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Abstract of group key management in recent years [27, 28, 5, 7, 2,
16, 30, 32]. In particular, the key tree approach [27, 28] re-
In secure group communications, there are both rekey ahates the server processing time complexity of group rekey-
data traffic. We propose to use application-layer multicastitgy from O(N) to O(log, (N)) where N is the group size
support concurrent rekey and data transport. Rekey traffi@rgld is the key tree degree. This approach was shown to be
bursty and requires fast delivery. It is desired to reduce rekgytimal in terms of server communication cost per user join
bandwidth overhead as much as possible since it competekeave [25].
for bandwidth with data traffic. Towards this goal, we pro- To further reduce server processing and bandwidth over-
pose a multicast scheme that exploits proximity in the undggads, periodic batch rekeying was proposed [23, 30, 14, 32)].
lying network. We further propose a rekey message splittingbatch rekeying, the key server processes the join and leave
scheme to significantly reduce rekey bandwidth overheadéduests during a rekey interval as a batch, and generates a
each user access link and network link. We formulate aﬁﬁgb rekey message at the end of the rekey interval. The
prove correctness properties for the multicast scheme aggey message is then sent to all users immediately, and it re-
rekey message splitting scheme. We have conducted exififires fast delivery to achieve tight group access control. As
sive simulations to evaluate our approach. Our simulatigitesultrekey traffic is bursty
results show that our approach can reduce rekey bandwidtﬁxistmg rekey transport protocols [30, 3, 24, 32, 31] are
overhead from several thousand encrypted new keys (ENCyfsed on IP multicast, which has not been widely deployed.
tions, in s_hort) to less than ten encryptions for more than 9QQ6his paper, we propose to use application-layer multicast
of users in a group of 1024 users. (ALM) to support concurrent rekey and data transport. To
our best knowledge, this paper is the first attempt on how to
efficiently support both rekey and data transport using ALM.

1 Introduction Using ALM to support both rekey and data transport cre-

. licati h id ates new challenges. In particular, bursty rekey traffic com-
Many (lamer%mg Internet app |ca_t|ons, SlIJ.C as gn CompH{étes for available bandwidth with data traffic, and thus con-
Ing, .te econterences, pay-per-view, mu tl-pa_lrty 9ames, aliferaply increases the load of bandwidth-limited links, such
distributed interactive simulations will benefit from using s the access links of users that are close to the root of the
securbe grOIpr commurr]ucatlons mode_l [&0]- In&:s kmod LM tree. Congestion at such an access link causes data
members of a group share a symmetric key, cajiedip key losses for many downstream users. Therefore, it is desired to
which is known only io group users and a key server. E uce rekey bandwidth overhead as much as possible.

user is an end host. The group key can be used for encrypi—Jsirlg ALM to support group rekeying also offers new op-

ing data traffic between group members or restricting access,™ .= ) )
; ortunities to do naming and routing. In our approach, each

to resources intended for group members only. The grdup . . . . X i
user in the group is assigned a unique ID that is a string of

key is distributed by a group key management system, wh% - . . .
. : D digits. All the user IDs and their prefixes are organized
changes the group key from time to time (calgzdup rekey into a tree structure, referred to B> tree. In addition, each

ing). e .
. user maintains aeighbor tablghat supports hypercube rout-
There have been extensive research results on the deﬂaql& 21, 34, 15, 12, 13]. The neighbor tables embed mul-
*This is an extended version of our papefFiroceedings IEEE IcDGs ticast trees rooted at the key server and each user. Therefore,
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else via multicast. We propose a multicast scheme using the symbol | description

. B base of each digit in user ID
neighbor tables for both rekey and data transport. ') number of digits in user 1D

To provide fast delivery of rekey messages, we propose g percentile | a joining user computeB-percentile of the RTTs

distributed user ID assignment scheme to exploit proximit measured for users in itg, j)-ID subtree
in the underlying network. By virtue of this scheme, each K maximum number of neighbors in each neighbor
multicast tree embedded in the neighbor tables tends to e table entry :

. . . N total number of users in a group
topology-aware. That is, users in the same multicast subtree——p ajoining user collectd” users from(7, ;)-ID subtree
tend to be in the same topological region. As a result, when R, RTT thresholds; = 1,2,...,D — 1
a message is forwarded from its multicast source towards a u.ID useru’s ID

user during multicast, it tends to be always forwarded in the_u-ZDl] | ithdigitofu./D 0<i<D—-1
direction towards the user, rather than being forwarded oveg- 210 | firsti + 1 digits ofu.ZD. Itis a nullstring if < 0
links that may go back and forth across continents. Table 1: Notation
To reduce rekey bandwidth overhead, we observe that in
each rekey interval, each user needs only a small subsedigéussed in Section 5, and our conclusions are given in Sec-
encrypted new keysfcryptionsin short) generated by thetion 6.
key server [30, 32]. Therefore, it is desired to let each user re-
ceive only the encryptions needed by itself or its downstream .
users. The challenging issue is how each user knows whodre System deS|gn
its downstream users and which encryptions are needed by
these users. In this section, we present our system design. We assume a
To address this issue, we propose to modify the key tfé¢€d group of N users in this section. User joins and leaves
to make its structure match that of the ID tree. We thé€ discussed in Section 3. Appendix A gives proofs for the
propose an identification scheme to identify each key alfdnmas and theorems presented in this section. Notation used
encryption. With this scheme, a user can easily determiRdhis paper is defined in Table 1.
whether an encryption is needed by itself or its downstream
users by checking the encryption’s ID. We further propos€al |D tree
message splitting scheme to let each user receive only the en- ) ) ) ) ] ]
cryptions needed by itself or its downstream users. The spf@Cch user in the group is assigned a unique ID that is a string

ting scheme can significantly reduce rekey bandwidth ov8f-D digits of baseB, whereD > 0 andB > 0. We count
head at each user access link and network link. digits from left to right and call the leftmost digit the Oth digit.

It is possible to perform rekey message splitting on top Y€ USeD = 5 andB = 256 in the simulations presented in
is paper. All the user IDs and their prefixes are organized

an existing ALM scheme such as the ones in [8, 4, 35, 3 : terred D defined bel
19, 11]. If we use an existing ALM scheme to replace olJfto a tree struc_ture, reterre to as D tree, as defined below.
e thatan ID is a prefix of itself, and a null string is a prefix

multicast scheme, however, itincurs a large maintenance &5@[
at users, and the efficiency of the splitting scheme would %feany ID.

reduced. In our approach, each user does not need to mRgfinition 1 Given a group of users, the corresponditiyy
tain states for its downstream users to perform rekey messtigeis defined as follows:

splitting. We defer a detailed discussion of this issue to Sece At level 0, there is a single node, the tree root, whose 1D
tion 2.6. is a null string, denoted by “[]".

We formulate and prove correctness properties for the mule Atleveli, 1 <14 < D, each node has a unique ID that is
ticast scheme and rekey message splitting scheme. We con- a string of: digits. A node with IDv exists at level if
ducted extensive simulations to evaluate our approach. Sim- there exists a uset in the group such that is a prefix
ulation results show that for 78% of users in a group of 226 of u./D. The node with IDr at levels is a child of the

users, the latency from a sender to each of these users over thenode at levei — 1 whose ID is a prefix af.
multicast paths is less than twice the unicast delay betwegmn ID tree, a subtree is said to béesel-i ID subtree if it
the sender and such user. Furthermore, with the rekey mgsooted at a node of level0 < i < D. The ID of a subtree
sage splitting scheme, more than 90% of users in a groupsAfiefined to be the ID of the subtree root. Hereafter, we say
1024 users can reduce their rekey bandwidth overhead frgy#ita user belongs to an ID subtréithe ID subtree has the
several thousand encryptions to less than ten encryptionsjeaf node whose ID equals the user’s ID.

