
On Aumulating Householder TransformationsThierry Jo�rain�Tze Meng Low�Enrique S. Quintana-Ort��yRobert van de Geijn�Field Van Zee �FLAME Working Note #13Otober 12, 2004AbstratA theorem related to the aumulation of Householder transformations into a single orthogonal trans-formation, known as the ompat WY transform, is presented. It provides a simple haraterization ofthe omputation of this transformation and suggests an alternative algorithm for omputing it. It alsosuggests an alternative transformation, the UT transform, with the same utility as the ompat WYTransform, whih requires less omputation and has similar stability properties. That alternative trans-formation was �rst published over a deade ago, but has gone unnotied by the ommunity.1 IntrodutionGiven a nonzero vetor u 2 Rm , a Householder transformation (or reetor) is de�ned by H = I� uuT� , whereI denotes the (square) identity matrix and � = uTu2 [4℄. It is an orthogonal matrix (HTH = HHT = I) andits own transpose (HT = H). This transformation has wide appliation in the solution of linear least-squaresproblems, the omputation of orthonormal bases, and the solution of the algebrai eigenvalue problem.Two transforms that apture the ation of multiple Householder transformations and ast it in termsof high-performane matrix-matrix produts were proposed in the late 1980s, the WY transform [1℄ andthe ompat WY transform [6℄ (CWY). A third suh transform was proposed and published by Walker in1988 [8℄, in the setting of a GMRES algorithm based on Householder transformations, and redisovered byPuglisi in 1992 in the setting of the QR fatorization [5℄. Yet few in the numerial analysis ommunityappear to be aware of these results as they relate to the CWY [7℄. It was a brief brainstorming sessioninvolving the authors of this paper that independently redisovered this result one again. We believe theresult to be of suÆient importane that it warrants republishing.In Setion 2 we review the traditional way in whih the CWY is omputed. In Setion 3 we present themain theorem that haraterizes the aumulation of Householder transformations. In Setion 4 we disussopportunities that appear due to the alternative haraterization. Remarks on how to modify LAPACK toaommodate the insights are given in Setion 5. Experimental results are presented in Setion 6, followedby onluding remarks in the �nal setion.�Department of Computer Sienes, The University of Texas at Austin, Austin, TX 78712,fjoffrain,ltm,rvdg,fieldg�s.utexas.edu.yDepartamento de Ingenier��a y Cienia de Computadores, Universidad Jaume I, Campus Riu Se, 12.071 { Castell�on, Spain,quintana�i.uji.es. 1



Partition U ! � UL UR � , t! � tTtB � , S ! � STL STRSBR �where UL has 0 olumns, tT has 0 rows, and STL is 0� 0while m(STL) < m(S) doRepartition� UL UR �! � U0 u1 U2 �,� tTtB �! 0� t0�1t2 1A , � STL STRSBR �! 0� S00 s01 S02�11 sT12S22 1Awhere u1 has one olumn, and �1, �11 are salarss01 := UT0 u1�11 := 1=�1 (= 2=uT1 u1)s01 := �S00s01�11Continue with� UL UR � � U0 u1 U2 �,� tTtB � 0� t0�1t2 1A , � STL STRSBR � 0� S00 s01 S02�11 sT12S22 1Aendwhile Figure 1: Traditional algorithm for omputing S.2 Computing the ompat WY transformThe following theorem presents the traditional formulae for aumulating Householder transformations intoa CWY:Theorem 1 Let the matrix Uk�1 2 Rm�k be partitioned by olumns asUk�1 = � u0 u1 � � � uk�1 � ;and onsider the vetor t = (�0; �1; : : : ; �k�1)T . Then, there exists a unique k�k nonsingular upper triangularmatrix Sk�1 suh that�I � u0uT0�0 ��I � u1uT1�1 � � � � I � uk�1uTk�1�k�1 ! = �I � Uk�1Sk�1UTk�1� :Matrix Sj an be omputed via the reurreneS0 = 1=�0 and Sj = � Sj�1 �Sj�1UTj�1uj=�j0 1=�j � ; 1 � j < k: (1)Proof: By indution on k. An algorithm for omputing this transformation based on (1) is given in Fig. 1.3 Central resultWe now state a theorem that will give a simpler haraterization of the relation between U and S.Theorem 2 Let U 2 Rm�k be a matrix of full olumn rank. There exists a unique nonsingular uppertriangular matrix S 2 Rk�k suh that I � USUT is an orthogonal matrix. This matrix S satis�es S = T�1with T + T T = UTU , where T is itself a unique upper triangular matrix.2



