
Improving the Performane of Redution to Hessenberg FormGregorio Quintana-Ort��Departamento de Ingenier��a y Cienia de ComputadoresUniversidad Jaume I, Campus Riu Se, 12.071Castell�on, Spaingquintan�i.uji.esRobert van de GeijnDepartment of Computer SienesThe University of Texas at AustinAustin, Texas 78712rvdg�s.utexas.eduFLAME Working Note #14Otober 12, 2004AbstratIn this paper, a modi�ation of the bloked algorithm for redution to Hessenberg form is presentedthat improves performane by shifting more omputation from less eÆient matrix-vetor operations tohighly eÆient matrix-matrix operations. Signi�ant performane improvements are reported relative tothe performane ahieved by the urrent LAPACK implementation.1 IntrodutionThe redution to Hessenberg form is an important and time onsuming step in the omputation of the Shurdeomposition of a square nonsymmetri matrix. The Shur deomposition itself is important sine it solvesthe nonsymmetri eigenvalue problem [9℄ and is a step towards the solution of the Sylvester equation andother linear algebra equations that arise in ontrol theory [15, 2, 8, 9℄. Thus, improving the performane ofthis omputation impats a number of important appliations.Algorithms for the omputation of the redution to Hessenberg form date bak to the early 1960s [17, 13℄.In the 1980s, it was observed that the key to attaining high performane on arhitetures with omplex multi-level memories is to ast omputation in terms of matrix-matrix operations, like the matrix-matrix produt.These operations are supported by the level-3 Basi Linear Algebra Subprograms (BLAS) [5℄. The ideais that suh operations perform O(n3) oating point operations (ops) on O(n2) data, where n equals thematrix dimension of the operands. This allows data to be brought into fast ahe memory, amortizingthe ost of this data movement over a large number of omputations. An algorithm that asts part ofthe omputation required for the redution in terms of matrix-matrix operations (level 3 BLAS) was �rstpresented in [7℄. The urrently most widely used library for linear algebra operations, the Linear AlgebraPakage (LAPACK) [1℄, inorporates one suh algorithm in the routine dgehrd.As we will review later in this paper, inherently a onsiderable part of the omputation must be interms of matrix-vetor operations (level-2 BLAS [6℄) that attain only a modest perent of the peak of an1



arhiteture due to memory bandwidth limitations. Thus, even if the rest of the omputation is ast interms of level-3 BLAS, the part that requires level-2 BLAS will remain and will limit the perentage of peakthat the algorithm an ahieve. The problem with the implementation that is urrently part of LAPACKis that it leaves more omputation in terms of level-2 BLAS than neessary. It is this shortoming that thealgorithm in this paper addresses.The primary bene�t of our new implementation is a shift of omputation from level-2 to level-3 BLAS.A seondary bene�t omes from the fat that the omputation that is not in level-3 BLAS involves lessdata, improving data loality and reduing ahe traÆ during those operations: The urrent LAPACKimplementation touhes in every iteration (that is, n times) all olumns to the right of the urrent olumnwhile our algorithm only touhes the part of those same olumns that is below the urrent row.The remainder of this paper is organized as follows: Householder transformations and related transformsare reviewed in Setion 2. The traditional (unbloked) algorithm for redution to Hessenberg form is givenin Setion 3. Bloked algorithms are then desribed in Setion 4. Performane results are given in Setion 5followed by onluding remarks in the �nal setion.2 Householder transformsGiven a nonzero vetor u 2 Rm , a Householder transformation (or reetor) is