
Efficient Group Rekeying Using Application-Layer Multicast∗

X. Brian Zhang, Simon S. Lam, and Huaiyu Liu
Department of Computer Sciences,
The University of Texas at Austin,

Austin, TX 78712
{zxc, lam, huaiyu}@cs.utexas.edu

TR-04-42
April 2005

Abstract

In secure group communications, there are both rekey and
data traffic. We propose to use application-layer multicast to
support concurrent rekey and data transport. Rekey traffic is
bursty and requires fast delivery. It is desired to reduce rekey
bandwidth overhead as much as possible since it competes
for bandwidth with data traffic. Towards this goal, we pro-
pose a multicast scheme that exploits proximity in the under-
lying network. We further propose a rekey message splitting
scheme to significantly reduce rekey bandwidth overhead at
each user access link and network link. We formulate and
prove correctness properties for the multicast scheme and
rekey message splitting scheme. We have conducted exten-
sive simulations to evaluate our approach. Our simulation
results show that our approach can reduce rekey bandwidth
overhead from several thousand encrypted new keys (encryp-
tions, in short) to less than ten encryptions for more than 90%
of users in a group of 1024 users.

1 Introduction

Many emerging Internet applications, such as grid comput-
ing, teleconferences, pay-per-view, multi-party games, and
distributed interactive simulations will benefit from using a
secure group communications model [10]. In this model,
members of a group share a symmetric key, calledgroup key,
which is known only to group users and a key server. Each
user is an end host. The group key can be used for encrypt-
ing data traffic between group members or restricting access
to resources intended for group members only. The group
key is distributed by a group key management system, which
changes the group key from time to time (calledgroup rekey-
ing).

There have been extensive research results on the design

∗This is an extended version of our paper inProceedings IEEE ICDCS,
June 2005 [33]. Research sponsored in part by NSF grant ANI-0319168.

of group key management in recent years [27, 28, 5, 7, 2,
16, 30, 32]. In particular, the key tree approach [27, 28] re-
duces the server processing time complexity of group rekey-
ing from O(N) to O(logd (N)) whereN is the group size
andd is the key tree degree. This approach was shown to be
optimal in terms of server communication cost per user join
or leave [25].

To further reduce server processing and bandwidth over-
heads, periodic batch rekeying was proposed [23, 30, 14, 32].
In batch rekeying, the key server processes the join and leave
requests during a rekey interval as a batch, and generates a
single rekey message at the end of the rekey interval. The
rekey message is then sent to all users immediately, and it re-
quires fast delivery to achieve tight group access control. As
a result,rekey traffic is bursty.

Existing rekey transport protocols [30, 3, 24, 32, 31] are
based on IP multicast, which has not been widely deployed.
In this paper, we propose to use application-layer multicast
(ALM) to support concurrent rekey and data transport. To
our best knowledge, this paper is the first attempt on how to
efficiently support both rekey and data transport using ALM.

Using ALM to support both rekey and data transport cre-
ates new challenges. In particular, bursty rekey traffic com-
petes for available bandwidth with data traffic, and thus con-
siderably increases the load of bandwidth-limited links, such
as the access links of users that are close to the root of the
ALM tree. Congestion at such an access link causes data
losses for many downstream users. Therefore, it is desired to
reduce rekey bandwidth overhead as much as possible.

Using ALM to support group rekeying also offers new op-
portunities to do naming and routing. In our approach, each
user in the group is assigned a unique ID that is a string of
D digits. All the user IDs and their prefixes are organized
into a tree structure, referred to asID tree. In addition, each
user maintains aneighbor tablethat supports hypercube rout-
ing [18, 21, 34, 15, 12, 13]. The neighbor tables embed mul-
ticast trees rooted at the key server and each user. Therefore,
the key server or any user can send a message to every one

1

else via multicast. We propose a multicast scheme using the
neighbor tables for both rekey and data transport.

To provide fast delivery of rekey messages, we propose a
distributed user ID assignment scheme to exploit proximity
in the underlying network. By virtue of this scheme, each
multicast tree embedded in the neighbor tables tends to be
topology-aware. That is, users in the same multicast subtree
tend to be in the same topological region. As a result, when
a message is forwarded from its multicast source towards a
user during multicast, it tends to be always forwarded in the
direction towards the user, rather than being forwarded over
links that may go back and forth across continents.

To reduce rekey bandwidth overhead, we observe that in
each rekey interval, each user needs only a small subset of
encrypted new keys (encryptions, in short) generated by the
key server [30, 32]. Therefore, it is desired to let each user re-
ceive only the encryptions needed by itself or its downstream
users. The challenging issue is how each user knows who are
its downstream users and which encryptions are needed by
these users.

To address this issue, we propose to modify the key tree
to make its structure match that of the ID tree. We then
propose an identification scheme to identify each key and
encryption. With this scheme, a user can easily determine
whether an encryption is needed by itself or its downstream
users by checking the encryption’s ID. We further propose a
message splitting scheme to let each user receive only the en-
cryptions needed by itself or its downstream users. The split-
ting scheme can significantly reduce rekey bandwidth over-
head at each user access link and network link.

It is possible to perform rekey message splitting on top of
an existing ALM scheme such as the ones in [8, 4, 35, 22,
19, 11]. If we use an existing ALM scheme to replace our
multicast scheme, however, it incurs a large maintenance cost
at users, and the efficiency of the splitting scheme would be
reduced. In our approach, each user does not need to main-
tain states for its downstream users to perform rekey message
splitting. We defer a detailed discussion of this issue to Sec-
tion 2.6.

We formulate and prove correctness properties for the mul-
ticast scheme and rekey message splitting scheme. We con-
ducted extensive simulations to evaluate our approach. Sim-
ulation results show that for 78% of users in a group of 226
users, the latency from a sender to each of these users over the
multicast paths is less than twice the unicast delay between
the sender and such user. Furthermore, with the rekey mes-
sage splitting scheme, more than 90% of users in a group of
1024 users can reduce their rekey bandwidth overhead from
several thousand encryptions to less than ten encryptions.

The rest of this paper is organized as follows. In Section 2,
we describe our system design. In Section 3, we present the
protocol for each joining user to determine its ID, and dis-
cuss user joins, leaves, and failure recovery. We evaluate our
approach through simulations in Section 4. Related work is

symbol description
B base of each digit in user ID
D number of digits in user ID

F -percentile a joining user computesF -percentile of the RTTs
measured for users in its(i, j)-ID subtree

K maximum number of neighbors in each neighbor
table entry

N total number of users in a group
P a joining user collectsP users from(i, j)-ID subtree
Ri RTT thresholds,i = 1, 2, ...,D − 1

u.ID useru’s ID
u.ID[i] ith digit of u.ID, 0 ≤ i ≤ D − 1

u.ID[0 : i] first i + 1 digits ofu.ID. It is a null string ifi < 0

Table 1: Notation

discussed in Section 5, and our conclusions are given in Sec-
tion 6.

2 System design

In this section, we present our system design. We assume a
fixed group ofN users in this section. User joins and leaves
are discussed in Section 3. Appendix A gives proofs for the
lemmas and theorems presented in this section. Notation used
in this paper is defined in Table 1.

2.1 ID tree

Each user in the group is assigned a unique ID that is a string
of D digits of baseB, whereD > 0 andB > 0. We count
digits from left to right and call the leftmost digit the 0th digit.
We useD = 5 andB = 256 in the simulations presented in
this paper. All the user IDs and their prefixes are organized
into a tree structure, referred to as ID tree, as defined below.
Note that an ID is a prefix of itself, and a null string is a prefix
of any ID.

Definition 1 Given a group of users, the correspondingID
tree is defined as follows:
• At level 0, there is a single node, the tree root, whose ID

is a null string, denoted by “[]”.
• At leveli, 1 ≤ i ≤ D, each node has a unique ID that is

a string ofi digits. A node with IDx exists at leveli if
there exists a useru in the group such thatx is a prefix
of u.ID. The node with IDx at leveli is a child of the
node at leveli− 1 whose ID is a prefix ofx.

In an ID tree, a subtree is said to be alevel-i ID subtree if it
is rooted at a node of leveli, 0 ≤ i ≤ D. The ID of a subtree
is defined to be the ID of the subtree root. Hereafter, we say
thata user belongs to an ID subtreeif the ID subtree has the
leaf node whose ID equals the user’s ID.

Definition 2 Given a useru and an ID tree, a level-(i + 1)
ID subtree is said to be the(i, j)-ID subtreeof u if the parent
node (at leveli) of the subtree root is an ancestor of the leaf
node whose ID equalsu.ID, and the last digit of the subtree’s
ID is j, 0 ≤ i ≤ D − 1 and0 ≤ j ≤ B − 1.

2

u1 u2 u3 u4 u5
[0,1] [2,2][0,0] [2,0] [2,1]

k1−9

[0] [2]

level 0

level 1

level 2

[]

(1,1)−ID

1

1

(0,2)−ID
subtree

of u

subtree of u

Figure 1: Example ID tree.

By definition 2, for each userw that belongs tou’s (i, j)-ID
subtree,w.ID must share the the firsti digits withu.ID, and
theith digit of w.ID (that is,w.ID[i]) is j.

