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Abstract:
The load balancer is a fundamental building block for im-

plementing high-throughput applications on multi-core archi-
tectures (e.g., network processors). In this paper, we consider
two canonical load balancing schemes in the context of packet
processing systems: (1)packet-levelload balancing that de-
termines the mapping of a packet to processor independently
for each packet; and (2)flow-levelload balancing that maps a
flow to a processor and directs all subsequent packets of that
flow to the mapped processor. By identifying the application,
system, and trace characteristics that affect their relative per-
formance, we address the fundamental question: under what
operating conditions, should one choose packet-level loadbal-
ancing over flow-level load balancing, and vice versa?

1 Introduction
Packet processing systems are designed to process network
packets efficiently. The design of these systems is governed
by two requirements: (1) support high-bandwidth links (and
hence, high packet processing throughput); and (2) support
an ever-increasing set of complex packet processing applica-
tions (e.g., protocol conversion, firewall, Secure Socket Layer
(SSL), intrusion detection, and virus scanning). The conflu-
ence of these two requirements yields scenarios where the time
to process a packet exceeds the inter-arrival time of packets at a
system. To address this challenge, modern packet processing
systems (and in particular, network processors (NP)) utilize
multi-threaded, multi-processor architectures [3]. NP archi-
tectures fore-shadow a more general trend towards the design
of multi-core, multi-threaded architectures targeted forhigh-
throughput computing environments.

Load balanceris a fundamental software building block for
implementing high-throughput applications using such multi-
core architectures. A load balancer attempts to scale the
throughput of a system with increase in the available proces-
sors. A load balancer can balance load across processors ex-
ecuting replicas of a pipeline stage (in systems that partition
applications into pipeline stages) or replicas of the entire ap-
plications. The two canonical load-balancing schemes are:
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• Packet-levelload balancing that determines the mapping
of a packet to a processor independently for each packet.
A round-robin or a weighted round-robin distribution of
packets to processors are examples of packet-level load
balancing schemes.

• Flow-level load balancing that maps aflow—a sequence
of related packets—to a processor and directs all subse-
quent packets of that flow to the mapped processor.

Selecting between these two (and other related) schemes is
tricky because of at least two reasons.

On the one hand, packet-level load balancing schemes can
exploit greater-degree of concurrency and can achieve finer-
grain distribution of workload across processors than flow-
level schemes. This is because of two reasons. First, by ensur-
ing that no more than one packet of a flow is processed con-
currently, flow-level load balancing restricts the available par-
allelism to the number of simultaneously active flows; packet-
level load balancing, on the other hand, can process in parallel
all of the packets simultaneously present in the system. Sec-
ond, the set of flows arriving at a packet processing system
may differ significantly from each other in their characteristics
(e.g., the duration for which a flow is active, the number and
the rate of packet arrivals for a flow, etc.). A flow-level load
balancing scheme is often unaware of suchnon-uniformityin
flow characteristics when the first packet of the flow arrives.
Consequently, a flow-level load balancing scheme could map,
for instance, multipleelephantflows onto a processor and
multiple miceflows onto another processor [6]; the resulting
imbalance wastes processor resources, and increases the pro-
cessor provisioning requirement to achieve a desired levelof
throughput.

On the other hand, packet-level load balancing schemes can
incur significantly higher overhead for accessing and updating
per-flow statemaintained by most packet processing applica-
tions (e.g., the per-flow start- and finish-tags maintained by fair
scheduling algorithms [7]). This is because, with packet-level
load balancing, the shared flow-state may be accessed and up-
dated concurrently by multiple processors; this leads to two
sources of overhead. First, to guarantee correctness, access
to flow-state must be synchronized (e.g., by using locks); the
penalty to acquire a lock and the time a processor may block
waiting to acquire a lock affects packet processing throughput.
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Second, in this setting, shared per-flow state is often accessed
from memory-levels shared across processors; the latency for
doing so is generally significantly higher than accessing per-
flow state from memory that is local to each processor. This
increases the total time required to process each packet, which,
in turn, increases the processor provisioning required by the
packet-level load balancing scheme for achieving a desired
level of throughput. Flow-level load balancing schemes local-
ize per-flow state in memory-levels local to a single processor,
and thereby eliminate most of this overhead.

