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Abstract

We present several new external-memory algorithms for finding all-pairs shortest paths in a V -
node, E-edge undirected graph. Our results include the following, where B is the block-size and M
is the size of internal memory. We present cache-oblivious algorithms with O(V · E

B
log M

B

E

B
) I/Os

for all-pairs shortest paths and diameter in unweighted undirected graphs. For weighted undirected

graphs we present a cache-aware APSP algorithm that performs O(V · (
√

V E

B
+ E

B
log V

B
)) I/Os.

We also present efficient cache-aware algorithms that find paths between all pairs of vertices in an
unweighted graph whose lengths are within a small additive constant of the shortest path length.

All of our results improve earlier results known for these problems. For approximate APSP we
provide the first nontrivial results. Our diameter result uses O(V + E) extra space, and all of our
other algorithms use O(V 2) space. In our work on external-memory algorithm for APSP in weighted
undirected graphs we develop the notion of a slim data structure that might have other applications
in external-memory computations.

1 Introduction

1.1 The APSP Problem

The all-pairs shortest paths (APSP) problem is one of the most fundamental and important combinato-
rial optimization problems from both a theoretical and a practical point of view. Given a (directed or
undirected) graph G with vertex set V [G], edge set E[G], and a non-negative real-valued weight function
w over E[G], the APSP problem seeks to find a path of minimum total edge-weight between every pair
of vertices in V [G]. For any pair of vertices u, v ∈ V , the path from u to v having the minimum total
edge-weight is called the shortest path from u to v, and the sum of all edge-weights along that path is
the shortest distance from u to v. The diameter of G is the longest shortest distance between any pair of
vertices in G. For unweighted graphs the APSP problem is also called the all-pairs breadth-first-search
(AP-BFS) problem. By V and E we denote the size of V [G] and E[G], respectively.

Considerable research has been devoted to developing efficient internal-memory approximate and
exact APSP algorithms [18]. All of these algorithms, however, perform poorly on large data sets when
data needs to be swapped between the faster internal memory and the slower external memory. Since
most real world applications work with huge data sets, the large number of I/O operations performed by
these algorithms becomes a bottleneck which necessitates the design of I/O-efficient APSP algorithms.
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1.2 Cache-Aware Algorithms

To capture the influence of the memory access pattern of an algorithm on its running time Aggarwal
and Vitter [1] introduced the two-level I/O model (or external memory model). This model consists
of a memory hierarchy with an internal memory of size M , and an arbitrarily large external memory
partitioned into blocks of size B. The I/O complexity of an algorithm in this model is measured in terms
of the number of blocks transferred between these two levels. Two basic I/O bounds are known for this
model: the number of I/Os needed to read N contiguous data items from the disk is scan(N) = Θ(N

B )
and the number of I/Os required to sort N data items is sort(N) = Θ(N

B logM

B

N
B ) [1].

A straight-forward method of computing AP-BFS (or APSP) is to simply run a BFS (or single source
shortest path (SSSP) algorithm, respectively) from each of the V vertices of the graph. External BFS on

an unweighted undirected graph can be solved using either (V +sort(E)) I/Os [15] or O(
√

V E
B +sort(E))

I/Os [13]. External SSSP on an undirected graph with general non-negative edge-weights can be
computed in O(V + E

B log V
M ) I/Os using the cache-aware Buffer Heap [8]. There are also some results

known for external SSSP on undirected graphs with restricted edge-weights [14]. The I/O complexity
for external AP-BFS (or APSP) is obtained by multiplying the I/O complexity of external BFS (or
SSSP) by V .

Very recently Arge et al. [6] proposed an O(V · sort(E)) I/O cache-aware algorithm for AP-BFS
on undirected graphs. Their algorithm works by clustering nearby vertices in the graph, and running
concurrent BFS from all vertices of the same cluster. This same algorithm can be used to compute
unweighted diameter of the graph in the same I/O bound and O(

√
V EB) additional space. They also

present another algorithm for computing the unweighted diameter of sparse graphs (E = O(V )) in

O(sort(kV 2B
1
k )) I/Os and O(kV ) space for any integer k, 3 ≤ k ≤ log B.