Fig. 1 illustrates the ID tree for a group of five users with
the IDs “[0,0]”, “[0,1]”, “[2,0]”, “[2,1]”, and “[2,2]”, respec-
tively. In the ID tree, usersu3, u4, andu5 belong tou1’s
(0, 2)-ID subtree, andu2 belongs tou1’s (1, 1)-ID subtree.
Note that an ID tree is not a data structure maintained by the
key server or any user. It is defined as a conceptual structure
to guide us in protocol design.

Our user ID assignment scheme exploits proximity in the
underlying network. More specifically, user IDs are assigned
such that the round-trip-time (RTT) between any two users
belonging to the same level-i ID subtree tends to be less than
or equal to a delay thresholdRi, for i = 1, 2, ..., D − 2. As
a result, all the users belonging to the same level-i ID sub-
tree tend to be in the same topological region with one-way
delay diameterRi/2. These users are partitioned into multi-
ple child level-(i + 1) ID subtrees of the level-i ID subtree,
such that all the users belonging to the same level-(i + 1) ID
subtree tend to be in the same topological sub-region with de-
lay diameterRi+1/2, whereRi+1 < Ri. In Section 3.1, we
discuss how a joining user determines its ID.

We further define the ID of the key server to be a null
string, denoted by “[]”. By definition, the key server belongs
to the level-0 ID subtree.

2.2 Neighbor tables

Each user in the group maintains a neighbor table. Similar
neighbor tables were used to support hypercube routing [18,
21, 34, 15, 12, 13].

A neighbor table hasD rows and each row hasB entries.
The jth entry at theith row is referred to as(i, j)-entry,
0 ≤ i ≤ D − 1 and0 ≤ j ≤ B − 1. The(i, j)-entry of a
user’s neighbor table contains user records and performance
measures of some other users, referred to as(i, j)-neighbors.
Each(i, j)-neighbor of useru must be a user that belongs
to the(i, j)-ID subtree ofu. The first neighbor in each entry
is referred to as theprimary neighbor of that entry. Each
user record contains the IP address, ID, and some other in-
formation of a particular neighbor. For rekey transport, the
performance measure of a neighbor is the RTT between the

neighbor and the owner of the table. All the neighbors in the
same entry are arranged in increasing order of their RTTs.

Definition 3 Given a group of users, each with a unique ID
ofD digits, their neighbor tables are said to beK-consistent,
K ≥ 1, if for any useru in the group, each(i, j)-entry,0 ≤
i ≤ D − 1 and0 ≤ j ≤ B − 1, in its neighbor table satisfies
the following conditions:

(1) If j = u.ID[i], then the(i, j)-entry is empty.
(2) If j 6= u.ID[i], then the (i, j)-entry contains

min{K, m} (i, j)-neighbors, wherem denotes the to-
tal number of users belonging to the(i, j)-ID subtree of
u.

The concept ofK-consistency was proposed in [13, 12].K-
consistency implies 1-consistency. If all the users in the
group maintain 1-consistent neighbor tables, then a message
is guaranteed to reach every user via multicast, as proved in
Section 2.3. It is desired to letK > 1 for resilience [13, 12].

The key server also maintains a neighbor table, which has
a single row. The row containsB entries, each referred to as
(0, j)-entry,j = 0, 1, ..., B − 1. Among all the users whose
IDs have the prefix “[j]”, the key server chooses theK (or
all, if the total number of such users is less thanK) users
who have the smallest RTTs to the key server as its(0, j)-
neighbors.

2.3 Multicast scheme: T-mesh

Given a group of users with their neighbor tables, the neigh-
bor tables embed multicast trees rooted at the key server and
each user. Therefore, the key server or any user can send a
message to every one else via multicast by using their neigh-
bor tables. A multicast session consists of a sender, a set of
receivers, and a message to multicast. The sender is the mul-
ticast source. In a multicast session for rekey transport, the
key server is the sender, and all the users in the group are re-
ceivers. In a multicast session for data transport, a particular
user who has data to multicast is the sender, and all the other
users are receivers. Hereafter, we use “member” to refer to
the key server or a user in the group.

We propose a multicast scheme, referred to asT-mesh, for
both rekey and data transport. In the multicast scheme, each
message to multicast contains aforward level field.
This field specifies the forwarding level of each user, as de-
fined below. Each user is at a unique forwarding level in a
multicast session since each one receives a single copy of the
multicast message, as stated in Theorem 1.

Definition 4 In a multicast session, the sender’sforwarding
level is defined to be 0. A useru is said to be at forwarding
level i if it receives a message with theforward level
field equal toi, 1 ≤ i ≤ D.

To multicast a message, the sender first sets the message’s
forward level field to be 0, and then executes routine
FORWARD specified in Fig. 2. When a user receives the

3

FORWARD (msg)
. The sender should setmsg.forward level to be 0

before calling this routine.
. msg: the message to multicast if the caller (who calls the routine) is

the sender; otherwise, it is the message received by the caller.
1 level← msg.forward level
2 if level = D then return
3 if the caller is the key serverthen . level = 0 in this case
4 msg.forward level ← level + 1
5 send a copy ofmsg to each(0, j)-primary neighbor,0 ≤ j < B
6 else fori← level to D − 1 do
8 msg.forward level ← i + 1
9 send a copy ofmsg to each(i, j)-primary neighbor,0 ≤ j < B

Figure 2: Routine that the sender or each forwarder executes
to send or forward a message.

key server

[0,0]
u1 u4

[2,1]

u3 u5u2

[]

level 1

level 0

level 2

[0,1] [2,0] [2,2]

Figure 3: Example multicast tree for rekey transport.

message, it also executes this routine. We can see that each
member can determine who are the next hops by looking up
its neighbor table according to theforward level field of
the multicast message.

Fig. 3 illustrates an example rekey multicast tree for the
group of five users defined in Fig. 1. Intuitively, a copy of the
multicast message first enters each level-1 ID subtree, and
then enters each level-2 ID subtree, and so on. It is not sur-
prising to find out that the IDs of a member and its down-
stream users satisfy a specific relationship, as stated below.

Lemma 1 In a multicast session, suppose memberu is at
forwarding leveli, 0 ≤ i ≤ D. Then the IDs ofu and all its
downstream users have the common prefixu.ID[0 : i − 1].
Furthermore,u and its downstream users belong to the same
level-i ID subtree.
Recall that all the users belonging to the same ID subtree tend
to be in the same topological region by virtue of our user ID
assignment scheme.

Lemma 2 In a multicast session, suppose memberu is at
forwarding leveli, 0 ≤ i ≤ D. Then for any other member
w whose ID has the prefixu.ID[0 : i − 1], w can only be a
downstream user ofu.

A direct implication of Lemmas 1 and 2 is that each
multicast tree embedded in the neighbor tables tends to be
topology-aware. That is, in a multicast session, only a single
copy of the multicast message is forwarded to each topologi-
cal region; once the message withforward level = i en-
ters a region (which corresponds to a level-i ID subtree), it is
forwarded only to its sub-regions (each corresponds to a child

group key

u1

k4 k5

u3 u4 u5

k1 k2 k3

k12
k−nodes

k−node

u−nodes

keys

individual
keys

auxiliary
[0]

[0,1] [0,2]

[2]

[2,0] [2,1] [2,2]

[]
k1−5

k345

(change to k1−4)

(change to k34)

u2

Figure 4: Example modified key tree.

level-(i + 1) ID subtree), and not be sent out of the region
anymore. As a result, the message goes through each long-
latency link that connects remote regions only once. This
helps to reduce delivery latency as well as link stress. Here,
stress of a physical linkis defined as the number of identi-
cal copies of the message carried by a physical link during
multicast.

The correctness of the multicast scheme is stated below.

Theorem 1 In a multicast session, assume that every user in
the group has 1-consistent neighbor table and no message is
lost. Then following the multicast scheme specified in Fig. 2,
each member (except the sender) will receive a single copy of
the multicast message.

T-mesh also provides fast failure recovery and quick adap-
tation to network dynamics ifK > 1. Once a member detects
the failure of a next hop, or detects congestion on the path to
a next hop by observing burst losses, it can simply forward
messages to another neighbor in the same table entry as the
failed or congested neighbor. At the same time, the user needs
to look for another neighbor to replace the failed or congested
one.

2.4 Modified key tree

The key server maintains a key tree. To support efficient
rekey message splitting, the key tree used in this paper is
different from the original approach [27, 28, 30, 32]. The
original key tree has a fixed tree degree, and the tree grows
vertically when users join. Our modified key tree has a fixed
height, and it grows in a horizontal direction when users join.
Hereafter, unless otherwise stated, we use “key tree” to refer
to the modified key tree.

A key tree is a rooted tree with the group key as root. A
key tree contains two types of nodes:u-nodesandk-nodes.
Each u-node corresponds to a particular user, and it contains
the user’s individual key. A user shares its individual key
only with the key server. A k-node contains the group key or
an auxiliary key. A user in the group is given the individual
key contained in its corresponding u-node as well as the keys
contained in the k-nodes on the path from its corresponding
u-node to the root.