Although the topic of balancing load across multiple proces-
sors has received considerable attention in the literature, much
of the prior work is focused on techniques for improving the
efficiency of load balancing schemes (e.g., by selecting a pro-
cessor based on current load on processors [4], or dynamically
re-balancing the load by migrating existing flows across pro-
cessors [10]). Surprisingly, little is known about how one can
select from among the set of alternatives a scheme that is best
suited for a particular environment.

In this paper, we address the following fundamental ques-
tion: under what operating conditions, should one choose
packet-level load balancing over flow-level load balancing,
and vice versa?We define metrics for evaluating relative per-
formance of load balancing schemes and describe our exper-
imental methodology. We identify the application, system,
and trace characteristics that affect the relative performance
of packet-level and flow-level load balancing schemes.

Our results provide guidelines for selecting a load balancer.
Using these guidelines, one can automate a key aspect of im-
plementing high-throughput applications onto highly parallel
architectures. This will eliminate the burden of choosing at
design time a particular load balancing scheme, and thereby
simplify the programmability of these systems (the primary
goal of our overall research effort [21]).

The rest of the paper is organized as follows. In Section2,
we present our simulation methodology and the metrics of our
evaluation. In Section3, we describe the setup and the results
of our experimental evaluation. Section4 discusses related
work, and finally, Section5 summarizes our findings.

2 Methodology
The performance of packet-level and flow-level load balancing
schemes depend upon three categories of parameters:

• System characteristics: The latency in accessing global
(i.e., shared across processors) and local (non-shared)
memory-levels. The greater is the overhead in access-
ing global memory-levels, the smaller is the throughput
achieved by packet-level load balancing scheme.

• Application characteristics: (1) The total processing re-
quirement of a single packet (denoted byapplication
length); (2) the length of critical code segment that access
and manipulate shared flow-state; and (3) the flow gran-
ularity (i.e., the flow definition used by the application).
Since flow-level load balancing scheme only process a
single packet of a flow at a time, large application lengths

and coarse flow granularities restrict the parallelism avail-
able to flow-level load balancers. On the other hand, large
critical segment lengths and coarse flow granularities re-
strict the parallelism available to packet-level load bal-
ancers.

• Workload characteristics: Distributions of the (1) inter-
arrival time for packets; (2) arrival-rate for flows; (3)
holding time for flows; and (4) sizes (in terms of num-
ber of packets) of flows. Whereas the inter-arrival time
of packets determines the parallelism available to packet-
level load balancers, the combination of flow arrival-rate
and holding times determine the parallelism available to
flow-level load balancers. The intra-flow packet arrival
rate and flow size distribution, on the other hand, captures
the non-uniformity in flow characteristics and thereby
controls the load-imbalance that may result from flow-
level load balancing.

To quantify the impact of these characteristics on load bal-
ancing, we developed an event-driven simulator. In what fol-
lows, we first describe the design of our simulator and then
define the metrics for our performance evaluation.

2.1 Simulation Model
System Model : We consider a homogeneous multi-processor
system. LetC be the number of instructions that a processor
can execute in unit time. Each processor can operate inde-
pendently and in parallel. We assume that each processor is
configured with a local memory (or a cache) that can be ac-
cessed with a single-cycle latency. Further, processors share a
memory level with access latency ofM cycles.

Application Model : We model an application as a sequence
of executions of non-critical and critical segments (that access
shared flow-state) of code.

A = 〈A1, Â2,A3, Â4, ...An〉

whereAi andÂ j , respectively, denote a non-critical and a crit-
ical code segment. We characterize the execution of each
segment of application code using the pair:(ci ,mi), where
ci andmi , respectively, refer to the number of computational
and memory access instructions executed while processing a
packet. Entry into each critical code segment is protected by
a lock; this guarantees that only one processor can be execut-
ing inside a critical code segment at any time. For each lock,
and hence each critical code segment, we specify flow granu-
larity; for instance, a lock with flow granularity defined as the
〈sourceIP, destinationIP〉 address-pair serializes the process-
ing of packets with the same〈sourceIP, destinationIP〉 address-
pair.

Simulator Design : Our event-driven simulator, developed in
C++ and driven by TCL scripts, consists of four components:
(1) apacket reader, (2) a load distributor, (3) a set ofproces-
sors(with the associated local and shared memory levels), and
(4) a lock manager.