de�ned by H = Im � uuT =� ,where Im denotes the (square) identity matrix of order m and � = uTu=2 [11℄. It is an orthogonal matrix(HTH = HHT = Im) and symmetri (HT = H). This transformation has wide appliation in the solutionof linear least-squares problems, the omputation of orthonormal bases, and the solution of the algebraieigenvalue problem.Householder transformations will be used in this paper in an e�ort to annihilate elements below the �rstsubdiagonal of a given matrix. More preisely, given vetor x, partition x = � �1 x2 �T , where �1 equalsthe �rst element of x. De�ne the Householder vetor assoiated with x as the vetor u = � 1 u2 �T , whereu2 = x2=�1 with �1 = �1 + sign(�1)kxk2. Here sign(�) returns 1 or �1 depending on the sign of �. Let� = uTu=2. Then (I � uuT=�)x = f0nn�g where � = �sign(�1)kxk2 and f0nn�g equals the zero vetor withthe �rst element replaed by �. Let us introdue the notation [funn�g; � ℄ := Hous(x) for the operation thatomputes the above mentioned �, u, and � from the given vetor x. Here funn�g indiates the vetor u withthe �rst element (whih is impliitly equal to \1") overwritten by the value �.Multiplying two or more Householder transformations results again in an orthogonal matrix, althoughnot symmetri. This allows Householder transformations to be aumulated into a omposed transformation.Traditionally, the ompat WY transform (CWY) is used, whih has the form I�USUT , where the olumnsof U onsist of the Householder vetors being aumulated: Letting the olumns of Uk�1 equal the �rst kHouseholder vetors uj , 0 � j < k,(I � u0uT0 =�0) � � � (I � uk�1uTk�1=�k�1) = (I � Uk�1Sk�1UTk�1);where S0 = 1=�0 and Sk = � Sk�1 �Sk�1Uk�1uk=�k0 1=�k �.A little-known alternative [12, 14, 16℄, whih we all the UT transform, has the form I �UT�1UT where(I � u0uT0 =�0) � � � (I � uk�1uTk�1=�k�1) = (I � Uk�1T�1k�1UTk�1);with T0 = �0 and Tk = � Tk�1 Uk�1uk0 �k �. Note that T an be omputed from U as T = UTU (uppertriangular part only) followed by the dividing of the diagonal elements of the resulting T by two. Uppertriangular matries T and S are related by S = T�1.2



Both the CWY and the UT transform allow the appliation of a series of Householder transformationsto be ast in terms of high-performane matrix-matrix operations:(I � USUT )A = A� U [ S[ UTA| {z }gemm ℄| {z }trmm ℄| {z }gemm and (I � UT�1UT )A = A� U [ T�1[ UTA| {z }gemm ℄| {z }trsm ℄| {z }gemm :
3 New notation for the traditional redution algorithmIn this setion, we disuss the basi idea behind the algorithm for omputing the Hessenberg redution of asquare matrix A: A = QBQT , where Q is unitary and B is upperHessenberg (B has zeroes below the �rstsubdiagonal). We will see that Q will be omputed as a sequene of Householder transformations, that Ban overwrite A, and that the Householder vetors an overwrite the parts of A below the �rst subdiagonal.Let us denote the original ontents of matrix A as Â and assume that A is to be overwritten by theupperHessenberg matrix. PartitionA! � �11 aT12a21 A22 � and Â! � �̂11 âT12â21 Â22 � :Let [funn�g21; �1℄ = Hous(a21) and H0 = H(u21; �1) � I � u21uT21=�1 so that f0nn�g21 = H0a21. Then the�rst step of the redution updatesA := � �11 aT12a21 A22 � := � 1 00 H0 �� �11 aT12a21 A22 �� 1 00 H0 � = � �11 aT12H0f0nn�g21 H0A22H0 � :To omplete an upperHessenberg redution, the proedure ontinues by reursively omputing Householdertransformations from the updated A22, and applying them to that matrix as well as the part of matrix Athat appears above A22.The above proedure an be desribed more ompletely as follows. After k steps, partition A and Â asA! � BTL ATRf0nn�gBL ABR � and Â!  ÂTL ÂTRÂBL ÂBR ! ;where BTL and ÂTL are k�k, BTL is upperHessenberg, and f0nn�gBL is the matrix of all zeroes exept with�BL in the top-right orner. Notie that by now A has been omputed from Â by omputing f �H0; : : : ; �Hk�1gso that A = �Hk�1 � � � �H0Â �H0 � � � �Hk�1; where �Hj = � Ij+1 00 Hj � :Let us examine how A must be updated as part of the kth step. Repartition� BTL ATRf0nn�gBL ABR �! 0� B00 a01 A02f0nn�gT10 �11 aT120 a21 A22 1A ;