For undirected graphs with general non-negative edge-weights Arge et al. [6] proposed an APSP

algorithm requiring O(V · (
√

V E
B log V +sort(E))) I/Os, whenever E ≤ V B

log V . They use a priority queue

structure called the Multi-Tournament-Tree which is created by bundling together a number of I/O-
efficient Tournament Trees [12]. The use of this structure reduces unstructured accesses to adjacency
lists at the expense of increasing the cost of each priority queue operation.

1.3 The Cache-Oblivious Model

The main disadvantage of the two-level I/O model is that algorithms often crucially depend on the
knowledge of the parameters of two particular levels of the memory hierarchy and thus do not adapt
well when the parameters change. In order to remove this inflexibility Frigo et al. introduced the cache-
oblivious model [11]. As before, this model consists of a two-level memory hierarchy, but algorithms are
designed and analyzed without using the parameters M and B in the algorithm description, and it is
assumed that an optimal cache-replacement strategy is used.

No non-trivial algorithm is known for the AP-BFS and the APSP problems in the cache-oblivious
model except for the method of running single BFS and SSSP, respectively, from each of the V vertices.

In this model, BFS on an undirected graph can be performed using O(
√

V E
B + E

B log V + MST (E))

I/Os [7], and SSSP on an undirected graph with non-negative real-valued edge-weights can be solved in
O(V + E

B log V
M ) I/Os using the cache-oblivious Buffer Heap [8] or Bucket Heap [7]. (The result is stated

as O(V + E
B log V

B ) I/Os in both [8] and [7], but it was observed by the current authors and the second
author in [7] that the amortized I/O cost is actually O(V + E

B log V
M ) [17, 10].) The I/O complexity of

the corresponding all-pairs version of the problem is obtained by multiplying the I/O complexity of the
single-source version by V .
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1.4 Our Results

In section 2 we present a simple cache-oblivious algorithm for computing AP-BFS on unweighted
undirected graphs in O(V · sort(E)) I/Os, matching the I/O complexity of its cache-aware counterpart
[6]. We use this algorithm to compute the diameter of an unweighted undirected graph in the same I/O
bound and O(V + E) space. Our cache-oblivious algorithm is arguably simpler than the cache-aware
algorithm in [6] and it has a better space bound for computing the diameter.

In section 3 we present the first nontrivial external-memory algorithm to compute approximate
APSP on unweighted undirected graphs with small additive error. The algorithm is cache-aware, it uses

O( 1

B
2
3

V 2− 2
3k E

2
3k log

2
3
(1− 1

k
) V + k

BV 2− 1
k E

1
k log1− 1

k V ) I/Os, and it produces estimated distances with an

additive error of at most 2(k − 1), where 2 ≤ k ≤ log V is an integer, and E > V log V . The number
of I/Os performed by our algorithm is close to being a factor of B smaller than the running time
of the best internal-memory algorithm known for this problem [9]. For the special case k = 2, we
present an alternate algorithm that performs better for large values of B; this algorithm builds on the
internal-memory algorithm in [2].

In section 4 we introduce the notion of a Slim Data Structure for external-memory computation.
This notion captures the scenario where only a limited portion of the internal memory is available to
store data from the data structure; it is assumed, however, that while executing an individual operation
of the data structure, the entire internal memory of size M is available for the computation. We
describe and analyze the Slim Buffer Heap which is a slim data structure based on the Buffer Heap [8].
We use Slim Buffer Heaps in a Multi-Buffer Heap to solve the cache-aware exact APSP problem for

undirected graphs with general non-negative edge-weights in O(V · (
√

V E
B + sort(E))) I/Os and O(V 2)

space, whenever E ≤ V B
log2 V

. This improves on the result in [6] for weighted undirected APSP. We also

believe that the notion of a Slim Data Structure is of independent interest and is likely to have other
applications in external-memory computation.

