Roles 1

Certificate Chain Expressions
Angela Roles
University of Texas Department of Computer Sciences

Abstract

Since the traditional sense of certificates in networks uses only the identity of the issuer,
the identity of the subject, and the public key of the subject, there is no way to limit the
use of an issued certificate. However, there may be cases in which we also wish a
certificate to express limited “trust” of other nodes in the network. Thus, our research
extends a certificate to also contain a certificate chain expression which indicates the
situations in which the current certificate may be chained with other certificates. We
define a calculus for these certificate chain expressions and present some properties, and
then we illustrate the properties with a specific certificate graph.

1. Motivation

Consider a network in which each node « has a private key R, and a public key B,. In this
network, if node a wishes to send a message m to another node ¢, node @ must encrypt the
message using B. before sending the encrypted message to node c. We denote the
encrypted message by B.<m>.

If node a knows the public key B. of another node ¢ in the network, node a can issue a
certificate from a to ¢, identifying the public key of node c¢. Then, if another node d
knows the public key of node a, this node d can use the certificate from a to ¢ to obtain
the public key of node c.

As in [1], a certificate from node a to node c is signed by the private key of a and
contains three items: the identity of certificate issuer a, the identity of certificate subject c,
and the public key, B., of the certificate subject c. The certificate can thus be expressed in
the following form:

R.<a,c, B.>

Any node that already knows the public key of a can use B, to decrypt the certificate and
thereby obtain the public key of ¢, B..

In a more compact form, we can represent a certificate from node a to node c as (a, c).
Using the certificates issued by each node in a given network, we can form a certificate

graph. This graph is a directed graph in which each node in the graph is a node in the
network. Given two nodes u and v in the graph, a directed edge from u to v represents a

Roles 2
certificate issued by u for v in the network.

For instance, consider the certificate graph in Figure 1.

h g
Figure 1. A sample certificate graph

From this graph, we see that the nodes in the network are a, b, ¢, d, e, f, g, and h. The
certificates shown on the graph, denoted in the compact form, are (a, b), (b, ¢), (¢, d),

(c,e), (d, b), (d,)), (e, 2), (e, h), and (f, e).

Certificates of the form described above allow us to define a network in which a node can
chain any number of certificates together to obtain public keys of other nodes. There is
no indication of how a particular certificate may be used, and thus, there is no way to
limit the use of an issued certificate. As there may be cases in which we wish a certificate
to express limited “trust” of other nodes in the network, the ability to indicate the
situations in which a certificate may be used would prove useful.

For instance, we may wish to limit the length of the certificate chain with which a
certificate may be chained. We may wish to indicate that a certificate can be chained only
with certificates from particular other nodes. We may even wish to specify that an issued
certificate cannot be chained with any successive certificates.

Hence, we consider extending the certificate to include one more item: a “certificate
chain expression” to describe the set of chained certificates with which the current
certificate can be chained. Our extended certificate now takes the following form:

R.<a,c, CE, B.>

In this certificate, CE denotes the certificate chain expression. The language and calculus
for CE will be described in the next section.

Roles 3
2. A Calculus for Certificate Chain Expressions

In this section, we present a calculus for the definition of certificate chain expressions.
Our calculus should be as simple as possible, but needs to remain expressive. We hope to
present an approach that is both meaningful and useful.

2.1 Definitions

First, we need to use the identifiers of individual nodes, so these become primitives. We
would also like to have a notation to mean “any node.” In the case that we wish a
certificate chain expression to specify that the current certificate may be chained with
another certificate from “any additional node,” it is much easier and more compact to
have a single construct to specify this than it is to specify every single possible node.
Finally, we wish to have an “empty node” indicator, for the case in which we do not wish
to allow our certificate to be chained with certificates provided by any other node.

Thus, we define the following primitives for our calculus of certificate expressions:

a b, c,... individual node 1dentifiers
— any node
¢ empty node

Now, we wish to define operators to use with these primitives. First, we need a
concatenation operation, as this is the only way to denote chains of nodes. Likewise, we
need an operation to specify that any one of several possible chains is trusted; for this, we
use a vertical bar to represent an “or.” Finally, we would like a means of grouping or
association.

