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Abstract— An equiangular tight frame (ETF) is a d x N matrix
that has unit-norm columns and orthogonal rows of norm,/N/d.
Its key property is that the absolute inner products betweerpairs
of columns are (i) identical and (ii) as small as possible. EAs
have applications in communications, coding theory, and sgrse
approximation. Numerical experiments indicate that ETFs aise
for very few pairs (d, N), and it is an important challenge to de-
velop restrictions on the pairs for which they can exist. In are-
cent paper Holmes and Paulsen established a necessary cdiaii
for the existence of anN-vector equiangular tight frame in a d-
dimensional real Euclidean space. By applying field theory rad
results of graph theory we develop stronger necessary cortiins
and thereby rule out many possibilities admitted by the work of
Holmes and Paulsen. It has been verified that a real equiangat
tight frame exists for each pair (d, N) with N < 100 that meets
the new conditions. The arguments also extend to deliver nel
necessary conditions for the existence of equiangular tigtirames
whose Gram matrices have entries drawn from a discrete set of
complex numbers.

Index Terms—tight frame, equiangular lines, optimal Grassman-
nian frame, harmonic frame, strongly regular graph, roots o unity

1. INTRODUCTION

When the bound (1) is met, the matrix formed from the column
vectorssy, . . ., sy has a very special structure.

Definition 1. LetS be ad x N matrix with unit-norm columns.
The matrixS is called anequiangular tight fram

1) the absolute inner product between each pair of columns
is identical, and

2) it satisfies the equatios'S™
d x d identity matrix.

(N/d)1, wherel is the

The first condition enforces equiangularity, while the s&to
ensures that the matrix is a tight frame [14]. If the matfdhas
real entries, it is called aeal equiangular tight frame

In fact, ad x N matrix with unit-norm columns is an equiangu-
lar tight framef and only if the absolute inner products between
its columns all meet the bound (1). See [12] for an easy proof.

Equiangular tight frames are somewhat rare. Indeed, Holmes
and Paulsen [8] have shown that a real equiangular tightefram
can exist only if

N -1

(V- d(N —d)

2d) Z. (2)

Suppose that one constructs a sef\ofines that pass through In this article, we shall strengthen condition (2). Thedaling

the origin of the Euclidean spa®¢. We assume tha¥’ > d to

theorem summarizes our results in the real case.

avoid trivial cases. Th¢th line may be viewed as the linear span

of a unit vectors;, and the absolute inner producs;, s)]|

Theorem A. Suppose that < d < N — 1. WhenN # 2d, a

may be interpreted as the cosine of the acute angle betweentfceSSary condition for the existence of a real equiangigat

jth andkth lines. It can be shown [15], [17] that

: > A
max I(sj sl = (/g =

frame is that

=1 (mod?2)

\/d%v_—dn _ \/(N —d)(N —1)

d

1) whenv = 2d, itis necessary that be an odd number and that

(N — 1) equal the sum of two squares.
In words, it is impossible for every pair of lines to meet at an . ) o )
arbitrarily large angle. The same bound holdsXounit vectors | his theorem forbids many of the possibilities admitted By (
in the complex Euclidean spac¥. On Fhe other.hand, we have been ablelto establish that a real
equiangular tight frame actually does exist for each faiV)
that meets our conditions, wher€ ranges up to 100. See
Tables | and Il in section 10 for details. In consequence, we
conjecture that the conditions of Theorem A may be sufficient
as well.
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We provide two proofs for the condition whe¥i # 2d. The
first is based on field theory. This method of proof generalize
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to deliver necessary conditions on complex equianguldnt tigo certain pairs of frames. Consider th& — 1) x N real
frames. We consider the case where the inner products betwame matrix of a simplex that we denote ISy Let vectors
columns of the frame are (scaled) roots of unity. The secobé orthogonal to allV — 1 rows of S and notice that the frame
proof is based on a new one-to-one correspondence betwpewperty implies that elements efhave the same magnitude.
real equiangular tight frames and strongly regular graptisav Rescaling produces a corresponding degenerate frameNvith
certain parameter set. The graph-theoretic approachsyibll vectors.

results for the cas&/’ = 2d. The argument extends for arbitrary ETFs: givedia N frame

A second type of necessary condition has also appeared in ithegtrix, one can construct & —d) x N frame matrix by means
literature [15]. A real equiangular tight frame can existyoii  of orthogonalization applied to the row vectors. The resglt

N < % d(d + 1), and a complex equiangular tight frame cacorrespondence is not a one-to-one mapping, however itean b
exist only if N < d?. In Section 9, we offer a new matrix- defined to be one-to-one between certain equivalence slagse
theoretic proof of these upper bounds. frames.