To facilitate rekey message splitting, the key server makes
the structure of the key tree match exactly that of the ID tree.
More specifically, for each useru, the u-node in the key tree

4

that containsu’s individual key corresponds to the leaf node
in the ID tree whose ID equalsu.ID. Fig. 4 shows the key
tree that corresponds to the example ID tree shown in Fig. 1.
In this example, useru5 is given the three keys on the path
from its u-node to the root:k5, k345, andk1−5. Key k5 is the
individual key ofu5, keyk1−5 is the group key that is shared
by all the users, andk345 is an auxiliary key shared byu3, u4,
andu5.

Suppose that a single user, sayu5, leaves the group in a
rekey interval. Then at the beginning of the next rekey inter-
val, the key server needs to change the keys thatu5 knows:
changek1−5 to k1−4, and changek345 to k34. To securely
distribute the new keys to the remaining users, the key server
uses the key in each child node of the updated k-node to en-
crypt the new key in the updated k-node, and generates four
encryptions:{k1−4}k12 , {k1−4}k34 , {k34}k3 , and{k34}k4 .
Here {k′}k denotes keyk′ encrypted by keyk, and is re-
ferred to as anencryption. All the encryptions are put in a
single rekey message. Each user, however, needs only a small
subset of encryptions in the rekey message. For example,u1

needs only{k1−4}k12 .
In general, the key server performs the following opera-

tions in each rekey interval. For each joining useru, the
key server adds into the key tree a u-node with IDu.ID.
At each leveli, i = D − 1, D − 2, ..., 0, a k-node with
ID u.ID[0 : i − 1] is added if such a k-node does not ex-
ist. For each leaving userw, the key server deletes from the
key tree the u-node whose ID equalsw.ID. At each level
i, i = D − 1, D − 2, ..., 0, the k-node whose ID equals
w.ID[0 : i − 1] is deleted if the k-node does not have any
descendants. At the beginning of the next rekey interval, the
key server updates all the keys on the path from each newly
joined or departed u-node to the root, and then generate en-
cryptions.

We propose anidentification schemeto identify each key
and encryption. We define the ID of a key in the key tree to
be the ID of its corresponding node in the ID tree. The ID of
an encryption is defined to be the ID of the encrypting key.
The ID is attached to each encryption. With this identification
scheme, a user can easily determine whether it needs a given
encryption by checking the encryption’s ID, as stated below.

Lemma 3 Given an encryption, a user needs the key en-
crypted in the encryption if and only if the ID of the encryp-
tion is a prefix of the user’s ID.

The correctness of the lemma is due to the fact that a user
needs only the keys on the path from its corresponding u-
node to the root in the key tree.

2.5 Rekey message splitting scheme

To send new keys to users after rekeying, a straightforward
approach is to mulitcast all the encryptions to each user, and
let each user extract the encryptions that it needs. The bursty

REKEY-MESSAGE-SPLIT (msg, ws,j , s)
. msg: it is the original rekey message if the caller is the key

server; otherwise, it is the message received by the caller.
. ws,j : the(s, j)-primary neighbor of the caller,0 ≤ j < B.
. s: it equals 0 if the caller is the key server; otherwise, we have

msg.forward level ≤ s < D.
1 msg′ ← an empty message withforward level = s + 1
2 for each encryptione contained inmsg do
3 if e.ID is a prefix ofw.ID[0 : s] or

ws,j .ID[0 : s] is a prefix ofe.ID then
4 copye into msg′
5 sendmsg′ to ws,j via unicast

Figure 5: Routine that the sender or each forwarder executes
to compose a separate rekey message for a particular next
hop.

rekey traffic, however, may cause congestion at bandwidth-
limited links, especially at user access links. Congestion at
an access link causes rekey and data message losses for all
the downstream users. Therefore, it is desired to reduce rekey
bandwidth overhead as much as possible.

To reduce rekey bandwidth overhead, we propose a rekey
message splitting scheme. In this scheme, each member
sends or forwards an encryption to its downstream users if
and only if the encryption is needed by at least one down-
stream user. To achieve this goal, the key server com-
poses a separate message for each(0, j)-primary neighbor
by executing routine REKEY-MESSAGE-SPLIT specified in
Fig. 5, j = 0, 1, ..., B − 1. Each user at forwarding level
i, 0 ≤ i ≤ D − 1, also composes a separate message
for each(s, j)-primary neighbor by executing the routine,
s = i, i + 1, ..., D− 1 andj = 1, 2, ..., B− 1. The routine in
Fig. 5 is called at lines 5 and 9 of routine FORWARD speci-
fied in Fig. 2. The correctness of the rekey message splitting
scheme is stated below.

Theorem 2 In a multicast session for rekey transport, sup-
pose that memberu is at forwarding leveli, 0 ≤ i ≤ D − 1.
Let w be any(s, j)-primary neighbor ofu, wheres = 0 if u
is the key server,s = i, i + 1, ..., D − 1 if u is a user, and
j = 0, 1, ..., B − 1. Let setV containw and all the down-
stream users ofw. Then given an encryptione, the encryption
is required by at least one user inV if and only ife.ID is a
prefix ofw.ID[0 : s], or w.ID[0 : s] is a prefix ofe.ID.

By Theorem 2, each member can determine whether to for-
ward each received encryption to its downstream users by
checking the encryption’s ID. This is accomplished easily
because a coherent identification strategy is used to identify
each user, key, and encryption throughout the design of the
T-mesh, the multicast scheme, and the key tree.

Corollary 1 In a multicast session for rekey transport, as-
sume that every user in the group has 1-consistent neighbor
table and no message is lost. Following the multicast scheme
and the rekey message splitting scheme specified in Figs. 2
and 5, respectively, for any useru in the group and any en-
cryption e that is generated by the key server,u receives a

5

single copy ofe if and only ife is needed byu or by at least
one downstream user ofu.

In the rekey message splitting scheme specified in Fig. 5,
a rekey message is split in units of encryptions and then re-
composed during multicast. An alternative way is to split
and re-compose the rekey message at packet level, instead of
encryption level. In this case, the rekey bandwidth overhead
would be larger than what is presented in Section 4.3.

2.6 Discussion

In our rekey message splitting scheme, each user can easily
determine whether an encryption is needed by its downstream
users by checking the encryption’s ID. Therefore, there is no
need for each user to maintain states for its downstream users.
However, if we use an existing ALM scheme such as the ones
in [8, 4, 35, 22, 19, 11] to replace T-mesh, or use the origi-
nal key tree [27, 28, 30, 32] to replace the modified key tree,
then in order to perform rekey message splitting, each user
has to keep track of who are its downstream users and which
encryptions are needed by them. In the original key tree ap-
proach, the IDs of a user’s required keys keep changing for
each rekey interval even when no downstream users join or
leave. Therefore, each user has to keep track of such changes
for itself and all its downstream users. As a result, it incurs a
large maintenance cost for the users who are close to the root
of the ALM tree since each of them hasO(N) downstream
users.

Furthermore, our splitting scheme is more effective in
reducing rekey bandwidth overhead than what could be
achieved with the existing ALM schemes. In T-mesh, be-
cause of the exact structure match between the modified key
tree and the ID tree, all the users sharing a common encryp-
tion belong to the same level-i ID subtree, wherei is the
number of digits contained in the encryption’s ID. As a re-
sult, only a single copy of the encryption is forwarded when
the forwarding level is less than or equal toi. It is then du-
plicated to users who need it at subsequent forwarding levels.
In contrast, if we use an existing ALM scheme to replace T-
mesh, it becomes hard to make the structure of the key tree
match that of the ALM tree. As a result, users sharing a com-
mon encryption have random positions in the ALM tree. In
this case, the shared encryption may have to be duplicated at
early forwarding levels.

The efficiency of our splitting scheme also benefits from
our topology-aware user ID assignment scheme. Since all
the users sharing a common encryption belong to the same
ID subtree, they tend to be in the same topological region by
virtue of the user ID assignment scheme. As a result, only a
single copy of the shared encryption is forwarded until it en-
ters the region. It is then duplicated and forwarded to multi-
ple sub-regions. In contrast, if each user randomly chooses its
ID, then each user has a random position in the ID tree. For

example, users from the same LAN could belong to differ-
ent level-0 ID subtrees. In this case, their shared encryptions
have to be duplicated once the multicast starts, and multiple
copies of the shared encryptions traverse the Internet and en-
ter the same LAN.

In short, the efficiency of our rekey message splitting
scheme comes from a careful integration of the other sys-
tem components, that is, the user ID assignment scheme, the
multicast scheme T-mesh, and the modified key tree. If any
of these components is replaced by an existing scheme, the
efficiency of the splitting scheme would be reduced. This is
confirmed by our simulation results presented in Section 4.

3 Protocol description

In this section, we present the protocol for a user to deter-
mine its ID. We also discuss the issues related to a user’s join,
leave, and recovery from neighbor failures.

3.1 User ID assignment

To join a group, a user, sayu, first contacts the key server (or
a separate registrar server [29]). They mutually authenticate
each other using a protocol such as SSL. If authenticated and
accepted into the group,u receives its individual key and the
current group key. From now on, all the communications be-
tweenu and the key server are encrypted with the individual
key, and all the communications betweenu and other users in
the group are encrypted with the group key.1

If u is the first join in the group, the key server assigns its
user ID asD digits of “0”. The key server then sendsu a
message via unicast that containsu’s ID and all the keys on
the path fromu’s corresponding u-node to the root in the key
tree.