2 Cache-Oblivious APSP and Diameter for Unweighted Undirected Graphs

In this section we present a cache-oblivious algorithm for computing all-pairs shortest paths and diameter
in an unweighted undirected graph.

2.1 The Cache-Oblivious BFS Algorithm of Munagala and Ranade

Given a source node s, the algorithm of Munagala & Ranade [15] computes the BFS level of each node
with respect to s. Let L(i) denote the set of nodes in BFS level i. For i < 0, L(i) is defined to be empty.
Let N(v) denote the set of vertices adjacent to vertex v, and for a set of vertices S, let N(S) denote the
multiset formed by concatenating N(v) for all v ∈ S.

Algorithm MR-BFS(G)

The algorithm starts by setting L(0) = {s}. Then starting from i = 1, for each i < V , the algorithm computes L(i) assuming
that L(i− 1) and L(i− 2) have already been computed. Each L(i) is computed in the following three steps:

Step 1: Construct N(L(i − 1)) by |L(i − 1)| accesses to the adjacency lists, once for each v ∈ L(i − 1). This step requires
O(|L(i− 1)|+ 1

B
|N(L(i − 1))|) I/Os.

Step 2: Remove duplicates from N(L(i − 1)) by sorting the nodes in N(L(i − 1)) by node indices, followed by a scan and a
compaction phase. Let us denote the resulting set by L′(i). This step requires O(sort(|N(L(i − 1))|)) I/Os.

Step 3: Remove from L′(i) the nodes occurring in L(i− 1)∪L(i− 2) by parallel scanning of L′(i), L(i− 1) and L(i− 2). Since
all these three sets are sorted by node indices the I/O complexity of this step is O( 1

B
(|N(L(i − 1))| + |L(i− 1)|+ |L(i− 2)|)).

The resulting set is the required set L(i).
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Since
∑

i |L(i)| = O(V ) and
∑

i |N(L(i))| = O(E), total I/O complexity of this algorithm is
O(

∑
i(|L(i)| + sort(|N(L(i))|) + 1

B (|N(L(i))| + L(i)))) = O(V + sort(E)).

2.2 Cache-Oblivious APSP for Unweighted Undirected Graphs

In this section we describe a cache-oblivious APSP algorithm for unweighted undirected graphs using
O(V · sort(E)) I/Os. Let G = (V [G], E[G]) be an unweighted undirected graph. By d(u, v) we denote
the shortest distance between two vertices u and v in G.

Our algorithm is based on the following observation which follows from triangle inequality and the
fact that d(u, v) = d(v, u) in an undirected graph:

Observation 1. For any three vertices u, v and w in G, d(u,w)−d(u, v) ≤ d(v,w) ≤ d(u,w)+d(u, v).

Suppose for some u ∈ V [G] we have already computed d(u,w) for all w ∈ V [G]. We sort the adjacency
lists in non-decreasing order by d(u, ·), and by A(j) we denote the portion of this sorted list containing
adjacency lists of vertices w with d(u,w) = j. Now if v is another vertex in V [G] then observation
1 implies that the adjacency list of any vertex w with d(v,w) = i, must reside in some A(j) where
i − d(u, v) ≤ j ≤ i + d(u, v). Therefore, we can use observation 1 to compute d(v,w) for all w ∈ V [G]
as follows:

Algorithm Incremental-BFS(G,u, v, d(u, ·))

Function: Given an unweighted undirected graph G, two vertices u, v ∈ V [G], and d(u, w) for all w ∈ V [G], this algorithm
computes d(v, w) for all w ∈ V [G]. It is assumed that E[G] is given as a set of adjacency lists.

Steps:

Step 1: Sort the adjacency lists of G so that adjacency list of a vertex x is placed before that of another vertex y provided
d(u, x) < d(u, y) or d(u, x) = d(u, y) ∧ x < y. Let A(i), 0 ≤ i < |V |, denote the portion of this sorted list that contains

adjacency lists of vertices lying exactly at distance i from u.