Equiangular tight frames first arose in discrete geometby.[1

More recently, they have found applications in signal pssee 3. FRAME EQUIVALENCE AND DUALITY

ing, communications, and coding theory [6], [12]. As asﬁe.ci Consider ad x N frame matrix, and extend it to aN x N
exar_nple, Holmes a|_1d Paulsen have sho_vvn that an eql.“an%%_trix with orthogonal rows and uniform row norms. It will
lar tight frame provides an error correction code that is Qe straightforward to verify that the addition@V — d) rows
bust against two erasures [8]. In wireless communicatight t

frames have been studied in the context of constructingoza, yhen appropriately rescaled form @ — d) < N matrix of an
. . . . e pETF. The extension to a square matrix as described abové is no
ity achieving signature sequences for multiuser commtioica

. . . .. unique. However, between certain egivalence classesmoisa
systems_[l?]. Equiangular tight fram_es achieve th? _capatlt the mapping becomes one-to-one. The rigorous treatment of
a Gaussian channel because of the tightness conditiorhend t‘[his duality requires the definition of frame equivalencedzh

sat|sf_y an interference invariance property_due to theiiaw an the following invariants of an ETF [8].
gularity [7]. Interference between users is measured by the

modulus of the inner product between their signatures, whi®roposition 2 (Invariance). Suppose that matri§ is an ETF.
are simply the columns of the frame. Equiangular tight fram&he following transformations preserve the ETF property.
solve the problem of providing signatures that see the sam

%) Left-multiplication ofS by a unit tr
interference from every other signature. ) Left-multiplication ofS' by a unitary matrix.

2) Reordering the columns &.
A word about notation. We denote tidex N frame matrix by 3) Multiplying an arbitrary column ofS by a scalar of ab-
S, the identity matrix byl, and the all-ones matrix by. The solute value one.
dimension ofl andJ should be clear from context.
Two ETFs are calleftame equivalerif one can be transformed
2. BAsIC EXAMPLES into the other by a sequence of these basic operations [3]. We
write [S] for the frame equivalence class 6f Every ETF

There are two families of ETFs that exist in every dimensionimplicitly contains a dual ETF, which is unique modulo frame
and one family in dimension one. equivalence [8].

1) (Orthonormal Bases). WheN = d, the sole examples Proposition 3 (Duality). Suppose thatS] is an equivalence
of ETFs are unitary (and orthogonal) matrices. Evidentlglass ofd x N ETFs, whered < N. Then there exists a
the absolute inner produet between distinct vectors is dual equivalence class ¢fV — d) x N ETFs over the same
zero. field. The equivalence clagS] completely determines the dual

2) (Simplices). WhenV = d + 1, every ETF can be viewed equivalence class. Moreover, the duality map is an invotuti
as the vertices of a regular simplex centered at the origin
[3], [12]. The easiest way to realize this configuratiofProof. Since the rows oF are orthogonal and they have iden-
is to compute the orthogonal projection of the standatital norms, we can form a unitary (or orthogonal) maliixoy
coordinate basis iiR?*! onto the orthogonal comple- adding(N — d) more rows toS and re-scaling the matrix.
ment of the vectofl, 1,...,1]7 € R4+, Afterward, the

. . d S
projected vectors must be re-scaled so that they have unit U = \/i [ ]
norm. Note that the configuration lies indladimensional N| T
subspace of the ambient vector space. Applying the facts thasS is an ETF and thal/ is unitary, it is
3) (Degenerate Frame). When= 1, an ETF is al x N easy to check that the matriXd/(N — d) T is also an ETF.

row vector with (possibly complex) entries with absolutgg equivalence class of an ETF is completely determined by
values all equal to one. its row span. In our construction, the row spanSo€ompletely

The simplex and a degenerate frame consisting of the saffféérmines the row span @f and vice versa. This establishes
number of frame vectors have a connection that generalizB§ remaining claims. U
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4. THE GEOMETRY OFETFsS Fact 6. The algebraic integers form aring, i.e., they are closed

o o ] _under addition and multiplication.
By associating each column of an ETF with its one-dimengdiona

span, we may view an ETF as a collection of lines through tf@ct 7. The roots of a monic polynomial over the algebraic
origin. The absolute inner product mentioned in the definiti integers remain algebraic integers.

represents the cosine of the acute angle between each pair of ) ) )

lines. Connected with this geometric interpretation ammeso 1heminimal polynomiabf o overF is the (unique) lowest de-
facts that will be critical in the sequel. First, we note tiie¢  9ree monic polynomial ovef that containgx among its roots.
?nzgile is completely determined by the dimensions of the EHzct 8. A minimal polynomial oveF has simple roots.

