On Accumulating Householder Transformations

Thierry Joffrain*

Tze Meng Low*
Enrique S. Quintana-Ortif
Robert van de Geijn*
Field Van Zee *

FLAME Working Note #13

October 12, 2004

Abstract
A theorem related to the accumulation of Householder transformations into a single orthogonal trans-
formation, known as the compact WY transform, is presented. It provides a simple characterization of
the computation of this transformation and suggests an alternative algorithm for computing it. It also
suggests an alternative transformation, the UT transform, with the same utility as the compact WY
Transform, which requires less computation and has similar stability properties. That alternative trans-
formation was first published over a decade ago, but has gone unnoticed by the community.

1 Introduction

Given a nonzero vector u € R™, a Householder transformation (or reflector) is defined by H = I — #, where

I denotes the (square) identity matrix and 7 = # [4]. It is an orthogonal matrix (HTH = HHT = I) and
its own transpose (H? = H). This transformation has wide application in the solution of linear least-squares
problems, the computation of orthonormal bases, and the solution of the algebraic eigenvalue problem.

Two transforms that capture the action of multiple Householder transformations and cast it in terms
of high-performance matrix-matrix products were proposed in the late 1980s, the WY transform [1] and
the compact WY transform [6] (CWY). A third such transform was proposed and published by Walker in
1988 [8], in the setting of a GMRES algorithm based on Householder transformations, and rediscovered by
Puglisi in 1992 in the setting of the QR factorization [5]. Yet few in the numerical analysis community
appear to be aware of these results as they relate to the CWY [7]. It was a brief brainstorming session
involving the authors of this paper that independently rediscovered this result once again. We believe the
result to be of sufficient importance that it warrants republishing.

In Section 2 we review the traditional way in which the CWY is computed. In Section 3 we present the
main theorem that characterizes the accumulation of Householder transformations. In Section 4 we discuss
opportunities that appear due to the alternative characterization. Remarks on how to modify LAPACK to
accommodate the insights are given in Section 5. Experimental results are presented in Section 6, followed
by concluding remarks in the final section.

*Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712,
{joffrain,ltm,rvdg,field}Qcs.utexas.edu.

fDepartamento de Ingenierfa y Ciencia de Computadores, Universidad Jaume I, Campus Riu Sec, 12.071 — Castellén, Spain,
quintana@icc.uji.es.

t S S
Partition U — (Ur | Ur),t—>(tT) ,S_)(ii)
B

SBR

where Up, has 0 columns, ¢t has 0 rows, and Spr is 0 X 0

while m(Str) < m(S) do
Repartition
(U lUr)= (Uo|w]|Uz),
Soz2

t S s
tp 0 Srp | Srr 00 | so1 ik
— T1) — o11 S19
tp SBR
t2 S22

where wu; has one column, and 71, 011 are scalars

01 1= Ug'ul
o :=1/m1 (= 2/ufu1)
801 := —S00801011

Continue with
(U |Ur)< (Uo|u]Us),

t S s S
(tT) 0 (STL STR) 00 01 3'2
— T1 , — o11 $19
tp SBR
t2 S22

endwhile

Figure 1: Traditional algorithm for computing S.

2 Computing the compact WY transform

The following theorem presents the traditional formulae for accumulating Householder transformations into
a CWY:
Theorem 1 Let the matriz Uy, € R™** be partitioned by columns as

Up—r=(wo |wr |- |ur),

and consider the vector t = (19, 11,. .., Tk,l)T, Then, there exists a unique k X k nonsingular upper triangular
matriz S,_1 such that

T T Un_ ’U,T
(I — 2%) (I— Lt) <I— S ’“) = (I = Up1SkaUL,) -
To 1 Tk—1

Matriz S can be computed via the recurrence

Sj—1 | =SiaU} yui/T
0 | 1/

50:]./7'0 and S]:< >, 1§]<k (].)

Proof: By induction on k. An algorithm for computing this transformation based on (1) is given in Fig. 1.

3 Central result

We now state a theorem that will give a simpler characterization of the relation between U and S.
Theorem 2 Let U € R™**¥ be a matriz of full column rank. There erists a unique nonsingular upper
triangular matriz S € R¥** such that I — USUT is an orthogonal matriz. This matriz S satisfies S = T 1
with T +TT = UTU, where T is itself a unique upper triangular matriz.

Proof: Since I — USUT is orthogonal,

0 = I-(I-UsSUhY1-vusuH) =1 - (1 -USUT) (I -USTUT)
I-(I-USTUT —usuT +UusvtustuT) =u (ST +S) - suTUST|U”.