Step 2: To compute d(v, w) for all w ∈ V [G], run Munagala and Ranade’s BFS algorithm with source vertex v. But step (1)
of that algorithm is modified so that instead of finding the adjacency lists of the vertices in L(i−1) by |L(i−1)| independent
accesses, they are found by scanning L(i−1) and A(j) in parallel for max{0, i−1−d(u, v)} ≤ j ≤ min{|V |−1, i−1+d(u, v)}.

Step 1 of Incremental-BFS requires O(sort(E)) I/Os. In step 2 each A(j) is scanned O(d(u, v)) times.
Since

∑
j |A(j)| = O(E), this step requires O(E

B d(u, v) + sort(E)) I/Os. Thus the I/O complexity of

Incremental-BFS is O(E
Bd(u, v) + sort(E)).

Since Incremental-BFS is actually an implementation of Munagala and Ranade’s algorithm, its
correctness follows from the correctness of that algorithm, and from observation 1 which guarantees that
the set of A(j)’s scanned to find the adjacency lists of the vertices in L(i−1) in step 2 of Incremental-
BFS contains all adjacency lists sought.

We can use Incremental-BFS to perform BFS I/O-efficiently from all vertices of G. The following
observation each part of which follows in a straight-forward manner from the properties of spanning
trees, Euler Tours and shortest paths, is central to this extension:

Observation 2. If ET is an Euler Tour of a spanning tree of an unweighted undirected graph G, then
(a) the number of edges between any two vertices x and y on ET is an upper bound on d(x, y) in G,
(b) ET has O(V ) edges, and
(c) each vertex of V [G] appears at least once in ET .
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The extended algorithm (AP-BFS) is as follows:

Algorithm AP-BFS(G)

Steps:

Step 1:
(a) Find a spanning tree T of G.
(b) Construct an Euler Tour ET for T .
(c) Mark the first occurrence of each vertex on ET , and let v1, v2, . . . , v|V | be the marked vertices in the order they

appear on ET .

Step 2: Run Munagala and Ranade’s original BFS algorithm with v1 as the source vertex, and compute d(v1, w) for all
w ∈ V [G].

Step 3: For i← 2 to |V | do:

Call Incremental-BFS (G, vi−1, vi, d(vi−1, ·)) to compute d(vi, w) for all w ∈ V [G].

Correctness. Correctness of AP-BFS follows from the correctness of Munagala and Ranade’s
BFS algorithm and that of Incremental-BFS. Moreover, observation 2(c) ensures that BFS will be
performed for each v ∈ V [G].

I/O Complexity. Step 1(a) can be performed cache-obliviously in O(min{V + sort(E), sort(E) ·
log2 log2 V }) I/Os [4]. In step 1(b) ET can also be constructed cache-obliviously using O(sort(V ))
I/Os [4]. Step 1(c) requires O(sort(E)) I/Os. Step 2 requires O(V + sort(E)) I/Os. Iteration i of
step 3 requires O(E

B d(vi−1, vi) + sort(E)) I/Os. Total number of I/O operations required by the entire

algorithm is thus O(E
B

∑|V |
i=2 d(vi−1, vi) + V · sort(E)). Since by observation 2(a) and 2(b) we have

∑|V |
i=2 d(vi−1, vi) = O(V ), the I/O complexity of AP-BFS reduces to O(V · sort(E)).

Space Complexity. Since the algorithm requires to output all Θ(V 2) pairwise distances its space
requirement is Θ(V 2).

2.3 Cache-Oblivious Unweighted Diameter for Undirected Graphs

The AP-BFS algorithm can be used to find the unweighted diameter of an undirected graph cache-
obliviously in O(V · sort(E)) I/Os. We no longer need to output all Θ(V 2) pairwise distances, and each
iteration of step 3 of AP-BFS only requires the Θ(V ) distances computed in the previous iteration or
in step 2. Thus the space requirement is only Θ(V ) in addition to the O(E) space required to handle
the adjacency lists.