12].

Proposition 4 (Size of Angles).Suppose that > 1 and S Two numbers thgt hav_e the same minimal polynomial dver
is ad x N ETF. Then the mutual absolute inner product=  &'€ calledalgebraic conjugatesverr.

a(d, N') between distinct columns Sfsatisfies Fact 9. Suppose that and 3 are algebraic conjugates ové.

If p is a polynomial oveff that hasa as a root with multiplicity

N —d m, then/3 is also a root ofp with multiplicity m.

dN—=1)

o =

) _ With these facts at hand, we may prove the following lemma.
Proof. Let G = S*S be the Gram matrix of the ETF. The di-

agonal entries of7 all equal one, while its off-diagonal entries.emma 10. Let A be a real symmetric matrix whose entries
all equalo in absolute value. So the squared Frobenius norm &t algebraic integers. Then the eigenvaluesladre real alge-
the Gram matrix is braic integers.

G2 =N+ N(N-1)a>

SinceS is a tight frame, its Gram matrix has exacilyjonzero
eigenvalues, which all equal/d. Thus,
) N\? N2
IGlg=d | =] =—. Proof. The matrix A is real symmetric, hence its eigenvalues
d d e ;
are real numbers. By definition, an eigenvaluedfis a root
These two expressions for the norm are evidently equaleSoby the characteristic polynomial — det(zI — A). Since
for o to complete the argument. O the entries ofA are algebraic integers, Fact 6 implies that the
characteristic polynomial is a monic polynomial with algab

In fact, it is impossible to construct a sequence of unit®ect integer coefficients. Then Fact 7 shows that the eigenvaifies
whose absolute inner products are all smaller than A are algebraic integers.

Proposition 5 (Welch Bound). Suppose that > 1 and thatS  Assume that the entries ¢f belong toF. Thus, the eigenvalues

In addition, assume that the entries df belong to a subfield
IF of the complex numbers. A has an eigenvalue: whose
multiplicity is different from that of the other eigenvauien
« also belongs tdy.

is ad x N matrix with unit-norm columns. Then

N—d
d(N—-1)

If this bound is attained, the§ is an ETF.

max [(Sm, Sn)| >
m#n

of A are algebraic ovef. Sincea has a different multiplicity
from the other eigenvalues &, Fact 9 precludes the possibility
that o might have any algebraic conjugates o¥erApplying
Fact 8, we see that the minimal polynomiatobverQ is linear.
Thus,a belongs tdF. O

The first part of this result is originally due to Welch [17].This type of field-theoretic argument appears frequentihe
Strohmer and Heath offer a direct argument that gives baihalysis of integer matrices. A similar argument was used by

conclusions [12]. The most insightful proof appears in [4].

5. ALGEBRAIC BACKGROUND

Our proofs rely on some basic results from field theory. A sta
dard textbook for this material is [10]. For the sake of coatgl
ness, we shall review the essential definitions. Readersanéo
familiar with this material may wish to skip to Lemma 10.

A polynomial whose coefficients are drawn from a subfigld
of the complex numbers is referred to apa@ynomial overF.
The complex numbett is algebraicoverF if it is the root of
some polynomial ovelf. An algebraic integetis the root of a
monic polynomial with integer coefficients.

Lemmens and Seidel in their study of equiangular lines [11].

6. REAL EQUIANGULAR TIGHT FRAMES

Buppose thab is ad x N real equiangular tight frame, and
denote bya the (unique) absolute inner product between its
columns. That s,

a = |(sj, sk)| = forall j # k. (3)

—d
d(N —-1)
Next, we construct the matrix

A

(4)

1.
~($"S 1),
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which is called the signature matrix by Holmes and Paulsen [Bheorem 11 establishes that and A2 are integers, sp, and
Def. 3.1]. This matrix is symmetric; it has a zero diagonalja > must be rational numbers. The entries/df are integers,
its off-diagonal entries are att1. Since an equiangular tightso Lemma 10 proves that the eigenvalues\éfare algebraic
frame satisfies the equati¢ghS* = (N/d) 1, it follows that the integers. We conclude that andy., are ordinary integers.
two distinct eigenvalues oA are

