Experimental Evaluation of Load Balancers in
Packet Processing Systems*

Taylor L. Riché, Jayaram Mudigonda, and Harrick M. Vin
Laboratory for Advanced Systems Research (LASR)
Department of Computer Sciences
The University of Texas at Austin

TECHNICAL REPORT: UTCS TR-04-33
(A version of this report appeared in BEACON-I, October, 2004)

Abstract: e Packet-leveload balancing that determines the mapping
The load balancer is a fundamental building block for im- of a packet to a processor independently for each packet.
plementing high-throughput applications on multi-corehar A round-robin or a weighted round-robin distribution of

tectures (e.g., network processors). In this paper, weidens packet; to processors are examples of packet-level load
two canonical load balancing schemes in the context of gacke balancing schemes.

processing systems: (packet-leveload balancing that de- .

termines the mapping of a packet to processor independenty F]!O\Nl_ Ievglloadk balancing that mapsfhn\(/jv;a sequtﬁnceb
for each packet; and (Zpw-levelload balancing that mapsa ©' relate lfac eftsh—t(?la procr?ssor an ; Irects all subse-
flow to a processor and directs all subsequent packets of that dUeNt packets ot that flow to the mapped processor.

flow to the mapped processor. By identifying the application gg|ecting between these two (and other related) schemes is
system, and trace characteristics that affect their velager- tricky because of at least two reasons.

formance, we address the fundamental question: under whab, the one hand, packet-level load balancing schemes can
operating conditions, should one choose packet-leveltaid o, |5it greater-degree of concurrency and can achieve-finer
ancing over flow-level load balancing, and vice versa? gain distribution of workload across processors than flow-

. level schemes. This is because of two reasons. First, by-ensu
1 Introduction ing that no more than one packet of a flow is processed con-

Packet processing systems are designed to process netfdf€Ntly, flow-level load balancing restricts the avalidgpar-
packets efficiently. The design of these systems is gover@¥glism to the number of simultaneously active flows; p&cke
by two requirements: (1) support high-bandwidth links (ar{avel load balancmg, on the other hand, can process inlphral
hence, high packet processing throughput); and (2) supp%h‘)f the packets smultqn_eously present in the sy;tem.— Sec
an ever-increasing set of complex packet processing appled. the set of flows arriving at a packet processing system
tions (e.g., protocol conversion, firewall, Secure Socketdr MaY differ S|gn|f|cantly fro_m each other |n_the|r charactéds
(SSL), intrusion detection, and virus scanning). The cenfl{$-9-» the duration for which a flow is active, the number and
ence of these two requirements yields scenarios wherentiee ih€ rate of packet arrivals for a flow, etc.). A flow-level load
to process a packet exceeds the inter-arrival time of paeket Palancing scheme is often unaware of sadn-uniformityin
system. To address this challenge, modern packet progesgfﬁ"’ characteristics when the first packet of the flow arrives.
systems (and in particular, network processors (NP))zetiliConsequently, a flow-level load balancing scheme could map,
multi-threaded, multi-processor architectur&k [NP archi- for instance, multipleelephantflows onto a processor and
tectures fore-shadow a more general trend towards therde;ﬁb:)'t'ple miceflows onto another processd]{ the resulting

of multi-core, multi-threaded architectures targetedHigh- IMbalance wastes processor resources, and increasesthe pr
throughput computing environments. cessor provisioning requirement to achieve a desired lgvel

Load balanceiis a fundamental software building block fthrgungUt'h hand ket-level load balanci h
implementing high-throughput applications using suchtmul. n t. € Ot er hand, pac et-level loa alancing schemes can
fpgur significantly higher overhead for accessing and updat

core architectures. A load balancer attempts to scale f tatanaintained b ¢ ket . i
throughput of a system with increase in the available pr008§ r-Tiow statemaintained by most packet processing appiica-
ans (e.g., the per-flow start- and finish-tags maintainefi

sors. A load balancer can balance load across processorsf' duli laorith This is b ith ket-lovel
ecuting replicas of a pipeline stage (in systems that i[mtitsc eduling algorithms7]). This is because, with packet-leve

applications into pipeline stages) or replicas of the erdip- g)atdg)alancmg, t?le zharedltﬂolw-state may petschssdedgn:j up-

plications. The two canonical load-balancing schemes are: ated concurrently by mulliple processors, this leads 1o tw
sources of overhead. First, to guarantee correctnessssacce