The re§t of this paper is organized as fpllows. In SectionBefinition 2 Given a usern: and an ID tree, a levefi + 1)
we describe our system design. In Section 3, we presenti§&pree is said to be th@, j)-1D subtreeof u if the parent
protocol for each joining user to determine its ID, and diggde (at level) of the subtree root is an ancestor of the leaf

cuss user joins, leaves, and failure recovery. We evaluate Q4§e whose ID equals I D, and the last digit of the subtree’s
approach through simulations in Section 4. Related work”'§isj 0<i<D-1land0<j<B-—1.
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lovel 0 I neighbor and the owner of the table. All the neighbors in the
- ' same entry are arranged in increasing order of their RTTs.

Definition 3 Given a group of users, each with a unique ID
of D digits, their neighbor tables are said to bé&-consistent

> (0,2)-1D

level 1 *._ Subtree

ofy
P ; K > 1, if for any useru in the group, eaclti, j)-entry,0 <
0.0] 3[5{21]% | [;‘?’)] [;,41] 5o | i <D-1land0 <j < B—1,inits neighbor table satisfies
(i,i);]b R ‘ the following conditions:
subtree ofy (1) If j = u.IDJi], then the(i, j)-entry is empty.
_ 2 If j # wIDJ[i, then the (i,j)-entry contains
Figure 1: Example ID tree. min{K,m} (i,7)-neighbors, wheren denotes the to-

By definition 2, for each usep that belongs ta/'s (7, j)-1D tal number of users belonging to the j)-1D subtree of

subtreew.I D must share the the firstigits with «.I D, and
theith digit of w.ID (that is,w.ID][i]) is j. The concept of<'-consistency was proposed in [13, 14-

Fig. 1 illustrates the ID tree for a group of five users witBonsistency implies 1-consistency. If all the users in the
the IDs “[0,0]”, “[0,1]", “[2,0]", “[2,1]", and “[2,2]", respec- group maintain 1-consistent neighbor tables, then a message
tively. In the ID tree, userss, us, andus belong tou,’s IS guaranteed to reach every user via multicast, as proved in
(0,2)-1D subtree, andi; belongs tou;’s (1, 1)-1D subtree. Section 2.3. Itis desired to Iéf > 1 for resilience [13, 12].

Note that an ID tree is not a data structure maintained by thel he key server also maintains a neighbor table, which has
key server or any user. It is defined as a conceptual structa@ngle row. The row containg entries, each referred to as
to guide us in protocol design. (0,7)-entry,j = 0,1,..., B— 1. Among all the users whose

Our user ID assignment scheme exploits proximity in thes have the prefix *[]", the key server chooses th€ (or
underlying network. More specifically, user IDs are assignal} if the total number of such users is less thidh users
such that the round-trip-time (RTT) between any two usé¥§0 have the smallest RTTs to the key server ag(tg)-
belonging to the same levelD subtree tends to be less thaReighbors.
or equal to a delay thresholg;, fori = 1,2,...,D — 2. As
a result, all the users belonging to the same lév@l-sub- 2.3 Multicast scheme: T-mesh
tree tend to be in the same topological region with one-way _ o _
delay diameterz; /2. These users are partitioned into multiGIven a group of users with their neighbor tables, the neigh-
ple child level{i + 1) ID subtrees of the leveldD subtree, bor tables embed multicast trees rooted at the key server and
such that all the users belonging to the same I¢vel-1) ID each user. Therefore, the key server or any user can send a

subtree tend to be in the same topological sub-region with {€Ssage to every one else via multicast by using their neigh-
lay diameterR; ;1 /2, whereR;,; < R;. In Section 3.1, we bor tables. A multicast session consists of a sender, a set of

discuss how a joining user determines its ID. receivers, and a message to multicast. The sender is the mul-

We further define the ID of the key server to be a ndfcast source. In a multicast session for rekey transport, the

string, denoted by “[]". By definition, the key server beIond&ey server is the sender, and all the users in the group are re-
to the level-0 ID subtree. ceivers. In a multicast session for data transport, a particular

user who has data to multicast is the sender, and all the other
] users are receivers. Hereafter, we use “member” to refer to
2.2 Neighbor tables the key server or a user in the group.

Each user in the group maintains a neighbor table. Simi \We propose a multicast scheme, referred t3-asesh or

ar .
neighbor tables were used to support hypercube routing [!i?gth rekey and da_ta transpor';. In the multicast sche_me, each
21, 34, 15, 12, 13], meéssage to multicast containsfarward _level field.

This field specifies the forwarding level of each user, as de-
The jth entry at theith row is referred to asi, j)-entry, flneq below. Each user is at a unique forwar_dlng level in a
multicast session since each one receives a single copy of the

0<i<D-land0<j<B-—1 The(ijlentryofa . o meccage as stated in Theorem 1
user’s neighbor table contains user records and performance 9e, )

measures of some other users, referred t(@'7 s_neighbors_ Definition 4 In a multicast session, the sendeigswarding

Each (i, j)-neighbor of useru must be a user that belongdevelis defined to be 0. A useris said to be at forwarding

to the(i, j)-ID subtree ofu. The first neighbor in each entrylevel i if it receives a message with therward _level

is referred to as therimary neighbor of that entry. Each field equaltoi, 1 <i < D.

user record contains the IP address, ID, and some other in-To multicast a message, the sender first sets the message’s
formation of a particular neighbor. For rekey transport, tierward _level field to be 0, and then executes routine
performance measure of a neighbor is the RTT between BH@RWARD specified in Fig. 2. When a user receives the

A neighbor table ha® rows and each row haB entries.



FORWARD (nsg) group key A [] k-node
> The sender should ssetsg.forward _level tobeO
before calling this routine. N
> msg: the message to multicast if the caller (who calls the routinge) is a‘lix"'a’y
. L R eys
the sender; otherwise, it is the message received by the galler.
1 level — msg.forward _level

(change to k1-4)

k-nodes
[0] (change to k34) (€ZE) [2]

! K5 | u-nodes

2 if level = D then return i”d‘i‘g}‘f;’a'
3 if the caller is the key servénen > level = 0 in this case " w2 3w s
4  msg.forward _level «— level +1 [0.1] [0,2] 20 [21] [22]

5 send a copy ofnsg to each(0, j)-primary neighborp < j < B
6 else fori « level to D — 1 do

8 msg.forward _level «—i+41

9 send a copy ofnsg to each(s, 7 )-primary neighborp) < j < B

Figure 4. Example modified key tree.

level<i + 1) ID subtree), and not be sent out of the region

Lﬁ@gmore. As a result, the message goes through each long-
atency link that connects remote regions only once. This
helps to reduce delivery latency as well as link stress. Here,

Figure 2: Routine that the sender or each forwarder exec
to send or forward a message.

key server stress of a physical links defined as the number of identi-
level 0 (1 cal copies of the message carried by a physical link during
multicast.
level1 ul u4 The correctness of the multicast scheme is stated below.
0] 2.1 Theorem 1 In a multicast session, assume that every user in
level 2 ° é Y the group has 1-consistent neighbor table and no message is
u2 u3 us lost. Then following the multicast scheme specified in Fig. 2,
[0.1] [2,0] [2.2]

each member (except the sender) will receive a single copy of
the multicast message.

