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tA theorem related to the a

umulation of Householder transformations into a single orthogonal trans-formation, known as the 
ompa
t WY transform, is presented. It provides a simple 
hara
terization ofthe 
omputation of this transformation and suggests an alternative algorithm for 
omputing it. It alsosuggests an alternative transformation, the UT transform, with the same utility as the 
ompa
t WYTransform, whi
h requires less 
omputation and has similar stability properties. That alternative trans-formation was �rst published over a de
ade ago, but has gone unnoti
ed by the 
ommunity.1 Introdu
tionGiven a nonzero ve
tor u 2 Rm , a Householder transformation (or re
e
tor) is de�ned by H = I� uuT� , whereI denotes the (square) identity matrix and � = uTu2 [4℄. It is an orthogonal matrix (HTH = HHT = I) andits own transpose (HT = H). This transformation has wide appli
ation in the solution of linear least-squaresproblems, the 
omputation of orthonormal bases, and the solution of the algebrai
 eigenvalue problem.Two transforms that 
apture the a
tion of multiple Householder transformations and 
ast it in termsof high-performan
e matrix-matrix produ
ts were proposed in the late 1980s, the WY transform [1℄ andthe 
ompa
t WY transform [6℄ (CWY). A third su
h transform was proposed and published by Walker in1988 [8℄, in the setting of a GMRES algorithm based on Householder transformations, and redis
overed byPuglisi in 1992 in the setting of the QR fa
torization [5℄. Yet few in the numeri
al analysis 
ommunityappear to be aware of these results as they relate to the CWY [7℄. It was a brief brainstorming sessioninvolving the authors of this paper that independently redis
overed this result on
e again. We believe theresult to be of suÆ
ient importan
e that it warrants republishing.In Se
tion 2 we review the traditional way in whi
h the CWY is 
omputed. In Se
tion 3 we present themain theorem that 
hara
terizes the a

umulation of Householder transformations. In Se
tion 4 we dis
ussopportunities that appear due to the alternative 
hara
terization. Remarks on how to modify LAPACK toa

ommodate the insights are given in Se
tion 5. Experimental results are presented in Se
tion 6, followedby 
on
luding remarks in the �nal se
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Partition U ! � UL UR � , t! � tTtB � , S ! � STL STRSBR �where UL has 0 
olumns, tT has 0 rows, and STL is 0� 0while m(STL) < m(S) doRepartition� UL UR �! � U0 u1 U2 �,� tTtB �! 0� t0�1t2 1A , � STL STRSBR �! 0� S00 s01 S02�11 sT12S22 1Awhere u1 has one 
olumn, and �1, �11 are s
alarss01 := UT0 u1�11 := 1=�1 (= 2=uT1 u1)s01 := �S00s01�11Continue with� UL UR � � U0 u1 U2 �,� tTtB � 0� t0�1t2 1A , � STL STRSBR � 0� S00 s01 S02�11 sT12S22 1Aendwhile Figure 1: Traditional algorithm for 
omputing S.2 Computing the 
ompa
t WY transformThe following theorem presents the traditional formulae for a

umulating Householder transformations intoa CWY:Theorem 1 Let the matrix Uk�1 2 Rm�k be partitioned by 
olumns asUk�1 = � u0 u1 � � � uk�1 � ;and 
onsider the ve
tor t = (�0; �1; : : : ; �k�1)T . Then, there exists a unique k�k nonsingular upper triangularmatrix Sk�1 su
h that�I � u0uT0�0 ��I � u1uT1�1 � � � � I � uk�1uTk�1�k�1 ! = �I � Uk�1Sk�1UTk�1� :Matrix Sj 
an be 
omputed via the re
urren
eS0 = 1=�0 and Sj = � Sj�1 �Sj�1UTj�1uj=�j0 1=�j � ; 1 � j < k: (1)Proof: By indu
tion on k. An algorithm for 
omputing this transformation based on (1) is given in Fig. 1.3 Central resultWe now state a theorem that will give a simpler 
hara
terization of the relation between U and S.Theorem 2 Let U 2 Rm�k be a matrix of full 
olumn rank. There exists a unique nonsingular uppertriangular matrix S 2 Rk�k su
h that I � USUT is an orthogonal matrix. This matrix S satis�es S = T�1with T + T T = UTU , where T is itself a unique upper triangular matrix.2