The packet reader reads packets from a trace, converts it
into the simulator’s internal packet format, and passes it to the
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load distributor. The load distributor implements load balanc-
ing schemes. Once a packet is assigned to a processor, the
processor uses the(ci ,mi) pair specified for each application
code segment to simulate packet processing. On encountering
a critical code segment, the processor attempts to acquire from
the lock server the lock corresponding to the flowID associ-
ated with the packet. Upon acquiring the lock, the processor
continues packet processing. Upon completing the processing
of a packet, the processor selects the next packet to process
(if one is available); otherwise, the processor is placed onan
idle queue. If the lock that a processor attempts to acquire
is already occupied, then the processor is placed on a waiting
queue for the lock. When the lock is released by another pro-
cessor, the lock server assigns the lock to the processor at the
front of the waiting queue.

2.2 Performance Metric
Given a packet processing application and a traffic trace, we
evaluate the performance of a load balancing scheme in terms
of the processor provisioningneeded to meet the throughput
requirement of the trace. In particular, given an application
A and a packet traceT , we define the processor provision-
ing requirement for a load balancing scheme by first defining
processor capacityandoffered loadas follows:

• We define theprocessor capacityP (A ,T ,n) as the num-
ber of packets that can be processed by a processor within
time IAT(T ), the average inter-arrival time for packets in
traceT . Formally,

P (A ,T ,n) =
C

W (A ,n)
∗ IAT(T ) (1)

whereC is the number of instructions that a processor
can execute in unit time, andW (A ,n) is the number of
processor cycles requires to execute applicationA for a
packet on a processor in a system withn processors.

• We define theoffered loadO(T ,n) per processor as the
number of packets that arrive at a processor within time
interval IAT(T ) in a system consisting ofn processors.
If P IAT(T ,n) denotes the average inter-arrival time of
packets observed at a processor in a system withn pro-
cessors, then we defineO(T ,n) as:

O(T ,n) =
1

P IAT(T ,n)
∗ IAT(T ) (2)

Given the definitions of processor capacityP (A ,T ,n) and of-
fered loadO(T ,n), we define theprocessor provisioninglevel
(denoted byNs(A ,T )) required by load balancing schemes
as:

Ns(A ,T ) = min{n|P (A ,T ,n) > O(T ,n)} (3)

Given the processor provisioning levels for load balancing
schemess1 and s2, we quantify the relative performance of
the two schemes for applicationA and traceT in terms of
provisioning ratio, R , as:

Rs1,s2(A ,T ) =
Ns1(A ,T )

Ns2(A ,T )
(4)

3 Experimental Evaluation
In this section, we describe the setup and the results of our
experimental evaluation.

3.1 Experimental Setup
We quantify the relative performance of load balancing
schemes under the following parameter settings.

• System characteristics: We consider a multi-core sys-
tem (e.g., Intel’s IXP2800 [8]). We assume that mem-
ory local to a processor can be accessed in a single cy-
cle; further, accesses to shared memory level requires 10,
50, 100, or 200 cycles. These values are representative
of today’s architectures with on-chip and off-chip shared
memory levels [8].

• Application characteristics: We consider synthetic
packet processing applications with a single critical sec-
tion1 (namely,A = 〈A1, Â2,A3〉), with the total packet
processing times selected as in integral (2, 4, 8, 16, and
24) multiple of the average inter-arrival time (IAT) of
the packet trace. For each of these cases, we consider
applications where the critical code segment (namely,
(c2 + m2)) accounts for 1.25%, 2.5%, 5%, 10%, and
20% of the trace IAT. We consider three possible values
for flow granularity: (1) 5-tuple (defined by〈sourceIP,
sourcePort, destinationIP, destinationPort, protocolID〉);
(2) 〈sourceIP, destinationIP〉 address-pair; and (3) the
〈destinationIP〉 field.

• Traces: To compare load balancing schemes under realis-
tic workloads (i.e., representative packet- and flow-level
parallelism), we use traces collected from various loca-
tions in the Internet to drive our simulations. In this pa-
per, we report results obtained using two traces: (1) the
UNC traces [17] collected from the link connecting the
University of North Carolina at Chapel Hill to the Inter-
net; and (2) the MRA traces [14] collected from an OC-12
(620 Mbits/second) link that is closer to the Internet back-
bone. The UNC traces represent traffic pattern at the edge
of the network, while the MRA traces represent traffic in
the network core.

