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Mátyás A. Sustik∗ Joel A. Tropp† Inderjit S. Dhillon∗ Robert W. Heath Jr.‡

August 4, 2004
Technical report #TR04-32

Department of Computer Sciences
University of Texas at Austin

Austin, Texas, 78712

Abstract

In a recent paper, Holmes and Paulsen established a necessary condition for the existence of an N -vector equiangular
tight frame in a d-dimensional real Euclidean space. This article develops much stronger necessary conditions using
a combination of field theory and graph theory. This investigation rules out many possibilities admitted by the work
of Holmes and Paulsen. Using a new one-to-one correspondence between equivalence classes of real equiangular tight
frames and strongly regular graphs of a certain type, it has been verified that a real equiangular tight frame exists for
each pair (d, N) with N ≤ 100 that meets the new conditions. The arguments also extend to deliver novel necessary
conditions for the existence of equiangular tight frames whose Gram matrices have entries drawn from a discrete set
of complex numbers.

1 Introduction

Suppose that one constructs a set of N lines that pass through
the origin of the Euclidean space Rd. We assume that N >
d to avoid trivial cases. The j-th line may be viewed as the
linear span of a unit vector sj , and the absolute inner product
|〈sj , sk〉| may be interpreted as the cosine of the acute angle
between the j-th and k-th lines. It can be shown [12,13] that

max
j 6=k

|〈sj , sk〉| ≥
√

N − d

d (N − 1)
. (1)

In words, it is impossible for every pair of lines to meet at
an arbitrarily large angle. The same bound holds for N unit
vectors in the complex Euclidean space Cd.

*I. Dhillon and M. Sustik are with the Department of Com-
puter Sciences, The University of Texas, Austin, TX 78712 USA,
{inderjit|sustik}@cs.utexas.edu.

†R. Heath is with the Department of Electrical and Computer
Engineering, The University of Texas, Austin, TX 78712 USA,
rheath@ece.utexas.edu.

‡J. Tropp is with the Institute for Computational Engineering and
Sciences (ICES), The University of Texas, Austin, TX 78712 USA,
jtropp@ices.utexas.edu.

When the bound (1) is met, the matrix formed from the column
vectors s1, . . . , sN has a very special structure.

Definition 1.1 Let S be a d × N matrix with unit-norm
columns. The matrix S is called an equiangular tight frame
if

1. the absolute inner product between each pair of columns is
identical, and

2. it satisfies the equation SS∗ = (N/d) I, where I is the d× d
identity matrix.

The first condition enforces equiangularity, while the second en-
sures that the matrix is a tight frame [11]. If the matrix S has
real entries, it is called a real equiangular tight frame.

In fact, a d ×N matrix with unit-norm columns is an equian-
gular tight frame if and only if the absolute inner products
between its columns all meet the bound (1). See [10] for an
easy proof.

Equiangular tight frames are somewhat rare. Indeed, Holmes
and Paulsen [5] have shown that a real equiangular tight frame
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2 AN ALGEBRAIC LEMMA 2

can exist only if

(N − 2d)

√
N − 1

d (N − d)
∈ Z. (2)

In this article, we shall strengthen condition (2) significantly.
The following theorem summarizes our results in the real case.

Theorem A Suppose that 1 < d < N − 1. When N 6= 2d, a
necessary condition for the existence of a real equiangular tight
frame is that

√
d (N − 1)

N − d
≡

√
(N − d) (N − 1)

d
≡ 1 (mod 2)

When N = 2d, it is necessary that d be an odd number and that
(N − 1) equal the sum of two squares.

This theorem forbids many of the possibilities admitted by (2).
On the other hand, we have been able to establish that a real
equiangular tight frame actually does exist for each pair (d,N)
that meets our conditions, where N ranges up to 100. See
Tables 1 and 2 in section 7 for details. In consequence, we
conjecture that the conditions of Theorem A may be sufficient
as well.