T-mesh also provides fast failure recovery and quick adap-
message, it also executes this routine. We can see that éa@fn to network dynamics ik > 1. Once a member detects
member can determine who are the next hops by lookingthg failure of a next hop, or detects congestion on the path to
its neighbor table according to therward _level field of & next hop by observing burst losses, it can simply forward
the multicast message. messages to another neighbor in the same table entry as the

Fig. 3 illustrates an example rekey multicast tree for tfi@iled or congested neighbor. Atthe same time, the user needs
group of five users defined in Fig. 1. Intuitively, a copy of th® look for another neighbor to replace the failed or congested
multicast message first enters each leivéD subtree, and one.
then enters each leveliD subtree, and so on. It is not sur-
prising to find out that the IDs of a member and its dowrp 4 Modified key tree
stream users satisfy a specific relationship, as stated below.

Lemma 1 In a multicast session, suppose membes at The key server ma_in_tains a key tree. To SL_Jppo_rt efficien_t
forwarding level, 0 < i < D. Then the IDs of; and all its rgkey message Sp“t.t'r.]g’ the key tree used in this paper is
downstream users have the common pref5D|0 : i — 1]. different from the original approach [27, 28, 30, 32]. The

Furthermoreu and its downstream users belong to the sarﬁ’é'g!nal key tree has a T'XEd tree degree, and the tree grows
level< ID subtree. vertically when users join. Our modified key tree has a fixed

Recall that all th belonaing to th ID subt thei ht, and it grows in a horizontal direction when users join.
ecall that all the users belonging to the same 1L sublree eafter, unless otherwise stated, we use “key tree” to refer

to b_e in the same topological region by virtue of our user IB the modified key tree.
assignment scheme. A key tree is a rooted tree with the group key as root. A
Lemma 2 In a multicast session, suppose membes at key tree contains two types of nodasnodesandk-nodes
forwarding leveli, 0 < i < D. Then for any other memberEach u-node corresponds to a particular user, and it contains
w whose ID has the prefix.ID[0 : i — 1], w can only be a the user's individual key. A user shares its individual key
downstream user af. only with the key server. A k-node contains the group key or
A direct implication of Lemmas 1 and 2 is that eachn auxiliary key. A user in the group is given the individual
multicast tree embedded in the neighbor tables tends tokleg contained in its corresponding u-node as well as the keys
topology-aware. That is, in a multicast session, only a singlentained in the k-nodes on the path from its corresponding
copy of the multicast message is forwarded to each topolaginode to the root.
cal region; once the message witinward _level =ien- To facilitate rekey message splitting, the key server makes
ters a region (which corresponds to a levéd subtree), itis the structure of the key tree match exactly that of the ID tree.
forwarded only to its sub-regions (each corresponds to a childre specifically, for each user, the u-node in the key tree

Figure 3: Example multicast tree for rekey transport.



that contains:’s individual key corresponds to the leaf node| REKEY-MESSAGE-SPLIT fusg, ws.;, s)

in the ID tree whose ID equals.ID. Fig. 4 shows the key >msg: itis the original rekey message if the caller is the key
: : server; otherwise, it is the message received by the calle

tree '.[hat corresponds tq thg example ID tree shown in Fig. 1. b ws,;: the (s, j)-primary neighbor of the callef) < j < B.

In th'_s example, usets is given the three keys on t_he path | . s it equals 0 if the caller is the key server; otherwise, we have

from its u-node to the root:s, k345, andk, 5. Key k5 is the msg.forward _evel <s< D.

individual key ofus, keyk:_s is the group key that is shared | 1 msg’ — an empty message wifbrward _evel = s+ 1

_ 1€ 2 msg ! ge wi
by all the users, ankk.; is an auxiliary key shared by, w4, vl gqgr;'pg'rc;'ﬁxcggza}n;?o'r,’;‘fgrdo

andus. ws,;.ID[0 : s] is a prefix ofe.ID then
Suppose that a single user, say, leaves the groupina | 4 copye intomsg”
rekey interval. Then at the beginning of the next rekey intert > Sendmsg’ tows,; via unicast

val, the key server needs to change the keysdbdtnows: . _ )
changek;_s to k14, and changéas to kss. To securely Figure 5: Routine that the sender or each forwarder executes

distribute the new keys to the remaining users, the key serfCOMPOSe a separate rekey message for a particular next
uses the key in each child node of the updated k-node to BRP-

crypt the new key in the updated k-node, and generates fuftey traffic, however, may cause congestion at bandwidth-
encryptions: {k1—a}r.,s {k1-abkses {ksabrs, @nd{ksati,-  |imited links, especially at user access links. Congestion at
Here {£};, denotes key’ encrypted by ke, and is re- 5n access link causes rekey and data message losses for all
ferred to as arncryption. All the encryptions are put in ane downstream users. Therefore, it is desired to reduce rekey
single rekey message. Each user, however, needs only a sgig{bwidth overhead as much as possible.
subset of encryptions in the rekey message. For example, T4 reduce rekey bandwidth overhead, we propose a rekey
needs only{ k1 —a},,. message splitting scheme. In this scheme, each member
In general, the key server performs the following opergends or forwards an encryption to its downstream users if
tions in each rekey interval. For each joining userthe anq only if the encryption is needed by at least one down-
key server adds into the key tree a u-node withdDD. gtream user. To achieve this goal, the key server com-
At each leveli, i = D —1,D - 2,..,0, a k-node with poses a separate message for ech)-primary neighbor

ID w.ID[0 : i — 1] is added if such a k-node does not eX5y executing routine REKEY-MESSAGE-SPLIT specified in
ist. For each leaving uses, the key server deletes from theg-jg. 5 ; = 0,1,..., B — 1. Each user at forwarding level

i = D—1,D=2,..0, the k-node whose ID equalsor each(s, j)-primary neighbor by executing the routine,
w.ID[0 : i — 1] is deleted if the k-node does not have any— ; ; + 1, ... D —1andj = 1,2, ..., B — 1. The routine in
descendants. At the beginning of the next rekey interval, #8§. 5 is called at lines 5 and 9 of routine FORWARD speci-

key server updates all the keys on the path from each neyiyj in Fig. 2. The correctness of the rekey message splitting
joined or departed u-node to the root, and then generate &heme is stated below.

cryptions.
We propose aidentification schem#o identify each key

=

Theorem 2 In a multicast session for rekey transport, sup-

and encryption. We define the ID of a key in the key tree Eé;se that memberis at forwarding level, 0 < i < D — 1.

be the ID of its corresponding node in the ID tree. The ID tw be any(s,j)-prmje}ry neighbor Ofu.’ wh_eres =0if u
an encryption is defined to be the ID of the encrypting key the key servel = i,i + 1,... D — 11f u is a user, and
dy'z 0,1,..., B — 1. Let setV containw and all the down-

The ID is attached to each encryption. With this identification . X .
. . . stream users af. Then given an encryptian the encryption

scheme, a user can easily determine whether it needs a giveh . ) . )
encryption by checking the encryption’s ID, as stated below, re_quwed by at least one user In .'f and OT"V te.IDIs a
' prefix ofw.IDI0 : s, or w.ID[0 : s] is a prefix ofe.ID.

Lemma 3 Given an encryption, a user needs the key en-By Theorem 2, each member can determine whether to for-
crypted in the encryption if and only if the ID of the encrypyard each received encryption to its downstream users by
tion is a prefix of the user’s ID. checking the encryption’s ID. This is accomplished easily

The correctness of the lemma is due to the fact that a uBegause a coherent identification strategy is used to identify

needs only the keys on the path from its corresponding&fch user, key, and encryption throughout the design of the
node to the root in the key tree. T-mesh, the multicast scheme, and the key tree.