*This research is supported in part by the National Scieneadration to flow-state must be synchronized (e.g., by using lock®); th

(ITR grant ANI-0326001), State of Texas — Advanced TechgplBrogram, Penalty to acquire a lock and the time a processor may block
and Intel. waiting to acquire a lock affects packet processing through

Second, in this setting, shared per-flow state is often seces and coarse flow granularities restrict the parallelismlavai
from memory-levels shared across processors; the latemcy f able to flow-level load balancers. On the other hand, large
doing so is generally significantly higher than accessirmg pe critical segment lengths and coarse flow granularities re-
flow state from memory that is local to each processor. This strict the parallelism available to packet-level load bal-
increases the total time required to process each packietywh ancers.
in turn, increases the processor provisioning requiredhiey t
packet-level load balancing scheme for achieving a desired
level of throughput. Flow-level load balancing schemesaloc
ize per-flow state in memory-levels local to a single proogss
and thereby eliminate most of this overhead.
Although the topic of balancing load across multiple preces
sors has received considerable attention in the literatoueh
of the prior work is focused on techniques for improving the
efficiency of load balancing schemes (e.g., by selectinga pr
cessor based on current load on procesgyr®f dynamically
re-balancing the load by migrating existing flows across pro
cessors10])). Surprisingly, little is known about how one can
select from among the set of alternatives a scheme thatts bes
suited for a particular environment. To quantify the impact of these characteristics on load bal-
In this paper, we address the following fundamental quesicing, we developed an event-driven simulator. In what fol
tion: under what operating conditions, should one choo$avs, we first describe the design of our simulator and then
packet-level load balancing over flow-level load balangingefine the metrics for our performance evaluation.
and vice versa®e define_ metrics for evaluating r_elative Per 1 Simulation Model
formance of load balancing schemes and describe our exper- . .
imental methodology. We identify the application, syste ystem Model : We consider a hgmogeneous multi-processor
and trace characteristics that affect the relative perdoire SYSteM. LetC be the number of instructions that a processor
of packet-level and flow-level load balancing schemes. can execute in unit time. Each processor can operate mde;-
Our results provide guidelines for selecting a load balanc@enqently an_d in parallel. We assume that each processor is
Using these guidelines, one can automate a key aspect qumjflgureq W'th.a local memory (or a cache) that can be ac-
plementing high-throughput applications onto highly flata cessed with a S|.ngle-cycle latency. Further, processan®sh
architectures. This will eliminate the burden of choosing qiemory level with access latency 9f cycles.
design time a particular load balancing scheme, and ther@lication Model : We model an application as a sequence
simplify the programmability of these systems (the primapf executions of non-critical and critical segments (thetess

Workload characteristicsDistributions of the (1) inter-
arrival time for packets; (2) arrival-rate for flows; (3)
holding time for flows; and (4) sizes (in terms of hum-
ber of packets) of flows. Whereas the inter-arrival time
of packets determines the parallelism available to packet-
level load balancers, the combination of flow arrival-rate
and holding times determine the parallelism available to
flow-level load balancers. The intra-flow packet arrival
rate and flow size distribution, on the other hand, captures
the non-uniformity in flow characteristics and thereby
controls the load-imbalance that may result from flow-
level load balancing.

goal of our overall research effo21]). shared flow-state) of code.
The rest of the paper is organized as follows. In Sec®on ~ ~
we present our simulation methodology and the metrics of our A= (A1, A2, A3, A, - An)

evaluation. In SectioB, we describe the setup and the resulfs, .o
of our experimental evaluation. Sectidndiscusses related
work, and finally, Sectio® summarizes our findings.

i and,‘Ale, respectively, denote a non-critical and a crit-
ical code segment. We characterize the execution of each
segment of application code using the pajc;, m;), where
¢ andmy, respectively, refer to the number of computational
- MethOdomgy and memory access instructions executed while processing a
The performance of packet-level and flow-level load balagicipacket. Entry into each critical code segment is protected b
schemes depend upon three categories of parameters: g lock; this guarantees that only one processor can be execut
o . . ing inside a critical code segment at any time. For each lock,
* System characteristicsThe latency in accessing global 4 hence each critical code segment, we specify flow granu-
(i.e., shared across processors) and local (non-shaigf) . tor instance, a lock with flow granularity defined ast
memory-levels. The greater is the overhead in accesgsrcelp, destinationjPaddress-pair serializes the process-

ing global memory-levels, the smaller is the throughpify of packets with the sameourcelP, destinationjrddress-
achieved by packet-level load balancing scheme. pair.