If u is not the first join, the key server givesu the user
record of another user already in the group. Thenu needs to
determine its ID digit by digit, starting with the 0th digit. To
determine theith digit,0 ≤ i ≤ D− 2, u’s actions consist of
four steps. (We assumei is fixed in the following discussion
and in Sections 3.1.1, 3.1.2, and 3.1.3.)

In the first step,u collects the records of users who belong
to its(i, j)-ID subtree (see Definition 2), forj = 0, 1, ..., B−
1. These users tend to be in the same topological region, and
each one’s ID shares the firsti digits with u’s ID. (User u
has already determined the firsti digits, u.ID[0 : i − 1],
of its ID so far.) In the second step,u measures the RTTs
between itself and the users it collected. According to the
measurement results,u determines the value ofu.ID[i] in the
third step. More specifically, ifu predicts that it is “close” to
the users belonging to a particular ID subtree, say(i, b)-ID

1The key server needs to sendu the new group key via unicast ifu can-
not finish constructing its neighbor table before the end of the current rekey
interval.

6

subtree, thenu setsu.ID[i] to beb, 0 ≤ b ≤ B − 1. As
a result,u’s ID shares one more digit with the users in the
(i, b)-ID subtree, andu itself becomes a user belonging to
this ID subtree. We thus achieve the effect that users close to
each other belong to the same ID subtree. In the last step,u
notifies the key server its determined ID digits. We describe
each step in detail below.

3.1.1 Step 1: collecting user records

For u to know which users belong to its(i, j)-ID subtree,
j = 0, 1, ..., B − 1, a straightforward approach is to let the
key server provide such information. This however increases
the key server’s bandwidth overhead. Therefore, we letu
collect the information by querying other users.

For i = 0, u sends a query to the user whose record is
provided tou by the key server. Fori > 0, sinceu has already
determined the firsti digits of its ID so far, it knows at least
one user that belongs tou’s (i − 1, 0)-ID subtree,(i − 1, 1)-
ID subtree, ..., or(i − 1, B − 1)-ID subtree. Useru sends a
query to such a user. The query specifies a target ID prefix as
u.ID[0 : i− 1]. Upon receiving the query, the receiver looks
up its neighbor table, and returns the user records of all the
neighbors whose IDs have the target ID prefix. In this way,
u collects one or more users from its(i, j)-ID subtree if the
subtree is not empty, forj = 0, 1, ..., B − 1.

For eachj, j = 0, 1, ..., B − 1, to collect more users from
its (i, j)-ID subtree,u keeps querying the users it collected
from the ID subtree until it collectsP users from the subtree,
or it has queried all the users it collected from the subtree. In
each query,u specifies the target ID prefix asu.ID[0 : i− 1]
appended with digitj. We setP = 10 for all the simulations
in this paper.

3.1.2 Step 2: measuring RTTs

In this step,u estimates whether it is close to the users it
collected from its(i, j)-ID subtree, forj = 0, 1, ..., B − 1.
For this purpose,u measures the RTT between the first-hop
and last-hop routers (referred to as gateway routers) on the
path fromu to w, for each userw it collected in the ID sub-
trees. Letr(u, w) denote the RTT betweenu andw’s gate-
way routers. Leth(u, w) denote the RTT between the two
end hostsu andw. In our protocol,u usesr(u, w) instead of
h(u, w) to estimate whether it is close tow topologically. The
rational is that two end hosts tend to be topologically close to
each other even if their access links have long latency.2

Useru can easily deriver(u, w) if it knows h(u, w), the
RTT betweenu and its gateway router, and the RTT be-
tweenw and its gateway router. For this purpose,u esti-
matesh(u, w) by using ping messages. And each user mea-
sures the RTT between itself and its gateway router using the

2Note that the latency stored for each neighbor in a neighbor table is the
RTT between two end hosts.

traceroute utility. The value of the RTT between a user
and its gateway router is stored in each copy of the user’s
corresponding user records so that others can know it.

3.1.3 Step 3: determiningu.ID[i]

In this step, for eachj, j = 0, 1, ..., B − 1, useru computes
the F -percentile of the RTTs measured for all the users it
collected from its(i, j)-ID subtree. (Each RTT used in this
step is the one between two gateway routers.) HereF is a
system parameter. In order to tolerate the estimation error of
RTTs, we did not use 100-percentile. Instead,70-percentile
is used in all the simulations in this paper. Suppose the RTTs
of the users thatu collected from its(i, b)-ID subtree,0 ≤
b ≤ B−1, produces the smallestF -percentile value, denoted
by fi,b. Useru then comparesfi,b with the delay threshold
Ri+1, and the comparison results in two cases.

In the first case,fi,b is less than or equal toRi+1. Useru
then predicts that it is topologically close to the users belong-
ing to its(i, b)-ID subtree, and thus assignsu.ID[i] asb. User
u then continues to determine the next digitu.ID[i + 1] of
its ID if the next digit is not the last digit. That is,u increases
the value ofi by 1, and goes back to step 1. If the next digit is
the last one,u goes to step 4 and asks the key server to assign
the last digit to make sure that every user in the group has a
unique ID.

In the second case,fi,b is larger thanRi+1. Useru then
predicts that it is not close enough to the users in any(i, j)-ID
subtree,j = 0, 1, ..., B− 1. In this case,u goes to step 4 and
asks the key server to assign digits foru.ID[i], u.ID[i + 1],
..., andu.ID[D − 1].

3.1.4 Step 4: notifying the key server

In this step,u sends the key server a message that contains its
determined ID digits. Supposeu already determines the first
l digits,u.ID[0 : l − 1], of its ID, 0 ≤ l ≤ D − 1. The key
server then assigns thelth digit to the last digit ofu’s ID, such
that none of the other users in the group shares the firstl + 1
digits with u. 3 Consequently, in the ID tree,u becomes a
user in a new level-(l + 1) subtree to which none of the other
users in the group belong. After that, the key server sendsu
a message that containsu’s complete ID and all the keys on
the path fromu’s corresponding u-node to the root in the key
tree.

To analyze the communication cost for a joining user to
determine its ID, we observe that if each non-leaf node in the
ID tree has the same outgoing degree, then the total number

3In an extreme case, the key server may not be able to find a unique value
for u.ID[0 : l] such that none of the existing users in the group shares
the firstl + 1 digits with u. In this case, the key server will try to modify
u.ID[l−1] to makeu.ID[0 : l−1] unique among the IDs of all the existing
users. If this attempt fails, the key server will try to modifyu.ID[l − 2],
u.ID[l− 3],..., and so forth. If all theattempts fail, the key server will force
u to join a level-1 ID subtree.

7

of messages exchanged while a joining user determines its ID
isO(P ·D·N1/D) on average. The cost function is minimized
asO(P · e · ln N) for D = ln N . Heree refers to the base of
the natural logarithm.

3.2 Join, leave, and failure recovery

After its ID is determined,u needs to build its neighbor ta-
ble.4 It also needs to contact some other users to have its user
record inserted in their neighbor tables. The join protocol
presented in the Silk system [15, 12] is used to accomplish
this task. The join protocol is proved to construct consistent
neighbor tables after an arbitrary number of joins if messages
are delivered reliably and there are no user leaves or failures.
After its joining process terminates,u sends the key server a
notification message.

Whenu decides to leave the group, it needs to contact other
users to have its user record deleted from their neighbor ta-
bles. The leave protocol presented in Silk is used to accom-
plish this task. After that,u sends a leave request to the key
server.

Useru detects the failure of a neighbor if the neighbor does
not respond to consecutive ping messages. Upon detecting
the failure of a neighbor,u sends the key server a notification
message. It also needs to contact some other users to look
for appropriate users to replace the failed one. We refer inter-
ested readers to [13] for effective failure recovery strategies.

4 Performance evaluation

We evaluate the performance of our approach in this section.
We first study whether T-mesh can provide low delivery la-
tency. We then study the modified key tree by the size of the
rekey message. Next, we examine whether the rekey mes-
sage splitting scheme can significantly reduce rekey band-
width overhead. Finally, we investigate the impact of dif-
ferent values of the delay thresholdsRi, i = 1, 2, ..., D − 1,
on the latency performance of T-mesh.

For efficiency, we wrote our own discrete event-drivensim-
ulator. We simulate the sending and the reception of a mes-
sage as events. The following two topologies were used in
the simulations:

• PlanetLab topology – We measured the RTT between
each pair of 227 hosts on the PlanetLab infrastructure [1]
using a single probe message on August 12, 2004.5

These hosts spread in North America, Europe, Asia, and
Australia, and belong to various domains including .edu,

4All the user records collected byu while it determines its ID could be
used to fill its neighbor table.

5We also used the minimum value of 20 RTT samples measured for
each pair of PlanetLab hosts, and repeated each simulation presented in Sec-
tion 4.1. The relative performance of T-mesh to NICE (the multicast scheme
for comparison) does not change.

.com, .net, and .org. In our simulator, we let each mem-
ber (a user or the key server) correspond to a PlanetLab
host, and set the RTT between each pair of members to
be the same as the RTT between the corresponding two
PlanetLab hosts. We set one-way delay between two
members to be half of their RTT.

