
Improving the Performan
e of Redu
tion to Hessenberg FormGregorio Quintana-Ort��Departamento de Ingenier��a y Cien
ia de ComputadoresUniversidad Jaume I, Campus Riu Se
, 12.071Castell�on, Spaingquintan�i

.uji.esRobert van de GeijnDepartment of Computer S
ien
esThe University of Texas at AustinAustin, Texas 78712rvdg�
s.utexas.eduFLAME Working Note #14O
tober 12, 2004Abstra
tIn this paper, a modi�
ation of the blo
ked algorithm for redu
tion to Hessenberg form is presentedthat improves performan
e by shifting more
omputation from less eÆ
ient matrix-ve
tor operations tohighly eÆ
ient matrix-matrix operations. Signi�
ant performan
e improvements are reported relative tothe performan
e a
hieved by the
urrent LAPACK implementation.1 Introdu
tionThe redu
tion to Hessenberg form is an important and time
onsuming step in the
omputation of the S
hurde
omposition of a square nonsymmetri
 matrix. The S
hur de
omposition itself is important sin
e it solvesthe nonsymmetri
 eigenvalue problem [9℄ and is a step towards the solution of the Sylvester equation andother linear algebra equations that arise in
ontrol theory [15, 2, 8, 9℄. Thus, improving the performan
e ofthis
omputation impa
ts a number of important appli
ations.Algorithms for the
omputation of the redu
tion to Hessenberg form date ba
k to the early 1960s [17, 13℄.In the 1980s, it was observed that the key to attaining high performan
e on ar
hite
tures with
omplex multi-level memories is to
ast
omputation in terms of matrix-matrix operations, like the matrix-matrix produ
t.These operations are supported by the level-3 Basi
 Linear Algebra Subprograms (BLAS) [5℄. The ideais that su
h operations perform O(n3)
oating point operations (
ops) on O(n2) data, where n equals thematrix dimension of the operands. This allows data to be brought into fast
a
he memory, amortizingthe
ost of this data movement over a large number of
omputations. An algorithm that
asts part ofthe
omputation required for the redu
tion in terms of matrix-matrix operations (level 3 BLAS) was �rstpresented in [7℄. The
urrently most widely used library for linear algebra operations, the Linear AlgebraPa
kage (LAPACK) [1℄, in
orporates one su
h algorithm in the routine dgehrd.As we will review later in this paper, inherently a
onsiderable part of the
omputation must be interms of matrix-ve
tor operations (level-2 BLAS [6℄) that attain only a modest per
ent of the peak of an1