1 N—d Theorem 13 is stronger than Corollary 12. Indeed, there are
Moo= —= and A = 7 (5) many pairs(d, N) that are excluded by Theorem 13 but not
) ) O_‘ o @ by Corollary 12. For example, wheh= 3 and N = 9, then
with respective multiplicitie$ N — d) andd. A = —2and), = 4. As another example, wheh= 10 and
Theorem 11. Assume thalv' # 2d. If S is a real equiangular IV = 25, (A1 + X2) is an integer buf\; and A, are not odd
tight frame, them\; and \. are integers. integers. See Table Il for more examples.

Proof. Since N # 2d, the two eigenvalues ol have differ-
ent multiplicities. The entries oft are integers, so Lemma 10
implies that\; and )\, are rational algebraic integers. It is wellit was observed in [1], [8], [12] that real equiangular tight
known that the only algebraic integers among the ratior@s drames naturally give rise to regular two-graphs aite versa

the ordinary integers. O  Theorem 3.10 of [8] provides complete details of this corre-

spondence. It is also known that regular two-graphs nayural

An immediate corollary is the necessary condition of Holmegive rise to strongly regular graphs with certain paramsé¢s
and Paulsen. [2, Ch. 4]. In consequence, there is also a natural conmectio
between real ETFs and certain strongly regular graphs [13].

7. REAL ETFs AND GRAPHS

Corollary 12 (Holmes—Paulsen [8]). A real equiangular tight

frame can exist only when The connection between real ETFs and graphs is already well
known in the ETF literature. To our knowledge the full power
N-1 ; ;
(N = 2d) 7. of this correspondence has not yet been exploited.
d(N —d)

Next, we offer a short introduction to the theory of strongly

regular graphs, which is drawn from [2]. Amdirected graph

is a (finite) collection of points, calledertices along with a

list of vertex pairs, callectdges In a simple graph no edge

may appear twice and all edges are between distinct vertices

In the next theorem we establish stricter conditions\prand WO Vertices aradjacentor neighboringif the graph contains

Ao an edge betyveer_l them. Theljac_:ency matri>of a graph om
ordered vertices is the x n matrix whose(j, k) entry equald

Theorem 13. Assume thalV # 2d, and exclude the degeneratewhen thejth andkth vertices are adjacent andtherwise.
casesd = 1 andd = N — 1. If S is a real equiangular tight

frame, then\; and )\, are both odd integers. That s,

Proof. Introducing the value ofv from (3), we see that the
expression in the statement of the corollary eqals+ ).
Since)\; and)\; are integers, the result follows instantly. [

Definition 14. A strongly regular graphwith parameters
(n,r,s,t) is a simple graph om vertices for which

d(N -1 N-—-d)(N-1
\/¥ = \/M =1 (mod 2). 1) every vertex is adjacent toothers,
N -—d d . . . .
2) two adjacent vertices havweneighbors in common, and
Whend = N — 1, the unique tight frame (modulo rotations) is 3) two nonadjacent vertices haveeighbors in common.

always equiangular [12]. We shall attend to the cAse- 2d

in Section 7. Our proof adapts an argument of P. M. Neumaffom this definition, we exclude graphs in which no vertiaes a
quoted in [11]. adjacent or all vertices are adjacent. By a simple edge owint

argument it can be shown that the parameters of a strongly
Proof. Let us form a new matrix whose entries all equal zero 6g9ular graph are not independent,

one: _

M - lg-1-4) rir—s—1)=mn-r—-1)t (6)
where the symball denotes a conformal matrix of ones. Wt can also be shown that a matd{ is the adjacency matrix of
have ruled out the possibility that = N — 1, so the eigen- & Strongly regular graph with parametérsr, s, ¢) if and only
value \; of A has geometric multiplicity at least two. In con-f )
sequence, théN — 1)-dimensional null space of must in- M = rI+sM+t(J—-1-M) (7
tersect the invariant subspace Af associated with\;. Any whereJ
vector in this intersection is an eigenvector/af with eigen-
valuep; = —3 (14 \;). A similar argument establishes thatWith this back_ground, we may establish the connection be-
pi2 = —1 (14 )2) is an eigenvalue oM. tween real equiangular tight frames and strongly regukaplgs.