We provide two proofs for the condition when N 6= 2d. The
first is based on field theory. This method of proof generalizes
to deliver necessary conditions on complex equiangular tight
frames. We consider the case where the inner products between
columns of the frame are (scaled) roots of unity. The second
proof is based on a new one-to-one correspondence between
real equiangular tight frames and strongly regular graphs with
a certain parameter set. The graph-theoretic approach yields
the results for the case N = 2d.

A second type of necessary condition has also appeared in the
literature [12]. A real equiangular tight frame can exist only if
N ≤ 1

2 d (d+1), and a complex equiangular tight frame can exist
only if N ≤ d2. In Section 6, we offer a new matrix-theoretic
proof of these upper bounds.

Equiangular tight frames first arose in discrete geometry [12].
More recently, they have found applications in signal process-
ing, communications, and coding theory [3, 10]. As a specific
example, Holmes and Paulsen have shown that an equiangu-
lar tight frame provides an error correction code that is ro-
bust against two erasures [5]. In wireless communication, tight
frames have been studied in the context of constructing capac-
ity achieving signature sequences for multiuser communication
systems [13]. Equiangular tight frames achieve the capacity of
a Gaussian channel because of the tightness condition, and they
satisfy an interference invariance property due to their equian-
gularity [4]. Interference between users is measured by the mod-
ulus of the inner product between their signatures, which are

simply the columns of the frame. Equiangular tight frames
solve the problem of providing signatures that see the same
interference from every other signature.

A word about notation. We denote the d×N frame matrix by
S , the identity matrix by I, and the all-ones matrix by J. The
dimension of I and J should be clear from context.

2 An Algebraic Lemma

The first proof relies on some basic results from field theory. A
standard textbook for this material is [8]. For the sake of com-
pleteness, we shall review the essential definitions. Readers who
are familiar with this material may wish to skip to Lemma 2.5.

A polynomial whose coefficients are drawn from a subfield F of
the complex numbers is referred to as a polynomial over F. The
complex number α is algebraic over F if it is the root of some
polynomial over F. An algebraic integer is the root of a monic
polynomial with integer coefficients.

Fact 2.1 The algebraic integers form a ring, i.e., they are
closed under addition and multiplication.

Fact 2.2 The roots of a monic polynomial over the algebraic
integers remain algebraic integers.

The minimal polynomial of α over F is the (unique) lowest de-
gree monic polynomial over F that contains α among its roots.

Fact 2.3 A minimal polynomial over F has simple roots.

Two numbers that have the same minimal polynomial over F
are called algebraic conjugates over F.

Fact 2.4 Suppose that α and β are algebraic conjugates over F.
If p is a polynomial over F that has α as a root with multiplicity
m, then β is also a root of p with multiplicity m.

With these facts at hand, we may prove the following lemma.

Lemma 2.5 Let A be a real symmetric matrix whose entries
are algebraic integers. Then the eigenvalues of A are real alge-
braic integers.

In addition, assume that the entries of A belong to a subfield
F of the complex numbers. If A has an eigenvalue α whose
multiplicity is different from that of the other eigenvalues then
α also belongs to F.
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Proof: The matrix A is real symmetric, hence its eigenvalues
are real numbers. By definition, an eigenvalue of A is a root
of the characteristic polynomial x 7→ det(x I − A). Since the
entries of A are algebraic integers, Fact 2.1 implies that the
characteristic polynomial is a monic polynomial with algebraic
integer coefficients. Then Fact 2.2 shows that the eigenvalues
of A are algebraic integers.

Assume that the entries of A belong to F. Thus, the eigenvalues
of A are algebraic over F. Since α has a different multiplicity
from the other eigenvalues of A, Fact 2.4 precludes the possi-
bility that α might have any algebraic conjugates over F. Ap-
plying Fact 2.3, we see that the minimal polynomial of α over
Q is linear. Thus, α belongs to F. 2

This type of field-theoretic argument appears frequently in the
analysis of integer matrices. A similar argument was used by
Lemmens and Seidel in their study of equiangular lines [9].