• Load balancing schemes: We study two practical load
balancing schemes—packet-level load balancing and
flow-level load balancing (as seen in Figure1)—as well
as ahypotheticalload balancing scheme. Recall that the
packet-level load balancing scheme can exploit packet-
level parallelism available in a trace; however, its perfor-
mance is limited by the overhead incurred in accessing
flow-state from shared memory-levels as well as the se-
rialized execution of critical code segments. Flow-level
load balancing, on the other hand, processes only one
packet of a flow at a time (and thereby eliminates lock-
ing) and minimizes the memory access latencies (by us-
ing memory local to a processor to maintain flow-state);

1In this paper, we assume this simplified application model; exploration of
more complex applications with multiple critical segments is a topic for future
research.
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Figure 1: Diagrams of the two load balancing schemes.

however, it can only exploit flow-level parallelism. The
hypotheticalscheme combines the best of the packet-
level and flow-level load balancing schemes—it exploits
packet-level parallelism and yet does not incur any mem-
ory access or synchronization overhead.

3.2 Results
In this section, we address the question:under what oper-
ating conditions, should one choose packet-level load bal-
ancing over flow-level load balancing, and vice versa?We
first identify the application, system, and trace characteristics
that affect packet processing timeW (A ,n), processor capac-
ity P (A ,T ,n), and offered per-processor loadO(T ,n). Then,
we study the impact of these characteristics on the processor
provisioning ratioR f ,p.
3.2.1 Packet Processing Times W (A ,n)

Let Wp(A ,n) andW f (A ,n), respectively, denote the number
of processor cycles required to process a packet in a system
with packet-level and flow-level load balancing.

We assume that a flow-level load balancing scheme enables
all memory accesses made while processing a packet to be ser-
viced from the local memory available at a processor. Hence,
for A = 〈A1, Â2,A3〉, we get:

W f (A ,n) = (c1 +m1)+(c2 +m2)+(c3 +m3) (5)

Observe thatW f (A ,n) is independent ofn.
In the case of packet-level load balancing scheme, accesses

to shared per-flow state (made during the execution of criti-
cal segment̂A2) are serviced from shared memory level (with
access penalty ofM cycles); we assume that all other mem-
ory accesses can be serviced from local memory. Further, the
entry to the critical code segment is serialized using locks; let
L(A ,n) denote the time for which a processor may block wait-
ing to acquire a lock to enter critical code segmentÂ2. Hence,
we get:

Wp(A ,n) = (c1 +m1)+(c2 +m2∗M )+L(A ,n)+(c3+m3)
(6)

where(c2+m2∗M ) denotes the number of cycles required to
execute critical code segmentÂ2. Thus, to deriveWp(A ,n),
we need to first derive the lock waiting time functionL(A ,n).

Observe thatL(A ,n) depends on the effective length of the
critical segment (ECS= (c2+m2∗M )) and the average packet
inter-arrival time for the trace. In Figure2, we plot the vari-
ation in L(A ,n) as a function of effective critical segment
length. We plotL(A ,n) and ECS as multiples of the trace
inter-arrival timeIAT(T ). Using Figure2, we derive the fol-
lowing conclusion.
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Conclusion 1. The lock waiting timeL(A ,n) increases with
increase in ECS and n.

The magnitude ofL(A ,n), however, is governed by the
burstinessof packet arrivals within a flow. The greater the
burstiness (i.e., number of packet arrivals of a flow within
interval ECS), the greater is the average lock waiting time
L(A ,n). For the traces we examine, only a relatively small
number of packets belonging to a flow arrive within a time
window ECS (see Figure3). Hence, the observed lock waiting
time is often smaller than ECS.

3.2.2 Processor Capacity P (A ,T ,n)

Recall from Equation (1) that processor capacityP (A ,T ,n)
is defined as:

P (A ,T ,n) =
C

W (A ,n)
∗ IAT(T )
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Figure 3: Intra-flow concurrency in UNC trace.
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Figure4 plots the processor capacities obtained by substituting
the values ofW (A ,n) for flow- and packet-level load balanc-
ing schemes derived in Section3.2.1. We derive the following
conclusion.

Conclusion 2. For the flow-level load balancing scheme,
W f (A ,n) is independent of n; hence, for a given application
A and packet traceT , theprocessor capacityP f (A ,T ,n) is
independent of n, the number of processors in the system.

On the other hand, for the packet-level load balancing
scheme, sinceL(T ,n) and henceWp(T ,n) increase with n,
the processor capacityPp(A ,T ,n) decreases with increase in
n. Observe that the rate of increase inL(T ,n) with n reduces
significantly at large values of n; hence, the processor capacity
Pp(A ,T ,n) stabilizes for larger values of n.