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Algorithm: [A; t℄ := HesRedUnb(A)Partition A! � fUnnBgTL ATRfUnn�gBL ABR �, t! � tTtB �where fUnnBgTL is 0� 0 and tT has 0 elementswhile m(ATL) < m(A) doRepartition� fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 a01 A02funn�gT10 �11 aT12U20 a21 A22 1A and � tTtB �! 0� t0�1t2 1Awhere �11 and �1 are salars[funn�g21; �1℄ := Hous(a21) (funn�g21 overwrites a21)A02 := A02H(u21; �1)aT12 := aT12H(u21; �1)A22 := H(u21; �1)A22H(u21; �1) 9=; via the steps in (1){(4).Continue with� fUnnBgTL ATRfUnn�gBL ABR � 0� fUnnBg00 b01 A02funn�gT10 �11 aT12U20 funn�g21 A22 1A and � tTtB � 0� t0�1t2 1Aendwhile Figure 1: Unbloked redution to upperHessenberg form.where f0nn�gT10 equals the row vetor of all zeroes exept for the last element, whih equals �10. Hk is nowomputed as Hk = H(u21; �1) where [funn�g21; �1℄ = Hous(a21) and A is updated with0� Ik 0 00 1 00 0 Hk 1A0� B00 a01 A02f0nn�gT10 �11 aT120 a21 A22 1A0� Ik 0 00 1 00 0 Hk 1A =0� B00 a01 A02Hkf0nn�gT10 �11 aT12Hk0 f0nn�g21 HkA22Hk 1A :The thik lines that indiate progress through the matrix an then be moved to inlude the next diagonalelement: � BTL ATRf0nn�gBL ABR � 0� B00 a01 A02Hkf0nn�gT10 �11 aT12Hk0 f0nn�g21 HkA22Hk 1A :We �nish this setion by noting that vetor uk an be stored in the elements of A from whih it wasomputed sine it by design has a �rst element that equals \1", whih therefore needs not be stored. Thesalars �k are typially stored in a vetor. Thus, after k steps A ontains� fUnnBgTL ATRfUnn�gBL ABR � ;whih is meant to indiate that the upperHessenberg matrix BTL is stored in the upperHessenberg part offUnnBgTL, the element �BL is stored in the top-right element of fUnn�gBL, and the kth olumn1 of A storesuk below the �rst subdiagonal of that olumn. The omplete algorithm is now given in Fig. 1.1The 0th olumn of A is the left-most olumn here, sine we start indexing at 0.4



In Fig. 1, it is important to realize that H(u21; �1) is never expliitly formed, and the following formulae:A02 := A02H(u21; �1) = A01(I � u21uT21=�1)aT12 := aT12H(u21; �1) = aT12(I � u21uT21=�1)A22 := H(u21; �1)A22H(u21; �1) = (I � u21uT21=�1)A22(I � u21uT21=�1)an be implemented as 0� v01�11v21 1A := 0� A02aT12A22 1Au21 (1)0� A02aT12A22 1A := 0� A02aT12A22 1A�0� v01�11v21 1AuT21=�1 (2)wT21 := uT21A22 (3)A22 := A22 � u21wT21=�1 (4)For the step where fUnnBgTL is k�k, the ost of eah omputation in (1) and (2) is roughly 2n(n�k�1)ops while eah ost in (3) and (4) is roughly 2(n� k � 1)2 ops. The total ost for reduing A 2 Rn�n isthus approximately n�1Xk=0 �4n(n� k � 1) + 4(n� k � 1)2� ops � 103 n3ops:4 Bloked algorithmsIn Setion 2 we noted that by aumulating multiple Householder transformations into a single transformhigher performane an be ahieved when these transformations are to be applied to a matrix. The om-pliation is that A must be updated with part of the omputations in (1){(4) before the next Householdertransform an be omputed. We �rst show how to progress to the point where a number of Householder trans-formations have been aumulated, after whih we show how to then ast the remainder of the omputationmostly in terms of matrix-matrix produts.4.1 Building up a blokWe will need a temporary matrix V 2 Rn�b in whih to store the vetors v that appeared in (1) and a matrixT 2 Rb�b that appears in the UT transform. In this disussion we will also treat U 2 Rn�b , whih storedthe Householder vetors, as a separate matrix although in pratie it overwrites part of A.Partition all matries involved asA = � ATL ATRABL ABR � ; Â =  ÂTL ÂTRÂBL ÂBR ! ; U = � UTL 0UBL UBR � ;V = � VTL VTRVBL VBR � ; and T = � TTL TTR0 TBR � ;where XTL 2 Rk�k , k < b, for X 2 fA; Â; U; V; Tg. Consider�I � uk�1uTk�1=�k�1� � � � �I � u0uT0 =�0� Â �I � u0uT0 =�0� � � � �I � uk�1uTk�1=�k�1�5