Proof: Sine I � USUT is orthogonal,0 = I � (I � USUT )(I � USUT )T = I � (I � USUT )(I � USTUT )= I � (I � USTUT � USUT + USUTUSTUT ) = U �(ST + S)� SUTUST �UT :Thus, ST + S = SUTUST sine U has full olumn rank. Now, as matrix S is required to be nonsingular,S�1(ST + S)S�T = S�1SUTUSTS�T and thereforeS�1 + S�T = UTU: (2)Finally, replaing S�1 by T in (2) we �nd that T = striu(UTU) + 12diag(UTU) uniquely de�nes the uppertriangular matrix T . Here striu(A) denotes the part of matrix A that lies stritly above the diagonal of thatmatrix, and diag(A) equals the diagonal matrix that has the same diagonal as A.Under the assumptions of the above theorem, S an be omputed by the steps1. S := the upper triangular part of UTU .2. Divide the diagonal elements of S by two.3. S := S�1.An algorithm for the �rst step is given in the top part of Fig. 2 while an algorithm that ombines the lasttwo steps is given in the bottom part of that �gure.Note 1 Puglisi arrived at the result in Theorem 2 by applying the Woodbury-Morrison formula to I�USUT .We believe our proof to simpler and more revealing.The two algorithms in Fig. 2 together implement exatly the same omputation as the traditional al-gorithm in Fig. 1, exept that rather than omputing �11 in three steps (�11 := uT1 u1; �11 := �11=2;�11 := 1=�11) the traditional algorithm simply sets �11 to �1, whih has the same net result:Update in Fig. 1 Update in Fig. 2s01 := UT0 u1�11 := 1=�1 �= 2=(uT1 u1)�s01 := �S00s01�11 s01 := UT0 u18<:�11 := uT1 u1�11 := �11=2�11 := 1=�11s01 := �S00s01�11Other than one additional reomputation of uT1 u1=2 per diagonal element of S, the two algorithms performthe same operations. Therefore, they will have very similar ost and numerial stability. This additionalomputation is an artifat of the fat that the level-3 Basi Linear Algebra Subprograms (BLAS) routinedsyrk [2℄, whih would typially be used to ompute UTU , also reomputes the diagonal of the result.Clearly, �11, the diagonal element of S, ould simply be set to 1=�1 in Fig. 2. The omputation of UTU andthe inversion of S an be implemented using any algorithm for those operations, not just the ones in Fig. 2.Note 2 Puglisi makes the same onnetion between the traditional algorithm for omputing S and the sep-arate steps mentioned above.4 OpportunitiesWhile the result in the previous setion provides a simple theoretial haraterization of the relation betweenthe Householder vetors and the CWY, we now show how it provides opportunities for performane andnumerial stability. 3



Partition U ! � UL UR � , S ! � STL STRSBR �where UL has 0 olumns and STL is 0� 0while m(STL) < m(S) doRepartition� UL UR �! � U0 u1 U2 �, � STL STRSBR �! 0� S00 s01 S02�11 sT12S22 1Awhere u1 is a olumn and �11 is a salars01 := UT0 u1�11 := uT1 u1Continue with� UL UR � � U0 u1 U2 �, � STL STRSBR � 0� S00 s01 S02�11 sT12S22 1AendwhilePartition S ! � STL STRSBR �where STL is 0� 0while m(STL) < m(S) doRepartition� STL STRSBR �! 0� S00 s01 S02�11 sT12S22 1Awhere �11 is a salar�11 := �11=2�11 := 1=�11s01 := �S00s01�11Continue with� STL STRSBR � 0� S00 s01 S02�11 sT12S22 1AendwhileFigure 2: Computing S as proposed in Setion 3. Top: Compute S := UTU (upper triangular part only).Bottom: Divide the diagonal elements of S by 2 and ompute S := S�1.