3 Real Equiangular Tight Frames

Suppose that S is a d × N real equiangular tight frame, and
denote by α the (unique) absolute inner product between its
columns. That is,

α = |〈sj , sk〉| =

√
N − d

d (N − 1)
for all j 6= k. (3)

Next, we construct the matrix

A =
1
α

(S∗S − I). (4)

This matrix is symmetric; it has a zero diagonal; and its off-
diagonal entries are all ±1. Since an equiangular tight frame
satisfies the equation SS∗ = (N/d) I, it follows that the two
distinct eigenvalues of A are

λ1 = − 1
α

and λ2 =
N − d

dα
(5)

with respective multiplicities (N − d) and d.

Theorem 3.1 Assume that N 6= 2d. If S is a real equiangular
tight frame, then λ1 and λ2 are integers.

Proof: Since N 6= 2d, the two eigenvalues of A have different
multiplicities. The entries of A are integers, so Lemma 2.5
implies that λ1 and λ2 are rational algebraic integers. It is well
known that the only algebraic integers among the rationals are
the ordinary integers. 2

An immediate corollary is the necessary condition of Holmes
and Paulsen.

Corollary 3.2 (Holmes–Paulsen [5]) A real equiangular
tight frame can exist only when

(N − 2d)

√
N − 1

d (N − d)
∈ Z.

Proof: Introducing the value of α from (3), we see that the
expression in the statement of the corollary equals (λ1 + λ2).
Since λ1 and λ2 are integers, the result follows instantly. 2

In the next theorem we establish stricter conditions on λ1 and
λ2.

Theorem 3.3 Assume that N 6= 2d, and exclude the degener-
ate cases d = 1 and d = N − 1. If S is a real equiangular tight
frame, then λ1 and λ2 are both odd integers. That is,

√
d (N − 1)

N − d
≡

√
(N − d) (N − 1)

d
≡ 1 (mod 2).

When d = N − 1, the unique tight frame (modulo rotations) is
always equiangular [10]. We shall attend to the case N = 2d
in Section 5. Our proof adapts an argument of P. M. Neumann
quoted in [9].

Proof: Let us form a new matrix whose entries all equal zero
or one:

M = 1
2 (J− I− A)

where the symbol J denotes a conformal matrix of ones. We
have ruled out the possibility that d = N − 1, so the eigenvalue
λ1 of A has geometric multiplicity at least two. In consequence,
the (N−1)-dimensional null space of J must intersect the invari-
ant subspace of A associated with λ1. Any vector in this inter-
section is an eigenvector of M with eigenvalue µ1 = − 1

2 (1+λ1).
A similar argument establishes that µ2 = − 1

2 (1 + λ2) is an
eigenvalue of M.

Theorem 3.1 establishes that λ1 and λ2 are integers, so µ1 and
µ2 must be rational numbers. The entries of M are integers,
so Lemma 2.5 proves that the eigenvalues of M are algebraic
integers. We conclude that µ1 and µ2 are ordinary integers. 2

Theorem 3.3 is much stronger than Corollary 3.2. Indeed, there
are many pairs (d,N) that are excluded by Theorem 3.3 but
not by Corollary 3.2. For example, when d = 3 and N = 9,
then λ1 = −2 and λ2 = 4. As another example, when d = 10
and N = 25, (λ1 + λ2) is an integer but λ1 and λ2 are not odd
integers. See Table 2 for more examples.

4 Complex Equiangular Tight Frames

It is also natural to study equiangular tight frames whose en-
tries are complex. The experiments in [11] indicate that com-
plex equiangular tight frames must satisfy integrality conditions
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like Theorem 3.3, but no such conditions are presently avail-
able. We have used field theory to develop strong constraints
on equiangular tight frames for which the inner products be-
tween columns are scaled roots of unity. This type of equiangu-
lar tight frame can arise in electrical engineering applications
when the entries of the frame matrix are restricted to be roots
of unity.

Our starting point is the auxiliary matrix

A =
1
α

(S∗S − I).

As before, the eigenvalues of A are given by (5). If we restrict
the off-diagonal entries of A, then we may apply Lemma 2.5
to prove that the eigenvalues of A must lie in a prescribed set.
The following fact is fundamental [7, Thm. I.10.4].

Fact 4.1 Suppose that ζp is a primitive p-th root of unity. The
ring of algebraic integers in the field Q(ζp) coincides with the
ring Z[ζp].

