Optimal dispersal of special certificate graphs
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Abstract—We consider a network where nodes can issue The certificates issued by different nodes in a network can
certificates that identify _t_he put_)lic keys of other_ nodes _in be pe represented by a directed graph, callecceificate graph
network. The issued certificates in a network constitute a diected of the network. Each node in the certificate graph represents

graph, called the certificate graph of the network. The issué - .
certificates are dispersed among the network nodes such th#te a node in the network. Each directed edge from nade

following condition holds. If any nodeu needs to send messages tonodev in the certificate graph represents a certificate issued
any other nodev in the network, then u can use the certificates by nodeu for nodev in the network.
stored in both u and v to obtain the public key of v (then u

can securely send messages 1. The cost of a dispersal which

assigns certificates to the nodes of a network is measured by

the average number of certificates that need to be stored in @ @
one node. A dispersal is optimal if its cost is minimum. In ths

paper, we present three algorithms and show that each algahm @ @
computes optimal dispersals for a rich class of certificate phs.

The time complexity of each of these algorithms, when one of

the algorithms is used to disperse the certificates from a gan G
certificate graph, is O(n?) where n is the number of nodes in the

input certificate graph. , .
Fig. 1. A certificate graph example

I. INTRODUCTION

We consider a network where each nagidas a private  Fig. 1 shows a certificate graph for a network with five

key rk.u and a public keyok u. In this network, in order for a podes:a, b, ¢, d, ande. According to this graph,
nodeu to securely send a messageo another node, node

u needs to encrypt the messageusing the public keybkv
before sending the encrypted message, denbkad< m >,
to nodev. (Or v can send tau a shared key encrypted with
bk.v for further secure communication.) This necessitates that
nodeu know the public keybk.v of nodev.

If a nodeu knows the public keybkv of another noder
in this network, then node can issue a certificate, called a »
certificate fromu to v, that identifies the public kepkv of Node a can use the two certificates, (b) and 6, c) to
nodev. This certificate can be used by any node in the netwofPtain the two public keybk.b andbk.c, and so can securely
that knows the public key of node to further acquire the S€nd messages to nodeandc. Also, nodea can use the two
public key of nodev. Note that when a user acquires the publigertificates & d) and @, €) to obtain the public keybkd
key bk, of userv from the certificate, the user not only find2nd bk e, and can securely send messages to nddasd e.
out whatbk, is, but also acquires the proof of the associatio°ded can use the three certificatas €), (e, b), and p, c) to
that bk, is indeed the public key of user obtain the public key®k.e, bkb, andbk.c, and can securely

A certificate from nodes to nodev is of the following form: S€Nd messages to nodgsh, andc.

nodea issued two certificatesa(b), and @, d)
nodeb issued one certificatéh( c)

nodec issued no certificate

noded issued one certificatal( €)

nodee issued one certificatee(b).

The issued certificates need to be dispersed among the nodes
in the network such that if a nodewishes to securely send
messages to another nodethenu can obtain the public key
of v from the set of certificates stored bothumandv (provided
there is a directed path fromto v in the certificate graph of
the network).

<u,v,bkv>rk.u

This certificate is signed using the private ki#yu of nodeu,
and it includes three items: the identity of the certificatier
u, the identity of the certificate subjegt and the public key
of the certificate subjedik.v. Any node that knows the public
key bk.u of nodeu can usebku to check the validity of the  As an example, assume that each node in the certificate
certificate fromu to v and obtain the public keppk v of node graph in Fig. 1 stores the certificates in the maximal, skbrte

V. path, incoming tree rooted at the node:



» that compute optimal dispersals for rich classes of ceatiic
nodea stores no certificates graphs.

nodeb stores the certificates a,(b), (d, €), (e, b)
nodec stores the certificates a,b), (d, €), (e, b), Il. CERTIFICATE DISPERSAL
(b, 0)
noded stores the certificates a,d)
nodee stores the certificates a,d), (d, €

A certificate graph Gis a directed graph in which each
directed edge, called eertificate is a pair (I, v), whereu
andv are distinct nodes ir. For each certificateu( v) in
G, u is called theissuerof the certificate and is called the
subjectof the certificate. Note that according to this definition
a certificate graph is a directed graph that does not have self
loops and does not have multiple edges from any node to any
other node.