Corollary 1 In a multicast session for rekey transport, as-
2.5 Rekey message splitting scheme sume that every user in the group has 1-consistent neighbor
table and no message is lost. Following the multicast scheme
To send new keys to users after rekeying, a straightforwamd the rekey message splitting scheme specified in Figs. 2
approach is to mulitcast all the encryptions to each user, amdl 5, respectively, for any userin the group and any en-
let each user extract the encryptions that it needs. The bustption e that is generated by the key serverreceives a



single copy ot if and only ife is needed by or by at least example, users from the same LAN could belong to differ-
one downstream user of ent level-0 ID subtrees. In this case, their shared encryptions
have to be duplicated once the multicast starts, and multiple

In the rekey message splitting scheme specified in Fig.3pjes of the shared encryptions traverse the Internet and en-
a rekey message is split in units of encryptions and then fgr ihe same LAN.

composed during multicast. An alternative way is to split |, short, the efficiency of our rekey message splitting

and re-compose the rekey message at packet level, instead b e comes from a careful integration of the other sys-
encryption level. In this case, the rekey bandwidth overheggh components, that is, the user ID assignment scheme. the
would be larger than what is presented in Section 4.3. 1 jjticast scheme T-mesh, and the modified key tree. If any
of these components is replaced by an existing scheme, the
efficiency of the splitting scheme would be reduced. This is
confirmed by our simulation results presented in Section 4.

In our rekey message splitting scheme, each user can easily
determine whether an encryption is needed by its downstregm —
users by checking the encryption’s ID. Therefore, there is Protocol deSCI’IptIOl’l
need for each user to maintain states for its downstream users. )
However, if we use an existing ALM scheme such as the orlBghis section, we present the protocol for a user to deter-
in [8, 4, 35, 22, 19, 11] to replace T-mesh, or use the orig\"—'”e its ID. We also discuss _the issues related to a user’s join,
nal key tree [27, 28, 30, 32] to replace the modified key trdg@@ve, and recovery from neighbor failures.
then in order to perform rekey message splitting, each user
has to keep track of who are its downstream users and whigh  User ID assignment
encryptions are needed by them. In the original key tree ap-
proach, the IDs of a user’s required keys keep changing féjoin a group, a user, say, first contacts the key server (or
each rekey interval even when no downstream users joinddgteparate registrar server [29]). They mutually authenticate
leave. Therefore, each user has to keep track of such cha@§éh other using a protocol such as SSL. If authenticated and
for itself and all its downstream users. As a result, it incurgcepted into the group,receives its individual key and the
large maintenance cost for the users who are close to the f@gtent group key. From now on, all the communications be-
of the ALM tree since each of them h&¥ N) downstream tweenu and the key server are encrypted with the individual
users. key, and all the communications betweaeand other users in

Furthermore, our spliting scheme is more effective fR€ group are encrypted with the group Key.
reducing rekey bandwidth overhead than what could bef u is the first join in the group, the key server assigns its
achieved with the existing ALM schemes. In T-mesh, beser ID asD digits of “0". The key server then sendsa
cause of the exact structure match between the modified Ré§ssage via unicast that contairis ID and all the keys on
tree and the ID tree, all the users sharing a common encrifj path fromu’s corresponding u-node to the root in the key
tion belong to the same leveliD subtree, where is the tree.
number of digits contained in the encryption’s ID. As a re- If u is not the first join, the key server givesthe user
sult, only a single copy of the encryption is forwarded whegcord of another user already in the group. Thereeds to
the forwarding level is less than or equalitolt is then du- determine its ID digit by digit, starting with the Oth digit. To
plicated to users who need it at subsequent forwarding levélgtermine théth digit, 0 < < < D — 2, u’s actions consist of
In contrast, if we use an existing ALM scheme to replace four steps. (We assumias fixed in the following discussion
mesh, it becomes hard to make the structure of the key tél in Sections 3.1.1,3.1.2, and 3.1.3.)
match that of the ALM tree. As a result, users sharing a comn the first stepy collects the records of users who belong
mon encryption have random positions in the ALM tree. ® its (i, j)-1D subtree (see Definition 2), fgr= 0,1, ..., B—
this case, the shared encryption may have to be duplicated akhese users tend to be in the same topological region, and
early forwarding levels. each one’s ID shares the firsdigits with v’s ID. (Useru

The efficiency of our splitting scheme also benefits froRpS already determined the firstligits, u.ID[0 :  — 1],
our topology-aware user ID assignment scheme. SinceQIits ID so far.) In the second step, measures the RTTs
the users sharing a common encryption belong to the sapgéveen itself and the users it collected. According to the
ID subtree, they tend to be in the same topological region Bgasurement resultg determines the value et/ D[] in the
virtue of the user ID assignment scheme. As a result, onl{h4d step. More specifically, it: predicts that it is “close” to
single copy of the shared encryption is forwarded until it 1€ users belonging to a particular ID subtree, &ay)-1D
ters the region. It is then duplicated and forwarded to multi= T o

e key server needs to sendhe new group key via unicastif can-

ple sub-regions. In contrast, if each user ra':‘domly chooses,#Sinish constructing its neighbor table before the end of the current rekey
ID, then each user has a random position in the ID tree. Fagrval.

2.6 Discussion




subtree, then setsu.IDJ[i] to bed, 0 < b < B — 1. As traceroute  utility. The value of the RTT between a user
a result,u’s ID shares one more digit with the users in thand its gateway router is stored in each copy of the user’s
(,0)-1D subtree, and: itself becomes a user belonging t@orresponding user records so that others can know it.
this ID subtree. We thus achieve the effect that users close to
eaqh other belong to the same I[_) subtree_. !n the last Bte_%_1_3 Step 3: determiningu.1DJi]
notifies the key server its determined ID digits. We describe
each step in detail below. In this step, for each, j = 0,1,..., B — 1, useru computes
the F-percentile of the RTTs measured for all the users it
collected from its(i, j)-1D subtree. (Each RTT used in this
step is the one between two gateway routers.) Heéie a
For « to know which users belong to itg, j)-ID subtree, system parameter. In order to tolerate the estimation error of
j =0,1,..., B — 1, a straightforward approach is to let th&®TTs, we did not use 100-percentile. Inste@@hpercentile
key server provide such information. This however increassaised in all the simulations in this paper. Suppose the RTTs
the key server’s bandwidth overhead. Therefore, weuletof the users that collected from its(z, b)-ID subtree,0 <
collect the information by querying other users. b < B—1, produces the smallest-percentile value, denoted
Fori = 0, u sends a query to the user whose recordliy f; ;. Useru then compareg; ; with the delay threshold
provided tou by the key server. Far> 0, sinceu has already R;1, and the comparison results in two cases.
determined the first digits of its ID so far, it knows at least In the first casef; ; is less than or equal t&,,. Useru
one user that belongs t6s (i — 1,0)-ID subtree (i — 1,1)- then predicts that it is topologically close to the users belong-
ID subtree, ..., ofi — 1, B — 1)-ID subtree. User sends a ingtoits(s, b)-ID subtree, and thus assignd D|:] asb. User
query to such a user. The query specifies a target ID prefixathen continues to determine the next digif D[i + 1] of
u.IDI[0: i — 1]. Upon receiving the query, the receiver lookiss ID if the next digit is not the last digit. That is,increases
up its neighbor table, and returns the user records of all the value ofi by 1, and goes back to step 1. If the next digit is
neighbors whose IDs have the target ID prefix. In this wathe last oney goes to step 4 and asks the key server to assign
u collects one or more users from t5 j)-ID subtree if the the last digit to make sure that every user in the group has a
subtree is not empty, for=0,1, ..., B — 1. unique ID.
Foreachj, j = 0,1,..., B — 1, to collect more users from In the second cas¢ ; is larger thanR; ;. Useru then
its (¢, 7)-1D subtree,u keeps querying the users it collectegredicts that it is not close enough to the users in(@ng)-1D
from the ID subtree until it collect® users from the subtreesubtree;j = 0,1, ..., B — 1. In this casey goes to step 4 and
or it has queried all the users it collected from the subtree.dsks the key server to assign digits fof D[], u.ID[i + 1],