Note thatQ(ζp) denotes the smallest field extendingQ that con-
tains ζp, while Z[ζp] is the smallest ring extending Z that con-
tains ζp. A general theorem falls from Fact 4.1 and Lemma 2.5.

Theorem 4.2 Suppose that the off-diagonal entries of the sym-
metric A are p-th roots of unity. Then the eigenvalues of A
belong to the ring Z[ζp] ∩ R.

We shall provide several examples that demonstrate how to use
Theorem 4.2 to obtain specific conditions for several different
types of equiangular tight frames.

Gaussian Integers Suppose that the off-diagonal entries of
A belong to the set {±1,±i}. This situation can occur
when the entries of the frame matrix are drawn from the
set {±d−1/2,±i d−1/2} and the pair (d,N) is suitably re-
stricted. Theorem 4.2 shows that the eigenvalues of A must
be ordinary integers. Using equations (3) and (5), we dis-
cover the necessary conditions

√
d (N − 1)

N − d
∈ Z and

√
(N − d) (N − 1)

d
∈ Z.

This is the same condition we obtained in Theorem 3.1.

Sixth Roots of Unity Assume that the off-diagonal entries
of A are sixth roots of unity. Theorem 4.2 implies that
the eigenvalues of A are real elements of Z[ζ6] where ζ6 =
e2πi/6. The elements of Z[ζ6] can be written as

a0 + a1ζ6 + a2ζ
2
6 ,

where a0, a1 and a2 are integers. The expression yields
a real number if and only if a2 = −a1. Thus, using ζ6 −
ζ2
6 = 1 we conclude that the real algebraic integers in Z[ζ6]

are the ordinary integers. We obtain the same necessary
conditions as in Theorem 3.1.

Eighth Roots of Unity Assume that the off-diagonal entries
of A are eighth roots of unity. Theorem 4.2 now forces
the eigenvalues of A to lie in the ring Z[ζ8] ∩ R, where
ζ8 = 1√

2
+ 1√

2
i. The elements of Z[ζ8] can be written as

a0 + a1ζ8 + a2i + a3ζ
3
8 ,

where a0, a1, a2 and a3 are integers. If the expression yields
a real number then we must have a2 + 1√

2
(a1 + a3) = 0,

implying a3 = −a1 and a2 = 0. Thus, using ζ8 − ζ3
8 =

√
2,

the real elements in Z[ζ8] must be of the form a0 + a1

√
2

in other words Z[ζ8] ∩ R = Z[
√

2].

According to (3) and (5) the λ1 and λ2 eigenvalues are
both square roots of rational numbers. It is easy to verify,
that either both eigenvalues must be integers, or they both
must be an integer multiple of

√
2. Thus, we discover that

either
√

d (N − 1)
N − d

∈ Z and

√
(N − d) (N − 1)

d
∈ Z,

or √
d (N − 1)
2 (N − d)

∈ Z and

√
(N − d) (N − 1)

2 d
∈ Z

must be true.

5 The Graph Connection

It was observed in [5,10] that real equiangular tight frames nat-
urally give rise to regular two-graphs and vice versa. It is also
known that regular two-graphs naturally give rise to strongly
regular graphs with certain parameter sets [1, Ch. 4]. In con-
sequence, we may establish a natural correspondence between
real equiangular tight frames and strongly regular graphs. The
parameters of a strongly regular graph must be integers, which
provides additional restrictions on the potential values of d and
N .

Definition 5.1 We say that two real equiangular tight frames
S and T with the same dimensions are equivalent if

S = Q T P

where Q is a orthogonal matrix, and P is a generalized per-
mutation matrix, which is a permutation matrix whose nonzero
entries may equal ±1.
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Observe that the eigenvalues of S∗S are identical to those of
T ∗T , and that the absolute inner products of the columns of
T and S are the same.