A simple directed path of certificateso( v1), (v1, V2), ---,

Thus, if nodea wishes to securely send messages to rgde
thena can use the two certificates storederto obtain the
public key ofe and securely send messagesetdNote that
nodee can never obtain the public key of nodédecause there
is no directed path from node to nodea in the certificate
graph in Fig. 1). . o

As an application of this situation, consider the tanks ify—1, i) in a certificate grapl®, where the nodesy, vy, -,

L are all distinct, is called a certificatdainfrom vg to vk in

an armored division. Each tank has a computer and can e
viewed as a node in an ad-hoc network. Before the tanks are, . . _
deployed into the field, a certificate graph needs to be dedign A dispersal Dof a certificate graplG assigns a set of

to secure the future communications between the tanks in ﬁ%“ﬁcates inG to each node irG such that the following

field. Then the certificates from this certificate graph neecc?ndItIOn holds. The certificates in each chain from a node

to be dispersed amongst the tanks before they are deplo &2 né)]deXNln Gtarefm t?_? S?D'UUD'V’ \évfgerzp.ué?grﬁ
Later, the tanks are deployed into the field and each of th v are the two sets ot certilicates assigned by disp

has a number of certificates in its local storage. Now, if tv\)aodesu andv, re_spectlvely. .
(I:ret D be a dispersal of a certificate gragh The cost

tanks approach each other in the field, then the two tanks ha\f e ID. d d D is th b f
enough certificates in their local storage so that each onth®' dispersalb, denotedcostD, Is the average number o

can compute the public key of the other and two tanks Cgﬁrtificates assigned by dispergalio each node irG:

securely exchange messages.

The definition of certificate dispersal and its cost are given
in Section Il. In short, certificate dispersal is an assigninoé ] ]
certificates in the network to each node so that any two nod¥@eren is the number of nodes i6. o
can use the certificates stored in them to compute the public® dispersaD of a certificate grapl® is optimalif and only
key of each other. The cost of certificate dispersal deperffior any other dispersaD’ of the same certificate grap®,
on the number of certificates nodes need to store. The c68ptD < costD'.
of dispersal is optimal if the average number of certificates
stored in the nodes is minimal.

In a previous paper [1], we introduced the concept of
certificate dispersal and its cost and gave tight upper and
lower bounds of the dispersal cost. Also, we identified two Q/ \Q
problems in certificate dispersal: develop efficient aldponis
that compute optimal dispersals of certificate graphs and Fig. 2. A star certificate graph
identify rich classes of certificate graphs whose disperssts
meet the lower bound or are within a constant factor of the For example, consider the star certificate graph in
lower bound. We explored the first problem and presented twég. 2. This graph can be dispersed as follows. vif
suboptimal dispersal algorithms: a full tree algorithm andis the center node, theD.v = {}. Otherwise, D.v =
half tree algorithm. We also explored the second problem afity, center nodg (center nodgv) }. The cost of this certificate
identified a rich class of certificate graphs, called hidrea dispersal isz("n_l), wheren is the number of nodes in this
star graphs. We showed that the optimal dispersal cost &f egraph. This dispersal is optimal since it meets the lowemllou
graph in this class is within a constant factor of the lowesf certificate dispersal cost, discussed in [1].
bound. In the following three sections, we present three special

In another paper [2], we explored a variation of the firgtlasses of certificate graphs and discuss three algorithats t
problem, namely finding an optimal dispersal of certificateompute optimal dispersals for each of these classes.
chains in a certificate graph, and showed that this problem is

1
costD = ﬁ( Z [D.v]),

vinG

NP-Complete. We also presented in [2] three polynomiagtim !l OPTIMAL DISPERSAL OFREFLEXIVE GRAPHS
algorithms that compute optimal dispersals for three speci In this section we identify a class of certificate graphs
classes of chain sets. called reflexive graphs, and give an algorithm that computes

In the current paper, we present three efficient algorithmas optimal dispersal of these graphs.