3.1.1 Step 1: collecting user records

each queryy specifies the target ID prefix asID[0: i —1] ..., andu.ID[D —1].
appended with digif. We setP = 10 for all the simulations
in this paper. 3.1.4 Step 4: notifying the key server

3.1.2 Step 2: measuring RTTs In this s_tepyu sen_d; the key server a message t_hat conta_ins its
determined ID digits. Supposealready determines the first
In this step,u estimates whether it is close to the usersidigits,u./D[0 : I — 1], of its ID,0 < [ < D — 1. The key
collected from its(é, 7)-1D subtree, forj = 0,1,..., B — 1. server then assigns thth digit to the last digit of:’s ID, such
For this purposey measures the RTT between the first-hapat none of the other users in the group shares thd fist
and last-hop routers (referred to as gateway routers) on digits with . 3 Consequently, in the ID tree, becomes a
path fromu to w, for each usew it collected in the ID sub- userin a new levelf + 1) subtree to which none of the other
trees. Letr(u,w) denote the RTT betweemandw'’s gate- users in the group belong. After that, the key server sends
way routers. Leti(u,w) denote the RTT between the twa message that contain® complete ID and all the keys on
end hosts: andw. In our protocolu usesr(u, w) instead of the path fromu’s corresponding u-node to the root in the key
h(u,w) to estimate whether it is closetotopologically. The tree.
rational is that two end hosts tend to be topologically close toTo analyze the communication cost for a joining user to
each other even if their access links have long laténcy.  determine its ID, we observe that if each non-leaf node in the
Useru can easily derive(u, w) if it knows h(u,w), the D tree has the same outgoing degree, then the total number
RTT betweenu and its gateway router, and the RTT be _ _
tweenw and its gateway router. For this purposeesti- . 3In an extreme case, the key server may not be able_to find a unique value
. : or u.ID[0 : [] such that none of the existing users in the group shares
matesh(u, w) by using p.lng messgges. And each user_ M&Rs firstl + 1 digits with ». In this case, the key server will try to modify
sures the RTT between itself and its gateway router using thep[i—1] to makeu.ID[0 : I—1] unique among the IDs of all the existing
users. If this attempt fails, the key server will try to modifyl D[l — 2],

’Note that the latency stored for each neighbor in a neighbor table is thé D[l — 3],..., and so forth. If all thattempts fail, the key server will force
RTT between two end hosts. u to join a level-1 ID subtree.




of messages exchanged while a joining user determinesits ID .com, .net, and .org. In our simulator, we let each mem-
isO(P-D-N'/P) on average. The cost functionis minimized  ber (a user or the key server) correspond to a PlanetLab
asO(P -e-InN)for D =1n N. Heree refers to the base of host, and set the RTT between each pair of members to
the natural logarithm. be the same as the RTT between the corresponding two
PlanetLab hosts. We set one-way delay between two

. . members to be half of their RTT.
3.2 Join, leave, and failure recovery

e GT-ITM topology — This is a transit-stub topology based
on the GT-ITM topology models [6]. The topology con-
sists of 5000 routers and 13000 network links. Each
member is attached to a randomly selected router. We
abstract away queueing delays in the simulations. We
set the two-way propagation delay for each link in the
following way. For each link within a stub domain, its
delay is uniformly distributed between 0.1 and 1 ms. For
each link connecting a stub router and a transit router,
its delay is between 2 and 3 ms. For each link con-
necting two transit routers of the same transit domain,
its delay is between 10 and 15 ms. For each link con-
necting two transit domains, its delay is between 75 and
85 ms. With these settings, the relative latency perfor-

After its ID is determinedy needs to build its neighbor ta-
ble? It also needs to contact some other users to have its user
record inserted in their neighbor tables. The join protocol
presented in the Silk system [15, 12] is used to accomplish
this task. The join protocol is proved to construct consistent
neighbor tables after an arbitrary number of joins if messages
are delivered reliably and there are no user leaves or failures.
After its joining process terminates,sends the key server a
notification message.

Whenu decides to leave the group, it needs to contact other
users to have its user record deleted from their neighbor ta-
bles. The leave protocol presented in Silk is used to accom-
plish this task. After thaty sends a leave request to the key

seB/er. detects the fail ; iahborif th iahbor d mance of T-mesh to NICE [4], one of the state-of-the-
Seru detects e failure ora neighbor irthe neignbor does 4 o M schemes that we choose for comparison pur-

not respond to consecutive ping messages. Upon detectin ; ; ;

the failupre of a neighboy sengs t%m ke sgrver a ﬁotification ’ pose, changes little as we change the S'm“'a“oﬂ topol-
9 y ogy from PlanetLab to GT-ITM. As to the evaluation of

message. It also needs to contact some other users to look rekey message size and rekey bandwidth overhead , sim-

for appropriate users to replacg the failed one. We refer ir_1ter- ulation results presented in Section 4.2 and 4.3 are not

ested readers to [13] for effective failure recovery strategies. sensitive to the delay settings in the GT-ITM topology.

i In the simulations, we compare the performance of T-mesh
4 Performance evaluation with NICE [4]. ® We simulate the NICE protocol based on its

We evaluate the performance of our approach in this sectiBfPtoco!l description [4] and the authors’ simulation cdde.
We first study whether T-mesh can provide low delivery I 0ur simulation of NICE, a user will not join or leave the
tency. We then study the modified key tree by the size of JE&PUP until the previous join or leave terminates. In NICE, the
rekey message. Next, we examine whether the rekey M tree constructed by such sequential joins and leaves is
sage splitting scheme can significantly reduce rekey bafPected to have better (at least not worse) performance than
width overhead. Finally, we investigate the impact of difhetree constructgd by cc_)ncurrentjoms. In all the simulations
ferent values of the delay thresholds, i — 1,2, ... D — 1, (excgpt the ones in Sectlop _4.2) for T-mesh, we use concur-
on the latency performance of T-mesh. rent joins and leaves. The join and leave protocols of T-mesh

For efficiency, we wrote our own discrete event-driven sirfit® based on the Silk protocols, but simplified to improve sim-

ulator. We simulate the sending and the reception of a m La_tlon efficiency. For each run of a simulation, users follow

sage as events. The following two topologies were used'j§ same join and leave order in T-mesh and NICE. In all

the simulations: the simulations of T-mesh, we s& = 5, Ry = 150 ms,
Ry =30ms,R3 = 9ms,Ry = 3ms,B = 256, andK = 4,
e PlanetLab topology — We measured the RTT betweghjess otherwise stated. In all the simulations of NICE, each
each pair of 227 hosts on the PlanetLab infrastructure Bl);ster contains three to eight users [4].

using a single probe message on August 12, 2004.
These hosts spread in North America, Europe, Asia, and

Australia, and belong to various domains including .edu, éwe did not choose Narada [8] for comparison because the structure of

Narada mesh keeps changing for self-improving purposes even when there
4All the user records collected by while it determines its ID could be are no user joins or leaves. This incurs significant communication cost for

used to fill its neighbor table. each user to keep track of its downstream users in order to perform rekey
5We also used the minimum value of 20 RTT samples measured fioessage splitting.

each pair of PlanetLab hosts, and repeated each simulation presented in Se€fhe NICE simulation code can be found at

tion 4.1. The relative performance of T-mesh to NICE (the multicast schett&p://www.cs.wisc.edaésuman/. We did not use the code because it

for comparison) does not change. requires specific configurations.