• GT-ITM topology – This is a transit-stub topology based
on the GT-ITM topology models [6]. The topology con-
sists of 5000 routers and 13000 network links. Each
member is attached to a randomly selected router. We
abstract away queueing delays in the simulations. We
set the two-way propagation delay for each link in the
following way. For each link within a stub domain, its
delay is uniformly distributed between 0.1 and 1 ms. For
each link connecting a stub router and a transit router,
its delay is between 2 and 3 ms. For each link con-
necting two transit routers of the same transit domain,
its delay is between 10 and 15 ms. For each link con-
necting two transit domains, its delay is between 75 and
85 ms. With these settings, the relative latency perfor-
mance of T-mesh to NICE [4], one of the state-of-the-
art ALM schemes that we choose for comparison pur-
pose, changes little as we change the simulation topol-
ogy from PlanetLab to GT-ITM. As to the evaluation of
rekey message size and rekey bandwidth overhead , sim-
ulation results presented in Section 4.2 and 4.3 are not
sensitive to the delay settings in the GT-ITM topology.

In the simulations, we compare the performance of T-mesh
with NICE [4]. 6 We simulate the NICE protocol based on its
protocol description [4] and the authors’ simulation code.7

In our simulation of NICE, a user will not join or leave the
group until the previous join or leave terminates. In NICE, the
ALM tree constructed by such sequential joins and leaves is
expected to have better (at least not worse) performance than
the tree constructed by concurrent joins. In all the simulations
(except the ones in Section 4.2) for T-mesh, we use concur-
rent joins and leaves. The join and leave protocols of T-mesh
are based on the Silk protocols, but simplified to improve sim-
ulation efficiency. For each run of a simulation, users follow
the same join and leave order in T-mesh and NICE. In all
the simulations of T-mesh, we setD = 5, R1 = 150 ms,
R2 = 30 ms,R3 = 9 ms,R4 = 3 ms,B = 256, andK = 4,
unless otherwise stated. In all the simulations of NICE, each
cluster contains three to eight users [4].

6We did not choose Narada [8] for comparison because the structure of
Narada mesh keeps changing for self-improving purposes even when there
are no user joins or leaves. This incurs significant communication cost for
each user to keep track of its downstream users in order to perform rekey
message splitting.

7The NICE simulation code can be found at
http://www.cs.wisc.edu/∼suman/. We did not use the code because it
requires specific configurations.

8

4.1 Delivery latency

We evaluate the delivery latency of a rekey message when
the key server multicasts the message in T-mesh and NICE,
respectively. Given a particular user, we define three perfor-
mance metrics:

• User stress – The total number of messages the user for-
wards in a multicast session.

• Application-layer delay (in milliseconds) – The latency
from the time that the sender sends a message to the time
that the user receives a copy of the message.

• Relative delay penalty (RDP) – The ratio of the user’s
application-layer delay to the one-way unicast delay
from the sender to the user.

4.1.1 Rekeying path latency

Note that there is no notion of a key server in the original
design of NICE [4]. In our simulations, to multicast a rekey
message in NICE, we let the key server unicast the message
to the root of the NICE tree, which is the topological center
of all the users in the group [4]. The message then traverses
the tree in a top-down fashion.

We ran simulations on the PlanetLab topology with226
user joins. In every run of our simulations, each user join the
group at a random time between 0 and 452 seconds. After all
the joins terminate, the key server multicasts a message.

Fig. 6 plots the inverse cumulative distribution of user
stress, application-layer delay, and RDP. Each curve is ob-
tained from 100 simulation runs. For each run in Fig. 6 (a),
we changed user joining times, and started a rekey multicast
session in T-mesh and NICE, respectively. We then ranked
the users in increasing order of their stresses. For each rank,
which corresponds to a point onx-axis, we computed the av-
erage user stress (shown as a point in the figure) of the users
with this particular rank across all runs, as well as the5 to
95-percentile value (shown as a vertical bar). Therefore, each
point with coordinates(x, y) in Fig. 6 (a) can be interpreted
as:x fraction of users have an average user stress less than or
equal toy. Figs. 6 (b) and (c) can be interpreted similarly.

From Fig. 6, we observe that the distributions of user stress
in T-mesh and NICE are comparable; however, the users have
much smaller application-layer delay and RDP in T-mesh
than those in NICE. The application-layer delay in T-mesh
is about half of that in NICE for the majority of users. In
T-mesh, 78% of users have an RDP less than 2, and 95% of
users less than 3. In NICE only 23% of users have an RDP
less than 2, and 47% of users less than 3.

From Fig. 6, we also observe that in different runs the
distributions of application-layer delay and RDP have much
smaller variations in T-mesh than those in NICE. This im-
plies that the latency performance of T-mesh is less sensitive
to different user joining orders than that of NICE.

We repeated these simulations on the GT-ITM topology
for 256 and 1024 user joins, respectively, as shown in Figs. 7

and 8. Compared with Fig. 6, we observe that the relative
performance of T-mesh to NICE has no significant change as
the simulation topology changes from PlanetLab to GT-ITM.

Note that it is not appropriate to conclude that T-mesh is
better than NICE for data transport in general. NICE is de-
signed for scalable group communications, and has no notion
of a key server. In NICE, to determine its position in the tree,
each joining user probes a smaller number of users than a
joining user in T-mesh does.

4.1.2 Data path latency

We also conducted simulations on both the PlanetLab and
GT-ITM topologies to evaluate delivery latency of a data mes-
sage in T-mesh and NICE, respectively, as shown in Figs 9
to 11. A random user is chosen as the sender. The multi-
cast scheme in T-mesh is specified in Section 2.3. In NICE,
to multicast a data message, the sender unicasts the message
to the leader of its local cluster. Then the message traverses
the ALM tree in a bottom-up and then top-down fashion [4].
From Figs 9 to 11, we observe that the relative performance
of T-mesh to NICE is similar in data and rekey transports.

4.2 Rekey message size

In this subsection, we study the modified key tree by the size
of the rekey message. We definerekey costas the number
of encryptions contained in a rekey message. All the simula-
tions in this subsection are performed on the GT-ITM topol-
ogy. In each simulation, 1024 users join the group each at
a random time between 0 and 2048 seconds. After all the
joins terminate, the key server processesJ join andL leave
requests,0 ≤ J, L ≤ 1024, in one rekey interval, and gener-
ates one rekey message. For efficiency, we use a centralized
controller to simulate theJ joins andL leaves in that rekey
interval.

Fig. 12 (a) plots the average rekey cost of the modified key
tree as a function of number of joins and leaves. Each average
value is computed based on 20 simulation runs. Fig. 12 (b)
plots the rekey cost of the modified key tree minus that of
the original key tree. The original key tree is based on the
Wong-Gouda-Lam key tree [28] with degree 4 and the batch
rekeying algorithm proposed in [32]. A degree of 4 is proved
to be optimal in terms of rekey cost per join or leave [28].
After the initial 1024 users join the group, we assume that
the original key tree is full and balanced. ThenJ joins andL
leaves are processed in a rekey interval.

From Fig. 12 (b), we observe that the modified key tree
has a larger rekey cost than the original one for the same
number of joins and leaves. This is because in the original
key tree, a joining u-node can take the position of a departed
u-node [32], while in the modified key tree a joining u-node
cannot replace a departed one unless their IDs share the first
D − 1 digits. As a result, the modified key tree tends to up-

9

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

U
se

r
S

tr
es

s

Fraction of Users

NICE
T-mesh

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

A
pp

.-
la

ye
r

D
el

ay
 (

m
s)

Fraction of Users

NICE
T-mesh

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

R
D

P

Fraction of Users

NICE
T-mesh

(a) Inverse cumulative distribution of user stress. (b) Inverse cumulative distribution of (c) Inverse cumulative distribution of RDP.

application-layer delay.

Figure 6: Rekey path latency on the PlanetLab topology.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

U
se

r
S

tr
es

s

Fraction of Users

NICE
T-mesh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

A
pp

.-
la

ye
r

D
el

ay

Fraction of Users

NICE
T-mesh

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

R
D

P

Fraction of Users

NICE
T-mesh

(a) Inverse cumulative distribution of user stress. (b) Inverse cumulative distribution of (c) Inverse cumulative distribution of RDP.

application-layer delay.

Figure 7: Rekey path latency on the GT-ITM topology with 256 user joins.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

U
se

r
S

tr
es

s

Fraction of Users

NICE
T-mesh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

A
pp

.-
la

ye
r

D
el

ay
 (

m
s)

Fraction of Users

NICE
T-mesh

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

R
D

P

Fraction of Users

NICE
T-mesh

(a) Inverse cumulative distribution of user stress. (b) Inverse cumulative distribution of (c) Inverse cumulative distribution of RDP.

application-layer delay.

Figure 8: Rekey path latency on the GT-ITM topology with 1024 user joins.

date more keys than the original one for the same number of
joins and leaves.

We propose a cluster rekeying heuristic to reduce the rekey
cost of the modified key tree. In the heuristic, all the users
belonging to the same level-(D − 1) ID subtree are referred
to as a bottom cluster. For each bottom cluster a user is se-
lected as the leader. The leader has all the keys on the path
from its corresponding u-node to the root in the modified key
tree. A non-leader user has only three keys: the group key,
the user’s individual key, and a pairwise key shared with its

cluster leader. When a leader receives a new group key, it
unicasts a copy of the group key to each user in its cluster by
first encrypting the group key with the receiving user’s pair-
wise key. With this heuristic, only the join and leave of a
leader incurs group rekeying. Appendix B presents a detailed
description of this heuristic.