e Application characteristics(1) The total processing re-Simulator Design : Our event-driven simulator, developed in
guirement of a single packet (denoted happlication C++ and driven by TCL scripts, consists of four components:
length; (2) the length of critical code segment that acceék) apacket reader(2) aload distributor, (3) a set ofproces-
and manipulate shared flow-state; and (3) the flow grasers(with the associated local and shared memory levels), and
ularity (i.e., the flow definition used by the application)4) alock manager
Since flow-level load balancing scheme only process aThe packet reader reads packets from a trace, converts it
single packet of a flow at a time, large application lengtiso the simulator’s internal packet format, and passestié

load distributor. The load distributor implements loadamer 3 Experimental Evaluation

ing schemes. Once a packet is assigned to a processor{his section, we describe the setup and the results of our
processor uses the;, my) pair specified for each applicationsyperimental evaluation.
code segment to simulate packet processing. On encoumterin

a critical code segment, the processor attempts to acqaire f3-1 EXperimental Setup
the lock server the lock corresponding to the flowID assodMe quantify the relative performance of load balancing
ated with the packet. Upon acquiring the lock, the processshemes under the following parameter settings.

continues packet processing. Upon completing the praugssi System characteristics We consider a multi-core sys-
of a packet, the processor selects the next packet to process;om, (e.g., Intel's IXP2800g]). We assume that mem-
(if one is available); otherwise, the processor is place@mn ory local to a processor can be accessed in a single cy-
idle queue. If the lock that a processor attempts to acquire cle; further, accesses to shared memory level requires 10,
is already occupied, then the processor is placed on a waitin 50, 100, or 200 cycles. These values are representative

queue for the lock. When the lock is released by another pro- ¢ today’s architectures with on-chip and off-chip shared
cessor, the lock server assigns the lock to the processbe at t memory levelsg].

front of the waiting queue. T o _ .
29 Performance Metric e Application characteristicss We consider synthetic
' packet processing applications with a single critical sec-
Given a packet processing application and a traffic trace, we tjgpt (namely, 4 = (ﬂl,/‘?lz,/%)), with the total packet
evaluate the performance of a load balancing scheme in terms rqcessing times selected as in integral (2, 4, 8, 16, and
of the processor provisioningieeded to meet the throughput 24) myltiple of the average inter-arrival time (IAT) of
requirement of the trace. In particular, given an appl@ati the packet trace. For each of these cases, we consider
A1 and a packet tracé’, we define the processor provision- gppjications where the critical code segment (namely,
ing requirement for a load balancing scheme by first defining (C2 + my)) accounts for 1.25%, 2.5%, 5%, 10%, and
processor capacitandoffered loadas follows: 20% of the trace IAT. We consider three possible values
« We define theprocessor capacity’(4, 7, n) as the num- for flow granularity: (1) 5-tuple (defined bysourcelP,
ber of packets that can be processed by a processor within sourcePort, destinationlP, destinationPort, protocgliD
time AT (7), the average inter-arrival time for packetsin ~ (2) (sourcelP, destination}Paddress-pair; and (3) the

trace7. Formally, (destinationlR field.
_ C e Traces: To compare load balancing schemes under realis-
P(A,T,N) = W(Aa,n) *IAT(T) (1) tic workloads (i.e., representative packet- and flow-level

parallelism), we use traces collected from various loca-

tions in the Internet to drive our simulations. In this pa-

per, we report results obtained using two traces: (1) the

UNC traces 17] collected from the link connecting the

University of North Carolina at Chapel Hill to the Inter-

e We define theoffered loadO(7',n) per processor as the net; and (2) the MRA traced 4] collected from an OC-12
number of packets that arrive at a processor within time (620 Mbits/second) link that is closer to the Internet back-

where C is the number of instructions that a processor
can execute in unit time, an@/(4,n) is the number of
processor cycles requires to execute applicatiofor a
packet on a processor in a system withrocessors.

interval IAT (7) in a system consisting of processors. bone. The UNC traces represent traffic pattern at the edge
If P_IAT(7,n) denotes the average inter-arrival time of of the network, while the MRA traces represent traffic in
packets observed at a processor in a system mo- the network core.