A certificate graptG is calledreflexiveiff the following two ALGORITHM 1

conditions hold. INPUT: a reflexive certificate grapG
1) Short Cycles: Every simple directed cycle i is of OUTPUT: an optimal dispersa of G
length 2.

2) Reflexivity: If there is a certificate from a nodeto a STEPS:

nodev in G, thenG also has a certificate fromto u. ~ 1: construct an undirected versio@' of G.
2: for each nodes in G, D.u:={}

and this path does not contain the edgev}
5. computethe setR.v that containss and every node
where there is a simple path betweeandv in G'

3: for each undirected edgf,v} in G’ do
&4® 4: compute the setR.u that containas and every node

\
gf/\’)k. where there is a simple path betweeandu in G'

Fig. 3. An example of a reflexive certificate graph and this path does not contain the e({g)sv}
. ) 6: if |Rul<|Rv|
Fig. 3 shows an example of a reflexive graph that has,7 then for every nodex in R.u, D.x:= D.xU{(u,V), (v,u)}
nodes and 12 certificates. Note that there are two opposite elsefor every nodex in Rv, D.x:=D.xU{(u,v),(v,u)}

direction certificates between the two nodesndd, and there
are no certificates between the two nodesndb.
A nice feature of reflexive graphs is that there is a certificat
chain from any node to any other node in the graph. Thus anyFor the edged, e}, the two setRd andR.e are computed
node can get the public key of any other node in the grapgls follows:
and can securely send messages to it. _ _
Let G be a reflexive graph. Amndirected versiorof G is Rd={abcd}Re={ef.q}
obtained fromG by replacing each pair of opposite directiorSince |R.d| =4 > 3 = |R€|, the two certificatesd, €) and
certificates between two nodes by an undirected edge. Keyd) are stored irD.e, D.f, andD.g.
example, an undirected version of the reflexive graph in3Fig. The resulting certificate dispersal of the graph is as fadtow

is shown in Fig. 4. D.a={(a,d),(d,a)},
@ @ Db:{(bvd)v(dvb)}v

D.c={(c,d),(d,c)},
Yo @& D= ),

@/ b D.e={(d,e),(e,d)},

D.f = {(d,E), (evd)v (ev f)v (f,e)},
Fig. 4. A directed i f th flexi tificat in Fig. 3
(o] n undirected version o e retiexive certircal em‘raﬂ (o] Dg _ {(dve), (e d) (e, g), (g’e)}

Next we describe an algorithm for optimal dispersal of anyhe cost of this dispersal i +2+2+0+2+4+4)/7=
reflexive graphG. Note that this algorithm operates on an6/7 ~ 2.3 certificates per node.
undirected versiol@' of G. Theorem 1: Given a reflexive certificate grapB, the dis-
Algorithm 1 can be applied to the reflexive certificate grapfersalD of G computed by Algorithm 1 is optimal.
in Fig. 3 as follows. First, the undirected version of the Proof: We divide the proof into two parts. First, we show
certificate graph is constructed as shown in Fig. 4. For thgat Algorithm 1 computes a dispersal. Second, we show that
edge{a,d}, the two setiR.a andR.d are computed as follows: D is optimal.
. . Proof of First Part: By the definition of dispersal in Section
Ra={a},Rd={bcdef.g} I1, if all the certificates in each chain from a nodeo a node
Since |R.a] = 1 < 6 = |R.d|, the two certificatesg, d) and v in G are in setD.uUD.v, thenD is a dispersal ofs.
(d,a) are stored inD.a. Similarly, the two certificatesh( d) Consider a pair of nodesy and v, where there is a
and @, b) are stored irD.b and the two certificates(d) and certificate chain\p, vi1), (v1, V2), -+, (Vk_1, V) from vg to
(d, ¢) are stored irD.c. vk in G. For each certificatévi,viy1) in this chain, the two
For the edgde, f}, the two setR.e andR.f are computed setsR.v; and Rvi;1 are computed by Algorithm 1 for the
as follows: undirected edgév;,vit1}. Since there is a chain fromy to v
_ _ in G, there is a simple path betweegandy; in G'. Thus,R.v;
Re={ab.cdeg}Rf={f} containsvp. Similarly, since there is a simple directed chain
Since|Re| =6 > 1=|R f|, the two certificatese{ f) and (f, from viL1 to v in G, there is a simple path betwegn, and
€) are stored irD.f. Similarly, the two certificatese{ g) and v in G'. Thus, Rviy1 containsvk. By steps in line 6-8 in
(g,€) are stored irD.g. Algorithm 1, (vi,vi;1) is stored either in all nodes iR.v; or



