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Abstract— We consider a network where nodes can issue
certificates that identify the public keys of other nodes in the
network. The issued certificates in a network constitute a directed
graph, called the certificate graph of the network. The issued
certificates are dispersed among the network nodes such thatthe
following condition holds. If any nodeu needs to send messages to
any other node v in the network, then u can use the certificates
stored in both u and v to obtain the public key of v (then u
can securely send messages tov). The cost of a dispersal which
assigns certificates to the nodes of a network is measured by
the average number of certificates that need to be stored in
one node. A dispersal is optimal if its cost is minimum. In this
paper, we present three algorithms and show that each algorithm
computes optimal dispersals for a rich class of certificate graphs.
The time complexity of each of these algorithms, when one of
the algorithms is used to disperse the certificates from a given
certificate graph, is O(n2) where n is the number of nodes in the
input certificate graph.

I. I NTRODUCTION

We consider a network where each nodeu has a private
key rk:u and a public keybk:u. In this network, in order for a
nodeu to securely send a messagem to another nodev, node
u needs to encrypt the messagem using the public keybk:v
before sending the encrypted message, denotedbk:v< m>,
to nodev. (Or v can send tou a shared key encrypted with
bk:v for further secure communication.) This necessitates that
nodeu know the public keybk:v of nodev.

If a nodeu knows the public keybk:v of another nodev
in this network, then nodeu can issue a certificate, called a
certificate fromu to v, that identifies the public keybk:v of
nodev. This certificate can be used by any node in the network
that knows the public key of nodeu to further acquire the
public key of nodev. Note that when a user acquires the public
key bkv of userv from the certificate, the user not only finds
out whatbkv is, but also acquires the proof of the association
that bkv is indeed the public key of userv.

A certificate from nodeu to nodev is of the following form:< u;v;bk:v> rk:u
This certificate is signed using the private keyrk:u of nodeu,
and it includes three items: the identity of the certificate issuer
u, the identity of the certificate subjectv, and the public key
of the certificate subjectbk:v. Any node that knows the public
key bk:u of nodeu can usebk:u to check the validity of the
certificate fromu to v and obtain the public keybk:v of node
v.

The certificates issued by different nodes in a network can
be represented by a directed graph, called thecertificate graph
of the network. Each node in the certificate graph represents
a node in the network. Each directed edge from nodeu to
nodev in the certificate graph represents a certificate issued
by nodeu for nodev in the network.
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Fig. 1. A certificate graph example

Fig. 1 shows a certificate graph for a network with five
nodes:a, b, c, d, ande. According to this graph,

nodea issued two certificates (a, b), and (a, d)
nodeb issued one certificate (b, c)
nodec issued no certificate
noded issued one certificate (d, e)
nodee issued one certificate (e, b).

Node a can use the two certificates (a, b) and (b, c) to
obtain the two public keysbk:b andbk:c, and so can securely
send messages to nodesb andc. Also, nodea can use the two
certificates (a, d) and (d, e) to obtain the public keysbk:d
and bk:e, and can securely send messages to nodesd and e.
Noded can use the three certificates (d, e), (e, b), and (b, c) to
obtain the public keysbk:e, bk:b, andbk:c, and can securely
send messages to nodese, b, andc.

The issued certificates need to be dispersed among the nodes
in the network such that if a nodeu wishes to securely send
messages to another nodev, thenu can obtain the public key
of v from the set of certificates stored both inu andv (provided
there is a directed path fromu to v in the certificate graph of
the network).

As an example, assume that each node in the certificate
graph in Fig. 1 stores the certificates in the maximal, shortest-
path, incoming tree rooted at the node:



nodea stores no certificates
nodeb stores the certificates (a, b), (d, e), (e, b)
nodec stores the certificates (a, b), (d, e), (e, b),

(b, c)
noded stores the certificates (a, d)
nodee stores the certificates (a, d), (d, e)

Thus, if nodea wishes to securely send messages to nodee,
then a can use the two certificates stored ine to obtain the
public key of e and securely send messages toe. (Note that
nodee can never obtain the public key of nodea because there
is no directed path from nodee to nodea in the certificate
graph in Fig. 1).