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4.1 Potential impat on performaneThe traditional algorithm in Fig. 1 is rih in matrix-vetor produts, a level-2 BLAS [3℄ operation. Byontrast, Steps 1{3 in Setion 3 an inherently attain high performane: Step 1 an be implemented by aall to an optimized implementation of the level-3 BLAS routine dsyrk while the LAPACK routine dtrtrian be used for Step 3. Typially, k is small enough so that the inversion of the k � k matrix in Step 3 willkeep that matrix in ahe memory, making that operation inherently eÆient.Note 3 Puglisi makes the same observation.4.2 The UT transformI �UT�1UT represents an alternative expression for the aumulation of the Householder transformations.This formulation eliminates the need for the k3 oating-point operations (ops) required to ompute S :=T�1. We all this formulation the UT transform.The CWY is typially formed so that it an be applied to a matrix A 2 Rm�n , as in the omputationA := (I�USUT )A. One an instead ompute (I�UT�1UT )A. The parentheses in the following expressionsindiate the order in whih operations in these two approahes are typially performed:A := A� U [S [UTA℄| {z }W ℄ versus A := A� U [T�1 [UTA℄| {z }W ℄:The omputation of SW and T�1W , via the level-3 BLAS routines dtrmm and dtrsm, respetively, requiresexatly the same number of ops. Thus, avoiding the inversion of matrix T translates diretly into k3 fewerops being performed.Note 4 Puglisi makes the same observation.For di�erent implementations of the BLAS, dtrsm may attain better or worse performane than dtrmm.This would inuene whether to ompute and use the UT transform or the CWY.4.3 Potential impat on numerial stabilityHouseholder transformations are inherently used beause of their exeptional stability properties. The CWYis known to inherit these properties. Nonetheless, it is also well known that omputing W := T�1W as atriangular solve with multiple right-hand sides is numerially more stable than omputing W := SW afterexpliitly inverting S := T�1. Thus, the UT transform is at least as stable as the CWY, and possibly morestable.Note 5 Puglisi makes a similar omment regarding stability.5 Modi�ations to LAPACKWe now give details of how minor modi�ations to LAPACK an be made to inorporate the insights in thispaper.A detail that is not made obvious in the previous disussion is that the matrix U that stores the House-holder vetors as they are omputed during a QR fatorization has the form U = � U1U2 � ; where U1 isunit lower triangular. Thus, the omputation S = UTU an be broken down into S := UT1 U1 followed byS := S + UT2 U2, omputing only the upper triangular part. The term UT2 U2 is a simple all to dsyrk. Theproblem is that there is no routine in the BLAS or LAPACK that omputes only the upper triangular partof S = UT1 U1 while taking advantage of the speial struture of U1.5



S := triu(UT2 U2)Partition U1 ! � UL UR � , t! � tTtB � , S ! � STL STRSBR �where UL has 0 olumns, tT has 0 rows, and STL is 0� 0while m(STL) < m(S) doRepartition� UL UR �! � U0 u1 U2 �,� tTtB �! 0� t0�1t2 1A , � STL STRSBR �! 0� S00 s01 S02�11 sT12S22 1Awhere u1 has one olumn, and �1, �11 are salarsCompute S: Compute T = S�1 in S:s01 := s01 + UT0 u1 s01 := s01 + UT0 u1�11 := 1=�1 �11 := �1s01 := �S00s01�11Continue with� UL UR � � U0 u1 U2 �,� tTtB � 0� t0�1t2 1A , � STL STRSBR � 0� S00 s01 S02�11 sT12S22 1AendwhileFigure 3: Modi�ation of traditional algorithm for omputing S and T .To overome this, let us examine routine dlarft from LAPACK, whih omputes the matrix S via thealgorithm in Fig. 1. Now, S an be omputed by initializing it to the upper triangular part of UT2 U2 hangingthe update s01 := UT0 u1 to s01 := s01+UT0 u1 in Fig. 1, and exeuting this modi�ed algorithm with U1 ratherthan all of U ! Thus, �rst S is set to UT2 U2, after whih the remaining omputations are all aomplished bythe modi�ation given in Fig. 3 (left). This approah asts most omputations in terms of UT2 U2 (dsyrk)and, in one sweep, performs the remaining omputation with matries that are small enough to remain inahe. This is oded by modifying dlarft, adding a all to dsyrk with U2 before the loop, hanging theupper limit of the loop from N (the row dimension of U) to K (the row dimension of U1), and hanging aZERO to a ONE in the all to dgemv so that the result of the matrix-vetor multiply is added to s01. Let usall the result dlarft new.The new routine dlarft new an then be turned into a omputation of T by further hanging thealgorithm in Fig. 1, replaing �11 = 1=�1 by �11 = �1 and deleting the update s01 = �S00s01�11, asillustrated in Fig. 3 (right). This translates to a hange in one line of dlarft new and the deletion ofone all to dtrmv. Applying the UT transform so omputed requires only that a single all to dtrmm behanged to a all to dtrsm in dlarfb.6 ExperimentsWe demonstrate the potential of the alternative approahes by modifying the LAPACK routines for omput-ing and applying the CWY, dlarft and dlarfb, and measuring its e�et on the LAPACK QR fatorizationroutine, dgeqrf.
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