in all nodes inR.v;;1. BecauseR.v; containsvg and R.vj;1 From the definitions of reflexive and biased graphs, it
containsv, certificate(vi,viy1) is stored either irD.vo or in  follows that every reflexive graph that has one or more
D.w. Thus, every certificatévi,vi+1) in the chain, is stored certificates is not biased and every biased graph that has one
in D.voUD.v. Therefore, the chain fromy to v is stored in or more certificates is not reflexive. Biased certificate bsap
the setD.voUD.w. D is a dispersal of5. represent many useful certificate systems. For example, a
For every pair of certificategu,v) and (v,u) in G, an hierarchical certificate system would typically generateca-
undirected edgéu, v} is constructed it5'. The two certificates shaped certificate graph. Any directed tree-shaped cattfic
(u,v) and (v,u) are stored either in all nodes Ru or in all graph is a biased certificate graph.
nodes inR.v, whereR.u andR.v are the two sets computed by Note that a reflexive graph supports secure two-way com-
Algorithm 1 for the undirected edgfu,v}. By the definition munication between every two nodes in the graph, whereas a
of Ru andR.v, R.u containsu and Rv containsv. Thus, by biased graph supports secure one-way communication betwee
step iii in Algorithm 1, the two certificate@,v) and(v,u) are some two nodes in the graph. For example, consider the
either stored irD.u or in D.v. Therefore, for every certificate biased graph in Fig. 5. This graph supports secure one-way
in G, there is a nod& in G such that this certificate is iD.x. communication from nodato nodeb and from node to node

The completeness condition holds. ¢, but it does not support any secure communication between
Proof of Second Part: the two nodes andc.
Let D’ be any other dispersal of a reflexive certificate graph

G and let(u,v) be any directed certificate iB. The certificate @ @

(u,v) is on every directed chain from a node Rwu to a @l@ CQ//

node inRv, whereRu and R.v are the two sets computed /

by Algorithm 1 for the undirected edgiy,v}. Therefore D’ @ \@

needs to assign certificafel,v) to every node inR.u or to

every node irR.v. In either caseD’ yields a dispersal cost that Fig. 5. A biased certificate graph

is no less than the dispersal costibomputed by Algorithm

1 ] Next, we present an algorithm which computes optimal

The complexity of Algorithm 1 isO(en), wheree is the dispersals for the class of biased graphs.
number of edges in the undirected version of the input reftexi
graph andn is the number of nodes in the reflexive grapI“ALGOR”HM 2
Sincee=n—1, the complexity of this algorithm i©(n?). INPUT: a biased certificate graph

Note that the star certificate graph in Fig. 2 is reOUTPUT: an optimal dispersa of G
flexive and so Algorithm 1 can be used to compute an
optimal dispersal of this graph. Using Algorithm 1, weSTEPS:

obtain the following certificate dispersal for this graphl: for each nodeiin G, D.u:= {}
2: for each certificatdu,v) in G do

D.v={} if vis the center node 3: computethe setR.u that containas and every node
D.v = {(v, center node),(center nodd} otherwise where there is a chain fromto u in G
4: compute the setR.v that containss and every node
The cost of this certificate dispersal ®+ 2(n—1))/n. where there is a chain fromto x in G
From Theorem 1, we conclude that this cost is the smallést if |Ru| <|Rv|
possible cost of certificate dispersal for the star certiicab: then for every nodex in Ru, D.x:=D.xU{(u,v)}
graph. (Thanks to Theorem 1, we no longer need to appé&al elsefor every nodex in Rv, D.x:=D.xU {(u,v)}

to the fact that this cost meets the lower bound of certificate
dispersal cost in [1] in order to reach this conclusion.)