As an application of this situation, consider the tanks in
an armored division. Each tank has a computer and can be
viewed as a node in an ad-hoc network. Before the tanks are
deployed into the field, a certificate graph needs to be designed
to secure the future communications between the tanks in the
field. Then the certificates from this certificate graph need
to be dispersed amongst the tanks before they are deployed.
Later, the tanks are deployed into the field and each of them
has a number of certificates in its local storage. Now, if two
tanks approach each other in the field, then the two tanks have
enough certificates in their local storage so that each of them
can compute the public key of the other and two tanks can
securely exchange messages.

The definition of certificate dispersal and its cost are given
in Section II. In short, certificate dispersal is an assignment of
certificates in the network to each node so that any two nodes
can use the certificates stored in them to compute the public
key of each other. The cost of certificate dispersal depends
on the number of certificates nodes need to store. The cost
of dispersal is optimal if the average number of certificates
stored in the nodes is minimal.

In a previous paper [1], we introduced the concept of
certificate dispersal and its cost and gave tight upper and
lower bounds of the dispersal cost. Also, we identified two
problems in certificate dispersal: develop efficient algorithms
that compute optimal dispersals of certificate graphs and
identify rich classes of certificate graphs whose dispersalcosts
meet the lower bound or are within a constant factor of the
lower bound. We explored the first problem and presented two
suboptimal dispersal algorithms: a full tree algorithm anda
half tree algorithm. We also explored the second problem and
identified a rich class of certificate graphs, called hierarchical
star graphs. We showed that the optimal dispersal cost of each
graph in this class is within a constant factor of the lower
bound.

In another paper [2], we explored a variation of the first
problem, namely finding an optimal dispersal of certificate
chains in a certificate graph, and showed that this problem is
NP-Complete. We also presented in [2] three polynomial-time
algorithms that compute optimal dispersals for three special
classes of chain sets.

In the current paper, we present three efficient algorithms

that compute optimal dispersals for rich classes of certificate
graphs.

II. CERTIFICATE DISPERSAL

A certificate graph Gis a directed graph in which each
directed edge, called acertificate, is a pair (u, v), whereu
and v are distinct nodes inG. For each certificate (u, v) in
G, u is called theissuerof the certificate andv is called the
subjectof the certificate. Note that according to this definition
a certificate graph is a directed graph that does not have self-
loops and does not have multiple edges from any node to any
other node.

A simple directed path of certificates (v0, v1), (v1, v2), � � � ,
(vk�1, vk) in a certificate graphG, where the nodesv0, v1, � � � ,
vk are all distinct, is called a certificatechain from v0 to vk in
G.

A dispersal D of a certificate graphG assigns a set of
certificates inG to each node inG such that the following
condition holds. The certificates in each chain from a node
u to a nodev in G are in the setD:u[D:v, whereD:u and
D:v are the two sets of certificates assigned by dispersalD to
nodesu andv, respectively.

Let D be a dispersal of a certificate graphG. The cost
of dispersalD, denotedcost:D, is the average number of
certificates assigned by dispersalD to each node inG:

cost:D = 1
n
( ∑
v in G

jD:vj);
wheren is the number of nodes inG.

A dispersalD of a certificate graphG is optimal if and only
if for any other dispersalD0 of the same certificate graphG,
cost:D� cost:D0.

Fig. 2. A star certificate graph

For example, consider the star certificate graph in
Fig. 2. This graph can be dispersed as follows. Ifv
is the center node, thenD:v = fg. Otherwise, D:v =f(v;center node);(center node;v)g. The cost of this certificate
dispersal is2(n�1)

n , wheren is the number of nodes in this
graph. This dispersal is optimal since it meets the lower bound
of certificate dispersal cost, discussed in [1].

In the following three sections, we present three special
classes of certificate graphs and discuss three algorithms that
compute optimal dispersals for each of these classes.

III. O PTIMAL DISPERSAL OFREFLEXIVE GRAPHS

In this section we identify a class of certificate graphs
called reflexive graphs, and give an algorithm that computes
an optimal dispersal of these graphs.