3 Cache-Aware Approximate APSP for Unweighted Undirected Graphs

In this section we present a family of cache-aware external-memory algorithms Approx-AP-BFSk

for approximating all distances in an unweighted undirected graph with an additive error of at most
2(k − 1), where 2 ≤ k ≤ log V is an integer. The error is one sided. If δ(u, v) denotes the
shortest distance between any two vertices u and v in the graph, and δ̂(u, v) denotes the estimated
distance between u and v produced by the algorithm, then δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + 2(k − 1).

Provided E > V log V , Approx-AP-BFSk runs in O(kV 2− 1
k E

1
k log1−1/k V ) time, and triggers

O( 1

B
2
3

V 2− 2
3k E

2
3k log

2
3
(1− 1

k
) V + k

B V 2− 1
k E

1
k log1− 1

k V ) I/Os. This family of algorithms is the external-

memory version of the family of O(kV 2− 1
k E

1
k log1−1/k V ) time internal-memory approximate shortest

paths algorithms (apaspk) introduced by Dor et al. [9] which is the most efficient algorithm available
for solving the problem in internal memory.
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The second term in the I/O complexity of Approx-AP-BFSk is exactly (1/B) times the running
time of the Dor et al. algorithm [9]. Though the first term in the I/O complexity of Approx-AP-BFSk

has a smaller denominator (B
2
3 ), its numerator is smaller than the numerator of the second term when

E > V log V , thus reducing the impact of the first term in the overall I/O complexity.

3.1 The Internal-Memory Approximate AP-BFS Algorithm by Dor et al.

The internal-memory approximate APSP algorithm (apaspk) in [9] receives an unweighted undirected
graph G = (V [G], E[G]) as input, and outputs an approximate distance δ̂(u, v) between every pair of
vertices u, v ∈ V [G] with a positive additive error of at most 2(k − 1). Recall that a set of vertices D is
said to dominate a set U if every vertex in U has a neighbor in D.

A high level overview of the algorithm is given below:

Algorithm DHZ-Approx-AP-BFSk(G)

Step 1: For i← 1 to k − 1 do:

(a) Set si ←
E

V
(V log V

E
)

i

k

Step 2: Decompose G to produce the following sets:

(a) A sequence of vertex sets D1, D2, . . . , Dk of increasing sizes with Dk = V [G]. For 1 ≤ i ≤ k − 1, Di dominates all vertices
of degree at least si in G.

(b) A decreasing sequence of edge sets E1 ⊇ E2 ⊇ . . . ⊇ Ek, where E1 = E[G] and for 1 < i ≤ k the set Ei contains edges that
touch vertices of degree at most si−1.

(c) A set E∗ ⊆ E[G] which bears witness that each Di dominates the vertices of degree at least si in G.

Step 3: For i← 1 to k do:

(a) For each u ∈ Di do:

(a1) Run SSSP from u on Gi(u) = (V [G],Ei ∪ E∗ ∪ ({u} × V [G]))

In each Gi(u) the edges Ei ∪E∗ are unweighted edges of the input graph, but the edges {u} × V [G] are weighted, and to each
such edge (u, v) an weight is attached which is equal to the current known best upper bound on the shortest distance from u
to v.

Step 4: Return the smallest distance computed between every pair of vertices in step 2.

The algorithm maintains the invariant that after the ith iteration in step 2, the approximate distance
computed by the algorithm from each u ∈ Di to each v ∈ V [G] has an additive error of at most 2(i−1).
Thus after the kth iteration a surplus 2(k−1) distance is computed between every pair of vertices in G.

3.2 Our Algorithm

Our algorithm adapts the Dor et al. algorithm (DHZ-Approx-AP-BFSk) to obtain a cache-efficient
implementation. In our adaptation we do not modify step 1 of DHZ-Approx-AP-BFSk, and use
the same sequence of values for 〈s1, s2, . . . , sk−1〉. In section 3.3 we describe an external-memory
implementation of step 2 of DHZ-Approx-AP-BFSk.