3.2.3 Offered Load O(T ,n)

A packet-level load balancing scheme distributes packets
evenly across the available processors; hence, for a system
with n processors:

P IATp(T ,n) = n∗ IAT(T ) (7)

On the other hand, a flow-level load balancing scheme dis-
tributes load across processors in terms of flows. In the

presence of non-uniform flows, packet arrivals are not dis-
tributed uniformly across the processors. Hence, we define
theP IATf (T ,n) as:

P IATf (n) = min
i∈[1,n]

P IATi(T ) (8)

whereP IATi(T ) is the observed inter-arrival time of packets
at processori with packet traceT .
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Figure 5: Offered loadO(T ,n) as a function ofn.

Using the definitions ofP IAT (Equations7 and8) and of-
fered loadO (Equation2), we experimentally derive the vari-
ation ofO(T ,n), the per-processor offered load, as a function
of n for both flow- and packet-level load balancing schemes
(see Figure5). We derive the following conclusion.

Conclusion 3. For the packet-level load balancing scheme,
the offered loadO(T ,n) for a processor reduces linearly with
increase in n, the number of processors in the system. For the
flow-level load balancer, because of the non-uniformity in flow
characteristics, the reduction in the per-processor offered load
with increase in n is sub-linear.

3.2.4 Processor Provisioning Ratio R f ,p

Figure6 shows the provisioning ratioR f ,p as a function of ap-
plication characteristic (namely, the effective criticalsegment
length (ECS)) for several different processor capacity values
P f (A ,T ,n). Observe that

R f ,p(A ,T ) =
N f (A ,T )

Np(A ,T )

Hence,R f ,p(A ,T ) > 1 indicates that to meet the throughput
demands of applicationA and packet traceT the flow-level
load balancer requires a greater number of processors than the
packet-level load balancer. Similarly,R f ,p(A ,T ) < 1 indi-
cates that the flow-level load balancer requires a smaller num-
ber of processors than the packet-level load balancer. We refer
to the ECS value at which the provisioning requirement of the
flow-level load balancer becomes smaller than the provision-
ing requirement for the packet-level scheme as thecross-over
point. We derive the following conclusion from Figure6.
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Conclusion 4. As the value of processor capacityP f (A ,T ,n)
decreases, the cross-over point occurs at larger values of ECS.
This indicates that the packet-level load balancer remains
preferable for a greater region of the application design space
(as identified by the effective critical segment length).

3.2.5 Effect of Packet Trace T

In the previous sections, we showed the results obtained us-
ing the UNC trace. Figure7 shows the provisioning ratioR f ,p

as function of application characteristic (namely, the effective
critical segment length (ECS)) for several different processor
capacity valuesP f (A ,T ,n) for the MRA trace. The trends
seen in Figure7 are similar to those observed in Figure6.
However, for the same value ofP f (A ,T ,n), the cross-over
point occurs at smaller values of ECS length, indicating that in
case of the MRA trace, the flow-level load-balancer becomes
preferable at a smaller effective critical segment lengthsthan
with the UNC trace.
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This is because, the MRA trace contains flows with simi-
lar characteristics as compared to the flows in the UNC trace.
Table1 shows the mean, standard deviation and coefficient of

variation of the average inter-arrival times for packets within a
flow for the UNC and MRA traces. The higher coefficient of
variation for the UNC trace is indicative of a greater amount
of non-uniformity in flow characteristics.

Trace Mean Std.Dev Coeff. of Var. # Flows

MRA 572675 711545 1.24 13548
UNC 699895 1593082 2.28 9393

Table 1: Flow statistics for the MRA and UNC traces. (IATs
are measured in micro-seconds).

Conclusion 5. The higher the degree of similarity in flow
characteristics, the greater is the operating region over which
the flow-level load balancer is preferred over the packet-level
load balancer.

3.2.6 Effect of Flow Granularity

The offered load and the lock waiting time depend on the
flow granularity associated with critical segmentÂ2. Fig-
ure 8 shows the variation in the provisioning ratioR f ,p for
different flow granularities for various combinations of proces-
sor capacityP f (A ,T ,n) and effective critical segment lengths
(ECS). We draw the following conclusion.
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Processor capacity:P (A ,T ,n) = C

W f (A ,n)
∗ IAT(T ).

Conclusion 6. Selecting coarse-granularity flow definitions
(e.g., using〈sourceIP, destinationIP〉 address-pair rather than
5-tuple) does change the provisioning ratio. This is because,
with coarse-granularity flows, the lock waiting timeL in-
creases; this affects the packet-level load balancer. On the
other hand, coarse-granularity flow definitions adversely af-
fects the ability of the flow-level scheme to balance load across
processors.