Hence, we define the following operators:

. concatenation
\ or
() association/grouping

We may also wish to use the concept of an arbitrary chain in our certificate chain
expressions. So, we include a * (“wildcard”) construct, which we take to mean the
following:

* any chain of nodes

The * is meaningful due to the existence of and the need for the concatenation operator.
It is the most general certificate chain expression, because it admits any chain of any
length. Thus, using this construct, we can still very simply represent the functionality of
the original certificate definition without certificate chain expressions. The original
certificate denoted by R.<a, ¢, B.> would become R.<a, c, *, B.>.

Roles 4
2.2 Syntax
We can now summarize the syntax for certificate chain expressions as follows:

<CE>:=a| bl c|..|
il
¢ |
<CE>e<CE> ||
<CE> | <CE> ||
*

Hence, a CE may consist of a single node, a—, a ¢, a concatenation of two certificate
expressions, an “or’”’ (conjunction) of two certificate chain expressions, or a *.

We now give examples of several certificate chain expressions and discuss their
meanings.

aebec where a, b, and ¢ are nodes would denote a simple chain of nodes. We define this
chain to also include the subexpressions a and aeb. The certificate could also be used
alone, unchained with any other certificates.

—e—e— means that the current certificate can chain with any chain of certificates of length
3 or less. So, the current certificate would also chain with any chain of certificates of
length 2 or with single certificates.

def'| eeh means the current certificate can be chained with other chains of certificates that
satisfy either def or eeh. Note that any given chain can satisfy only one of these two

expressions, since the set of nodes in each is disjoint from the other.

ceee(g | h) means that the current certificate can be chained with other chains of
certificates that satisfy either ceceg or cece/.

The final three of these expressions will be used in various certificates in Section 4.

2.3 Semantics

We now associate semantics with certificate chain expressions, whose syntax we have
just described.

Associated with each certificate chain expression E is a set S [E] of certificate chains.
This set defines the semantics of a chain expression.

Roles 5

We have:
S[a]Z{e , a} for individual node a
S[-1={ea,b,c,..}
Slel=e]
S [EeE"|=S[E]oS [E"]
S[E|EN=S[E]J]USIE"
S [*] = set of all possible certificate chains

We say that two certificate chain expressions £ and E’ are equivalent, denoted E = E”, if
and only if S [E] =S [E"].

In the above, we use the o to indicate an additional set operation. This operator is similar
to a Cartesian product, but uses concatenation rather than ordered pairs. So, for instance,
ifwehadan S [E]={¢€,a,b}and S [E'] = { ¢,d, e }, then we would have
S[ES[ET ={e€a,b}o{edf}
= { €ec€, €od, €of dec, aod, aof; bo€, bod, bof}

Since Cartesian product is a distributive operation, it is clear that o is also distributive.

Our definitions below for the empty element (¢) would allow us to reduce the above set
further.

We make the following definitions:

aec =dad
€l = €
cec = €

We add one further definition governing the functionality of ¢ when involved in a chain.
We establish that when present as a member of a chain, € serves to “truncate” that chain.
For instance, if we have a chain ae ce ¢, then

deceC =

S [E] for a chain of nodes should be calculated before the above identities are applied.
So, if E = aebec, then we get
S[E] =S [ashec]=S[aloS [b]oS[c] = [e.a] ole, bole,c]
= { cocec, cocec, cobec, cobec, aecec, aecec, aebec, asbec }
={¢, a,aeb, aebec}

2.4 Rules

For our calculus of certificate chain expressions to be useful, we would like the
expressions to be as simple as possible. Additionally, we need to be able to test two
certificate chain expressions for equivalence, as this gives us the means of finding out if a

Roles 6

certain certificate chain expression includes particular chain.

Thus, we establish some basic rules to aid us in the simplification and comparison of
certificate chain expressions, and we prove these rules using our semantics.

Rule 0:
(a) | is commutative, associative, and reflexive
(b) « is left distributive over | and right distributive over |

Proof:
Consider the three certificate chain expressions £, E’, and E"".
Part (a): Using the semantics of Section 2.3, we have:

S[E|E"] =S[E]USI[E" { definition of S'[e | '] }
=S[ETUSI[E] { commutativity of union }
=S[E'|E] { definition of S'[e’ | e] }

So | is commutative.