is the matrix of ones [2].
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Theorem 15. There is a one-to-one correspondence betweé&¥e need only check that the graph parameters are integers.
the equivalence classes®k N real equiangular tight frames Suppose that an off-diagonal entryef equals zero. By exam-
and strongly regular graphs (up to permutation of verticegh  ining the right-hand side of (11), we see that the corresjmond

parameter§ N — 1, 2t, s,t), where entry of 4 M? must equal(N — o — 2). If an off-diagonal
entry of M equals one, the corresponding entrd 7?2 equals
N—-30—-6 N—0—2 . . ) . 9
S=———(F— > t= — (N—30—6).SinceM is an integer matrix, each entry 6f\/
q is divisible by four. This observation completes the argnme
an

N1 Conversely, we must demonstrate that each strongly regular
o = (N-2d) m graph om vertices can be associated with a unique equivalence

class of real equiangular tight frames with= n + 1 vectors.
This argument simply reverses the construction of a stsongl

Proof. Suppose tha$ is ad x N real equiangular tight frame. regular graph from a real equiangular tight frame.

Once again, define the matrix
Suppose thaf\f is then x n adjacency matrix of a strongly

(S*S —1). regular graph with parametefs, 2¢, s, t). Together (7) and (6)
imply that the adjacency matrix satisfies (11) with= N —

We have shown thal has exactly two distinct eigenvaluesyt — 9. Define the block matrix

whose product is-(N — 1) and whose sum is. Therefore,

A = 2
o)

T
A must satisfy the quadratic equation A = 2 I 7= Ie_ S| (24)
A? = A+ (N-1I (8) Clearly, A is symmetric; it has a zero diagonal; and its off-

From this matrixA, we shall construct the adjacency matrix offiagonal entries all equat1. Using (11), one may check that
a strongly regular graph. A satisfies the quadratic equation (8). Therefodehas two

non-zero eigenvalues, which we labgl and \s. The trace of
Without loss of generality, assume that the Off-diagonﬂiiesl A is zero, so we may assume thqt< 0 < \o. Moreover, ifd
in the first row and column oAl all equal one. One may achievegenotes the multiplicity ok, then(IN —d) A; +d A2 = 0. Both

this standardization by negating the columnsSothat have a eigenva|ues oA Satisfy (8)’ so their product equa.l.iN _ 1)
negative inner product with the first column. L&t denote the Combining these facts, we determine that

(N — 1) x (N — 1) matrix obtained by deleting the first row

and column ofA. Examining the first row and column of (8), y _ _ dN-1) Ny — \/(N —dN-1)
we see that N—d d
B B The quadratic equation (8) also implies that A1 + A2, which
JA, = AJ = ol ) yields the value of stated in the theorem.
Equation (8) also implies Finally, we construct the matrix
Al = oA +(N-1I-J (10) c - _%AH_
1

Next, we define a matridZ whose entries all equal zero or oneijt has a unit diagonal, and its off-diagonal entries have miag
tude identically equal te-1/ ;. Its two eigenvalues ar% with

- lyg_1-
M = ;(J-I-4) multiplicity d and zero with multiplicityN — d. Therefore, we
Square both sides to obtain may factorG = S*S, whereS is ad x N real equiangular
tight frame. O
4M? = (N—-1D)J+I+A2-2J42A,-JA —A,J.

Our construction of an adjacency matrix from a real equigargu
tight frame is related to the concept of switching among lagu
4M? = -2(04+2) M+ (N—-0—-2)I+(N—-0-2)J. (11) two-graphs. In fact, the argument can be modified to establis
the connection between regular two-graphs and stronglyaeg

Use (9) and (10), and; = J — I — 2M to establish that

Rearrange (11) to obtain graphs. The interested reader may consult [2] for moreinéer
N—-—c—2 N — 30 — tion on these graph-theoretic results.
M? o2y NZ30700 0 a2 fhesedrap
2 4 By definition, the parameters of a strongly regular graphtmus
N-o-2 (I —1—M). (13) be integers. WheV 7 2d, one may reproduce Theorem 13
4 using Theorem 15 and the fact that the parameters of a syrong|

On comparison with (7), we discover thdd is potentially the regular graph are integers. Whah= 2d, the integrality of the
adjacency matrix of a strongly regular graph with paranseter graph parameters implies théts odd, which is a new result.