cessors, then we defi@(7 ,n) as: e Load balancing schemes: We study two practical load

_ 1 balancing schemes—packet-level load balancing and
O(T,m) = P_IAT(T,n) *IAT(T) (2) flow-level load balancing (as seen in Figue—as well
as ahypotheticalload balancing scheme. Recall that the
Given the definitions of processor capacityA, 7',n) and of- packet-level load balancing scheme can exploit packet-
fered loadO(7, n), we define therocessor provisionintgvel level parallelism available in a trace; however, its perfor
(denoted byAs(4, 7)) required by load balancing scherse mance is limited by the overhead incurred in accessing
as: flow-state from shared memory-levels as well as the se-
Ns(A, T) = min{n|P(A,T,n) > O(7,n)} 3) rialized execution of critical code segments. Flow-level

Given the processor provisioning levels for load balancing load balancing, on the other hand, processes only one
schemess; ands;, we quantify the relative performance of packet of a flow at a time (and thereby eliminates lock-

the two schemes for applicatioft and trace7 in terms of ing) and minimizes the memory access latencies (by us-
provisioning ratiqg &, as: ing memory local to a processor to maintain flow-state);
9\@1 (,q, rf) 1in this paper, we assume this simplified application model;aapion of
RS]_,S2 (,‘47 ‘T) = (4) more complex applications with multiple critical segments ismd for future
9\&2 (,‘Zl, {I) research.

Processor
Processor \)
- Y
o @J > g Processor
Flow r 0Cessor

> [oot [T o Sl
. % -
[T Processor Processor
- ~ @

(a) Flow-level load balancing (b) Packet-level load balagc

Figure 1: Diagrams of the two load balancing schemes.

however, it can only exploit flow-level parallelism. The Observe that’(4,n) depends on the effective length of the
hypotheticalscheme combines the best of the packetritical segmentECS= (c;+my* M)) and the average packet
level and flow-level load balancing schemes—it exploitster-arrival time for the trace. In Figur& we plot the vari-
packet-level parallelism and yet does not incur any mewtion in £(A4,n) as a function of effective critical segment
ory access or synchronization overhead. length. We plot£(4,n) and ECS as multiples of the trace
inter-arrival timel AT (7). Using Figure2, we derive the fol-

3.2 Results lowing conclusion.

In this section, we address the questiamder what oper-

ating conditions, should one choose packet-level load bal- [Zms == ‘ ‘ ‘ ‘ ‘ -
ancing over flow-level load balancing, and vice versslke ol 1§§ o g
first identify the application, system, and trace charasties s

that affect packet processing tini¢’(4,n), processor capac- st

ity (4,7 ,n), and offered per-processor load‘7,n). Then,

we study the impact of these characteristics on the processo
provisioning ratioRs p.

3.2.1 Packet Processing Times W(A4,n)

Lock Delay (Multiple of IAT)

Let Wp(A4,n) and Ws (4,n), respectively, denote the number il e
of processor cycles required to process a packet in a system | e
with packet-level and flow-level load balancing. e I S
We assume that a flow-level load balancing scheme enables o =i
all memory accesses made while processing a packet to be ser- Fee
viced from the local memory available at a processor. Henggyure 2: Variation in lock waiting time (4, n) with n and
for 4 = (A1, 4, 43), we get: effective critical segment length (ECS) (represented asila m

W (4,0) = (C1+ M) + (Co+ Mp) + (C3 + Ma) (5) tiple of trace IAT).

Observe that#s (4, n) is independent of. - Conclusion 1. The lock waiting timeZ(4,n) increases with
In the case of packet-level load balancing scheme, accesgggase in ECS and n.

to shared per-flow state (made during the execution of criti-The magnitude ofZ(2,n), however, is governed by the
cal segmenti,) are serviced from shared memory level (witBurstinessof packet arrivals within a flow. The greater the
access penalty aM cycles); we assume that all other menburstiness (i.e., number of packet arrivals of a flow within
ory accesses can be serviced from local memory. Further,ith@rval ECS), the greater is the average lock waiting time
entry to the critical code segment is serialized using Iptets £(4,n). For the traces we examine, only a relatively small
£(A4,n) denote the time for which a processor may block waitumber of packets belonging to a flow arrive within a time
ing to acquire a lock to enter critical code segmént Hence, window ECS (see Figur®. Hence, the observed lock waiting
we get: time is often smaller than ECS.