Fig. 12 (c) plots the average rekey cost of the modified key
tree with the cluster rekeying heuristic applied minus that of
the original key tree. We observe that with the heuristic, the
rekey cost of the modified key tree becomes even smaller than

10

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

U
se

r
S

tr
es

s

Fraction of Users

NICE
T-mesh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

A
pp

.-
la

ye
r

D
el

ay
 (

m
s)

Fraction of Users

NICE
T-mesh

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

R
D

P

Fraction of Users

NICE
T-mesh

(a) Inverse cumulative distribution of user stress. (b) Inverse cumulative distribution of (c) Inverse cumulative distribution of RDP.

application-layer delay.

Figure 9: Data path latency on the PlanetLab topology.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

U
se

r
S

tr
es

s

Fraction of Users

NICE
T-mesh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

A
pp

.-
la

ye
r

D
el

ay
 (

m
s)

Fraction of Users

NICE
T-mesh

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

R
D

P

Fraction of Users

NICE
T-mesh

(a) Inverse cumulative distribution of user stress. (b) Inverse cumulative distribution of (c) Inverse cumulative distribution of RDP.

application-layer delay.

Figure 10: Data path latency on the GT-ITM topology with 256 user joins.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

U
se

r
S

tr
es

s

Fraction of Users

NICE
T-mesh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

A
pp

.-
la

ye
r

D
el

ay
 (

m
s)

Fraction of Users

NICE
T-mesh

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

R
D

P

Fraction of Users

NICE
T-mesh

(a) Inverse cumulative distribution of user stress. (b) Inverse cumulative distribution of (c) Inverse cumulative distribution of RDP.

application-layer delay.

Figure 11: Data path latency on the GT-ITM topology with 1024 joins.

that of the original key tree when the fraction of leaving users
is small.

4.3 Rekey bandwidth overhead

We now evaluate whether the rekey message splitting scheme
can significantly reduce rekey bandwidth overhead. We use
the GT-ITM topology for all the simulations in this subsec-
tion. In each simulation, 1024 users join the group each at a
random time between 0 and 2048 seconds. After all the joins
terminate, the key server processes 256 joins and 256 leaves
in one rekey interval of 512 seconds, and generates one rekey
message. Each of the 256 joins and 256 leaves starts at a ran-
dom time of the rekey interval. Such a large number of joins

and leaves is not typical in practice; however, it represents a
challenging scenario. If the splitting scheme works well in
this scenario, then we expect that rekey transport has little in-
terference with data transport when users join and leave less
frequently.

For comparison, we define seven rekey transport protocols,
as specified in Table 2. The IP multicast scheme used inP4 is
based on the DVMRP multicast routing algorithm [9, 26]. As
pointed out in Section 2.6, to allow rekey message splitting
in P ′

1, users need to maintain states forO(N) downstream
users. In our evaluation of NICE, we did not count such
maintenance cost because the cost depends on the particular
maintenance protocol.

Figs. 13 (a), (b), and (c) plot the inverse cumulative dis-

11

Average rekey cost

 0
 200

 400
 600

 800
 1000

 1200
J(# of Joins) 0

 200
 400

 600
 800

 1000
 1200

L(# of Leaves)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

Avg. rekey cost of modified key tree minus that of the original

 0
 200

 400
 600

 800
 1000

 1200
J (# of Joins) 0

 200
 400

 600
 800

 1000
 1200

L (# of Leaves)

 0
 200
 400
 600
 800

 1000
 1200
 1400

Avg. rekey cost of modified key tree minus that of the original

 0
 200

 400
 600

 800
 1000

 1200
J(# of Joins) 0

 200
 400

 600
 800

 1000
 1200

L(# of Leaves)

-800
-600
-400
-200

 0
 200
 400
 600
 800

(a) Rekey cost of the modified key tree. (b) Rekey cost of the modified key tree (c) Rekey cost after applying the cluster

minus that of the original key tree. rekeying heuristic to the modified key tree.

Figure 12: Rekey cost as a function of number of joins and leaves in the modified and the original key trees.

 1

 10

 100

 1000

 10000

 0.9 0.92 0.94 0.96 0.98 1

N
um

be
r

of
 E

nc
ry

pt
io

ns
 p

er
 U

se
r

Fraction of Users

P1
P2
P3
P1’
P2’
P3’

 1

 10

 100

 1000

 10000

 100000

 0.9 0.92 0.94 0.96 0.98 1

N
um

be
r

of
 E

nc
ry

pt
io

ns
 p

er
 U

se
r

Fraction of Users

P1
P2
P3
P1’
P2’
P3’

 1

 10

 100

 1000

 10000

 100000

 1 0.99 0.98 0.97 0.96

N
um

be
r

of
 E

nc
ry

pt
io

ns
 p

er
 L

in
k

Fraction of Links

P1
P2
P3
P1’
P2’
P3’
P4

(a) Inverse cumulative distribution of the (b) Inverse cumulative distribution of the (c) Inverse cumulative distribution of the number

number of encryptions received per user. number of encryptions forwarded per user. of encryptions going through each network link.

Figure 13: Rekey bandwidth overhead.

protocol key tree multicast cluster rekey msg
approach scheme rekeying splitting

P1 original NICE n/a no
P ′

1 original NICE n/a yes
P2 modified T-mesh no no
P ′

2 modified T-mesh no yes
P3 modified T-mesh yes no
P ′

3 modified T-mesh yes yes
P4 original IP multicast n/a no

Table 2: Seven rekey protocols

tribution of the number of encryptions received per user, for-
warded per user, and going through each of the 13000 net-
work links, respectively. Each curve in the figure is obtained
from a typical simulation run where one rekey message is dis-
tributed. Note that they-axis is in log scale, and thex-axis
starts from 0.9 or 0.96 since we are concerned with the most
loaded users and links.

In Fig. 13, by comparingP ′
1 to P1, P ′

2 to P2, andP ′
3 to P3,

we observe that rekey message splitting is very effective in
reducing rekey bandwidth overhead. In particular, inP ′

2 and
P ′

3 (using T-mesh), the rekey message splitting can reduce
rekey bandwidth overhead for more than 90% of users and
links from several thousand encryptions to less than ten en-
cryptions. No users receive or forward more than 350 encryp-

tions inP ′
2 andP ′

3 (see Figs. 13 (a) and (b)). And only a few
links receive up to 1500 encryptions (see Fig. 13 (c)). These
links are on the paths from the key server to its(0, j)-primary
neighbors,j = 0, 1, ..., B−1. Since rekey transport and data
transport choose different multicast trees in T-mesh, we ex-
pect that inP ′

2 andP ′
3 rekey transport does not affect data

transport as long as the rekey bandwidth overhead at most
users and most links is very small.

In P ′
1 (using NICE), however, a few users still need to

forward 1000 to 10000 encryptions, and some links need to
transfer up to 4000 encryptions, as shown in Figs. 13 (b) and
(c), respectively. These users and links are close to the root of
the NICE tree. Congestion at these users or links can cause
data and rekey message losses for many downstream users.
Therefore, inP ′

1 the rekey bandwidth overhead of the most
loaded users and links is a big concern.

We conclude that rekey message splitting is very effective
in reducing rekey bandwidth overhead. Furthermore, it is
more effective to perform message splitting inP ′

2 andP ′
3 (us-

ing T-mesh) than inP ′
1 (using NICE), especially for the most

loaded users and links. In addition, inP ′
2 andP ′

3 each user
does not need to maintain states for its downstream users to
perform message splitting.

12

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

A
pp

.-
la

ye
r

D
el

ay
 (

m
s)

Fraction of Users

(150, 20, 3)
(150, 30, 9, 3)

(150, 40, 15, 3)
(150, 50, 30, 9, 3)

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

R
D

P

Fraction of Users

(150, 20, 3)
(150, 30, 9, 3)

(150, 40, 15, 3)
(150, 50, 30, 9, 3)

(a) Inverse cumulative distribution (b) Inverse cumulative

of application-layer delay. distribution of RDP.

Figure 14: Rekey path latency in T-mesh for various values
of D and delay thresholds(R1, R2, ..., RD−1).

4.4 Delay thresholds

To determine its ID, a joining user needs to compare the RTTs
between itself and the users it collected with the delay thresh-
oldsRi, i = 1, 2, ..., D− 1. To choose appropriate values for
Ri, we use the following heuristic. First, we setR1 around
one hundred milliseconds so that all the users from the same
continent could belong to the same level-0 ID subtree. Sec-
ond, we setRD−1 to be in the order of several milliseconds,
so that all the users in a few closely located LANs could be-
long to the same level-(D − 1) ID subtree. Last, we make the
ratio ofRi/Ri+1 larger than or equal to 2, so that each level-i
ID subtree contains several level-(i + 1) ID subtrees.