A certificate graphG is calledreflexiveiff the following two
conditions hold.

1) Short Cycles: Every simple directed cycle inG is of
length 2.

2) Reflexivity: If there is a certificate from a nodeu to a
nodev in G, thenG also has a certificate fromv to u.
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Fig. 3. An example of a reflexive certificate graph

Fig. 3 shows an example of a reflexive graph that has 7
nodes and 12 certificates. Note that there are two opposite
direction certificates between the two nodesa andd, and there
are no certificates between the two nodesa andb.

A nice feature of reflexive graphs is that there is a certificate
chain from any node to any other node in the graph. Thus any
node can get the public key of any other node in the graph
and can securely send messages to it.

Let G be a reflexive graph. Anundirected versionof G is
obtained fromG by replacing each pair of opposite direction
certificates between two nodes by an undirected edge. For
example, an undirected version of the reflexive graph in Fig.3
is shown in Fig. 4.
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Fig. 4. An undirected version of the reflexive certificate graph in Fig. 3

Next we describe an algorithm for optimal dispersal of any
reflexive graphG. Note that this algorithm operates on an
undirected versionG0 of G.

Algorithm 1 can be applied to the reflexive certificate graph
in Fig. 3 as follows. First, the undirected version of the
certificate graph is constructed as shown in Fig. 4. For the
edgefa;dg, the two setsR:a andR:d are computed as follows:

R:a= fag;R:d= fb;c;d;e; f ;gg
Since jR:aj = 1 < 6 = jR:dj, the two certificates (a, d) and(d;a) are stored inD:a. Similarly, the two certificates (b, d)
and (d, b) are stored inD:b and the two certificates (c, d) and
(d, c) are stored inD:c.

For the edgefe; fg, the two setsR:e andR: f are computed
as follows:

R:e= fa;b;c;d;e;gg;R: f = f fg
SincejR:ej= 6> 1= jR: f j, the two certificates (e, f ) and (f ,
e) are stored inD: f . Similarly, the two certificates (e, g) and(g;e) are stored inD:g.

ALGORITHM 1
INPUT: a reflexive certificate graphG
OUTPUT: an optimal dispersalD of G

STEPS:
1: construct an undirected versionG0 of G.
2: for each nodeu in G0, D:u := fg
3: for each undirected edgefu;vg in G0 do
4: compute the setR:u that containsu and every nodex

where there is a simple path betweenx andu in G0
and this path does not contain the edgefu;vg

5: compute the setR:v that containsv and every nodex
where there is a simple path betweenx andv in G0
and this path does not contain the edgefu;vg

6: if jR:uj � jR:vj
7: then for every nodex in R:u, D:x := D:x[f(u;v);(v;u)g
8: elsefor every nodex in R:v, D:x := D:x[f(u;v);(v;u)g

For the edgefd;eg, the two setsR:d andR:e are computed
as follows:

R:d= fa;b;c;dg;R:e= fe; f ;gg
Since jR:dj = 4 > 3 = jR:ej, the two certificates (d, e) and(e;d) are stored inD:e, D: f , andD:g.

The resulting certificate dispersal of the graph is as follows:

D:a= f(a;d);(d;a)g;
D:b= f(b;d);(d;b)g;
D:c= f(c;d);(d;c)g;
D:d= fg;
D:e= f(d;e);(e;d)g;
D: f = f(d;e);(e;d);(e; f );( f ;e)g;
D:g= f(d;e);(e;d);(e;g);(g;e)g

The cost of this dispersal is(2+2+2+ 0+2+4+ 4)=7=
16=7� 2:3 certificates per node.

Theorem 1: Given a reflexive certificate graphG, the dis-
persalD of G computed by Algorithm 1 is optimal.

Proof: We divide the proof into two parts. First, we show
that Algorithm 1 computes a dispersal. Second, we show that
D is optimal.

Proof of First Part:By the definition of dispersal in Section
II, if all the certificates in each chain from a nodeu to a node
v in G are in setD:u[D:v, thenD is a dispersal ofG.