Wp(4,n) = (c1+ M)+ (Co+ Mo M)+ L(4,n) + (c3+mg) 322 Processor Capacity P(A4,7,n)

(6) Recall from Equation) that processor capacity?(4,7,n)
where(c, + mp M) denotes the number of cycles required tig defined as:
execute critical code segmenp. Thus, to deriveM)(A4,n),

we need to first derive the lock waiting time functiar4, n). P(A,7,n) =

C
W IAT (T)

presence of non-uniform flows, packet arrivals are not dis-
tributed uniformly across the processors. Hence, we define
theP_IAT; (7, n) as:

—_— P_IAT{(n) = min P_IAT;(7) 8)

ie[l.n]

whereP_IAT;(7) is the observed inter-arrival time of packets
at processorwith packet trace’ .

Avg. Packets per Flow
.

1

T
Flow Level —+—
Packet Level —--x---

1 1 1 1 1 1 1 1
[1 2 3 4 5 6 7 8 9 DN
Window Size (Multiple of IAT) \x\

Figure 3: Intra-flow concurrency in UNC trace.

01f X

Offered Load (Pkts/IAT)

1 1 1 1 1
Tt e e 0 00000 0 0000 e0- 1 2 4 8 16 32
Number of Processors

e bt bt Figure 5: Offered load(7,n) as a function oh.

Processor Capacity (Pkts per Avg. IAT)

FL ——
PL ECS=.140IAT ---x---
PL ECS=280IAT %
002 | PLECS=572IAT
PL ECS=1.14IAT -
PL ECS=2.28IAT -
PL ECS=4.30IAT e~
PL ECS=8.50IAT —

Using the definitions oP_IAT (Equations/ and8) and of-
fered loadO (Equation2), we experimentally derive the vari-

beomO X

% 5 0 = 20 = © ES ation of O(7',n), the per-processor offered load, as a function
s of n for both flow- and packet-level load balancing schemes
Figure 4: Processor capacity as a functiom.of (see Figures). We derive the following conclusion.

Conclusion 3. For the packet-level load balancing scheme,
Figure4 plots the processor capacities obtained by substitutithg offered loadd(T,n) for a processor reduces linearly with
the values ofi/(4,n) for flow- and packet-level load balancincrease in n, the number of processors in the system. For the
ing schemes derived in Secti@R.1 We derive the following flow-level load balancer, because of the non-uniformityanfl
conclusion. characteristics, the reduction in the per-processor @ftdioad

with increase in n is sub-linear.
Conclusion 2. For the flow-level load balancing scheme,
Wk (A4,n) is independent of n; hence, for a given applicatiof2.4 Processor Provisioning Ratio K p
A and packet tracel, the processor capacit$s (4,7 ,n) is Figure6 shows the provisioning ratifs , as a function of ap-
independent of n, the number of processors in the system. plication characteristic (namely, the effective critisalgment

On the other hand, for the packet-level load balancidgngth (ECS)) for several different processor capacityiesl

scheme, sinc&(‘7,n) and henceW,(7,n) increase with n, P¢(A4,7,n). Observe that
the processor capacity, (A4, 7,n) decreases with increase in
n. Observe that the rate of increase4n{7Z , n) with n reduces
significantly at large values of n; hence, the processor cépa
Pp(A,T,n) stabilizes for larger values of n.

N (A, T)
Np(A,T)

Hence,Rs p(A4,7) > 1 indicates that to meet the throughput
3.23 Offered Load O(7,n) demands of applicatior and packet tracg” the flow-level
A packet-level load balancing scheme distributes packtgd balancer requires a greater number of processorshban t
evenly across the available processors; hence, for a syspaeket-level load balancer. Similarl®s p(A4,7) < 1 indi-

RLP(/qv T) =

with n processors: cates that the flow-level load balancer requires a smaller-nu
ber of processors than the packet-level load balancer. &k re
P_IAT,(7,n) = n= AT (7T) (7) tothe ECS value at which the provisioning requirement of the

flow-level load balancer becomes smaller than the prowision
On the other hand, a flow-level load balancing scheme disg requirement for the packet-level scheme asctioss-over
tributes load across processors in terms of flows. In theint We derive the following conclusion from Figuée

¢ ‘ T pos gurmem — variation of the average inter-arrival times for packetthim a
P B pAT flow for the UNC and MRA traces. The higher coefficient of
variation for the UNC trace is indicative of a greater amount

PC = .5 Pkts/IAT ---m--
of non-uniformity in flow characteristics.

| Trace| Mean | Std.Dev | Coeff. of Var. | # Flows |

Provisioning Ratio (f,p)
w

MRA | 572675| 711545 1.24 13548
2hoc, UNC | 699895| 1593082 2.28 9393
1| R . T — Table 1: Flow statistics for the MRA and UNC traces. (IATs
SRR e — are measured in micro-seconds).