=  I �� UTLUBL �T�TTL � UTLUBL �T! ÂTL ÂTRÂBL ÂBR ! I �� UTLUBL �T�1TL � UTLUBL �T!=  I �� UTLUBL �T�TTL � UTLUBL �T!  ÂTL ÂTRÂBL ÂBR !�� VTLVBL �T�1TL � UTLUBL �T! ;where � VTLVBL � =  ÂTL ÂTRÂBL ÂBR !� UTLUBL �. The idea is that not all of this has overwritten A. Onlythe �rst k olumns have been updated with that part of the desired Hessenberg matrix:� ATL ATRABL ABR � urrently ontains  BTL ÂTRf0nn�gBL ÂBR ! ;where � BTLf0nn�gBL � =  I �� UTLUBL �T�TTL � UTLUBL �T!  ÂTLÂBL !�� VTLVBL �T�1TLUTTL! :The question now beomes how to update the next olumn of A so that the next Householder transforman be omputed (the next olumn of U), from whih then the next olumns of V and T an be omputed.Repartition� ATL ATRABL ABR �! 0� A00 a01 A02aT10 �11 aT12A20 a21 A22 1A ;  ÂTL ÂTRÂBL ÂBR !! 0B� Â00 â01 Â02âT10 �̂11 âT12Â20 â21 Â22 1CA ;� VTL VTRVBL VBR �! 0� V00 v01 V02vT10 �11 vT12V20 v21 V22 1A ; � UTL 0UBL UBR �! 0� U00 0 0uT10 0 0U20 u21 U22 1A ;and � TTL TTR0BL TBR �! 0� T00 t01 T020 �11 tT120 0 T22 1A :The next olumn of A must be updated by0� b01�11b21 1A := 0B�I �0� U00uT10U20 1AT�T00 0� U00uT10U20 1AT1CA0�0� â01�̂11â21 1A�0� V00vT10V20 1AT�100 u101Abefore the next Householder vetor an be omputed from the so updated b21. After this, the next olumnsof V and T an be omputed by the formulae0� v01�11v21 1A := 0B� Â00 â01 Â02âT10 �̂11 âT12Â20 â21 Â22 1CA0� 00u21 1A = 0B� Â02u21âT12u21Â22u21 1CA (5)6



and 0� t01�110 1A := 0� UT20u21�110 1A ;where �11 is the value returned by the routine that omputes the Householder reetion. We note that Vhere is aumulated sine at some future point this next olumn of V will be needed in order to update thenext olumn of A.An algorithm that embodies the above insights is given in Fig. 2.4.2 A new bloked algorithmNow we show how a bloked algorithm an be ahieved by repeatedly performing the steps in Setion 4.1.One again, assume the omputation has proeeded to whereA! � fUnnBgTL ATRfUnn�gBL ABR � ;where BTL 2 Rk�k and ATR and ABR have been updated aording to the Householder transformationsomputed so far: A = �Hk�1 � � � �H0Â �H0 � � � �Hk�1. Repartition� fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 A01 A02fUnn�g10 A11 A12U20 A21 A22 1A ;where A11 2 Rb�b . The idea now is to all the algorithm in Fig. 2 to ompute� A11 A12A21 A22 � := � fUnnBg11 A12fUnn�g21 A22 � ; � V1V2 � ; and T1;where A12 and A22 are not updated yet. Upon return, the following omputations still need to be performedon the non-blank submatries: 0� A01 A02A12A22 1A :These parts of the matrix must then be updated by� A01 A02 � := � A01 A02 � I �� U11U21 �T�11 � U11U21 �T!= � A01 A02 �� V0T�11 � U11U21 �Tand � A12A22 � :=  I �� U11U21 �T�T1 � U11U21 �T!�� A12A22 ��� V1V2 �T�11 UT21� :A omplete bloked algorithm based on these insights given in Fig. 3.7



Algorithm: [A; V; T ℄ := HesRedBuildBlk(A; V; T )Partition A! � fUnnBgTL ATRfUnn�gBL ABR � , V ! � VTL VTRVBL VBR � , T ! � TTL TTR0 TBR �where fUnnBgTL is 0� 0, VTL is 0� 0, TTL is 0� 0while n(VTL) < n(V ) doRepartition� fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 a01 A02funn�gT10 �11 aT12U20 a21 A22 1A,� VTL VTRVBL VBR �! 0� V00 v01 V02vT10 �11 vT12V20 v21 V22 1A, � TTL TTR0 TBR �! 0� T00 t01 T020 �11 tT120 0 T22 1Awhere �11 is 1� 1 , �11 is 1� 1 , �11 is 1� 10� b01�11b21 1A := 0B�I �0� U00uT10U20 1AT�T00 0� U00uT10U20 1AT1CA0�0� a01�11a21 1A�0� V00vT10V20 1AT�100 u101Avia the steps8>>>>>>>>><>>>>>>>>>:
y10 := T�100 u100� a01�11a21 1A := 0� a01�11a21 1A�0� V00vT10V20 1A y100� b01�11b21 1A := 0B�I �0� U00uT10U20 1AT�T00 0� U00uT10U20 1AT1CA0� a01�11a21 1A[funn�g21; �11℄ := Hous(a21) (funn�g21 overwrites a21)0� v01�11v21 1A := 0B� Â02u21âT12u21Â22u21 1CA ; 0� t01�110 1A := 0� UT20u21�110 1AContinue with� fUnnBgTL ATRfUnn�gBL ABR � 0� fUnnBg00 b01 A02funn�gT10 �11 aT12U20 funn�g21 A22 1A,� VTL VTRVBL VBR � 0� V00 v01 V02vT10 �11 vT12V20 v21 V22 1A, � TTL TTR0 TBR � 0� T00 t01 T020 �11 tT120 0 T22 1AendwhileFigure 2: Algorithm for building up bloks for the bloked algorithm in Fig. 3.
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Algorithm: [A; V; T ℄ := HesRedBlk(A; V; T )Partition A! � fUnnBgTL ATRfUnn�gBL ABR � , V ! � VTVB � , T ! � TTTB �where fUnnBgTL is 0� 0, VT has 0 rows, TT has 0 rowswhile m(ATL) < m(A) doDetermine blok size bRepartition� fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 A01 A02fUnn�g10 A11 A12U20 A21 A22 1A,� VTVB �! 0� V0V1V2 1A , � TTTB �! 0� T0T1T2 1Awhere A11 is b� b , V1 has b rows, T1 has b rows�� fUnnBg11 A12fUnn�g21 A22 � ;� V1V2 � ; T1� := HesRedBuildBlk�� A11 A12A21 A22 � ;� V1V2 � ; T1�V0 := � A01 A02 �� U11U12 �� A01 A02 � := � B01 A02 � = � A01 A02 �� V0T�11 � U11U21 �T� A12A22 � :=  I �� U11U21 �T�T1 � U11U21 �T!�� A12A22 ��� V1V2 �T�11 UT21� :Continue with� fUnnBgTL ATRfUnn�gBL ABR � 0� fUnnBg00 B01 A02fUnn�g10 fUnnBg11 A12U20 fUnn�g21 A22 1A,� VTVB � 0� V0V1V2 1A , � TTTB � 0� T0T1T2 1AendwhileFigure 3: Bloked algorithm for omputing the redution to upperHessenberg form.
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4.3 Outline of LAPACK-style algorithmThe implementation that is urrently part of LAPACK updates A slightly di�erently. Consider the reparti-tioning � fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 A01 A02fUnn�g10 A11 A12U20 A21 A22 1Awhere A11 2 Rb�b . In the LAPACK implementation, the routine equivalent to HessRedBuildBlk,dlahrd, returns having omputed V0, V1, and V2, and having updated A01 as well as A11 and A21 with the�nal results for those submatries. Upon return, the updates still need to be performed on the non-blanksubmatries: 0� A02A12A22 1A :These parts of the matrix must then be updated byA02 := A02 � V0T�11 UT21and � A12A22 � :=  I �� U11U21 �T�T1 � U11U21 �T!�� A12A22 ��� V1V2 �T�11 UT21� :An ineÆieny lies with the fat that the update of A01 as well as the omputation of V0 are ast in termsof level-2 BLAS rather than level-3 BLAS.An additional performane hit omes from the fat that the LAPACK implementation touhes in everyiteration (that is, n times) the whole rest of the matrix (ATR, and ABR). By ontrast, in every iteration thealgorithm in Setion 4.2 only touhes ABR. This improves data loality and redues ahe traÆ.We note that the LAPACK-style algorithm desribed above and its urrent implementation as part ofLAPACK is di�erent than the original LAPACK implementation desribed in [7℄. The original algorithmproposed in that paper ast even more omputation in terms of matrix-vetor produt.4.4 Cost analysisThe problem in all algorithms for reduing a matrix to upperHessenberg form is that some of the omputationis in level-2 BLAS operations, whih attain only a fration of the peak performane of urrent arhitetures.In partiular, it is the matrix-vetor produt in (5) that ontributes O(n3) ops aggregate over all iterations.It is the onstant before n3 that sets the algorithms in Setions 4.2 and 4.3 apart.For the new algorithm proposed in Setion 4.2 the matrix in (5) is roughly (n� k)� (n� k) during theiteration involving the kth olumn of A. The total number of ops in this operation, over all iterations,is approximately 2Pn�kk=0 (n � k)2 � 23n3. By ontrast, in the LAPACK-like algorithm the matrix in thatomputation spans all rows and