ar
hite
ture due to memory bandwidth limitations. Thus, even if the rest of the
omputation is
ast interms of level-3 BLAS, the part that requires level-2 BLAS will remain and will limit the per
entage of peakthat the algorithm
an a
hieve. The problem with the implementation that is
urrently part of LAPACKis that it leaves more
omputation in terms of level-2 BLAS than ne
essary. It is this short
oming that thealgorithm in this paper addresses.The primary bene�t of our new implementation is a shift of
omputation from level-2 to level-3 BLAS.A se
ondary bene�t
omes from the fa
t that the
omputation that is not in level-3 BLAS involves lessdata, improving data lo
ality and redu
ing
a
he traÆ
 during those operations: The
urrent LAPACKimplementation tou
hes in every iteration (that is, n times) all
olumns to the right of the
urrent
olumnwhile our algorithm only tou
hes the part of those same
olumns that is below the
urrent row.The remainder of this paper is organized as follows: Householder transformations and related transformsare reviewed in Se
tion 2. The traditional (unblo
ked) algorithm for redu
tion to Hessenberg form is givenin Se
tion 3. Blo
ked algorithms are then des
ribed in Se
tion 4. Performan
e results are given in Se
tion 5followed by
on
luding remarks in the �nal se
tion.2 Householder transformsGiven a nonzero ve
tor u 2 Rm , a Householder transformation (or re
e
tor) is de�ned by H = Im � uuT =� ,where Im denotes the (square) identity matrix of order m and � = uTu=2 [11℄. It is an orthogonal matrix(HTH = HHT = Im) and symmetri
 (HT = H). This transformation has wide appli
ation in the solutionof linear least-squares problems, the
omputation of orthonormal bases, and the solution of the algebrai
eigenvalue problem.Householder transformations will be used in this paper in an e�ort to annihilate elements below the �rstsubdiagonal of a given matrix. More pre
isely, given ve
tor x, partition x = � �1 x2 �T , where �1 equalsthe �rst element of x. De�ne the Householder ve
tor asso
iated with x as the ve
tor u = � 1 u2 �T , whereu2 = x2=�1 with �1 = �1 + sign(�1)kxk2. Here sign(�) returns 1 or �1 depending on the sign of �. Let� = uTu=2. Then (I � uuT=�)x = f0nn�g where � = �sign(�1)kxk2 and f0nn�g equals the zero ve
tor withthe �rst element repla
ed by �. Let us introdu
e the notation [funn�g; � ℄ := Hous(x) for the operation that
omputes the above mentioned �, u, and � from the given ve
tor x. Here funn�g indi
ates the ve
tor u withthe �rst element (whi
h is impli
itly equal to \1") overwritten by the value �.Multiplying two or more Householder transformations results again in an orthogonal matrix, althoughnot symmetri
. This allows Householder transformations to be a

umulated into a
omposed transformation.Traditionally, the
ompa
t WY transform (CWY) is used, whi
h has the form I�USUT , where the
olumnsof U
onsist of the Householder ve
tors being a

umulated: Letting the
olumns of Uk�1 equal the �rst kHouseholder ve
tors uj , 0 � j < k,(I � u0uT0 =�0) � � � (I � uk�1uTk�1=�k�1) = (I � Uk�1Sk�1UTk�1);where S0 = 1=�0 and Sk = � Sk�1 �Sk�1Uk�1uk=�k0 1=�k �.A little-known alternative [12, 14, 16℄, whi
h we
all the UT transform, has the form I �UT�1UT where(I � u0uT0 =�0) � � � (I � uk�1uTk�1=�k�1) = (I � Uk�1T�1k�1UTk�1);with T0 = �0 and Tk = � Tk�1 Uk�1uk0 �k �. Note that T
an be
omputed from U as T = UTU (uppertriangular part only) followed by the dividing of the diagonal elements of the resulting T by two. Uppertriangular matri
es T and S are related by S = T�1.2

Both the CWY and the UT transform allow the appli
ation of a series of Householder transformationsto be
ast in terms of high-performan
e matrix-matrix operations:(I � USUT)A = A� U [S[UTA| {z }gemm ℄| {z }trmm ℄| {z }gemm and (I � UT�1UT)A = A� U [T�1[UTA| {z }gemm ℄| {z }trsm ℄| {z }gemm :
3 New notation for the traditional redu
tion algorithmIn this se
tion, we dis
uss the basi
 idea behind the algorithm for
omputing the Hessenberg redu
tion of asquare matrix A: A = QBQT , where Q is unitary and B is upperHessenberg (B has zeroes below the �rstsubdiagonal). We will see that Q will be
omputed as a sequen
e of Householder transformations, that B
an overwrite A, and that the Householder ve
tors
an overwrite the parts of A below the �rst subdiagonal.Let us denote the original
ontents of matrix A as Â and assume that A is to be overwritten by theupperHessenberg matrix. PartitionA! � �11 aT12a21 A22 � and Â! � �̂11 âT12â21 Â22 � :Let [funn�g21; �1℄ = Hous(a21) and H0 = H(u21; �1) � I � u21uT21=�1 so that f0nn�g21 = H0a21. Then the�rst step of the redu
tion updatesA := � �11 aT12a21 A22 � := � 1 00 H0 �� �11 aT12a21 A22 �� 1 00 H0 � = � �11 aT12H0f0nn�g21 H0A22H0 � :To
omplete an upperHessenberg redu
tion, the pro
edure
ontinues by re
ursively
omputing Householdertransformations from the updated A22, and applying them to that matrix as well as the part of matrix Athat appears above A22.The above pro
edure
an be des
ribed more
ompletely as follows. After k steps, partition A and Â asA! � BTL ATRf0nn�gBL ABR � and Â! ÂTL ÂTRÂBL ÂBR ! ;where BTL and ÂTL are k�k, BTL is upperHessenberg, and f0nn�gBL is the matrix of all zeroes ex
ept with�BL in the top-right
orner. Noti
e that by now A has been
omputed from Â by
omputing f �H0; : : : ; �Hk�1gso that A = �Hk�1 � � � �H0Â �H0 � � � �Hk�1; where �Hj = � Ij+1 00 Hj � :Let us examine how A must be updated as part of the kth step. Repartition� BTL ATRf0nn�gBL ABR �! 0� B00 a01 A02f0nn�gT10 �11 aT120 a21 A22 1A ;