ECS (multiple of IAT)

.) . C _ Conclusion 5. The higher the degree of similarity in flow
Figure 6: Ry p for different applications1 (UNC trace). Pro characteristics, the greater is the operating region ovéick

i __C
cessor capacity (PCE(A,7,n) = wr(an) * IAT(T) the flow-level load balancer is preferred over the packeele
load balancer.

Conclusion 4. As the value of processor capacily(A,7,n) 326 Effect of Flow Granularity
degre_ase_zs,the Cross-over point occurs at larger valueﬁﬁ.E_The offered load and the lock waiting time depend on the
This indicates that the packet-level load balancer remairs

preferable for a greater region of the application desigasp ow89rﬁnular{;]y asspi!ateql V;/r';[h cr|t|c_a_| s_egmeﬁ_i. Ff'g'
(as identified by the effective critical segment length). ure 8 shows the variation In the provisioning ratiy for
different flow granularities for various combinations obpes-

3.2.5 Effect of Packet Trace T sor capacityPs (4, T ,n) and effective critical segment lengths

In the previous sections, we showed the results obtained (&=S)- We draw the following conclusion.

ing the UNC trace. Figuré shows the provisioning rati®s

as function of application characteristic (namely, theeti/e ’ T T T ek ——
critical segment length (ECS)) for several different psswe SR ECSITOAT 2 |
capacity valuegps (4,7, n) for the MRA trace. The trends DESTECS=430AT -«
seen in Figure/ are similar to those observed in Figuse

However, for the same value & (A4,7,n), the cross-over

point occurs at smaller values of ECS length, indicatingitha
case of the MRA trace, the flow-level load-balancer becomes
preferable at a smaller effective critical segment lengjtias i
with the UNC trace.

Provisioning Ratio (f,p)
w

T T T T,
PC =.0417 Pkts/IAT —+— et
PC =.0625 Pkts/IAT ---x---
PC = .125 Pkts/IAT
PC = .25 Pkts/IAT -~ —
PC = .5 Pkts/IAT ---m--

X

LIRS
o

.
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05
Processor Capacity (Packets per Avg. IAT)

e e | Figure 8: Variation in®s p for different flow granularities.

: Processor capacity?(A, T,n) = 3G * IAT(T).

Provisioning Ratio (f,p)
)
©

e e Conclusion 6. Selecting coarse-granularity flow definitions
(e.g., using'sourcelP, destinationlPaddress-pair rather than
2T 1 5-tuple) does change the provisioning ratio. This is beeaus
0 w w w \ s \ \ \ with coarse-granularity flows, the lock waiting time in-
ECS (muftle of 1AT) creases; this affects the packet-level load balancer. @n th
.) . S other hand, coarse-granularity flow definitions adversdly a
Figure 7.£I{f7p'for different apphcaﬂor;sq (MRA trace). Pro- fects the ability of the flow-level scheme to balance loadsr
cessor capacity (PC®(4,7,n) = ¥ IAT(T) processors.
However, the magnitude of the change is small; hence, the

This is because, the MRA trace contains flows with sinffoss-over point between the packet-level and the flow-leve
lar characteristics as compared to the flows in the UNC tralad balancer does not change appreciably for different flow
Table1 shows the mean, standard deviation and coefficientdsgnularities.

3.2.7 Comparison with Hypothetical Load Balancer body of literature on different heuristic-based schemeb#&t

In Figure9, we compare the processor provisioning requiréfcing load across multiple resources. However, they do not
by the two practical load balancing schemes (namely, pack@ddress the two more fundamental questions. First, which
and flow-level load balancing) with that required by a hypézcheme is well-suited in what en\{lronment? Secondly, what
thetical load balancer described in Sect@nWe derive the Parameters affect the relative merits of these schemesdftsin t

following conclusions. paper, we address these questions in the context of packet
processing systems. For completeness, we provide a brief
y ; — overview of load balancing research in various areas.