Thus, ST + 8 = SUTUST since U has full column rank. Now, as matrix S is required to be nonsingular,
S=1(ST 4+ §)S-T = S—LSUTUSTS~T and therefore

Sty s T=vuTu. (2)

Finally, replacing S~ by T in (2) we find that T = striu(UZU) + %diag(UTU) uniquely defines the upper
triangular matrix T'. Here striu(A) denotes the part of matrix A that lies strictly above the diagonal of that
matrix, and diag(A) equals the diagonal matrix that has the same diagonal as A.

Under the assumptions of the above theorem, S can be computed by the steps

1. S := the upper triangular part of UTU.
2. Divide the diagonal elements of S by two.
3. §:=8"1

An algorithm for the first step is given in the top part of Fig. 2 while an algorithm that combines the last
two steps is given in the bottom part of that figure.

Note 1 Puglisi arrived at the result in Theorem 2 by applying the Woodbury-Morrison formula to I—USUT.
We believe our proof to simpler and more revealing.

The two algorithms in Fig. 2 together implement ezactly the same computation as the traditional al-

gorithm in Fig. 1, except that rather than computing o;; in three steps (011 := uful; 011 = 011/2;
011 := 1/011) the traditional algorithm simply sets o011 to 71, which has the same net result:
Update in Fig. 1 Update in Fig. 2
R
So1 = Ugul So1 += UU Té’l
011 ‘= Uy U1
011 =]./Tl (= 2/(11,,{’[1,1)) 011 = 011/2
o11:=1/o11
501 := —S00501011 So1 := —S00501011

Other than one additional recomputation of ufu; /2 per diagonal element of S, the two algorithms perform
the same operations. Therefore, they will have very similar cost and numerical stability. This additional
computation is an artifact of the fact that the level-3 Basic Linear Algebra Subprograms (BLAS) routine
DSYRK [2], which would typically be used to compute UTU, also recomputes the diagonal of the result.
Clearly, 011, the diagonal element of S, could simply be set to 1/7; in Fig. 2. The computation of UTU and
the inversion of S can be implemented using any algorithm for those operations, not just the ones in Fig. 2.
Note 2 Puglisi makes the same connection between the traditional algorithm for computing S and the sep-
arate steps mentioned above.

4 Opportunities

While the result in the previous section provides a simple theoretical characterization of the relation between
the Householder vectors and the CWY, we now show how it provides opportunities for performance and
numerical stability.

Partition U ((Up | Ur), 5 — (—ike

SBR

where Uj, has 0 columns and S7p, is 0 x 0

while m(Srr) < m(S) do
Repartition

STR

)

Sro | Srr Soo | so1 | Soz2
(ULlUR)—>(Uo|u1|U2),< 5)—) o11 | Siq
BR S.
22
where wu; is a column and o017 is a scalar
01 1= U(’)Tul
o11 = ufuy
Continue with
Srr | Srr Soo | so1 | Soz2
(ULIUR)(*(UO|’U11IU2),< 5)e o1 | s%,
BR S.
22
endwhile
Partition S — St | Str)
SBR
where Spy is 0 X0
while m(Str) < m(S) do
Repartition
Srr | Srr Soo | so1 ng
SoR - 011 | Sip
S22
where o1 is a scalar
011 = 011/2
o111 :=1/o11
801 := —S00801011
Continue with
Soo | so1 | Soz2
Str | STr T
SBR < o11 $1o
Soz
endwhile

Figure 2: Computing S as proposed in Section 3. Top: Compute S := UTU (upper triangular part only).

Bottom: Divide the diagonal elements of S by 2 and compute S := S~!.

4.1 Potential impact on performance

The traditional algorithm in Fig. 1 is rich in matrix-vector products, a level-2 BLAS [3] operation. By
contrast, Steps 1-3 in Section 3 can inherently attain high performance: Step 1 can be implemented by a
call to an optimized implementation of the level-3 BLAS routine DSYRK while the LAPACK routine DTRTRI
can be used for Step 3. Typically, k is small enough so that the inversion of the k x k matrix in Step 3 will
keep that matrix in cache memory, making that operation inherently efficient.

Note 3 Puglisi makes the same observation.

4.2 The UT transform

I —UT'UT represents an alternative expression for the accumulation of the Householder transformations.
This formulation eliminates the need for the k3 floating-point operations (flops) required to compute S :=
T—1. We call this formulation the UT transform.