Proof: Sin
e I � USUT is orthogonal,0 = I � (I � USUT )(I � USUT )T = I � (I � USUT )(I � USTUT )= I � (I � USTUT � USUT + USUTUSTUT ) = U �(ST + S)� SUTUST �UT :Thus, ST + S = SUTUST sin
e U has full 
olumn rank. Now, as matrix S is required to be nonsingular,S�1(ST + S)S�T = S�1SUTUSTS�T and thereforeS�1 + S�T = UTU: (2)Finally, repla
ing S�1 by T in (2) we �nd that T = striu(UTU) + 12diag(UTU) uniquely de�nes the uppertriangular matrix T . Here striu(A) denotes the part of matrix A that lies stri
tly above the diagonal of thatmatrix, and diag(A) equals the diagonal matrix that has the same diagonal as A.Under the assumptions of the above theorem, S 
an be 
omputed by the steps1. S := the upper triangular part of UTU .2. Divide the diagonal elements of S by two.3. S := S�1.An algorithm for the �rst step is given in the top part of Fig. 2 while an algorithm that 
ombines the lasttwo steps is given in the bottom part of that �gure.Note 1 Puglisi arrived at the result in Theorem 2 by applying the Woodbury-Morrison formula to I�USUT .We believe our proof to simpler and more revealing.The two algorithms in Fig. 2 together implement exa
tly the same 
omputation as the traditional al-gorithm in Fig. 1, ex
ept that rather than 
omputing �11 in three steps (�11 := uT1 u1; �11 := �11=2;�11 := 1=�11) the traditional algorithm simply sets �11 to �1, whi
h has the same net result:Update in Fig. 1 Update in Fig. 2s01 := UT0 u1�11 := 1=�1 �= 2=(uT1 u1)�s01 := �S00s01�11 s01 := UT0 u18<:�11 := uT1 u1�11 := �11=2�11 := 1=�11s01 := �S00s01�11Other than one additional re
omputation of uT1 u1=2 per diagonal element of S, the two algorithms performthe same operations. Therefore, they will have very similar 
ost and numeri
al stability. This additional
omputation is an artifa
t of the fa
t that the level-3 Basi
 Linear Algebra Subprograms (BLAS) routinedsyrk [2℄, whi
h would typi
ally be used to 
ompute UTU , also re
omputes the diagonal of the result.Clearly, �11, the diagonal element of S, 
ould simply be set to 1=�1 in Fig. 2. The 
omputation of UTU andthe inversion of S 
an be implemented using any algorithm for those operations, not just the ones in Fig. 2.Note 2 Puglisi makes the same 
onne
tion between the traditional algorithm for 
omputing S and the sep-arate steps mentioned above.4 OpportunitiesWhile the result in the previous se
tion provides a simple theoreti
al 
hara
terization of the relation betweenthe Householder ve
tors and the CWY, we now show how it provides opportunities for performan
e andnumeri
al stability. 3



Partition U ! � UL UR � , S ! � STL STRSBR �where UL has 0 
olumns and STL is 0� 0while m(STL) < m(S) doRepartition� UL UR �! � U0 u1 U2 �, � STL STRSBR �! 0� S00 s01 S02�11 sT12S22 1Awhere u1 is a 
olumn and �11 is a s
alars01 := UT0 u1�11 := uT1 u1Continue with� UL UR � � U0 u1 U2 �, � STL STRSBR � 0� S00 s01 S02�11 sT12S22 1AendwhilePartition S ! � STL STRSBR �where STL is 0� 0while m(STL) < m(S) doRepartition� STL STRSBR �! 0� S00 s01 S02�11 sT12S22 1Awhere �11 is a s
alar�11 := �11=2�11 := 1=�11s01 := �S00s01�11Continue with� STL STRSBR � 0� S00 s01 S02�11 sT12S22 1AendwhileFigure 2: Computing S as proposed in Se
tion 3. Top: Compute S := UTU (upper triangular part only).Bottom: Divide the diagonal elements of S by 2 and 
ompute S := S�1.
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4.1 Potential impa
t on performan
eThe traditional algorithm in Fig. 1 is ri
h in matrix-ve
tor produ
ts, a level-2 BLAS [3℄ operation. By
ontrast, Steps 1{3 in Se
tion 3 
an inherently attain high performan
e: Step 1 
an be implemented by a
all to an optimized implementation of the level-3 BLAS routine dsyrk while the LAPACK routine dtrtri
an be used for Step 3. Typi
ally, k is small enough so that the inversion of the k � k matrix in Step 3 willkeep that matrix in 
a
he memory, making that operation inherently eÆ
ient.Note 3 Puglisi makes the same observation.4.2 The UT transformI �UT�1UT represents an alternative expression for the a