3

Algorithm: [A; t℄ := HesRedUnb(A)Partition A! � fUnnBgTL ATRfUnn�gBL ABR �, t! � tTtB �where fUnnBgTL is 0� 0 and tT has 0 elementswhile m(ATL) < m(A) doRepartition� fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 a01 A02funn�gT10 �11 aT12U20 a21 A22 1A and � tTtB �! 0� t0�1t2 1Awhere �11 and �1 are s
alars[funn�g21; �1℄ := Hous(a21) (funn�g21 overwrites a21)A02 := A02H(u21; �1)aT12 := aT12H(u21; �1)A22 := H(u21; �1)A22H(u21; �1) 9=; via the steps in (1){(4).Continue with� fUnnBgTL ATRfUnn�gBL ABR � 0� fUnnBg00 b01 A02funn�gT10 �11 aT12U20 funn�g21 A22 1A and � tTtB � 0� t0�1t2 1Aendwhile Figure 1: Unblo
ked redu
tion to upperHessenberg form.where f0nn�gT10 equals the row ve
tor of all zeroes ex
ept for the last element, whi
h equals �10. Hk is now
omputed as Hk = H(u21; �1) where [funn�g21; �1℄ = Hous(a21) and A is updated with0� Ik 0 00 1 00 0 Hk 1A0� B00 a01 A02f0nn�gT10 �11 aT120 a21 A22 1A0� Ik 0 00 1 00 0 Hk 1A =0� B00 a01 A02Hkf0nn�gT10 �11 aT12Hk0 f0nn�g21 HkA22Hk 1A :The thi
k lines that indi
ate progress through the matrix
an then be moved to in
lude the next diagonalelement: � BTL ATRf0nn�gBL ABR � 0� B00 a01 A02Hkf0nn�gT10 �11 aT12Hk0 f0nn�g21 HkA22Hk 1A :We �nish this se
tion by noting that ve
tor uk
an be stored in the elements of A from whi
h it was
omputed sin
e it by design has a �rst element that equals \1", whi
h therefore needs not be stored. Thes
alars �k are typi
ally stored in a ve
tor. Thus, after k steps A
ontains� fUnnBgTL ATRfUnn�gBL ABR � ;whi
h is meant to indi
ate that the upperHessenberg matrix BTL is stored in the upperHessenberg part offUnnBgTL, the element �BL is stored in the top-right element of fUnn�gBL, and the kth
olumn1 of A storesuk below the �rst subdiagonal of that
olumn. The
omplete algorithm is now given in Fig. 1.1The 0th
olumn of A is the left-most
olumn here, sin
e we start indexing at 0.4