As an example, let us consider the application of the steps
in lines 5-7 in Algorithm 2 on the certificaté, d) in the
biased graph in Fig. 5. In this case, the two &R andR.d

In this section, we present an algorithm that computes are computed as follows:
optimal dispersal for another class of certificate grapabed _ _
biased graphs. As discussed below, the class of biasedgraph Ra={a},Rd={d,bc}
is for all practical purposes mutually exclusive from thass Thus,|Ra] =1 < 3= |Rd| and so certificatéa,d) is added

IV. OPTIMAL DISPERSAL OFBIASED GRAPHS

of reflexive graphs discussed in the previous section. only to D.a. _ o
A certificate graphG is called biased iff it satisfies the ~ As a second example, consider the application of the steps
following two conditions. in lines 5-7 in Algorithm 2 on the certificatée,g) in the

biased graph in Fig. 5. In this case, the two ®ResandR.g

1) Acyclicity: G has no directed cycles. re computed as follows:

2) Nonredundancy G has at most one certificate chairf
from any node to any other node. Re={f,e},Rg={g}



Thus,|Re =2 >1=|Rg| and so certificatde,g) is added ALGORITHM 3
only to D.g. INPUT: a mixed certificate grap&
Theorem 2: Given a biased certificate gra@) the disper- OUTPUT: an optimal dispersd of G
sal D of G computed by Algorithm 2 is optimal.
Proof: The proof is similar to that of Theorem 1. m STEPS:
1: for each nodas in G, D.u:={}

V. OPTIMAL DISPERSAL OFMIXED GRAPHS 2: for each certificatdu,v) in G do
In this section, we present an algorithm which computés computethe setRu that containsiand
optimal dispersals for a third class of certificate grapHeda every nodex from which there is a chain tain G

mixed graphs. As discussed below, the class of mixed graphs and this chain does not contain the twin certificte)
contains, as proper subsets, the class of reflexive graghs i compute the setRv that containsy and _
cussed in Section Ill and the class of biased graphs distusse €very nodex to which there is a chain from in G

in Section IV. and this chain does not contain the twin certificGte)
A certificate graphG is called mixed iff it satisfies the 5: if [Ru|<[RV|
following two conditions. 6: then for every nodex in Ru, D.x:=D.xU {(u,v)}
1) Short Cycles Every simple directed cycle i is of /- elsefor every nodex in Rv, D.x:=D.xu{(u,v)}
length 2.

2) Nonredundancy G has at most one certificate chain

from any node to any other note I -
. y _ y L ) ignificant overhead to the networks. In traditional neksor
From this definition and the definitions of reflexive an(ine can assume that the communication between nodes is
biased graphs, it f(.)"OWS that cevery reflexive graph is a WiXge)iapje ang reasonably fast. In ad-hoc networks, findinga®
graph and every biased graph is a mixed graph. between nodes itself is challenging, let alone maintairtirey

Fig. 6 shows an example of a mixed certificate graph. NOFSIevant information of the found routes. Also, nodes in ad-

that in a mixed graph there can be two opposite directig,. neryorks often have very limited resources. For example
certificates between two adjacent nodes. We refer to any si putational capability, storage, and power supply aretmu

pair of certificates awins and we refer to each one of thoS'Gf'ess than what most nodes have in traditional networks.
certificates as thewin certificate of the other. Referring t0 1, ,.commodate these limitations. different architectfoe

the mi>_<ed gra_ph in Fig. 6 the MO ce_rt_ificatéa;_d) a_r_ld (d,_a) issuing, storing, discovery, and validating certificatead-hoc
are twins. This concept of twin certificates is utilized ireth networks have been developed

next algorithm that computes optimal dispersals for the<la In [11], Zhou and Haas have presented an architecture for