4.1 Delivery latency and 8. Compared with Fig. 6, we observe that the relative

. erformance of T-mesh to NICE has no significant change as
We evaluate the delivery latency of a rekey message Wiﬁ‘% g 9

the key server multicasts the message in T-mesh and NI

respectively: Given a particular user, we define three perf(re'tter than NICE for data transport in general. NICE is de-
mance metrics: signed for scalable group communications, and has no notion
e User stress — The total number of messages the user {§t; key server. In NICE, to determine its position in the tree,

wards in a multicast session. each joining user probes a smaller number of users than a
e Application-layer delay (in milliseconds) — The latencjobining user in T-mesh does.

from the time that the sender sends a message to the time
that the user receives a copy of the message.

e Relative delay penalty (RDP) — The ratio of the useréé'l'2 Data path latency
application-layer delay to the one-way unicast delaye also conducted simulations on both the PlanetLab and

simulation topology changes from PlanetLab to GT-ITM.
ote that it is not appropriate to conclude that T-mesh is

from the sender to the user. GT-ITM topologies to evaluate delivery latency of a data mes-
_ sage in T-mesh and NICE, respectively, as shown in Figs 9
4.1.1 Rekeying path latency to 11. A random user is chosen as the sender. The multi-

Note that there is no notion of a key server in the origing®St scheme in T-mesh is specified in Section 2.3. In NICE,
design of NICE [4]. In our simulations, to multicast a reke&‘i’ multicast a data message, the sender unicasts the message
message in NICE, we let the key server unicast the messig@e leader pf its local cluster. Then the message traverses
to the root of the NICE tree, which is the topological centéf€ ALM tree in a bottom-up and then top-down fashion [4].

of all the users in the group [4]. The message then traver§63M Figs 9 to 11, we observe that the relative performance
the tree in a top-down fashion. of T-mesh to NICE is similar in data and rekey transports.

We ran simulations on the PlanetLab topology witt6
user joins. In every run of our simulations, each user join theo Rekey message size
group at a random time between 0 and 452 seconds. After all
the joins terminate, the key server multicasts a message. In this subsection, we study the modified key tree by the size

Fig. 6 plots the inverse cumulative distribution of usef the rekey message. We defirekey costas the number
stress, application-layer delay, and RDP. Each curve is offencryptions contained in a rekey message. All the simula-
tained from 100 simulation runs. For each run in Fig. 6 (d)pns in this subsection are performed on the GT-ITM topol-
we changed user joining times, and started a rekey multicegy. In each simulation, 1024 users join the group each at
session in T-mesh and NICE, respectively. We then rankedandom time between 0 and 2048 seconds. After all the
the users in increasing order of their stresses. For each rg@iks terminate, the key server procesdg®in and L leave
which corresponds to a point anaxis, we computed the av-requests) < J, L < 1024, in one rekey interval, and gener-
erage user stress (shown as a point in the figure) of the usdes one rekey message. For efficiency, we use a centralized
with this particular rank across all runs, as well as hi@ controller to simulate thg joins andL leaves in that rekey
95-percentile value (shown as a vertical bar). Therefore, easterval.
point with coordinate$z, y) in Fig. 6 (a) can be interpreted Fig. 12 (a) plots the average rekey cost of the modified key
as:z fraction of users have an average user stress less thatnesr as a function of number of joins and leaves. Each average
equal toy. Figs. 6 (b) and (c) can be interpreted similarly. value is computed based on 20 simulation runs. Fig. 12 (b)

From Fig. 6, we observe that the distributions of user strgaets the rekey cost of the modified key tree minus that of
in T-mesh and NICE are comparable; however, the users hthwe original key tree. The original key tree is based on the
much smaller application-layer delay and RDP in T-me§Wong-Gouda-Lam key tree [28] with degree 4 and the batch
than those in NICE. The application-layer delay in T-meshkkeying algorithm proposed in [32]. A degree of 4 is proved
is about half of that in NICE for the majority of users. Ito be optimal in terms of rekey cost per join or leave [28].
T-mesh, 78% of users have an RDP less than 2, and 95%\tiér the initial 1024 users join the group, we assume that
users less than 3. In NICE only 23% of users have an RDW® original key tree is full and balanced. Théfoins andL
less than 2, and 47% of users less than 3. leaves are processed in a rekey interval.

From Fig. 6, we also observe that in different runs theFrom Fig. 12 (b), we observe that the modified key tree
distributions of application-layer delay and RDP have mublas a larger rekey cost than the original one for the same
smaller variations in T-mesh than those in NICE. This inmumber of joins and leaves. This is because in the original
plies that the latency performance of T-mesh is less sensitiay tree, a joining u-node can take the position of a departed
to different user joining orders than that of NICE. u-node [32], while in the modified key tree a joining u-node

We repeated these simulations on the GT-ITM topologgannot replace a departed one unless their IDs share the first
for 256 and 1024 user joins, respectively, as shown in FigsD7— 1 digits. As a result, the modified key tree tends to up-
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Figure 6: Rekey path latency on the PlanetLab topology.
20 : T T T : 0.5 : T T 20 : T T T T
NICE —+— NICE —+— NICE —+—
T-mesh +--x-- T-mesh +--x-- T-mesh --x--
5L 0.4 B |
" g
2l ||||||||||||||||||||||||||||||||||||||| | !
||||||||||||||| 1
: ||I||||||I||I|I|||||||||I||I||||||I| ]
D % _
s | < 4
0.1 3 B
0 . 0 . . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Fraction of Users Fraction of Users Fraction of Users
(a) Inverse cumulative distribution of user stress. (b) Inverse cumulative distribution of (c) Inverse cumulative distribution of RDP.
application-layer delay.
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Figure 8: Rekey path latency on the GT-ITM topology with 1024 user joins.

date more keys than the original one for the same numbechfster leader. When a leader receives a new group key, it
joins and leaves. unicasts a copy of the group key to each user in its cluster by
first encrypting the group key with the receiving user’s pair-

We propose a cluster rekeying heuristic to reduce the rekgi¥e key. With this heuristic, only the join and leave of a

cost of the modified key tree. In the heuristic, all the Usgender incurs group rekeying. Appendix B presents a detailed

belonging to the same leveb — 1) ID subtree are referreddescription of this heuristic.

to as a bottom cluster. For each bottom cluster a user is se-

lected as the leader. The leader has all the keys on the paffig. 12 (c) plots the average rekey cost of the modified key

from its corresponding u-node to the root in the modified kégee with the cluster rekeying heuristic applied minus that of

tree. A non-leader user has only three keys: the group kiéne original key tree. We observe that with the heuristic, the

the user’s individual key, and a pairwise key shared with iskey cost of the modified key tree becomes even smaller than
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Figure 9: Data path latency on the PlanetLab topology.
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Figure 10: Data path latency on the GT-ITM topology with 256 user joins.
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Figure 11: Data path latency on the GT-ITM topology with 1024 joins.

that of the original key tree when the fraction of leaving usesiad leaves is not typical in practice; however, it represents a

is small. challenging scenario. If the splitting scheme works well in
this scenario, then we expect that rekey transport has little in-
. rference with ransport when rs join and leave |
4.3 Rekey bandwidth overhead ]tcreeqeuzmclj th data transport when users join and leave less

We now evaluate whether the rekey message splitting schemieor comparison, we define seven rekey transport protocols,
can significantly reduce rekey bandwidth overhead. We wsespecified in Table 2. The IP multicast scheme usé] is

the GT-ITM topology for all the simulations in this subsedyased on the DVMRP multicast routing algorithm [9, 26]. As
tion. In each simulation, 1024 users join the group each aeinted out in Section 2.6, to allow rekey message splitting
random time between 0 and 2048 seconds. After all the joinsP;, users need to maintain states ¢/N) downstream
terminate, the key server processes 256 joins and 256 leawgess. In our evaluation of NICE, we did not count such

in one rekey interval of 512 seconds, and generates one rek@jntenance cost because the cost depends on the particular
message. Each of the 256 joins and 256 leaves starts at am@intenance protocol.