Next, we offer a short introduction to the theory of strongly
regular graphs, which is drawn from [1]. An undirected graph
is a (finite) collection of points, called vertices, along with a
list of vertex pairs, called edges. In a simple graph, no edge
may appear twice and all edges are between distinct vertices.
Two vertices are adjacent or neighboring if the graph contains
an edge between them. The adjacency matrix of a graph on n
ordered vertices is the n× n matrix whose (j, k) entry equals 1
when the j-th and k-th vertices are adjacent and 0 otherwise.

Definition 5.2 A strongly regular graph with parameters
(n, r, s, t) is a simple graph on n vertices for which

1. every vertex is adjacent to r others,

2. two adjacent vertices have s neighbors in common, and

3. two nonadjacent vertices have t neighbors in common.

From this definition, we exclude graphs in which no vertices are
adjacent or all vertices are adjacent. By a simple edge counting
argument it can be shown that the parameters of a strongly
regular graph are not independent,

r (r − s− 1) = (n− r − 1) t. (6)

It can also be shown that a matrix M is the adjacency matrix of
a strongly regular graph with parameters (n, r, s, t) if and only
if

M2 = r I + s M + t (J− I−M) (7)

where J is the matrix of ones [1].

With this background, we may establish the connection between
real equiangular tight frames and strongly regular graphs.

Theorem 5.3 There is a one-to-one correspondence between
the equivalence classes of d×N real equiangular tight frames and
strongly regular graphs with parameters (N − 1, 2t, s, t), where

s =
N − 3 σ − 6

4
, t =

N − σ − 2
4

and

σ = (N − 2d)

√
N − 1

d (N − d)
.

Proof: Suppose that S is a d×N real equiangular tight frame.
Once again, define the matrix

A =
1
α

(S∗S − I).

We have shown that A has exactly two distinct eigenvalues
whose product is −(N − 1) and whose sum is σ. Therefore,
A must satisfy the quadratic equation

A2 = σ A + (N − 1) I (8)

From this matrix A, we shall construct the adjacency matrix of
a strongly regular graph.

Without loss of generality, assume that the off-diagonal entries
in the first row and column of A all equal one. One may achieve
this standardization by negating the columns of S that have a
negative inner product with the first column. Let A1 denote
the (N − 1)× (N − 1) matrix obtained by deleting the first row
and column of A. Examining the first row and column of (8),
we see that

JA1 = A1 J = σ J. (9)

Equation (8) also implies

A2
1 = σ A1 + (N − 1) I− J. (10)

Next, we define a matrix M whose entries all equal zero or one.

M = 1
2 (J− I− A1).

Square both sides to obtain

4 M2 = (N − 1) J + I + A2
1 − 2 J + 2A1 − J A1 − A1J.

Use (9) and (10), and A1 = J− I− 2M to establish that

4 M2 = −2 (σ + 2) M + (N − σ − 2) I + (N − σ − 2) J. (11)

Rearrange (11) to obtain

M2 =
N − σ − 2

2
I +

N − 3σ − 6
4

M +
N − σ − 2

4
(J− I−M).

(12)
On comparison with (7), we discover that M is potentially the
adjacency matrix of a strongly regular graph with parameters

(
N − 1,

N − σ − 2
2

,
N − 3 σ − 6

4
,

N − σ − 2
4

)
.

We need only check that the graph parameters are integers.
Suppose that an off-diagonal entry of M equals zero. By exam-
ining the right-hand side of (11), we see that the corresponding
entry of 4 M2 must equal (N − σ − 2). If an off-diagonal en-
try of M equals one, the corresponding entry of 4M2 equals
(N − 3 σ− 6). Since M is an integer matrix, each entry of 4 M2

is divisible by four. This observation completes the argument.

Conversely, we must demonstrate that each strongly regular
graph on n vertices can be associated with a unique equivalence
class of real equiangular tight frames with N = n + 1 vectors.
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This argument simply reverses the construction of a strongly
regular graph from a real equiangular tight frame.