It turns out that the I/O-complexity of DHZ-Approx-AP-BFSk depends on the I/O-efficiency
of the SSSP algorithm used in step 3(a1). Therefore, we replace each SSSP algorithm with a more
I/O-efficient BFS algorithm by transforming each Gi(u) to an unweighted graph G′i(u) of comparable
size. But in order to preserve the shortest distances from u to other vertices in Gi(u), the weighted
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edges of Gi(u) need to be replaced with a set of directed unweighted edges. This makes the graph G′i(u)
partially directed, and we need to modify existing external undirected BFS algorithms to handle the
partial directedness in G′i(u) efficiently. This is described in section 3.4.

There are two ways to apply the BFS: either we can run an independent BFS from each u ∈ Di as
in step 3 of DHZ-Approx-AP-BFSk, or we can run BFS incrementally from the vertices of Di as in
section 2.2. It turns out that running independent BFS is more I/O-efficient when |Di| is smaller (i.e.,
value of i is smaller), and incremental BFS is more I/O-efficient when G′i(u) is sparser (i.e., value of i is
larger). Therefore, we choose a value of i at which switching from independent BFS to incremental BFS
minimizes the I/O-complexity of the entire algorithm. The overall algorithm is described in section 3.5.

3.3 External-Memory Implementation of Step 2

A set of vertices D is said to dominate a set U if every vertex in U has a neighbor in D. It has been
shown by Aingworth et al. [2] that there is always a set of size O(V log V

s ) that dominates all the vertices
of degree at least s in an undirected graph, and in [9] it has been shown that this set can be found
deterministically in O(V + E) time. In this section we present an external-memory implementation of
the internal-memory greedy algorithm described in [9] for computing this set. The external-memory

version, which we call Dominate, requires O(V + V 2

B + sort(E)) I/Os and O(V 2 + E log V ) time,
which is sufficient for our purposes. The internal-memory algorithm uses a priority queue that supports
Delete-Max and Decrease-Key (for implementing steps 2(a) and 2(e) in Dominate). But due to the
lack of any such I/O-efficient priority queue we use linear scans to simulate those two operations leading

to the V 2

B term, and thus the I/O-complexity of Dominate is worse than what one would typically
expect from an external-memory implementation of an O(V + E) time internal-memory algorithm.

The Dominate function receives an undirected graph G = (V [G], E[G]) and a degree threshold s as
inputs, and outputs a pair (D,E∗), where D is a set of size O(V log V

s ) dominating the set of vertices of
degree at least s in G, and E∗ ⊆ E[G] is a set of size O(V ) such that for every u ∈ V [G] with degree at
least s, there is an edge (u, v) ∈ E∗ with v ∈ D.

Algorithm Dominate(G, s)
Function: Given an undirected graph G = (V [G], E[G]) and a degree threshold s, this algorithm outputs a pair (D, E∗), where

D is a set of size O(V log V

s
) that dominates the vertices of degree at least s in G, and E∗ ⊆ E[G] is a set of size O(V ) such

that for every u ∈ V [G] with degree at least s, there is an edge (u, v) ∈ E∗ with v ∈ D.

Steps:

Step 1: Perform the following initializations:

(a) Sort the adjacency lists of G by their corresponding vertex indices, and the vertices in each adjacency list by their
own indices.

(b) Scan the sorted adjacency lists to compute the degree of each vertex, and collect the vertices of degree at least s
in sorted order (according to vertex indices) into an initially empty list L1. Each vertex in L1 will be accompanied
by its degree.

(c) Set D ← ∅, E∗ ← ∅, and L2 ← ∅. The list L2 will be used to collect the dominated vertices in sorted order (by
vertex indices).

Step 2: While L1 6= ∅ do:

(a) Scan L1 to find and remove a vertex with the largest degree. Let this vertex be u and Au be its adjacency list.
(b) Add u to D and L2 maintaining the sorted order of L2.
(c) Scan Au and L2 in parallel and remove from Au any vertex appearing in L2.
(d) Add the vertices in Au to L2 by scanning both lists in parallel.
(e) Scan L1 and Au in parallel and decrease the degree of each vertex in L1 that appears in Au. Remove the vertices
with degree zero from L1.