S[E|E"|E"=S[E|ETUS[E"] { definition of S[(E | E") | E"] }
—(S[EJUS[ET) US[E" { definition of S[E|E"}
=S[EJU(S[ETUSIE"]) { associativity of union }

=S[EJUSI[E'|E"] { definition of S [E' | E""] }
=S[E|(E"|E'] { definition of S [E | (E' | E"")] }
So | is associative.
S[E|E] =S[EJUS[E] { definition of S [E | E] }
=S [E] { reflexivity of union }

So | is reflexive.

Part (b): Using the semantics of Section 2.3, we have:

S[Ee(E'|E")]=S[E]oS[E"| E"] { definition of S [Ee(E' | E'")] }
=S[E]Jo(S[ETUSIE") { definition of S[E"| E""] }
=(S[E]S[ET) U (S[E]-S[E'"]) { concat. distributes over union }
=S[(EeE") | (EeE")] { definition of S [(EeE") | (EeE'")] }

and

S[(E|E"NeE"|=S[E|E"oS[E"] { definition of S [(E | E")eE'"] }
=(S[E]JUS[ES[E"] { definition of S[E | E'] }
=(S[E]oS [E"U(S [E']oS [E""]) { concat. distributes over union }
=S[(EeE") | (E'eE")] { definition of S [(EeE"") | (E'sE"")] }

So, e is left distributive and right distributive over |.

Roles 7

Rule 1: Rule for _
—la=-—

Proof: Using the semantics of Section 2.3, we have the following:

S[-14d] =S[-]1U S [da] { definition of S [| a] }
={eab,c, ..} U{e a} {definitionsof S[-]and S [a]}
={e¢ab,c,..} { definition of union }
=5[] { definition of S’ [] }
0J
Logically, Rule I makes sense. If any arbitrary node is to be trusted, then clearly, a
specific node a should be trusted.
Rule 2: Rule for *
For an arbitrary certificate chain expression E,
*|E =%
Proof: Let E be an arbitrary certificate chain expression. Again using the semantics of
Section 2.3, we have the following:
S[*|E] =S[*1US[E] { definition of S [* | £] }
Since S [*] is the set of all possible certificate chains, any chain specified in S [E£] is
already contained in S [*]. Thus, because of the properties of sets and the union
operation, we have
S[* | E] =S5[*]
U

Again, this rule is logical. If any arbitrary chain of any length is to be trusted, than
obviously, any chain specified in a specific certificate chain expression is to be trusted.

Now, consider the uses ¢ . This represents the empty node (or a chain of zero nodes).
Thus, given a certificate R,<x, y, ae ¢ , B,>, the certificate could chain with a certificate
from node y to node @ and nothing else. So, if an expression consists of a nonempty node
concatenated with an empty node, this is equivalent to simply the nonempty node, and we
can more concisely express the certificate as R.<x, y, a, B,>.

Similarly, if we have ¢ ea, there is no nonempty chain to satisfy the expression. So, this
case reduces to ¢ .

Finally, given a certificate R.<x, y, ¢ | a, B,>, we know that in addition to paths specified
in the certificate chain expression, the certificate can also be used alone. So we have an
equivalent certificate simply by saying R.<x, y, a, B,>.

These comments lead us to our third rule.

Rule 3: Rules for ¢

(a) ae p=a

(B) pea= ¢
© dla=a

Proof:

Part (a): From our semantics, we have:
Slae ¢] =S[aleS[¢]
= [e.aele]
= le.a]
=S [d]

Part (b): Again from our semantics:
S ¢ eda] =S[¢ JeS[a]
= le|efe.q]
= lej

=S[¢]

Part (c¢): Once again from our semantics:
S[|dl =S[¢]1US]a]
= e/ U le.q]
- c.d]
=8 [a]

Roles 8

{ definition of S [ae ¢] }

{ definitions of S [a] and S[¢] }
{aee=aandece c= ¢}

{ definition of S [a] }

{ definition of S| ¢ ea] }

{ definitions of S[¢] and S [a] }
{ ee a= ¢ for any a (including €) }
{ definition of S [«] }

{ definition of S| ¢ | a] }
{ definitions of S[¢] and S [a] }

{ definition of union }
{ definition of S [a] }

Note that Rule 3 is stated in terms of single nodes. We can extend Rule 3 to indicate the
behavior of ¢ with an arbitrary certificate chain expression E.