umulation of the Householder transformations.This formulation eliminates the need for the k3 
oating-point operations (
ops) required to 
ompute S :=T�1. We 
all this formulation the UT transform.The CWY is typi
ally formed so that it 
an be applied to a matrix A 2 Rm�n , as in the 
omputationA := (I�USUT )A. One 
an instead 
ompute (I�UT�1UT )A. The parentheses in the following expressionsindi
ate the order in whi
h operations in these two approa
hes are typi
ally performed:A := A� U [S [UTA℄| {z }W ℄ versus A := A� U [T�1 [UTA℄| {z }W ℄:The 
omputation of SW and T�1W , via the level-3 BLAS routines dtrmm and dtrsm, respe
tively, requiresexa
tly the same number of 
ops. Thus, avoiding the inversion of matrix T translates dire
tly into k3 fewer
ops being performed.Note 4 Puglisi makes the same observation.For di�erent implementations of the BLAS, dtrsm may attain better or worse performan
e than dtrmm.This would in
uen
e whether to 
ompute and use the UT transform or the CWY.4.3 Potential impa
t on numeri
al stabilityHouseholder transformations are inherently used be
ause of their ex
eptional stability properties. The CWYis known to inherit these properties. Nonetheless, it is also well known that 
omputing W := T�1W as atriangular solve with multiple right-hand sides is numeri
ally more stable than 
omputing W := SW afterexpli
itly inverting S := T�1. Thus, the UT transform is at least as stable as the CWY, and possibly morestable.Note 5 Puglisi makes a similar 
omment regarding stability.5 Modi�
ations to LAPACKWe now give details of how minor modi�
ations to LAPACK 
an be made to in
orporate the insights in thispaper.A detail that is not made obvious in the previous dis
ussion is that the matrix U that stores the House-holder ve
tors as they are 
omputed during a QR fa
torization has the form U = � U1U2 � ; where U1 isunit lower triangular. Thus, the 
omputation S = UTU 
an be broken down into S := UT1 U1 followed byS := S + UT2 U2, 
omputing only the upper triangular part. The term UT2 U2 is a simple 
all to dsyrk. Theproblem is that there is no routine in the BLAS or LAPACK that 
omputes only the upper triangular partof S = UT1 U1 while taking advantage of the spe
ial stru
ture of U1.5



S := triu(UT2 U2)Partition U1 ! � UL UR � , t! � tTtB � , S ! � STL STRSBR �where UL has 0 
olumns, tT has 0 rows, and STL is 0� 0while m(STL) < m(S) doRepartition� UL UR �! � U0 u1 U2 �,� tTtB �! 0� t0�1t2 1A , � STL STRSBR �! 0� S00 s01 S02�11 sT12S22 1Awhere u1 has one 
olumn, and �1, �11 are s
alarsCompute S: Compute T = S�1 in S:s01 := s01 + UT0 u1 s01 := s01 + UT0 u1�11 := 1=�1 �11 := �1s01 := �S00s01�11Continue with� UL UR � � U0 u1 U2 �,� tTtB � 0� t0�1t2 1A , � STL STRSBR � 0� S00 s01 S02�11 sT12S22 1AendwhileFigure 3: Modi�
ation of traditional algorithm for 
omputing S and T .To over
ome this, let us examine routine dlarft from LAPACK, whi
h 
omputes the matrix S via thealgorithm in Fig. 1. Now, S 
an be 
omputed by initializing it to the upper triangular part of UT2 U2 
hangingthe update s01 := UT0 u1 to s01 := s01+UT0 u1 in Fig. 1, and exe
uting this modi�ed algorithm with U1 ratherthan all of U ! Thus, �rst S is set to UT2 U2, after whi
h the remaining 
omputations are all a

omplished bythe modi�
ation given in Fig. 3 (left). This approa
h 
asts most 
omputations in terms of UT2 U2 (dsyrk)and, in one sweep, performs the remaining 
omputation with matri
es that are small enough to remain in
a
he. This is 
oded by modifying dlarft, adding a 
all to dsyrk with U2 before the loop, 
hanging theupper limit of the loop from N (the row dimension of U) to K (the row dimension of U1), and 
hanging aZERO to a ONE in the 
all to dgemv so that the result of the matrix-ve
tor multiply is added to s01. Let us
all the result dlarft new.The new routine dlarft new 
an then be turned into a 
omputation of T by further 
hanging thealgorithm in Fig. 1, repla
ing �11 = 1=�1 by �11 = �1 and deleting the update s01 = �S00s01�11, asillustrated in Fig. 3 (right). This translates to a 
hange in one line of dlarft new and the deletion ofone 
all to dtrmv. Applying the UT transform so 
omputed requires only that a single 
all to dtrmm be
hanged to a 
all to dtrsm in dlarfb.6 ExperimentsWe demonstrate the potential of the alternative approa
hes by modifying the LAPACK routines for 
omput-ing and applying the CWY, dlarft and dlarfb, and measuring its e�e
t on the LAPACK QR fa
torizationroutine, dgeqrf.
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