is thus roughly n � (n � k). Combined over all iterations, the numberof ops omputed with matrix-vetor produts for the LAPACK-style algorithm is given by approximately2Pn�kk=0 n(n � k) � n3. Realling that the total ost of a redution is about 103 n3 ops, the new algorithmperforms about 20% of its omputation in level-2 BLAS and about 80% in level-3 BLAS. By ontrast, theLAPACK-style algorithm spends about 30% in level-2 BLAS and about 70% in level-3 BLAS.Even though most omputation is in high-performing level-3 BLAS, the time spent in these matrix-vetorproduts is often the dominant term sine they are exeuted at a muh lower rate. As a result, the redutionof the amount of omputation being performed in the matrix-vetor produts is signi�ant as we will see inperformane reported in the next setion. 10



5 ExperimentsWe now demonstrate that by shifting the omputation from level-2 BLAS to level-3 BLAS operations, anotieable performane improvement an be observed.Three di�erent implementations were tested. The �rst two were from the LAPACK library: dgehd2 anddgehrd whih implement an unbloked algorithm and the LAPACK-style bloked algorithm. The third one,fla hrd, implements the new bloked algorithm using the Formal Linear Algebra Methods Environment(FLAME) Appliation Programming Interfae (API) for the C programming language. The FLAME APIsallow ode to losely resemble the algorithms as they are given in Figs. 1{3. We refer the interested readerto other papers on FLAME [4, 3℄.The implementations of the LAPACK-style and the new algorithm do not aumulate T . Rather, theyaumulate its inverse, S. Moreover, in our implementation this matrix S is ombined with U so that theprodut UST is aumulated in a matrixW : I�UT�TUT beomes I�WUT and V T�1UT beomes V W T .We note that in the previous setions we presented the algorithms using the UT transform sine it is a moregeneral way of stating the algorithm before these kinds of details are inorporated.In Fig. 4 performane is reported for the Xeon (2.4GHz), Pentium4 (1.8GHz), and Itanium2 (900MHz)proessors. The Pentium4 has two levels of ahe, with a 512 Kbyte L2 ahe. The Xeon and Itanium2 eahhave three levels of ahe, with 1 Mbyte and 1.5 Mbyte L3 ahes, respetively. On all platforms BLASlibraries implemented by Kazushige Goto were used [10℄. Sine in this paper we are primarily onerned withdemonstrating the bene�ts of the new algorithm rather than a omplete study of the e�et of bloking ondi�erent arhitetures, the blok size was �xed at 32 for both bloked algorithms. From additional experi-ments it was obvious that for smaller problems smaller bloksizes should be employed. On all three platformsthe new algorithm was notieably faster than the one implemented in LAPACK. As an be expeted, thedi�erene was the least for the Itanium2 proessor, whih has a very fast and very large (1.5 MBytes) L3ahe.6 ConlusionIn this paper we have presented a new bloked algorithm for the redution of a matrix to upperHessenbergform. While the new algorithm performs roughly the same number of omputations as the algorithm thatis urrently inluded in LAPACK, it shifts more omputation to high-performing matrix-matrix omputa-tions (level-3 BLAS). As a result, the overall performane of the omputation is improved. The preditedimprovement in performane was observed in pratie on proessors that are urrently in ommon use.AknowledgmentsThis researh was partially sponsored by NSF grants ACI-0305163 and CCF-0342369 and an equipmentdonation from Hewlett-Pakard.Referenes[1℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.MKenney, S. Ostrouhov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.[2℄ R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C: Algorithm 432.Communiations of the ACM, 15:820{826, 1972.11