Consider a pair of nodesv0 and vk, where there is a
certificate chain (v0, v1), (v1, v2), � � � , (vk�1, vk) from v0 to
vk in G. For each certificate(vi ;vi+1) in this chain, the two
sets R:vi and R:vi+1 are computed by Algorithm 1 for the
undirected edgefvi ;vi+1g. Since there is a chain fromv0 to vi

in G, there is a simple path betweenv0 andvi in G0. Thus,R:vi

containsv0. Similarly, since there is a simple directed chain
from vi+1 to vk in G, there is a simple path betweenvi+1 and
vk in G0. Thus, R:vi+1 containsvk. By steps in line 6-8 in
Algorithm 1, (vi ;vi+1) is stored either in all nodes inR:vi or



in all nodes inR:vi+1. BecauseR:vi containsv0 and R:vi+1

containsvk, certificate(vi ;vi+1) is stored either inD:v0 or in
D:vk. Thus, every certificate(vi ;vi+1) in the chain, is stored
in D:v0[D:vk. Therefore, the chain fromv0 to vk is stored in
the setD:v0[D:vk. D is a dispersal ofG.

For every pair of certificates(u;v) and (v;u) in G, an
undirected edgefu;vg is constructed inG0. The two certificates(u;v) and (v;u) are stored either in all nodes inR:u or in all
nodes inR:v, whereR:u andR:v are the two sets computed by
Algorithm 1 for the undirected edgefu;vg. By the definition
of R:u and R:v, R:u containsu and R:v containsv. Thus, by
step iii in Algorithm 1, the two certificates(u;v) and(v;u) are
either stored inD:u or in D:v. Therefore, for every certificate
in G, there is a nodex in G such that this certificate is inD:x.
The completeness condition holds.

Proof of Second Part:
Let D0 be any other dispersal of a reflexive certificate graph

G and let(u;v) be any directed certificate inG. The certificate(u;v) is on every directed chain from a node inR:u to a
node in R:v, whereR:u and R:v are the two sets computed
by Algorithm 1 for the undirected edgefu;vg. Therefore,D0
needs to assign certificate(u;v) to every node inR:u or to
every node inR:v. In either case,D0 yields a dispersal cost that
is no less than the dispersal cost ofD computed by Algorithm
1.

The complexity of Algorithm 1 isO(en), wheree is the
number of edges in the undirected version of the input reflexive
graph andn is the number of nodes in the reflexive graph.
Sincee= n�1, the complexity of this algorithm isO(n2).

Note that the star certificate graph in Fig. 2 is re-
flexive and so Algorithm 1 can be used to compute an
optimal dispersal of this graph. Using Algorithm 1, we
obtain the following certificate dispersal for this graph:

D:v = fg if v is the center node
D:v = f(v, center node),(center node,v)g otherwise

The cost of this certificate dispersal =(0+ 2(n� 1))=n.
From Theorem 1, we conclude that this cost is the smallest
possible cost of certificate dispersal for the star certificate
graph. (Thanks to Theorem 1, we no longer need to appeal
to the fact that this cost meets the lower bound of certificate
dispersal cost in [1] in order to reach this conclusion.)

IV. OPTIMAL DISPERSAL OFBIASED GRAPHS

In this section, we present an algorithm that computes an
optimal dispersal for another class of certificate graphs, called
biased graphs. As discussed below, the class of biased graphs
is for all practical purposes mutually exclusive from the class
of reflexive graphs discussed in the previous section.

A certificate graphG is called biased iff it satisfies the
following two conditions.

1) Acyclicity : G has no directed cycles.
2) Nonredundancy: G has at most one certificate chain

from any node to any other node.

From the definitions of reflexive and biased graphs, it
follows that every reflexive graph that has one or more
certificates is not biased and every biased graph that has one
or more certificates is not reflexive. Biased certificate graphs
represent many useful certificate systems. For example, a
hierarchical certificate system would typically generate atree-
shaped certificate graph. Any directed tree-shaped certificate
graph is a biased certificate graph.