Suppose that M is the n × n adjacency matrix of a strongly
regular graph with parameters (n, 2t, s, t). Together (7) and (6)
imply that the adjacency matrix satisfies (11) with σ = N −
4t− 2. Define the block matrix

A =
[

0 1T

1 J− I− 2 M

]
. (13)

Clearly, A is symmetric; it has a zero diagonal; and its off-
diagonal entries all equal ±1. Using (11), one may check that
A satisfies the quadratic equation (8). Therefore, A has two
non-zero eigenvalues, which we label λ1 and λ2. The trace of
A is zero, so we may assume that λ1 < 0 < λ2. Moreover, if d
denotes the multiplicity of λ2, then (N −d)λ1 +d λ2 = 0. Both
eigenvalues of A satisfy (8), so their product equals −(N − 1).
Combining these facts, we determine that

λ1 = −
√

d (N − 1)
N − d

and λ2 =

√
(N − d) (N − 1)

d
.

The quadratic equation (8) also implies that σ = λ1+λ2, which
yields the value of σ stated in the theorem.

Finally, we construct the matrix

G = − 1
λ1

A + I.

It has a unit diagonal, and its off-diagonal entries have magni-
tude identically equal to −1/λ1. Its two eigenvalues are N

d with
multiplicity d and zero with multiplicity N − d. Therefore, we
may factor G = S∗S , where S is a d×N real equiangular tight
frame. 2

Our construction of an adjacency matrix from a real equian-
gular tight frame is related to the concept of switching among
regular two-graphs. In fact, the argument can be modified to es-
tablish the connection between regular two-graphs and strongly
regular graphs. The interested reader may consult [1] for more
information on these graph-theoretic results.

By definition, the parameters of a strongly regular graph must
be integers. When N 6= 2d, one may reproduce Theorem 3.3 us-
ing Theorem 5.3 and the fact that the parameters of a strongly
regular graph are integers. When N = 2d, the integrality of the
graph parameters implies that d is odd, which is a new result.

Strongly regular graphs are further classified as Type I or Type
II [1]. When N = 2d, it can be shown that the construction
in Theorem 5.3 always yields a Type I graph, while the case
N 6= 2d leads to a Type II graph.

Theorem 5.4 Suppose that N = 2d. A d×N real equiangular
tight frame can exist only if (N − 1) is the sum of two squares.

Proof: The strongly regular graph corresponding to the frame
is a Type I strongly regular graph. Therefore n = N − 1 must
be the sum of two squares [1, Thm. 2.18]. 2

We end this section with an explicit example demonstrating
the creation of a real equiangular tight frame from a suitable
strongly regular graph. We start with the strongly regular
graph with parameters: (15, 6, 1, 3) which is depicted on Fig-
ure 1. The incidence matrix M of this graph is:

14

15

13

12

11 10

9

8

7

6

2

34

5

1

Figure 1: Strongly regular graph with parameters (15, 6, 1, 3).




0 1 0 0 1 1 0 0 0 1 0 1 0 0 1
1 0 1 0 0 0 1 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0 1 1 0 0 0 1 0
0 0 1 0 1 1 0 1 0 0 1 1 0 0 0
1 0 0 1 0 0 0 1 0 1 0 0 1 1 0
1 0 1 1 0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 1 0 1 0 1 1 0 1 0 0
0 1 0 1 1 0 1 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 1 0 1 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 1 0 1 1
1 1 0 1 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 1 1 1 0 1 0 0 1 0 1 0
0 1 1 0 1 0 0 0 0 0 1 0 1 0 1
1 0 0 0 0 1 0 1 1 0 1 0 0 1 0




.

Following the notation used in the proof of Theorem 5.3, N =
16, t = 3 and we set σ = N − 4t− 2 = 2. We construct matrix
A according to (13) and we can verify that this matrix satisfies
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A2 = 2A + 15I. The eigenvalues are equal to λ1 = −3 and λ2 =
5, the latter with multiplicity d = 6. Finally, the matrix G =
− 1

3A + I, factors as ST S (e.g. by the spectral decomposition)
providing 16 frame vectors of R6. Below we show the frame
vectors as the row vectors for typesetting reasons.