Fig. 14 plots the inverse cumulative distributions of
application-layer delay and RDP for various values ofD and
(R1, R2, ..., RD−1) when the key server multicasts a rekey
message. The PlanetLab topology with 226 joins is used in
the simulations. Each curve in the figure is obtained from a
typical simulation run. From the figure, we observe that the
latency performance of T-mesh is not sensitive to the various
values of delay thresholds that we chose.

5 Related work

Several rekey transport protocols were proposed recently [30,
3, 24, 32, 31]. All these protocols, however, are based on IP
multicast, which has not been widely deployed.

Many ALM schemes were proposed for data transport in
the literature. Some schemes such as [8, 4, 35, 22, 11, 19, 20]
construct topology-aware ALM trees and provide low deliv-
ery latency. These schemes work well for their target appli-
cations; however, they are not sufficient to support concur-
rent rekey and data transport because of the following rea-
sons. First, it incursO(N) maintenance cost at users to al-
low rekey message splitting (see Section 2.6). Second, the
message splitting scheme that could be achieved in these
ALM schemes is not as efficient as ours (see Section 2.6).
Third, most of the ALM schemes maintains a single ALM
tree [4, 35, 22, 11]. As a result, rekey traffic will further in-
crease the load of the users that are close to the root of the
ALM tree. Lastly, failure recovery in some of these schemes

could be slow since it takes time to recover an explicit tree
structure upon host failures.

Hypercube routing was first proposed by Plaxton, Rajara-
man, and Richa (PRR) [18]. It was further explored in Pas-
try [21] and Tapestry [34] to provide efficient object lookup
operations in distributed hash tables (DHT). In PRR, Pas-
try, and Tapestry, each user randomly selects its ID, which
is location-independent. Random user IDs are perfect for
lookup operations, but not desired for multicast, as explained
in Section 2.6.

Two multicast schemes, namely, Scribe [22] and
Bayeux [35], were proposed on top of the Pastry and Tapestry
infrastructures. Scribe and Bayeux were designed to sup-
port many small multicast groups, and a single ALM tree is
constructed for each multicast group. Therefore, Scribe and
Bayeux are different from our multicast scheme.

Ng and Zhang proposed a global network positioning
(GNP) scheme [17]. With this scheme, the delay between
two hosts can be estimated using their GNP coordinates. This
scheme can be used in our system to reduce the probing cost
of each joining user. For example, if the key server knows the
GNP coordinates of all the users, it can determine the ID for
a joining user by centralized computing.

6 Conclusion

In this paper, we proposed an application-layer multicast ap-
proach that supports concurrent rekey and data transport. Our
goal is to provide fast delivery of rekey messages and reduce
rekey bandwidth overhead as much as possible. Our approach
consists of a multicast scheme using neighbor tables, a modi-
fied key tree, and a rekey message splitting scheme. These
system components are integrated with a coherent scheme
to identify each user, key, and encryption. By virtue of the
identification scheme, each user can determine who are the
next hops by looking up its neighbor tables in a multicast
session. Also each user can determine whether an encryp-
tion is needed by its downstream users by checking the en-
cryption’s ID. Furthermore, our user ID assignment scheme
exploits proximity in the underlying network such that each
multicast tree embedded in the neighbor tables tends to be
topology-aware. Our simulation results showed that our ap-
proach can achieve much smaller delivery latency and rekey
bandwidth overhead for almost all the users (and links) than
a representative existing ALM scheme.

References
[1] PlanetLab project. http://www.planet-lab.org/.

[2] D. Balenson, D. McGrew, and A. Sherman. Key management for large
dynamic groups: One-way function trees and amortized initialization,
INTERNET-DRAFT. URL: http://www.securemulticast.org/smug-
drafts.htm, Sept. 2000.

13

[3] S. Banerjee and B. Bhattacharjee. Scalable secure group communi-
cation over IP multicast.JSAC Special Issue on Network Support for
Group Communication, 2002.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable applica-
tion layer multicast. InProceedings of ACM SIGCOMM 2002, pages
205–217, Pittsburgh, PA, Aug. 2002.

[5] B. Briscoe. Marks: Zero side effect multicast key management using
arbitrarily revealed key sequences. InProceedings of NGC 1999, pages
301–320, Pisa, Italy, Nov. 1999.

[6] K. Calvert, M. Doar, and E. W. Zegura. Modeling Internet topology.
IEEE Communications Magazine, 35(6):160–163, June 1997.

[7] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key
management for secure Internet multicast using boolean function min-
imization techniques. InProceedings of IEEE INFOCOM ’99, vol-
ume 2, pages 689–698, Mar. 1999.

[8] Y. Chu, S. G. Rao, and H. Zhang. A case for end system multicast.
In Proceedings of ACM SIGMETRICS 2000, pages 1–12, Santa Clara,
CA, June 2000.

[9] S. E. Deering. Multicast routing in internetworks and extended LANs.
In Proceedings of ACM SIGCOMM ’88, Aug. 1988.

[10] I. R. T. F. (IRTF). The secure multicast research group (SMuG).
http://www.securemulticast.org/.

[11] M. Kwon and S. Fahmy. Topology-aware overlay networks for group
communication. InProceedings of ACM NOSSDAV, pages 127–136,
Miami, Florida, USA, May 2002.

[12] S. S. Lam and H. Liu. Silk: A resilient routing fabric for peer-to-
peer networks. Technical Report TR–03–13, Department of Computer
Sciences, The University of Texas at Austin, Oct. 2003.

[13] S. S. Lam and H. Liu. Failure recovery for structured p2p networks:
Protocol design and performance evaluation. InProceedings ACM
SIGMETRICS 2004, New York, NY, June 2004.

[14] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam. Batch rekeying for
secure group communications. InProceedings of Tenth International
World Wide Web Conference (WWW10), pages 525–534, Hong Kong,
China, May 2001.

[15] H. Liu and S. S. Lam. Neighbor table construction and update in a
dynamic peer-to-peer network. InProceedings of IEEE ICDCS 2003,
Providence, RI, May 2003.

[16] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes
for stateless receivers.Lecture Notes in Computer Science (Crypto
2001), 2139:41–62, 2001.

[17] T. S. E. Ng and H. Zhang. Predicting internet network distance with
coordinates-based approaches. InProceedings of IEEE INFOCOM
2002, New York, NY, June 2002.

[18] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby
copies of replicated objects in a distributed environment.Theory of
Computing Systems, pages 241–280, 1999.

[19] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level
multicast using content-addressable networks. InProceedings of NGC
2001, Nov. 2001.

[20] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-
aware overlay construction and server selection. InProceedings of
IEEE INFOCOM 2002, June 2002.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object lo-
cation and routing for large-scale peer-to-peer systems. InProceedings
of 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), pages 329–350, Heidelberg, Germany,
Nov. 2001.

[22] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE:
The design of a large-scale event notification infrastructure. InPro-
ceedings of NGC 2001, pages 30–43, London, UK, Nov. 2001.

[23] S. Setia, S. Koussih, S. Jajodia, and E. Harder. Kronos: A scalable
group re-keying approach for secure multicast. InProceedings of IEEE
Symposium on Security and Privacy, pages 215–228, Berkeley, CA,
May 2000.

[24] S. Setia, S. Zhu, and S. Jajodia. A comparative performance analysis
of reliable group rekey transport protocols for secure multicast. InPer-
formance Evaluation, special issue on the Proceedings of Performance
2002, volume 49, pages 21–41, Rome, Italy, Sept. 2002.

[25] J. Snoeyink, S. Suri, and G. Varghese. A lower bound for multicast key
distribution. InProceedings of IEEE INFOCOM 2001, pages 422–431,
Anchorage, Alaska, Apr. 2001.

[26] D. Waitzman, C. Partridge, and S. Deering.Distance Vector Multicast
Routing Protocol, RFC 1075, Nov. 1988.

[27] D. Wallner, E. Harder, and R. Agee. Key management for multicast:
Issues and architectures, RFC 2627, June 1999.

[28] C. K. Wong, M. G. Gouda, and S. S. Lam. Secure group communica-
tions using key graphs. InProceedings of ACM SIGCOMM ’98, pages
68–79, Sept. 1998.

[29] C. K. Wong and S. S. Lam. Keystone: a group key management sys-
tem. InProceedings of International Conference on Telecommunica-
tions, Acapulco, Mexico, May 2000.

[30] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reliable group
rekeying: A performance analysis. InProceedings of ACM SIGCOMM
2001, pages 27–38, San Diego, CA, Aug. 2001.

[31] X. B. Zhang, S. S. Lam, and D.-Y. Lee. Group rekeying with limited
unicast recovery.Computer Networks, 44(6):855–870, Apr. 2004.

[32] X. B. Zhang, S. S. Lam, D.-Y. Lee, and Y. R. Yang. Protocol design
for scalable and reliable group rekeying.IEEE/ACM Transactions on
Networking, 11(6):908–922, Dec. 2003.

[33] X. B. Zhang, S. S. Lam, and H. Liu. Efficient group rekeying using
application-layer multicast. In25th IEEE International Conference on
Distributed Computing Systems (ICDCS 2005), Columbus, Ohio, June
2005.

[34] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing.IEEE Journal on
Selected Areas in Communications, 22(1):41–53, Jan. 2004.