Roles 9

Rule 4:

For an arbitrary certificate chain expression e,
(a) Ee (]5 =FE

(b) ¢ eE= ¢

() ¢|E=E

Proof:

Part (a): We have

S[Ee p1=S[EleS[$]1=S[E]e]e]
from our semantics. Since
aec=aand cec= ¢
we have that for any chain C in S [E],
Cec=C
Since any chain in S [E]e {e} will be of the above form, we simply get
S[E]e|e| = S[E]

Part (b): We have
S[¢peE]=S[¢ eS[E] = |€] oS [E]
from our semantics. Since

cea= €
We have that for any chain C in S [E],
ceC= ¢

Since any chain in [e} oS [E] will be of the above form, we simply get
le|eS[E]=le] =S[¢]

Part (¢): We have
S[$|EI=S[$]1US[E]= €] US[E]

Thus, we need to show that any S [E] contains the element €.
If £ is a single node, a—, or a ¢ , then S [E] clearly contains € by definition.

If E 1s a single chain consisting only of single nodes, — constructs, or ¢ 's, then an
element of S [E] will be €e...ec = ¢. So, S[E] will contain € in this case as well.

If E is *, then S [E] is the set of all possible chains, and this includes an “empty” chain e.
Thus, S [E] also contains € in this case. Note that S[*] can be expressed as a set of
simple chains.

In any other case, S [E] will be a set of simple chains. For any chain C in S [E], S [C]
contains € as established in the “single simple chain” case. Thus, S [£] must contain €,

since it must be the case that £ can be expressed as an “or” of simple chains.

So, for any £, S [E] must contain e. Then

Roles 10

le] US[E]=S[E]
and thus
S[¢|EI=SI[E]

3. Properties

In addition to the rules supported by our semantics, we would like to establish some
properties that can be proven using our rules. Since simple, expressive certificate chain
expressions are our goal, the properties are especially useful for reducing the number of
redundant subexpressions present. We give two examples.

First, if we have a certificate R,<d, b, —e— | cee, B,>, we recognize that S [cee] is already
a subset of S [-e—]. So, we can actually express this certificate more simply as
R.<d, b, —e—, B,>. Similarly, we intuitively recognize that for arbitrary node a,

—o— | ae— = —e—

and —o— | —oll — —eo—

The above provides the reasoning for our first three properties.

Property 1
—o— | ae— = —e—
Proof
—o— ‘ ae— = (— ‘ a)o— { Rule O(b) }
= o {Rule 1}
J
Property 2
—o— | —oC = —o—
Proof
.| c Z—o(—| C) {R”le O(b) }
= e { Rule 1 }
U

Intuitively, we can suggest a stronger statement: that —e— “contains” aec for two specific
but arbitrary nodes a and c¢. Using the first two properties, we can now state and prove
Property 3, which we suspected previously from the definition of —.

Roles 11

Property 3

—e— | aeC = —e—

Proof
—e—| aec =(—e—|—ec)| aec { Property 2}
=—e—|(—ec|aec) {RuleO(a)}
= e~ ((~|a)ec) {Rule0b)}
=—e—|(—e0) { Rule I }
= —o— { Property 2 }

Now, for a second example, consider the certificate Ry,<b, c, def | eeh | e, B.>.
Specifically, consider the certificate chain expression ee/ | e. This is clearly redundant,
so we would like to be able to reduce it to ee/. So, we again note that S [e] is a subset of
S [e.h]. Our certificate therefore becomes R,<b, ¢, def | ceh, B.>.

Using Rules 4(a) and 4(c) from Section 2.4, we can attain the property for chains
mentioned above and in Section 2.1. So, for instance, if we consider aebec, where a, b,
and c are all nodes, then
aebec |a|aeb=ae(¢ |be(P |c)
= ao(¢ | boC)

=aebec
A more general form of this is formally proven below.
Property 4
For two certificate chain expressions £ and E":

EQE'|E= EoE'

Proof: We have

EOE'|E :EQE'lEo(b {Rule4(a)}
=FEe(E'| ¢) { Rule 0(b) (e distributive) }
=FEeE { Rule 4(c) }

Roles 12

4. Example

We consider the following certificate graph.

a b

h g
Figure 2. Certificate graph revisited

While the above graph tells us which certificates are available, it does not show the
certificate chain expressions included in those certificates. So, we list the certificates
below with the certificate chain expressions included.