Note that a reflexive graph supports secure two-way com-
munication between every two nodes in the graph, whereas a
biased graph supports secure one-way communication between
some two nodes in the graph. For example, consider the
biased graph in Fig. 5. This graph supports secure one-way
communication from nodea to nodeb and from nodea to node
c, but it does not support any secure communication between
the two nodesb andc.
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Fig. 5. A biased certificate graph

Next, we present an algorithm which computes optimal
dispersals for the class of biased graphs.

ALGORITHM 2
INPUT: a biased certificate graphG
OUTPUT: an optimal dispersalD of G

STEPS:
1: for each nodeu in G, D:u := fg
2: for each certificate(u;v) in G do
3: compute the setR:u that containsu and every nodex

where there is a chain fromx to u in G
4: compute the setR:v that containsv and every nodex

where there is a chain fromv to x in G
5: if jR:uj � jR:vj
6: then for every nodex in R:u, D:x := D:x[f(u;v)g
7: elsefor every nodex in R:v, D:x := D:x[f(u;v)g

As an example, let us consider the application of the steps
in lines 5–7 in Algorithm 2 on the certificate(a;d) in the
biased graph in Fig. 5. In this case, the two setsR:a andR:d
are computed as follows:

R:a= fag;R:d= fd;b;cg
Thus, jR:aj = 1< 3= jR:dj and so certificate(a;d) is added
only to D:a.

As a second example, consider the application of the steps
in lines 5–7 in Algorithm 2 on the certificate(e;g) in the
biased graph in Fig. 5. In this case, the two setsR:e andR:g
are computed as follows:

R:e= f f ;eg;R:g= fgg



Thus, jR:ej = 2> 1= jR:gj and so certificate(e;g) is added
only to D:g.

Theorem 2: Given a biased certificate graphG, the disper-
sal D of G computed by Algorithm 2 is optimal.

Proof: The proof is similar to that of Theorem 1.

V. OPTIMAL DISPERSAL OFM IXED GRAPHS

In this section, we present an algorithm which computes
optimal dispersals for a third class of certificate graphs called
mixed graphs. As discussed below, the class of mixed graphs
contains, as proper subsets, the class of reflexive graphs dis-
cussed in Section III and the class of biased graphs discussed
in Section IV.

A certificate graphG is called mixed iff it satisfies the
following two conditions.

1) Short Cycles: Every simple directed cycle inG is of
length 2.

2) Nonredundancy: G has at most one certificate chain
from any node to any other node1.

From this definition and the definitions of reflexive and
biased graphs, it follows that every reflexive graph is a mixed
graph and every biased graph is a mixed graph.

Fig. 6 shows an example of a mixed certificate graph. Note
that in a mixed graph there can be two opposite direction
certificates between two adjacent nodes. We refer to any such
pair of certificates astwins, and we refer to each one of those
certificates as thetwin certificateof the other. Referring to
the mixed graph in Fig. 6 the two certificates(a;d) and(d;a)
are twins. This concept of twin certificates is utilized in the
next algorithm that computes optimal dispersals for the class
of mixed graphs.
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Fig. 6. A mixed certificate graph

Theorem 3: Given a mixed certificate graphG, the disper-
sal D of G computed by Algorithm 3 is optimal.

Proof: The proof is similar to that of Theorem 1.

VI. RELATED WORK

Several papers have investigated the use of certificates to
provide security in traditional and in ad-hoc networks. We
summarize some of the results of these papers in the following
paragraphs.

Architectures for issuing, storing, discovery, and validating
certificates in traditional networks are presented in [3], [4], [5],
[6], [7], [8], [9], and [10]. There are several limitations in ad-
hoc networks that do not allow us to use these results without

1A certificate chain is a simple directed path in a certificate graph, so even
when there is a cycle in a mixed certificate graph, there can beat most one
certificate chain for each pair of nodes.