However, the magnitude of the change is small; hence, the
cross-over point between the packet-level and the flow-level
load balancer does not change appreciably for different flow
granularities.
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3.2.7 Comparison with Hypothetical Load Balancer

In Figure9, we compare the processor provisioning required
by the two practical load balancing schemes (namely, packet-
and flow-level load balancing) with that required by a hypo-
thetical load balancer described in Section3. We derive the
following conclusions.
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P (A ,T ,n) = C

W f (A ,n)
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Conclusion 7. For small processor capacities (i.e., when
W f (A ,n) ≫ IAT(T )), the provisioning required by the
packet-level load balancer is similar to that of the hypothet-
ical load balancer. The processor provisioning ratioRp,h de-
pends upon the effective critical segment (ECS) length. For
small values of ECS, the application processing time is domi-
nated by the non-critical segments; hence,Rp,h → 1. For large
processor capacities (i.e., whenW f (A ,n)→ IAT(T )), the se-
lected ECS lengths dominate the total packet processing time.
Hence, the packet-level load balancer requires a much greater
amount of processor provisioning as compared to the hypo-
thetical scheme.

The performance of the flow-level scheme is exactly oppo-
site of the packet-level scheme. The flow-level load balancer
performs poorly at small processor capacities (i.e., when
W f (A ,n) ≫ IAT(T )), but approaches the performance of the
hypothetical scheme at large processor capacities. This isbe-
cause, at small processor capacities, a processor can service
only a small number of flows. In this case, the inherent non-
uniformity in flow characteristics results in a large processor
provisioning requirement. At larger processing capacities, a
larger number of flows are mapped onto each processor, and
hence the flow-level load balancer has greater opportunity to
average-out non-uniformity in flow characteristics mappedat
each processor (i.e., achieve statistical multiplexing benefits).

4 Related Work
The problem of load balancing in its most general version—
to assign a set of jobs to a given number of possibly het-
erogeneous processors such that some system-wide metric is
optimized—is shown to be NP-complete [5]. There is a vast

body of literature on different heuristic-based schemes for bal-
ancing load across multiple resources. However, they do not
address the two more fundamental questions. First, which
scheme is well-suited in what environment? Secondly, what
parameters affect the relative merits of these schemes? In this
paper, we address these questions in the context of packet
processing systems. For completeness, we provide a brief
overview of load balancing research in various areas.

In traditional parallel computing, load balancing takes the
form of scheduling a given set of (often inter-dependent) tasks
on a multi-processor such that the overall execution time is
minimized [16]. In general-purpose computing, since pro-
cesses with widely varying processing requirements come and
go, it is necessary to re-balance load across servers over time.
Hence, techniques for adapting load distribution—using tech-
niques such as process migration and affinity-based scheduling
to improve the cache hit-rates—have received considerable at-
tention [4, 18, 20]

Load balancing in web server clusters has also been an ac-
tive area of research [9]. The HRW scheme [15, 19] is a
popular load distribution scheme and is used in commercial
products [1]. A randomized load balancing algorithm well-
suited for content distribution networks (e.g., Akamai) ispre-
sented in [11]. Unlike the HRW scheme, this algorithm is ana-
lyzed under adversarial traffic conditions and has been shown
to minimize the number of servers in the cluster.

Effect of shared data and the consequent locking on packet
processing performance in end-system environments is studied
in [2, 13]. A packet distribution scheme that aims to increase
instruction cache locality is presented in [22]. An adaptive
version of HRW is proposed to address the flow re-pinning
problem in [10]. Special hardware that employs speculative
multi-threading to efficiently handle shared data accessesis
described in [12].

5 Conclusions
Load balancer is a fundamental software building block for
implementing high-throughput applications using multi-core
architectures. In this paper, we consider two canonical load
balancing schemes in the context of packet processing sys-
tems: (1)packet-levelload balancing that determines the map-
ping of a packet to processor independently for each packet;
and (2)flow-level load balancing that maps aflow to a pro-
cessor and directs all subsequent packets of that flow to the
mapped processor. We address the fundamental question:un-
der what operating conditions, should one choose packet-level
load balancing over flow-level load balancing, and vice versa?
We identify application, system, and trace characteristics that
affect the relative performance of packet-level and flow-level
load balancing schemes.
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