N_1 N—-oc—-2 N-30—-6 N-0-2 Strongly regular graphs are further classified as Type | peTy
o 2 ’ 4 ’ 4 I [2]. When N = 2d, it can be shown that the construction



A according to (14) and we can verify that this matrix satisfies
A? = 2A + 151. The eigenvalues are equall@ = —3 and

Ay = 5, the latter with multiplicityd = 6. Finally, the matrix

G = —%A + 1, factors asS” S (e.g. by the spectral decompo-
sition) providing16 frame vectors oR®. Below we show the
frame vectors as the row vectors for typesetting reasons.

—0.1436  0.0386  0.6623 —0.4633 —0.3333 —0.4620
—0.7718  0.4187 0.2162 —0.2004 0.3333 —0.1767
0.6783 0.4346 0.0137 —0.1800 —0.3333 —0.4554
—0.6362 —0.2930 —0.2162 —0.5925 —0.3333 —0.0235
—0.1356  0.7116 0.4324 0.3921 —0.3333 —0.1528
0.1464 —0.5292 —0.2162 —0.1633 —0.3333 —0.7169
0.6282 —0.3801 0.4461 —0.2630 0.3333 —0.2857
—0.6675 —0.2522 02025 0.4089 —0.3333 —0.4143
—0.1544 —0.1439  0.4461 —0.6921 0.3333  0.4077
0.0108 0.1824 0.2162 0.2288 0.3333 —0.8697
0.4818 0.1491 0.6623 —0.0997 —0.3333  0.4312
0.0421 0.1416 —0.2025 —0.7725 0.3333 —0.4789
—0.0501 —0.8147 0.4324 —0.0829 —0.3333  0.1697
Fig. 1. Strongly regular graph with parametéts, 6, 1, 3). —0.1043  0.6708 0.0137 —0.6092 —0.3333  0.2380
—0.1857 —0.1031  0.8648 0.3092 0.3333 0.0169
0.0000  0.0000 0.0000 0.0000 —1.0000 0.0000

in Theorem 15 always yields a Type | graph, while the case
N + 2d leads to a Type Il graph. 8. COMPLEX EQUIANGULAR TIGHT FRAMES

Theorem 16. Suppose thalV = 2d. Ad x N real equiangular Itis also natural to study equiangular tight frames whosgesn

tight frame can exist only ifN — 1) is the sum of two squares.are complex. The experiments in [14] indicate that complex
equiangular tight frames must satisfy integrality corais like

Proof. The strongly regular graph corresponding to the frameheorem 13, but no such conditions are presently available.

is a Type | strongly regular graph. Therefore= N — 1 must We have used field theory to develop strong constraints on

be the sum of two squares [2, Thm. 2.18]. [0 equiangular tight frames for which the inner products betwe
columns are scaled roots of unity. This type of equiangidat t

We end this section with an explicit example demonstratirf(me can arise in electrical engineering applicationswthe

the creation of a real equiangular tight frame from a suétabgntries of the frame matrix are restricted to be roots ofyunit

strongly regular graph. We start with the strongly regutaply  oyr starting point is the auxiliary matrix

with parameter<15, 6, 1, 3) which is depicted on Figure 1. The 1

incidence matrix\I of this graph is: A = - (S*S -1).

As before, the eigenvalues @ are given by (5). If we restrict
the off-diagonal entries ofl, then we may apply Lemma 10 to

010011 00O01O0T1O0O0T1 ) - X
1010001 1000710710 prove _that the_elgenvaluesﬂf must lie in a prescribed set. The
0101010071 1000710 following fact is fundamental [16]
co601011010011000 Fact 17. Suppose thaf, is a primitive pth root of unity. The
100100010 100110 ring of algebraic integers in the fiel@®(¢,) coincides with the
10110010000O0T1FQ01 fing Z[¢,).

0100010101 1O0T1O0O0

6101101010000 O01 Note thatQ((, ) denotes the smallest field extendighat con-
601 000O01O0T1TO0T1T1O0T1 tains¢,, while Z[¢,] is the smallest ring extendirigj that con-
1010101010100 0O00 tains¢,. A general theorem falls from Fact 17 and Lemma 10.
o 0o01o0010O01O01O0T11 . .

1 1010000101010 0 Theqrem 18. Suppose that th_e off-diagonal entries of the sym-
00001110100710T10 metric A are pth roots of unity. Then the eigenvalues Af
0110100000101 01 belong to the rindZ[¢,] N R.