R.<a, b, ceee(g | h), B>
Ry<b, c, def | ceh, B.>
R<c,d,—e—e—, B>
R<c, e, *, B>

Rd<d, b, —o—, B,>
Rd<d,f; e, B>

R<e, g,— B,>

Re<€, h, (,b , Bh>

R<f, e, g, B.>

Using these certificates, we are ready to establish the chains of certificates with which
each other certificate may be chained. For ease of presentation, when writing chains of
certificates, we use the more compact certificate notation described in Section 1, where
we denote a certificate from node u to node v by (u, v). We still assume that the
certificate chain expressions included in the certificates above are present.

Chains beginning with certificate (a, b)

Consider the first certificate, R.<a, b, ceee(g | h), B>, which we denote by (a, b). Since
the first node in the certificate chain expression is ¢, we know that

(a, b) (b, ©)

Roles 13

is a permitted chain in this case. Next, we must look at the certificate chain expression of
(b, ¢), which is def'| eeh. From the certificate chain expression for (a, b), we now see that
only

(a, b) (b, c) (c,e) (e, h)

We note that (c, e) allows itself to be chained with any chain of any length, but (e, /)
allows itself to be chained with nothing. Hence, the above is the longest possible chain
beginning with (a, b) that can be used.

Chains beginning with certificate (b, c)

The chain expression associated with this certificate is def’| esh. So, from this alone and
according to the certificate graph, we know that we can have as chains at most

(b, ¢) (c,d) (d,)
and (b, c)(c,e) (e, h)

The certificate (¢, d) can chain with (d, f), so we keep the first chain. The certificate (c, e)
can chain with anything, and this includes (e, %), so the second chain can be kept as well.
Note that even without the limit imposed by the certificate chain expression for (b, ¢), the
second chain could still not be extended since (e, /) has a certificate chain expression of

¢ .
Chains beginning with certificate (c, d)

The certificate (c, d) itself can chain with any chain of length 3. From the certificate
graph, we see that node d issues certificates (d, f) and (d, b).

First, consider certificate (d, f). This certificate can chain only with (f; ¢). So we get

(¢, d)(d, /) (. e
Now consider certificate (d, b). Chaining with (b, ¢) would create a cycle, so we have
only

(c,d) (d, b)

Chains beginning with certificate (c, e)

Certificate (c, e) can chain with any chain of any length. From the certificate graph, we
see that node e issues certificates (e, g) and (e, #). So, we have

(c,e) (e, g)
and (c,e) (e, h)

In the graph, neither of nodes g and / issue any certificates. If node g did issue a
certificate, that certificate could be added onto the first chain. However, if node % did

Roles 14

issue a certificate, the second chain could not be extended, because the certificate chain
expression for (e, h)is ¢ .

Chains beginning with certificate (d, b)

The certificate (d, b) can chain with any chain of length 2. Node b issues only one
certificate: (b, ¢). For a second certificate to chain, we note that (b, ¢) could chain with
(c,d) or (c, e). Thus, we have

(d, b) (b, ¢) (¢, d)
and (d, b) (b, c) (c, e)

Chains beginning with certificate (d, f)

The only certificate with which (d, f) will chain is (f, ¢). So we have:
d./)(f,e)

Chains beginning with certificate (e, g)

Certificate (e, g) will chain with a single additional certificate. Since node g does not
issue any certificates in the graph, though, there is no certificate with which to chain.
Chains beginning with certificate (e, h)

Certificate (e,) will not chain with any certificate at all. So, it may only be used alone
or at the end of a chain.

Chains beginning with certificate (f, e)

From the graph and the certificate chain expression for (f, e), (f,) will chain only with (e,
g). So we have

(. e (e, 8)

5. Conclusion

In this paper, we outline the need for certificate chain expressions in certificates. We
present a syntax and a set of semantics for certificate chain expressions. We also
establish rules and properties for use in reducing certificate chain expressions. Finally,
we illustrate our work with a sample certificate graph and the certificates for this graph,
with certificate chain expressions included.

Roles 15
Future work is possible to formalize the combination of certificate chain expressions for
multiple certificates when calculating the chains of certificates with which the current

certificate can chain. Also, work is needed to investigate the adaptation of certificate
dispersal algorithms to take into account information from certificate chain expressions.

References

[1] M.G. Gouda and E. Jung. Certificate Dispersal in Ad-Hoc Networks. ICDS 2004.