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

−0.1436 0.0386 0.6623 −0.4633 −0.3333 −0.4620
−0.7718 0.4187 0.2162 −0.2004 0.3333 −0.1767

0.6783 0.4346 0.0137 −0.1800 −0.3333 −0.4554
−0.6362 −0.2930 −0.2162 −0.5925 −0.3333 −0.0235
−0.1356 0.7116 0.4324 0.3921 −0.3333 −0.1528

0.1464 −0.5292 −0.2162 −0.1633 −0.3333 −0.7169
0.6282 −0.3801 0.4461 −0.2630 0.3333 −0.2857

−0.6675 −0.2522 0.2025 0.4089 −0.3333 −0.4143
−0.1544 −0.1439 0.4461 −0.6921 0.3333 0.4077

0.0108 0.1824 0.2162 0.2288 0.3333 −0.8697
0.4818 0.1491 0.6623 −0.0997 −0.3333 0.4312
0.0421 0.1416 −0.2025 −0.7725 0.3333 −0.4789

−0.0501 −0.8147 0.4324 −0.0829 −0.3333 0.1697
−0.1043 0.6708 0.0137 −0.6092 −0.3333 0.2380
−0.1857 −0.1031 0.8648 0.3092 0.3333 0.0169

0.0000 0.0000 0.0000 0.0000 −1.0000 0.0000

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

6 Upper Bounds

The literature also contains upper bounds on the number of
equiangular lines that can exist in a Euclidean space. The usual
proof of these results [2] is not very accessible. We offer an
elegant new argument that relies only on matrix theory.

Theorem 6.1 An upper bound on the number N of equiangu-
lar lines that can be constructed in a d-dimensional Euclidean
space is

N ≤ 1
2 d (d + 1) in Rd, and

N ≤ d2 in Cd. (14)

Proof: Suppose that {sj} is a collection of N distinct unit
vectors in d-dimensional Euclidean space. Define the N × N
Gram matrix G whose entries are gjk = 〈sj , sk〉. The Gram
matrix is conjugate symmetric, and it has rank d. If the vectors
represent a set of equiangular lines, then the off-diagonal entries
of the Gram matrix all have the same magnitude, say α.

Let the symbol ‘◦’ denote the Hadamard, or elementwise, prod-
uct of two matrices. Observe that G ◦ GT is a nonnegative
matrix with a unit diagonal and with all off-diagonal entries
equal to α2. In symbols,

G ◦ GT = α2 J + (1− α2) I.

Since α lies in the interval [0, 1), one may calculate directly that
G ◦ GT has rank N .

d N

3 6
5 10
6 16
7 14
7 28
9 18

d N

13 26
15 30
15 36
19 38
19 76
20 96

d N

21 42
23 46
25 50
27 54
28 64
31 62

d N

33 66
41 82
43 86
45 90
45 100
49 98

Table 1: The pairs (d, N) with N ≤ 100 for which a real equiangular
tight frame exists. This table excludes the trivial cases N = d and
N = d + 1 where an equiangular tight frame always exists.

It is well known that matrix rank is Hadamard submultiplica-
tive [6]. Therefore,

N = rank(G ◦ GT ) ≤ (rankG )(rank GT ) = d2.

This establishes the result in the complex case.

The real case requires a slightly more detailed analysis. Since
G is a symmetric matrix of rank d, it may be written as the
sum of d rank-one matrices:

G =
∑d

j=1
uj uT

j .

Therefore,

G ◦ GT =
∑d

j,k=1
(uj uT

j ) ◦ (uk uT
k )

=
∑d

j,k=1
(uj ◦ uk) (uj ◦ uk)T

=
∑d

j=1
(uj ◦ uj) (uj ◦ uj)T

+ 2
∑

j<k
(uj ◦ uk) (uj ◦ uk)T .

It is evident from this expression that the rank of G ◦GT cannot
exceed 1

2 d (d + 1). The real case follows. This argument can
also be adapted to provide a direct proof of the complex case.
2

7 Consequences of Necessary Condi-
tions

Table 1 lists all pairs (d,N) with N ≤ 100 for which the nec-
essary conditions of Theorem A are in force. Using tables of
known strongly regular graphs, we have been able to establish
that a real equiangular tight frame actually exists in each of
these cases.