100001011 O01O0O0T10

We shall provide several examples that demonstrate howeto us
Following the notation used in the proof of Theorem N5= Theorem 18 to obtain specific conditions for several diffiere
16,t = 3and we set = N — 4t — 2 = 2. We construct matrix types of equiangular tight frames.
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Gaussian Integers Suppose that the off-diagonal entriesaf Theorem 19. An upper bound on the numbéf of equiangu-
belong to the sef+1, +i}. This situation can occur whenlar lines that can be constructed indadimensional Euclidean
the entries of the frame matrix are drawn from the sepace is
{£d~'/?,+id~1/?} and the pair(d, N) is suitably re-
stricted. Theorem 18 shows that the eigenvalue4 ofust
be ordinary integers. Using equations (3) and (5), we dis-

cover the necessary conditions Proof. Suppose thafs;} is a collection of\' distinct unit vec-
tors ind-dimensional Euclidean space. Define f{iex N Gram
diN-1) €Z and \/w cZ. matrix G whose entries arg, = (s;, si). The Gram matrix is
N-d d conjugate symmetric, and it has raskf the vectors represent
This is the same condition we obtained in Theorem 11. a set of equiangular lines, then the off-diagonal entriethef
Sixth Roots of Unity Assume that the off-diagonal entries ofGram matrix all have the same magnitude, say
A are sixth roots of unity. Theorem 18 implies that th?_et the symbol &
eigenvalues ofd are real elements dt[(s] where(s =
2™/, The elements dE[(s] can be written as

N<id(d+1) inR?, and

N < d? in CY. (15)

' denote the Hadamard, or elementwise, prod-
uct of two matrices. Observe thé o G” is a nonnegative
matrix with a unit diagonal and with all off-diagonal ensie
equal toa?. In symbols,

GoG" = *J+(1-aH)L

ao + a1ls + a2(3,

whereag, a; anday are integers. The expression yields
a real number if and only ifi, = —a;. Thus, using Sincea lies in the interval0, 1), one may calculate directly that
6 — (2 = 1 we conclude that the real algebraic integers i¥ © G* has rank\.
Z[(e] are the ordinary integers. We obtain the same necgis ell known that matrix rank is Hadamard submultiplica-
sary conditions as in Theorem 11. tive [9]. Therefore

Eighth Roots of Unity Assume that the off-diagonal entries of '
A are eighth roots of unity. Theorem 18 now forces the ~ N = rank(G o G") < (rank G)(rank G") = d°.
eigenvalues ofA to lie in the ringZ[(s] N R, where(s =

% + %z The elements dZ[(s] can be written as

This establishes the result in the complex case.

The real case requires a slightly more detailed analysigeSi
ap + a1(s + asi + a3§§>, G is a symmetric matrix of rank, it may be written as the sum
of d rank-one matrices:
whereag, a1, as andas are integers. If the expression d

yields a real number then we must have+ \/%(al + G = Zj:l Uj “;f

az) = 0, implying a3 = —a; andas = 0. Thus, using Therefore

(s — (8 = /2, the real elements i[(s] must be of the ' J

form ag + a;1v/2 in other wordsZ[(s] N R=Z[v/2]. GoG" =) (uju])o(uruy)
According to (3) and (5) the\; and )\, eigenvalues are fj’k:l '

both square roots of rational numbers. It is easy to verify, = Z (wj o uy) (wjoug)”
that either both eigenvalues must be integers, or they both fi’kzl

must be an integer multiple af2. Thus, we discover that = Zj—l (uwjouy) (u; ouj)’

either
T
+2 E j<k(ujouk) (ujoug)”.

d(N —-1) (N—d)(N-1)

—~_—g €% and \/f €Z,  tis evident from this expression that the rank@s G” cannot
exceed: d (d + 1). The real case follows. This argument can
also be adapted to provide a direct proof of the complex case.

d(N—1) (N —d) (N —1) .

must be true. 10. CONSEQUENCES ORNECESSARYCONDITIONS

or

Table | lists all pairdd, N) with N < 100 for which the nec-
essary conditions of Theorem A are in force. Using tables of
known strongly regular graphs, we have been able to edtablis
ata real equiangular tight frame actually exists in eatch o
ese cases.