(f) For each v ∈ Au do:

• Add (v, u) to E∗.
• Scan L1 and v’s adjacency list Av in parallel, and decrease the degree of each vertex in L1 that appears in Av.
Remove the vertices with degree zero from L1.
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Correctness of Dominate. Since Dominate is a straight-forward external-memory implementation
of the internal-memory greedy algorithm for finding dominating sets described in [9], its correctness
directly follows from the correctness of that algorithm.

I/O Complexity of Dominate. Step 1(a) requires O(sort(E)) I/Os and 2(a) requires O(E
B ) I/Os.

Thus step 1 requires at most O(sort(E)) I/Os. In step 2, the adjacency list of each vertex in G is
loaded at most twice, and scanned O(1) times. In each iteration of step 2, L1 and L2 are also scanned

only a constant number of times. Thus step 2 requires O(V + V 2

B ) I/Os. Therefore, I/O complexity of

Dominate(G, s) is O(V + V 2

B + sort(E)).

We describe another function, called Decompose, which is an external-memory version of an internal-
memory function with the same name described in [9], and uses the Dominate function as a
subroutine. The function receives an undirected graph G = (V [G], E[G]), and a decreasing sequence
s1 > s2 > . . . > sk−1 of degree thresholds as inputs. It produces a decreasing sequence of edge sets
E1 ⊇ E2 ⊇ . . . ⊇ Ek, where E1 = E[G] and for 1 < i ≤ k the set Ei contains edges that touch vertices
of degree at most si−1. Clearly, |Ei| ≤ V si−1 for 1 < i ≤ k. This function also produces a sequence of
dominating sets D1,D2, . . . ,Dk, and an edge set E∗. For 1 ≤ i < k the set Di dominates all vertices of
degree greater than si, while Dk is simply V [G]. The set E∗ ⊆ E is a set of edges such that if the degree
of a vertex u is greater than si then there exists an edge (u, v) ∈ E∗ with v ∈ Di. Clearly |E∗| ≤ kV .

Algorithm Decompose(G, 〈s1, s2, . . . , sk−1〉)
Function: Given an undirected graph G = (V [G], E[G]) and a decreasing sequence s1, s2, . . . , sk−1 of degree thresholds, this
algorithm outputs a sequence of edge sets E1 ⊇ E2 ⊇ . . . ⊇ Ek, where E1 = E[G] and for 1 < i ≤ k the set Ei contains edges
that touch vertices of degree at most si−1. It also outputs dominating sets D1, D2, . . . , Dk, and an edge set E∗. For 1 ≤ i < k
the set Di dominates all vertices of degree greater than si, while Dk is simply V [G]. The set E∗ ⊆ E is such that if deg(u) > si

then there exists an edge (u, v) ∈ E∗ with v ∈ Di, where deg(u) denotes the degree of vertex u.

Steps:

Step 1: Perform the following initializations:

(a) Sort the adjacency lists of G by their corresponding vertex indices, and the vertices in each adjacency list by their
own indices.

(b) Scan the sorted adjacency lists to compute the degree of each vertex.

Step 2:
(a) For i← 2 to k do:

Scan the adjacency lists to produce the set
Ei ← {(u, v) ∈ E[G] | deg(u) ≤ si−1 ∨ deg(v) ≤ si−1}.

(b) For i← 1 to k − 1 do:

(Di, E∗
i
)← Dominate(G, si)

(c) Set E1 ← E, Dk ← V , and E∗ ←
S

k−1
i=1

E∗
i

I/O Correctness of Decompose. The correctness of this function directly follows from the
internal-memory Decompose function in [9].

I/O Complexity of Decompose. The I/O cost of step 1 is O(sort(E)). Step 2(a) requires O(kE
B )

I/Os. Step 2(b) requires O(k(V + V 2

B )) I/Os in total since step 1(a) of Dominate can now be eliminated.

Step 2(c) can be implemented in O(kV
B + E

B ) I/Os. Thus the I/O complexity of Decompose is

O(k(V + V 2

B ) + sort(E)).
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