ALGORITHM 3
INPUT: a mixed certificate graphG
OUTPUT: an optimal dispersalD of G

STEPS:
1: for each nodeu in G, D:u := fg
2: for each certificate(u;v) in G do
3: compute the setR:u that containsu and

every nodex from which there is a chain tou in G
and this chain does not contain the twin certificate(v;u)

4: compute the setR:v that containsv and
every nodex to which there is a chain fromv in G
and this chain does not contain the twin certificate(v;u)

5: if jR:uj � jR:vj
6: then for every nodex in R:u, D:x := D:x[f(u;v)g
7: elsefor every nodex in R:v, D:x := D:x[f(u;v)g
significant overhead to the networks. In traditional networks,
one can assume that the communication between nodes is
reliable and reasonably fast. In ad-hoc networks, finding routes
between nodes itself is challenging, let alone maintainingthe
relevant information of the found routes. Also, nodes in ad-
hoc networks often have very limited resources. For example,
computational capability, storage, and power supply are much
less than what most nodes have in traditional networks.
To accommodate these limitations, different architectures for
issuing, storing, discovery, and validating certificates in ad-hoc
networks have been developed.

In [11], Zhou and Haas have presented an architecture for
issuing certificates in an ad-hoc network. According to this
architecture, the network hask servers. Each server has a
different share of some private keyrk. To generate a certificate,
each server uses its own share ofrk to encrypt the certificate.
If no more than t servers have suffered from Byzantine
failures, wherek � 3t + 1, then the resulting certificate is
correctly signed using the private keyrk, thanks to threshold
cryptography. The resulting certificate can be decrypted using
the corresponding public key which is known to every node
in the ad-hoc network.

In [12], Kong, Perfos, Luo, Lu and Zhang presented more
distributed architecture for issuing certificates. Instead of em-
ploying k servers in the ad-hoc network, each node in the
network is provided with a different share of the private key
rk. For a nodeu to issue a certificate, the nodeu forwards
the certificate to its neighbors and each of them encrypt
the certificate using its share ofrk. If node u has at least
t +1 correct neighbors (i.e. they have not suffered from any
failures), the resulting certificate is correctly signed using the
private keyrk.

In [1], we proposed an architecture where every node
has both a public key and a private key so it can issue
certificates for any other node in the network. This architecture
is very efficient in issuing and validating certificates but
cannot tolerate Byzantine failures. In particular, if one node



suffers from Byzantine failure, then this node can successfully
impersonate any other node that is reachable from this node
in the certificate graph of the network. This vulnerability to
Byzantine failures is not unique to our certificate work in ad-
hoc networks. In fact, many proposed certificate architectures,
e.g. [3], [4], [5], [9], and [10] yield similar vulnerabilities
in traditional networks. Recently, we have identified a metric
to evaluate the damage from this type of faults. We call it
“vulnerability” of the certificate graph and discuss it in more
details in [13].

Perhaps the closest work to ours is [14] where the authors,
Hubaux, Buttyán, and Capkun, investigated how to disperse
certificates in a certificate graph among the network nodes
under two conditions. First, each node stores the same number
of certificates. Second, with high probability, if two nodes
meet then they have enough certificates for each of them to
compute the public key of the other. By contrast, our work
in [1] and here are based on two different conditions. First,
different nodes may store different number of certificates,
but the average number of certificates stored in one node is
minimized. Second, it is guaranteed (i.e. with probability1)
that if two nodes meet then they have enough certificates for
each of them to compute the public key of the other.

Later, the same authors have showed in [15] that a lower
bound on the number of certificates to be stored in a node
is
p

n�1 wheren is the number of nodes in the system. By
contrast, we showed in [1] that the tight lower bound on the
average number of certificates to be stored in a node ise=n,
wheree is the number of edges in the system.

VII. C ONCLUSION

We have discussed three algorithms, each of which com-
putes optimal dispersals for a rich class of certificate graphs.
This result can be used in any network setting. However, these
algorithms are particularly useful when the network is ad-hoc
or when nodes are mobile. In an ad-hoc network, one cannot
expect to have a central authority for storing and distributing
certificates among nodes in the network. Instead, each node
needs to carry a subset of the certificates in the network so
that any two nodes can compute the public key of each other
and securely send messages to each other (if there was a
certificate chain in the original certificate graph). This result
can be also used as a metric to evaluate certificate graphs, since
the optimal dispersal cost is a unique property of a certificate
graph.

For our future work, we would like to devise an optimal
dispersal algorithm for dynamic certificate graphs.
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