9. UPPERBOUNDS

The literature also contains upper bounds on the numbertﬁ
equiangular lines that can exist in a Euclidean space. Tihal ust
proof of these results [5] is not very accessible. We offer alo emphasize how much our conditions improve on the re-
elegant new argument that relies only on matrix theory. sults of Holmes and Paulsen, we have tabulated cases where



d N d N d N d N
3 6 13 26 21 42 33 66
5 10 15 30 23 46 41 82
6 16 15 36 25 50 43 86
7 14 19 38 27 54 45 90
7 28 19 76 28 64 45 100
9 18 20 96 31 62 49 98
TABLE I. The pairs(d, N) with N < 100 andd < N/2 for which

a real equiangular tight frame exists. The restrictibn< N/2 is
motivated by frame duality, discussed in Section 3. Thitetakcludes
the trivial casesV = d and N = d + 1 where an equiangular tight
frame always exists.

d N o= A1 A2 s t | Reason
AL+ A2

4 8 0 -2.65 2.65| 0.50 1.50| P2,P3

6 12 0 -3.32 3.32| 1.50 2.50| P2,P3

8 16 0 -3.87 3.87| 250 3.50| P2,P3
10 20 0 -4.36 4.36| 3.50 450| P2,P3
10 25 2 -4.00 6.00| 3.25 5.25| P1,P2
11 22 0 -4.58 4.58| 4.00 5.00| P3
11 33 4 -4.00 8.00f 3.75 6.75| P1,P2
12 24 0 -4.80 4.80| 4.50 5.50| P2,P3
12 45 7 -4.00 11.00| 4.50 9.00| P1,P2
13 65 12 -4.00 16.00( 5.75 12.75| P1,P2
14 28 0 -5.20 520 5.50 6.50| P2, P3
16 32 0 -5.57 5.57| 6.50 7.50| P2,P3
17 34 0 -5.74 5.74| 7.00 8.00| P3
17 51 5 -5.00 10.00f 7.50 11.00| P1,P2
18 36 0 -5.92 592 7.50 8.50| P2,P3
20 40 0 -6.25 6.25| 8.50 9.50| P2,P3
21 49 2 -6.00 8.00( 9.25 11.25| P1,P2
22 44 0 -6.56 6.56| 9.50 10.50| P2, P3
22 55 3 -6.00 9.00| 10.00 12.50| P1,P2
24 48 0 -6.86 6.86| 10.50 11.50| P2, P3
26 52 0 -7.14 7.14| 1150 12.50| P2,P3
26 91 9 -6.00 15.00| 14.50 20.00( P1,P2
28 56 0 -7.42 7.42| 1250 13.50| P2, P3
29 58 0 -7.55 7.55| 13.00 14.00| P3,P3
30 60 0 -7.68 7.68| 1350 14.50| P2,P3
32 64 0 -7.94 7.94| 1450 15.50| P2, P3
33 99 7 -7.00 14.00( 18.00 22.50| P1,P2
34 68 0 -8.19 8.19| 1550 16.50| P2, P3
35 70 0 -8.31 8.31| 16.00 17.00| P3
36 72 0 -8.43 8.43| 16.50 17.50| P2,P3
36 81 2 -8.00 10.00| 17.25 19.25| P1,P2
37 74 0 -8.54 8.54| 17.00 18.00| P3
38 76 0 -8.66 8.66| 17.50 18.50| P2,P3
39 78 0 -8.78 8.78| 18.00 19.00| P3
40 80 0 -8.89 8.89| 18.50 19.50| P2,P3
42 84 0 -9.11 9.11| 19.50 20.50| P2, P3
44 88 0 -9.33 9.33| 20.50 21.50| P2, P3
46 92 0 -9.54 9.54| 2150 2250| P2,P3
47 94 0 -9.64 9.64| 22.00 23.00| P3
48 96 0 -9.75 9.75| 22,50 23.50| P2, P3
50 100 0 -9.95 9.95| 2350 24.50| P2,P3

TABLE II.  All pairs (d, N) with N < 100 that meet the condition

of Holmes and Paulsen even though no real equiangular tightef
exists (we exclude cases withh < %d(d + 1), see (15)). Holmes and
Paulsen’s condition requires thatthe sum of the eigenvalues and
A2 of the derived matrix (4), be an integer. The “Reason” fieldveb
indicates why no equiangular tight frame exists using tHiwang
legend, P1:N # 2d, but A1 or A\ is not odd, P2: The calculated

frame even though none exist. Table Il lists each pa&jtV)
with N < 100 and N < %d(d + 1) that meets their condi-
tion 2 but fails to satisfy Theorem A. We have calculated the
eigenvalues of the derived matrix(4), their suiras well as the
parameters andt of the strongly regular graph. The “Reason”
field explains which of our necessary conditions forbids the
existence of a real equiangular tight frame.
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