[35] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Ku-
biatowicz. Bayeux: An architecture for scalable and fault-tolerant
widearea data dissemination. InProceedings of NOSSDAV 2001, June
2001.

A Proofs

Proof of Lemma 1: By Definition 1 , all the members shar-
ing the common prefixu.ID[0 : i − 1] belong to the same
level-i ID subtree. So we only need to prove that the IDs of
u and all its downstream members have the common prefix
u.ID[0 : i − 1]. We prove by induction on the forwarding
level.

1) At forwarding leveli, memberu’s ID has the prefix
u.ID[0 : i− 1].

2) Assume that at forwarding levelsi, i + 1, ..., ands, the
ID of any downstream member ofu at these levels has the
prefixu.ID[0 : i− 1], wheres ≥ i.

3) Now consider the forwarding levels + 1. Let w be any
downstream member ofu at this level. We observe thatw
must be a(s, w.ID[s])-neighbor of its previous hop (sayz).
By Definition 3, the IDs ofw andz have the common prefix

14

z.ID[0 : s − 1]. By the induction assumption,z.ID has the
prefix u.ID[0 : i − 1] sincez’s forwarding level is between
i ands (inclusively). It follows that thatw.ID has the prefix
u.ID[0 : i− 1] sinces ≥ i.

Lemma 4 In a multicast session, given any two distinct posi-
tions at forwarding levelsi andj respectively in the multicast
tree, letui andwj be the corresponding member(s) at these
two positions,0 ≤ i ≤ D, 0 ≤ j ≤ D, andj ≤ i. Then
we haveui.ID[0 : i − 1] 6= wj .ID[0 : i − 1]. Further-
more, ifwj is not an upstream member ofui, then we have
ui.ID[0 : j − 1] 6= wj .ID[0 : j − 1].

Proof of Lemma 4: Let Vm be the set of all the members
at forwarding levelm, where0 ≤ m ≤ D. Note thatV0

contains only a single element, the sender. Sinceui andwj

are in two distinct positions andj ≤ i, ui’s forwarding level
must be larger than or equal to 1. Consider two cases.

Case 1:wj is an upstream member ofui. Letui′ , ui′ ∈ Vi′ ,
be the upstream member ofui whose previous hop iswj .
(Note thatui′ andui refer to the same member if the previous
hop ofui is wj .) Thenui′ is a neighbor at the(i′ − 1)th row
of wj ’s neighbor table. Thus we haveui′ .ID[0 : i′ − 1] 6=
wj .ID[0 : i′− 1]. By Lemma 1,ui′ .ID[0 : i′− 1] is a prefix
of ui.ID. So we haveui.ID[0 : i − 1] 6= wj .ID[0 : i − 1]
sincei′ ≤ i.

Case 2:wj is not an upstream member ofui. Let v be
the common upstream member ofui andwj who is at the
largest forwarding level. That is, for anyv′ who is a common
upstream member ofui andwj , the forwarding level ofv′ is
smaller than or equal to that ofv. Let ui′ , ui′ ∈ Vi′ , be the
upstream member ofui whose previous hop isv. Let wj′ ,
wj′ ∈ Vj′ , be the upstream member ofwj whose previous
hop isv. Note thatui′ andui refer to the same member if
the previous hop ofui is v, andwj′ andwj refer to the same
member if the previous hop ofwj is v. Thenui′ andwj′ are
two distinct primary neighbors at the(i′−1)th and(j′−1)th
row of v’s neighbor table. So we haveui′ .ID[0 : i′ − 1] 6=
wj′ .ID[0 : i′−1] andui′ .ID[0 : j′−1] 6= wj′ .ID[0 : j′−1].
By Lemma 1,ui′ .ID[0 : i′ − 1] is a prefix ofui.ID, and
wj′ .ID[0 : j′ − 1] is a prefix ofwj .ID. Sincei′ ≤ i and
j′ ≤ j, we haveui.ID[0 : i − 1] 6= wj .ID[0 : i − 1] and
ui.ID[0 : j − 1] 6= wj .ID[0 : j − 1].
Proof of Lemma 2: Let j be w’s forwarding level. By
Lemma 4, we havei < j. Furthermore,u must be an up-
stream member ofw sinceu.ID[0 : i−1] = w.ID[0 : i−1].

Proof of Theorem 1: Since no message is lost and group
membership is static, each member appears in at most one
position in the multicast tree. So we only need to prove that
each member appears in at least one position the multicast
tree. Prove by contradiction.

Suppose memberw is not in the multicast tree. LetVi,
i = 0, 1, ..., D, be the set of members who are at forwarding
level i andvi[0 : i − 1] = w.ID[0 : i − 1], for any member

vi, vi ∈ Vi. Obviously, the sender is inV0. Let Vj be the last
non-empty set amongV0, V1, ..., VD, that is,Vj is non-empty,
andVj+1, Vj+2, ...,VD are all empty. Letzj be a member in
Vj and lets be the number of digits contained in the longest
common prefix of the IDsw.ID andzj .ID. Then we have
s ≥ j by the definition ofVj .

Member w is a potential (s, w.ID[s])-neighbor of
zj . Since all the neighbor tables are 1-consistent, the
(s, w.ID[s])-entry of zj ’s neighbor table is not empty by
Definition 3. Then the primary(s, w.ID[s])-neighbor ofzj

must be at forwarding levels + 1 in the multicast tree since
zj is at forwarding levelj ands ≥ j. As a result, the primary
(s, w.ID[s])-neighbor ofzj is a member of setVs+1. This
contradicts the assumption thatVj is the last non-empty set
sinces ≥ j.
Proof of Theorem 2: We first prove that encryptione is
needed by at least one member inV if e.ID is a prefix of
w.ID[0 : s], or w.ID[0 : s] is a prefix ofe.ID. Note thatw
must be at forwarding levels + 1, so all the members inV
have the common prefixw.ID[0 : s] by Lemma 1.

Case 1:e.ID is a prefix ofw.ID[0 : s]. In this case, all
the members inV need this encryption by Lemma 3.

Case 2:w.ID[0 : s] is a prefix ofe.ID. In this case, only
the members whose IDs have the prefixe.ID need this en-
cryption. Such a member must exist in the group; otherwise,
the key server will not generatee. Furthermore, by Lemma 2,
such a member must belong toV since the ID of such a mem-
ber has the prefixw.ID[0 : s].

Next we prove that ife is needed by at least one member
in V , thene.ID is a prefix ofw.ID[0 : s], or w.ID[0 : s] is
a prefix ofe.ID.

If e is needed by at least one member (sayz) in V , then by
Lemma 3,e.ID is a prefix ofz.ID. Sincew.ID[0 : s] is also
a prefix ofz.ID (by Lemma 1), we have that eithere.ID is a
prefix ofw.ID[0 : s], or w.ID[0 : s] is a prefix ofe.ID.

B Cluster rekeying heuristic

In the heuristic, all the users belonging to the same level-(D−
1) ID subtree are referred to as a bottom cluster. For each
bottom cluster, the user with the earliest joining time among
all the users in the cluster is selected as the cluster leader.
A user’s joining time is the time that the key server assigns
the user’s ID, and it is based on the key server’s local clock.
Each user record in neighbor tables contains the joining time
and public key of a neighbor, in addition to the neighbor’s IP
address and ID.

A leader has all the keys on the path from its corresponding
u-node to the root in the modified key tree. It also shares a
pairwise key with each of the other users in its cluster. A non-
leader user has only three keys: the group key, the user’s in-
dividual key, and a pairwise key shared with its cluster leader.

In the heuristic, a joining user determines its user ID and

15

constructs its neighbor table in the same way as described
in the main text. The message multicast process is as usual
when forwarding level is less thanD−1. At forwarding level
D−1, when a non-leader user receives a rekey message with
forward level = D − 1, it forwards the message to its
cluster leader. When a leader receives a rekey message with
forward level ≥ D − 1, it first extracts the new group
key, and then unicasts a copy of the group key to each user in
its cluster by first encrypting the group key with the receiving
user’s pairwise key.8

A non-leader user’s join or leave does not incur group
rekeying. To join a bottom cluster, the user (sayu) first gets
from the key server the user record of the cluster leader (say
w) and a joining certificate. The joining certificate isu’s user
record signed byw’s individual key. Useru then sends the
certificate tow. After verifying the certificate,w establishes
a pairwise key withu using SSL. To leave a cluster,u first re-
questsw to sign a leaving certificate withw’s individual key.
The leaving certificate containsu’s user record and a times-
tamp. Useru then presents the certificate to the key server.

A cluster leader’s join or leave incurs group rekeying. A
cluster leader (sayw) is always the first join in its cluster. The
key server follows the regular rekeying procedure to process
its join. To leave the group,w sends the new leader (if it
exists), sayv, the following information: all the keys on the
path fromw’s corresponding u-node to the root in the key
tree, and user records of all the other users in the cluster. After
receiving fromv a leaving certificate signed byv’s individual
key,w presents the certificate to the key server. Meanwhile,
v establishes a pairwise key with each remaining user in the
cluster.

8As we can see, it is desired to let cluster leaders, instead of non-leader
users, receive rekey messages at forwarding levelD, For this purpose, in
every table entry at the(D − 2)th row of each neighbor table, the neighbor
with the earliest joining time should be chosen as the primary neighbor.

16