The CWY is typically formed so that it can be applied to a matrix A € R™*" as in the computation
A:= (I-USUT)A. One can instead compute (I —UT U?)A. The parentheses in the following expressions
indicate the order in which operations in these two approaches are typically performed:

A:=A-U[S [UTA]] versus A:=A—-U[T™" [UTA]].
S~—— N——
w w

The computation of SW and T~'W, via the level-3 BLAS routines DTRMM and DTRSM, respectively, requires
exactly the same number of flops. Thus, avoiding the inversion of matrix T' translates directly into k3 fewer
flops being performed.

Note 4 Puglisi makes the same observation.

For different implementations of the BLAS, DTRSM may attain better or worse performance than DTRMM.
This would influence whether to compute and use the UT transform or the CWY.

4.3 Potential impact on numerical stability

Householder transformations are inherently used because of their exceptional stability properties. The CWY
is known to inherit these properties. Nonetheless, it is also well known that computing W := T 'W as a
triangular solve with multiple right-hand sides is numerically more stable than computing W := SW after
explicitly inverting S := T~!. Thus, the UT transform is at least as stable as the CWY, and possibly more
stable.

Note 5 Puglisi makes a stmilar comment regarding stability.

5 Modifications to LAPACK

We now give details of how minor modifications to LAPACK can be made to incorporate the insights in this

paper.

A detail that is not made obvious in the previous discussion is that the matrix U that stores the House-

holder vectors as they are computed during a QR factorization has the form U = (gl , where U; is
2

unit lower triangular. Thus, the computation S = UTU can be broken down into S := UJ'U; followed by
S := S + ULUs,, computing only the upper triangular part. The term U] U, is a simple call to DSYRK. The
problem is that there is no routine in the BLAS or LAPACK that computes only the upper triangular part
of S = UF'U; while taking advantage of the special structure of U;.

S = triu(UT Uz)

t S S
PartitionUl—)(ULIUR)vt%(T)’S%(TL TR)
tp SBR
where Uy, has 0 columns, t7 has 0 rows, and Stz is 0 x 0

while m(Srr) < m(S) do
Repartition
(UL |Ur)= (Uo]|w]|U:),

tr to Sro | Srr Soo | so1 | Soz2
— T1 , — o11 s’ir'z

tp SBR
to So2

where wu; has one column, and 71, 011 are scalars

Compute S: Compute T'=S"1 in S:
801 := So1 + Ug'm $01 := So1 + Ug'm

o11 :=1/71 o11:=T71

s01 := —S00801011

Continue with
(Ul Ur)< (Uo|u]Us),

t S s S
(tT) 0 (STL STR) 00 01 3'2
— T1 s — o11 $19
tp — SBR
t2 S22

endwhile

Figure 3: Modification of traditional algorithm for computing S and T'.

To overcome this, let us examine routine DLARFT from LAPACK, which computes the matrix S via the
algorithm in Fig. 1. Now, S can be computed by initializing it to the upper triangular part of UJ U, changing
the update so; := UZ'uy to so1 := so1 + U uy in Fig. 1, and executing this modified algorithm with U; rather
than all of U! Thus, first S is set to Uf Uy, after which the remaining computations are all accomplished by
the modification given in Fig. 3 (left). This approach casts most computations in terms of U} U, (DSYRK)
and, in one sweep, performs the remaining computation with matrices that are small enough to remain in
cache. This is coded by modifying DLARFT, adding a call to DSYRK with U; before the loop, changing the
upper limit of the loop from N (the row dimension of U) to K (the row dimension of U;), and changing a
ZERD to a ONE in the call to DGEMV so that the result of the matrix-vector multiply is added to sg;. Let us
call the result DLARFT_NEW.

The new routine DLARFT_NEW can then be turned into a computation of 7" by further changing the
algorithm in Fig. 1, replacing 011 = 1/m by o011 = 71 and deleting the update sop1 = —Soposo1011, as
illustrated in Fig. 3 (right). This translates to a change in one line of DLARFT_NEW and the deletion of
one call to DTRMV. Applying the UT transform so computed requires only that a single call to DTRMM be
changed to a call to DTRSM in DLARFB.

6 Experiments

We demonstrate the potential of the alternative approaches by modifying the LAPACK routines for comput-
ing and applying the CWY, DLARFT and DLARFB, and measuring its effect on the LAPACK QR factorization
routine, DGEQRF.