T T
FL ——
PL ECS=.572IAT -
| PLECS=1.14IAT
PL ECS=2.28IAT -
PL ECS=4.30IAT -
PL ECS=8.59IAT -

In traditional parallel computing, load balancing takes th
form of scheduling a given set of (often inter-dependersfia
on a multi-processor such that the overall execution time is
or 1 minimized [L6]. In general-purpose computing, since pro-
cesses with widely varying processing requirements corde an
go, it is necessary to re-balance load across servers aver ti
Hence, techniques for adapting load distribution—usinf-tec
nigues such as process migration and affinity-based sdhgdul
to improve the cache hit-rates—have received consider&ble a
tention {4, 18, 20]
e Load balancing in web server clusters has also been an ac-
R o o N tive area of researct@]. The HRW schemel5, 19 is a
popular load distribution scheme and is used in commercial
Figure 9: Variation in®ph and R , with processor capacity products 1]. A randomized load balancing algorithm well-
P(A4,7,n) = Wf&n) AT (7). suited for content distribution networks (e.g., Akamaipis-
' sented in11]. Unlike the HRW scheme, this algorithm is ana-
lyzed under adversarial traffic conditions and has been show

Conclusion 7. For small processor capacities (i.e., whef® Minimize the number of servers in the cluster.
Wr(4,n) > IAT(T)), the provisioning required by the Effect of shared data and the consequent locking on packet
packet-level load balancer is similar to that of the hypatheProcessing performance in end-system environments igestud
ical load balancer. The processor provisioning raﬁ@_’h de- In [2, 13] A packet distribution scheme that aims to increase
pends upon the effective critical segment (ECS) length. Fastruction cache locality is presented @2]. An adaptive
small values of ECS, the application processing time is dorgrsion of HRW is proposed to address the flow re-pinning
nated by the non-critical segments; heng;, — 1. For large Problem in [L0J. Special hardware that employs speculative
processor capacities (i.e., wham; (4,n) — IAT (7)), the se- multi-threading to efficiently handle shared data accesses
lected ECS lengths dominate the total packet processirg tigiescribed in12].
Hence, the packet-level load balancer requires amuch grea§ Conclusions
3:2322: S%fhgmzessor provisioning as compared to the hyq_odad balancer is a fundamental software building block for

' . implementing high-throughput applications using muéie

The performance of the flow-level scheme is exactly OPRO Hitectures. In this id .
. paper, we consider two canonical loa

site of the packet-level scheme. The flow-level load baranBe . . .
alancing schemes in the context of packet processing sys-

performs poorly at small processor capacities (i.e., when } : X g
Wy (A,n) > IAT (7)), but approaches the performance of th(:f'ee_ms. (1)packet-leveload balancing that determines the map

hypothetical scheme at large processor capacities. THigis Ping of a packet to processor independently for each packet;
o ' and (2)flow-levelload balancing that mapsfow to a pro-
cause, at small processor capacities, a processor canGervi

only a small number of flows. In this case, the inherent nofe oo and directs all subsequent packets of that flow to the

. o T) mapped processor. We address the fundamental questien:
uniformity in flow characteristics results in a large proses ; o
S : der what operating conditions, should one choose packet-le
provisioning requirement. At larger processing capasifia

logd balancing over flow-level load balancing, and vice @érs
larger number of flows are mapped onto each processor, gn

. e identify application, system, and trace charactegstiat
hence the flow-level load balancer has greater opportumity)
. L L affect the relative performance of packet-level and flovele
average-out non-uniformity in flow characteristics mapped

each processor (i.e., achieve statistical multiplexingddes). load balancing schemes.

bmmxx

Provisioning Ratio

4 Related Work References

. L. . [1] G. Barish and K. Obraczka. World wide web caching: Treand tech-
The problem of load balancing in its most general version—" piques.IEEE Comm. Magazine8(5):178-184, 2000.

to assign a set of JObS to a given number of pO_SSIb|y he_g]. M. Bjorkman and P. Gunningberg. Locking Effects in Muttygessor
erogeneous processors such that some 5y5tem'W|de MEtriC ISymplementations of Protocols. Rroceedings of ACM SIGCOMM'93
optimized—is shown to be NP-completd.[There is a vast September 1993.