To emphasize how much our conditions improve on the re-
sults of Holmes and Paulsen, we have tabulated cases where
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d N σ = λ1 λ2 s t Reason
λ1 + λ2

4 8 0 -2.65 2.65 0.50 1.50 P2, P3
6 12 0 -3.32 3.32 1.50 2.50 P2, P3
8 16 0 -3.87 3.87 2.50 3.50 P2, P3

10 20 0 -4.36 4.36 3.50 4.50 P2, P3
10 25 2 -4.00 6.00 3.25 5.25 P1, P2
11 22 0 -4.58 4.58 4.00 5.00 P3
11 33 4 -4.00 8.00 3.75 6.75 P1, P2
12 24 0 -4.80 4.80 4.50 5.50 P2, P3
12 45 7 -4.00 11.00 4.50 9.00 P1, P2
13 65 12 -4.00 16.00 5.75 12.75 P1, P2
14 28 0 -5.20 5.20 5.50 6.50 P2, P3
16 32 0 -5.57 5.57 6.50 7.50 P2, P3
17 34 0 -5.74 5.74 7.00 8.00 P3
17 51 5 -5.00 10.00 7.50 11.00 P1, P2
18 36 0 -5.92 5.92 7.50 8.50 P2, P3
20 40 0 -6.25 6.25 8.50 9.50 P2, P3
21 49 2 -6.00 8.00 9.25 11.25 P1, P2
22 44 0 -6.56 6.56 9.50 10.50 P2, P3
22 55 3 -6.00 9.00 10.00 12.50 P1, P2
24 48 0 -6.86 6.86 10.50 11.50 P2, P3
26 52 0 -7.14 7.14 11.50 12.50 P2, P3
26 91 9 -6.00 15.00 14.50 20.00 P1, P2
28 56 0 -7.42 7.42 12.50 13.50 P2, P3
29 58 0 -7.55 7.55 13.00 14.00 P3, P3
30 60 0 -7.68 7.68 13.50 14.50 P2, P3
32 64 0 -7.94 7.94 14.50 15.50 P2, P3
33 99 7 -7.00 14.00 18.00 22.50 P1, P2
34 68 0 -8.19 8.19 15.50 16.50 P2, P3
35 70 0 -8.31 8.31 16.00 17.00 P3
36 72 0 -8.43 8.43 16.50 17.50 P2, P3
36 81 2 -8.00 10.00 17.25 19.25 P1, P2
37 74 0 -8.54 8.54 17.00 18.00 P3
38 76 0 -8.66 8.66 17.50 18.50 P2, P3
39 78 0 -8.78 8.78 18.00 19.00 P3
40 80 0 -8.89 8.89 18.50 19.50 P2, P3
42 84 0 -9.11 9.11 19.50 20.50 P2, P3
44 88 0 -9.33 9.33 20.50 21.50 P2, P3
46 92 0 -9.54 9.54 21.50 22.50 P2, P3
47 94 0 -9.64 9.64 22.00 23.00 P3
48 96 0 -9.75 9.75 22.50 23.50 P2, P3
50 100 0 -9.95 9.95 23.50 24.50 P2, P3

Table 2: All pairs (d, N) with N ≤ 100 that meet the condition
of Holmes and Paulsen even though no real equiangular tight frame
exists (we exclude cases with N ≤ 1

2
d(d + 1), see (14)). Holmes

and Paulsen’s condition requires that σ, the sum of the eigenvalues
λ1 and λ2 of the derived matrix (4), be an integer. The “Reason”
field above indicates why no equiangular tight frame exists using the
following legend, P1: N 6= 2d, but λ1 or λ2 is not odd, P2: The
calculated parameters s and t of the strongly regular graph are not
integers, P3: N = 2d but (N − 1) is not the sum of two squares.

their conditions admit the possibility of a real equiangular tight
frame even though none exist. Table 2 lists each pair (d,N)
with N ≤ 100 and N ≤ 1

2 d (d + 1) that meets their condi-
tion 2 but fails to satisfy Theorem A. We have calculated the
eigenvalues of the derived matrix(4), their sum σ, as well as the
parameters s and t of the strongly regular graph. The “Rea-

son” field explains which of our necessary conditions forbids the
existence of a real equiangular tight frame.
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