dom time of the rekey interval. Such a large number of joinsFigs. 13 (a), (b), and (c) plot the inverse cumulative dis-
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Figure 12: Rekey cost as a function of number of joins and leaves in the modified and the original key trees.
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Figure 13: Rekey bandwidth overhead.

protocol || key tree multicast cluster rekey msg
approach | scheme rekeying | splitting
P original NICE n/a no
P| original NICE n/a yes
P modified | T-mesh no no
P modified | T-mesh no yes
Ps3 modified | T-mesh yes no
P modified | T-mesh yes yes
Py original IP multicast | n/a no

Table 2: Seven rekey protocols

tions in P, and P; (see Figs. 13 (a) and (b)). And only a few
links receive up to 1500 encryptions (see Fig. 13 (c)). These
links are on the paths from the key server tq(fisj )-primary
neighbors;j = 0,1, ..., B—1. Since rekey transport and data
transport choose different multicast trees in T-mesh, we ex-
pect that inP; and P; rekey transport does not affect data
transport as long as the rekey bandwidth overhead at most
users and most links is very small.

In P/ (using NICE), however, a few users still need to
forward 1000 to 10000 encryptions, and some links need to

tribution of the number of encryptions received per user, fQfz sfer up to 4000 encryptions, as shown in Figs. 13 (b) and

warded per user, and going through each of the 13000 ng
work links, respectively. Each curve in the figure is obtain

, respectively. These users and links are close to the root of
e NICE tree. Congestion at these users or links can cause

from a typical simulation run where one rekey message is 4igia and rekey message losses for many downstream users.

tributed. Note that thg-axis is in log scale, and the-axis Therefore, inP;

the rekey bandwidth overhead of the most

starts from 0.9 or 0.96 since we are concerned with the MRstded users and links is a big concern.

loaded users and links.
In Fig. 13, by comparing to Py, P; to P, andP} to Ps,

We conclude that rekey message splitting is very effective

we observe that rekey message splitting is very effectiveimreducing rekey bandwidth overhead. Furthermore, it is
reducing rekey bandwidth overhead. In particularPjnand more effective to perform message splitting#hand Py (us-

P4 (using T-mesh), the rekey message splitting can reduicg T-mesh) than irP] (using NICE), especially for the most
rekey bandwidth overhead for more than 90% of users dndded users and links. In addition, Iy and P; each user
links from several thousand encryptions to less than ten eioes not need to maintain states for its downstream users to
cryptions. No users receive or forward more than 350 encrygerform message splitting.
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App.-layer Delay (ms)

02 s ] ° T — could be slow since it takes time to recover an explicit tree
os | (ggfug?igf S Iy (gg?hg?:lgf 9o {  structure upon host failures.
wl (150,50, 30, 9, 3) a3f (150,80, 30, 9, 3) j Hypercube routing was first proposed by Plaxton, Rajara-
' ot man, and Richa (PRR) [18]. It was further explored in Pas-
005 [ 1t try [21] and Tapestry [34] to provide efficient object lookup
0 S : : ‘ : : operations in distributed hash tables (DHT). In PRR, Pas-
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 . .
Fraction of Users Fraction of Users try, and Tapestry, each user randomly selects its ID, which
(a) Inverse cumulative distribution (b) Inverse cumulative is location-independent. Random user IDs are perfect for
of application-layer delay. distribution of RDP. lookup operations, but not desired for multicast, as explained
Figure 14: Rekey path latency in T-mesh for various valulens_?eCtlon 2I.t'6. ¢ h | Scribe [22 d
of D and delay thresholdRy, Rs, ..., Rp_1). wo multicast schemes, namely, Scribe [22] an
Bayeux [35], were proposed on top of the Pastry and Tapestry
4.4 Delay thresholds infrastructures. Scribe and Bayeux were designed to sup-

port many small multicast groups, and a single ALM tree is
To determine its ID, a joining user needs to compare the RTdanstructed for each multicast group. Therefore, Scribe and
between itself and the users it collected with the delay thre@ayeux are different from our multicast scheme.
oldsR;,i =1,2,..., D — 1. To choose appropriate values for Ng and Zhang proposed a global network positioning
R;, we use the following heuristic. First, we s&t around (GNP) scheme [17]. With this scheme, the delay between
one hundred milliseconds so that all the users from the same hosts can be estimated using their GNP coordinates. This
continent could belong to the same level-0 ID subtree. Seecheme can be used in our system to reduce the probing cost
ond, we setRp_; to be in the order of several millisecondsof each joining user. For example, if the key server knows the
so that all the users in a few closely located LANs could b@NP coordinates of all the users, it can determine the ID for
long to the same levelD — 1) ID subtree. Last, we make thea joining user by centralized computing.
ratio of R; / R, 11 larger than or equal to 2, so that each level-
ID subtree contains several levgl+ 1) ID subtrees.

Fig. 14 plots the inverse cumulative distributions o Conclusion

application-layer delay and RDP for various value$oénd

(R1, R, ..., Rp—1) when the key server multicasts a rekey this paper, we proposed an application-layer multicast ap-
message. The PlanetLab topology with 226 joins is usedgifbach that supports concurrent rekey and data transport. Our
the simulations. Each curve in the figure is obtained fromyaal is to provide fast delivery of rekey messages and reduce
typical simulation run. From the figure, we observe that thgkey bandwidth overhead as much as possible. Our approach
latency performance of T-mesh is not sensitive to the variagishsists of a multicast scheme using neighbor tables, a modi-
values of delay thresholds that we chose. fied key tree, and a rekey message splitting scheme. These
system components are integrated with a coherent scheme
to identify each user, key, and encryption. By virtue of the
5 Related work identification scheme, each user can determine who are the
next hops by looking up its neighbor tables in a multicast
Several rekey transport protocols were proposed recently [8€ssion. Also each user can determine whether an encryp-
3, 24, 32, 31]. All these protocols, however, are based ontiéh is needed by its downstream users by checking the en-
multicast, which has not been widely deployed. cryption’s ID. Furthermore, our user ID assignment scheme
Many ALM schemes were proposed for data transport@xploits proximity in the underlying network such that each
the literature. Some schemes such as [8, 4, 35, 22, 11, 19,rAQ]ticast tree embedded in the neighbor tables tends to be
construct topology-aware ALM trees and provide low delitopology-aware. Our simulation results showed that our ap-
ery latency. These schemes work well for their target apghicoach can achieve much smaller delivery latency and rekey
cations; however, they are not sufficient to support concbandwidth overhead for almost all the users (and links) than
rent rekey and data transport because of the following r@arepresentative existing ALM scheme.
sons. First, it incur€)(N) maintenance cost at users to al-
low rekey message splitting (see Section 2.6). Second, the
message splitting scheme that could be achieved in th@@ferences
ALM schemes is not as efficient as ours (see S_ection 2.% PlanetLab project http:/fwww,planet-lab.org/.
Third, most of the ALM schemes maintains a single ALM
tree [4, 35, 22, 11]. As a result, rekey traffic will further in-12! 3' Balenson, D. McGrew, and A. Sherman. Key management for large
ynamic groups: One-way function trees and amortized initialization,
crease the load of the users that are close to the root of the |\TERNET-DRAFT. URL: http://www.securemulticast.org/smug-
ALM tree. Lastly, failure recovery in some of these schemes drafts.htm, Sept. 2000.
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By Definition 3, the IDs ofw andz have the common prefix



z.ID[0 : s — 1]. By the induction assumption,D has the v;, v; € V;. Obviously, the sender is i§). Let V; be the last
prefixu.ID[0 : ¢ — 1] sincez’s forwarding level is between non-empty set amonig, V1, ..., Vp, thatis,V; is non-empty,
i ands (inclusively). It follows that thaiv./ D has the prefix andV;i1, Vj4a, ..., Vp are all empty. Let; be a member in
w.ID[0: i — 1] sinces > 1. B V; and lets be the number of digits contained in the longest