(3]

(4]

(5]

(6]

(7]

(8]
El

[10]

[11]

[12]

(23]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

D. Comer.Network Systems Design Using Network Proces$tmentice
Hall, ISBN 0-13-141792-4, 2002.

D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptivellsharing in
homogenous distributed systemlEEE Transactions on Software Engi-
neering SE-12(5):662-675, 1995.

H. EI-Rewini, H. H. Ali, and T. Lewis. Task scheduling in fitiprocess-
ing systemsComputey 28(12):27-37, 1995.

C. Estan and G. Varghese. New directions in traffic measarg and
accounting. InProceedings of the First ACM SIGCOMM Workshop on
Internet Measuremenpages 75-80. ACM Press, 2001.

P. Goyal, H. Vin, and H. Cheng. Start-time Fair Queuing: éh&dul-
ing Algorithm for Integrated Services Packet Switching Wartks. In
Proceedings of ACM SIGCOMM'9&ugust 1996.

Intel IXP2800 Hw. Ref. ManuaNov 2002.

A. lyengar, E. Nahum, A. Shaikh, and R. Tewari. Enhancirebwper-
formance. InProceedings of the 2002 IFIP World Computer Congress
(Communication Systems: State of the A2€02.

L. Kencl and J.-Y. L. Boudec. Adpative load sharing f@twork pro-
cessors. IflProceedings of the 21st Annual IEEE conference of Commu-
nications Society, INFOCOM 2002002.

R. Kleinberg and T. Leighton. Consistent load balagaiia spread min-
imization. InProceedings of the thirty-fifth annual ACM symposium on
Theory of computingpages 565-574. ACM Press, 2003.

S. Melvin and Y. Patt. Handling of packet dependencéestitical issue
for highly parallel network processors. Rroceedings of the interna-
tional conference on Compilers, architecture, and syrighfes embed-
ded systempages 202—209. ACM Press, 2002.

E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley. ¢tarénce
Issues in Parallelized Network Protocols. Rmoceedings of the First
Symposium on Operating Systems Design and Implementhitvem-

ber 1994.

NLANR Network Traffic Packet Header Traces.
http://[pma.nlanr.net/Traces/.

K. W. Ross. Hash-routing for collections of shared Webhess. IEEE
Network Magazingl997.

B. A. Shirazi, K. M. Kavi, and A. R. Hurson.Scheduling and Load
Balancing in Parallel and Distributed System&EE Computer Society
Press, 1995.

F. D. Smith, F. H. Campos, K. Jeffay, and D. Ott. What TCP/A&éol
Headers Can Tell Us About the Web. Pnoceedings of ACM SIGMET-
RICS 2001/Performance 200dune 2001.

M. S. Squiillante and E. D. Lazowska. Using processamhe affinity
information in shared-memory multiprocessor scheduliedzE Trans.
Parallel Distrib. Syst.4(2):131-143, 1993.

D. G. Thaler and C. V. Ravishankar. Using name-based mappio
increase hit rateslEEE/ACM Transactions on Networking(1):1-14,
1998.

R. Vaswani and J. Zahorjan. The implications of cachenifion pro-
cessor scheduling for multiprogrammed, shared memory multiproce
sors. InProceedings of the thirteenth ACM symposium on Operating
systems principlepages 26—40. ACM Press, 1991.

H. M. Vin, J. Mudigonda, J. Jason, E. J. Johnson, R. JiKuxze, and
R. Lian. A programming environment for packet-processingesyst
Design considerations. IRroceedings of the Third Workshop on Net-
work Processors & Applications - NP3 Held in conjunctiontwithe
10th International Symposium on High-Performance Commpétehi-
tecture 2004.

T. Wolf and M. A. Franklin. Locality-aware PredictivecBeduling of
Network Processors. IAroc. of IEEE International Symposium on Per-
formance Analysis of Systems and Softwislies 2001.

	Introduction
	Methodology
	Simulation Model
	Performance Metric

	Experimental Evaluation
	Experimental Setup
	Results
	Packet Processing Times W(A,n)
	Processor Capacity P(A, T, n)
	Offered Load O(T, n)
	Processor Provisioning Ratio Rf,p
	Effect of Packet Trace T
	Effect of Flow Granularity
	Comparison with Hypothetical Load Balancer

	Related Work
	Conclusions

