc. of 4th Joint Meeting of the European Software Engineer-

ing Conference and ACM SIGSOFT Symposium on Foundations of Software

Engineering (ESEC/FSE), pages 277–286, Helsinki, Finland, September 2003.

[67] Fei Xie, James C. Browne, and Robert P. Kurshan. Translation-based compo-

sitional reasoning for software systems. In Proc. of 12th International Formal

Method Europe (FME) Symposium, volume 2805 of Lecture Notes in Computer

Science, pages 582–599, Pisa, Italy, September 2003.

[68] Fei Xie, Vladimir Levin, and James C. Browne. Model checking for an exe-

144

cutable subset of uml. In Proc. of 16th International Conference on Automated

Software Engineering (ASE), pages 333–336, Coronado Island, San Diego, Cal-

ifornia, USA, November 2001.

[69] Fei Xie, Vladimir Levin, and James C. Browne. Objectcheck: A model checking

tool for executable object-oriented software system designs. In Proc. of 5th

International Conference on Fundamental Approaches to Software Engineering

(FASE), volume 2306 of Lecture Notes in Computer Science, pages 331–335,

Grenoble, France, April 2002.

[70] Fei Xie, Vladimir Levin, Robert P. Kurshan, and James C. Browne. Translating

software designs for model checking. In Proc. of 7th International Conference

on Fundamental Approaches to Software Engineering (FASE), volume 2984 of

Lecture Notes in Computer Science, pages 324–338, Barcelona, Spain, March

2004.

[71] Wei-Jen Yeh and Michal Young. Compositional reachability analysis using

process algebra. In Proc. of Symposium on Testing, Analysis, and Verification,

pages 49–59, Victoria, British Columbia, Canada, October 1991.

145

Vita

Fei Xie was born to Shengguang Xie and Qingying Wang in Taiyuan, Shanxi, P.

R. China, and has two elder brothers, Hang and Xiang. He grew up in Luoyang,

Henan, P. R. China. He received a B.S. in Computer Science from Northwestern

Polytechnic University, Xi’an, Shaanxi, P. R. China in 1995. He received a M.S. in

Computer Science from Tsinghua University, Beijing, P. R. China in 1998. He came

to the University of Texas at Austin to pursue a Ph.D. in August, 1998.

Fei has been happily married to his lovely wife, Huaiyu Liu, since 1998.

Permanent Address: 1620 West 6th St. Apt. P

Austin, TX 78703 USA

This dissertation was typeset with LATEX2ε1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay and James A. Bednar.

146