. . . L common prefix of the IDsv./D andz;.ID. Then we have
Lemma 4 In a multicast session, given any two distinct POSI-> j by the definition ofi/;.

tions at forwarding levels and; respectively in the multicast

| dw. be th di b h Member w is a potential (s, w.ID[s])-neighbor of
tree, etl_‘? andw; 'et ecorrespon 'ng mem er(;) art es‘z‘?. Since all the neighbor tables are 1-consistent, the
two positions) < i < D,0 < j < D,andj < i. Then

, , (s,w.ID[s])-entry of z;'s neighbor table is not empty by
we haveu; ID[0 : i — 1] # w; IDI[0 = i — 1]. Further- pegnition 3. Then the primarys, w.ID[s])-neighbor ofz;
more, 'fwj_ Is not an upstream member of, then we have must be at forwarding level + 1 in the multicast tree since
ui ID[0: j = 1] # w;. ID[0: j —1]. z; is at forwarding leve)j ands > j. As a result, the primary
Proof of Lemma 4: Let V,, be the set of all the membergs, w.ID[s])-neighbor ofz; is a member of seV, ;. This
at forwarding leveln, where0 < m < D. Note thatl, contradicts the assumption théf is the last non-empty set
contains only a single element, the sender. Sincandw; sinces > j. u
are in two distinct positions anfi< i, u;'s forwarding level Proof of Theorem 2: We first prove that encryption is
must be larger than or equal to 1. Consider two cases.  nheeded by at least one memberlinif e.ID is a prefix of

Case 1w; is an upstream memberof. Letu;/, uy € Vi, w.ID[0: s], orw.IDI0 : s] is a prefix ofe./D. Note thatw
be the upstream member of whose previous hop is;. must be at forwarding level + 1, so all the members ifr
(Note thatu;: andu; refer to the same member if the previougave the common prefix.7D|0 : s] by Lemma 1.
hop ofu; is w;.) Thenu, is a neighbor at thé’ — 1)throw  Case lie.ID is a prefix ofw.ID[0 : s]. In this case, all
of w;’s neighbor table. Thus we have .ID[0 : i/ — 1] # the members iV need this encryption by Lemma 3.
w;.ID[0: i —1]. By Lemma 1u,.ID[0: i — 1] is aprefix =~ Case 2w.ID[0 : s] is a prefix ofe./D. In this case, only
of u;.ID. So we have:;.ID[0 : i — 1] # w;.ID[0 : i — 1] the members whose IDs have the prefixD need this en-
sincei’ < i. cryption. Such a member must exist in the group; otherwise,
Case 2:w; is not an upstream member of. Let v be the key server will not generate Furthermore, by Lemma 2,
the common upstream member ©f andw; who is at the such a member must belongltosince the ID of such a mem-
largest forwarding level. That is, for amywho is a common ber has the prefix. /D0 : s].
upstream member af; andw;, the forwarding level of’ is Next we prove that it is needed by at least one member
smaller than or equal to that of Letu;, uy € Vi, be the inV, thene.ID is a prefix ofw.ID[0 : s], orw.ID[0 : s] is
upstream member af; whose previous hop is. Letw;,, a prefixofe.lD.
wj € Vj, be the upstream member of whose previous If e is needed by at least one member (spin V', then by
hop isv. Note thatu,, andu; refer to the same member ifLemma3g.ID is a prefix ofz.ID. Sincew.ID[0 : s] is also
the previous hop of; is v, andw;, andw; refer to the same a prefix ofz.ID (by Lemma 1), we have that eithed D is a
member if the previous hop ef; is v. Thenu;; andw;. are prefix ofw.IDJ0 : s], orw.IDI0 : s] is a prefix ofe./D. W
two distinct primary neighbors at t¢ — 1)th and(j’ — 1)th
row of v’s neighbor table. So we havg,.ID[0 : i — 1] #
wj.ID[0 - ' ~1] anduy.ID[0 : j'—1] # wy.ID[0 : ~1]. B Cluster rekeying heuristic
By Lemma 1,u;.ID[0 : i’ — 1] is a prefix ofu;.ID, and
w; ID[0 : j° — 1] is a prefix ofw;.ID. Sincei’ < i and Inthe heuristic, all the users belonging to the same I¢izel-
j" < j,we haveu;.ID[0 : i — 1] # w;.ID[0 : ¢ — 1] and 1) ID subtree are referred to as a bottom cluster. For each
u; ID[0:j — 1] #w;.ID[0: j —1]. B bottom cluster, the user with the earliest joining time among
Proof of Lemma 2: Let j be w’s forwarding level. By all the users in the cluster is selected as the cluster leader.
Lemma 4, we have < j. Furthermoreu must be an up- A user’s joining time is the time that the key server assigns
stream member af sinceu.ID[0:i—1]) = w.ID[0:i—1]. the user'sID, and it is based on the key server’s local clock.
] Each user record in neighbor tables contains the joining time
Proof of Theorem 1: Since no message is lost and grougnd public key of a neighbor, in addition to the neighbor’s IP
membership is static, each member appears in at most address and ID.
position in the multicast tree. So we only need to prove thatA leader has all the keys on the path fromits corresponding
each member appears in at least one position the multiaastode to the root in the modified key tree. It also shares a
tree. Prove by contradiction. pairwise key with each of the other users in its cluster. A non-
Suppose membev is not in the multicast tree. Lét;, leader user has only three keys: the group key, the user’s in-
i1 =0,1,..., D, be the set of members who are at forwardirdjvidual key, and a pairwise key shared with its cluster leader.
leveli andv;[0 : i — 1) = w.ID[0 : i — 1], for any member In the heuristic, a joining user determines its user ID and

15



constructs its neighbor table in the same way as described
in the main text. The message multicast process is as usual
when forwarding level is less than — 1. At forwarding level

D — 1, when a non-leader user receives a rekey message with
forward _level = D — 1, it forwards the message to its
cluster leader. When a leader receives a rekey message with
forward _evel > D — 1, it first extracts the new group
key, and then unicasts a copy of the group key to each user in
its cluster by first encrypting the group key with the receiving
user’s pairwise key?

A non-leader user’s join or leave does not incur group
rekeying. To join a bottom cluster, the user (sgyfirst gets
from the key server the user record of the cluster leader (say
w) and a joining certificate. The joining certificateid's user
record signed byu's individual key. User then sends the
certificate tow. After verifying the certificateyw establishes
a pairwise key with: using SSL. To leave a clusterfirst re-
guestaw to sign a leaving certificate witle's individual key.

The leaving certificate containss user record and a times-
tamp. Usemw then presents the certificate to the key server.

A cluster leader’s join or leave incurs group rekeying. A
cluster leader (say) is always the first join in its cluster. The
key server follows the regular rekeying procedure to process
its join. To leave the groupw sends the new leader (if it
exists), say, the following information: all the keys on the
path fromw’s corresponding u-node to the root in the key
tree, and user records of all the other users in the cluster. After
receiving fromv a leaving certificate signed hys individual
key, w presents the certificate to the key server. Meanwhile,
v establishes a pairwise key with each remaining user in the
cluster.

8As we can see, it is desired to let cluster leaders, instead of non-leader
users, receive rekey messages at forwarding I&veFor this purpose, in
every table entry at theD — 2)th row of each neighbor table, the neighbor
with the earliest joining time should be chosen as the primary neighbor.
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