of mixed graphs. issuing certificates in an ad-hoc network. According to this
architecture, the network hds servers. Each server has a
6 @ different share of some private kely. To generate a certificate,
@ @ e each server uses its own sharerlofto encrypt the certificate.
If no more thant servers have suffered from Byzantine
@)/' @ failures, wherek > 3t + 1, then the resulting certificate is
correctly signed using the private ke, thanks to threshold
Fig. 6. A mixed certificate graph cryptography. The resulting certificate can be decryptéigus
the corresponding public key which is known to every node
Theorem 3: Given a mixed certificate grap®, the disper- in the ad-hoc network.
sal D of G computed by Algorithm 3 is optimal. In [12], Kong, Perfos, Luo, Lu and Zhang presented more
Proof: The proof is similar to that of Theorem 1. m distributed architecture for issuing certificates. Indtebem-
ploying k servers in the ad-hoc network, each node in the
network is provided with a different share of the private key
Several papers have investigated the use of certificatesrito For a nodeu to issue a certificate, the nodeforwards
provide security in traditional and in ad-hoc networks. Wehe certificate to its neighbors and each of them encrypt
summarize some of the results of these papers in the foltpwithe certificate using its share ok. If node u has at least
paragraphs. t+1 correct neighbors (i.e. they have not suffered from any
Architectures for issuing, storing, discovery, and vdiitig failures), the resulting certificate is correctly signeéthgshe
certificates in traditional networks are presented in [&], [5], private keyrk.
[6], [7], [8], [9], and [10]. There are several limitations ad- In [1], we proposed an architecture where every node
hoc networks that do not allow us to use these results withdwds both a public key and a private key so it can issue
1 . o . . " certificates for any other node in the network. This archiet
A certificate chain is a simple directed path in a certificatgph, so even

when there is a cycle in a mixed certificate graph, there caattwost one 'S VEry efficient in |ss_umg _and vahdatm_g Certlﬂcates but
certificate chain for each pair of nodes. cannot tolerate Byzantine failures. In particular, if orede

VI. RELATED WORK



suffers from Byzantine failure, then this node can succdigsf [4]
impersonate any other node that is reachable from this no?ﬁ
in the certificate graph of the network. This vulnerability t
Byzantine failures is not unique to our certificate work in ad
hoc networks. In fact, many proposed certificate architestu
e.g. [3], [4], [5], [9], and [10] yield similar vulnerabiliés
in traditional networks. Recently, we have identified a naetr
to evaluate the damage from this type of faults. We call it8l
“vulnerability” of the certificate graph and discuss it in o
details in [13]. [9]

Perhaps the closest work to ours is [14] where the authors,
Hubaux, Buttyan, and Capkun, investigated how to dispergg;
certificates in a certificate graph among the network nodes
under two conditions. First, each node stores the same numbe
of certificates. Second, with high probability, if two nodegy;
meet then they have enough certificates for each of them to
compute the public key of the other. By contrast, our worl?]
in [1] and here are based on two different conditions. First,
different nodes may store different number of certificates,
but the average number of certificates stored in one noded’¥
minimized. Second, it is guaranteed (i.e. with probabilidy [14)
that if two nodes meet then they have enough certificates for
each of them to compute the public key of the other.

Later, the same authors have showed in [15] that a lowgs;
bound on the number of certificates to be stored in a node
is y/n—1 wheren is the number of nodes in the system. By
contrast, we showed in [1] that the tight lower bound on the
average number of certificates to be stored in a nod®ris
wheree is the number of edges in the system.

6]
[7

VII. CONCLUSION

We have discussed three algorithms, each of which com-
putes optimal dispersals for a rich class of certificate lysap
This result can be used in any network setting. Howevergthes
algorithms are particularly useful when the network is ad-h
or when nodes are mobile. In an ad-hoc network, one cannot
expect to have a central authority for storing and distitaut
certificates among nodes in the network. Instead, each node
needs to carry a subset of the certificates in the network so
that any two nodes can compute the public key of each other
and securely send messages to each other (if there was a
certificate chain in the original certificate graph). Thisui¢
can be also used as a metric to evaluate certificate graphs, si
the optimal dispersal cost is a unique property of a certdica
graph.

For our future work, we would like to devise an optimal
dispersal algorithm for dynamic certificate graphs.
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