In Fig. 1, it is important to realize that H(u21; �1) is never expli
itly formed, and the following formulae:A02 := A02H(u21; �1) = A01(I � u21uT21=�1)aT12 := aT12H(u21; �1) = aT12(I � u21uT21=�1)A22 := H(u21; �1)A22H(u21; �1) = (I � u21uT21=�1)A22(I � u21uT21=�1)
an be implemented as 0� v01�11v21 1A := 0� A02aT12A22 1Au21 (1)0� A02aT12A22 1A := 0� A02aT12A22 1A�0� v01�11v21 1AuT21=�1 (2)wT21 := uT21A22 (3)A22 := A22 � u21wT21=�1 (4)For the step where fUnnBgTL is k�k, the
ost of ea
h
omputation in (1) and (2) is roughly 2n(n�k�1)
ops while ea
h
ost in (3) and (4) is roughly 2(n� k � 1)2
ops. The total
ost for redu
ing A 2 Rn�n isthus approximately n�1Xk=0 �4n(n� k � 1) + 4(n� k � 1)2�
ops � 103 n3
ops:4 Blo
ked algorithmsIn Se
tion 2 we noted that by a

umulating multiple Householder transformations into a single transformhigher performan
e
an be a
hieved when these transformations are to be applied to a matrix. The
om-pli
ation is that A must be updated with part of the
omputations in (1){(4) before the next Householdertransform
an be
omputed. We �rst show how to progress to the point where a number of Householder trans-formations have been a

umulated, after whi
h we show how to then
ast the remainder of the
omputationmostly in terms of matrix-matrix produ
ts.4.1 Building up a blo
kWe will need a temporary matrix V 2 Rn�b in whi
h to store the ve
tors v that appeared in (1) and a matrixT 2 Rb�b that appears in the UT transform. In this dis
ussion we will also treat U 2 Rn�b , whi
h storedthe Householder ve
tors, as a separate matrix although in pra
ti
e it overwrites part of A.Partition all matri
es involved asA = � ATL ATRABL ABR � ; Â = ÂTL ÂTRÂBL ÂBR ! ; U = � UTL 0UBL UBR � ;V = � VTL VTRVBL VBR � ; and T = � TTL TTR0 TBR � ;where XTL 2 Rk�k , k < b, for X 2 fA; Â; U; V; Tg. Consider�I � uk�1uTk�1=�k�1� � � � �I � u0uT0 =�0� Â �I � u0uT0 =�0� � � � �I � uk�1uTk�1=�k�1�5

= I �� UTLUBL �T�TTL � UTLUBL �T! ÂTL ÂTRÂBL ÂBR ! I �� UTLUBL �T�1TL � UTLUBL �T!= I �� UTLUBL �T�TTL � UTLUBL �T! ÂTL ÂTRÂBL ÂBR !�� VTLVBL �T�1TL � UTLUBL �T! ;where � VTLVBL � = ÂTL ÂTRÂBL ÂBR !� UTLUBL �. The idea is that not all of this has overwritten A. Onlythe �rst k
olumns have been updated with that part of the desired Hessenberg matrix:� ATL ATRABL ABR �
urrently
ontains BTL ÂTRf0nn�gBL ÂBR ! ;where � BTLf0nn�gBL � = I �� UTLUBL �T�TTL � UTLUBL �T! ÂTLÂBL !�� VTLVBL �T�1TLUTTL! :The question now be
omes how to update the next
olumn of A so that the next Householder transform
an be
omputed (the next
olumn of U), from whi
h then the next
olumns of V and T
an be
omputed.Repartition� ATL ATRABL ABR �! 0� A00 a01 A02aT10 �11 aT12A20 a21 A22 1A ; ÂTL ÂTRÂBL ÂBR !! 0B� Â00 â01 Â02âT10 �̂11 âT12Â20 â21 Â22 1CA ;� VTL VTRVBL VBR �! 0� V00 v01 V02vT10 �11 vT12V20 v21 V22 1A ; � UTL 0UBL UBR �! 0� U00 0 0uT10 0 0U20 u21 U22 1A ;and � TTL TTR0BL TBR �! 0� T00 t01 T020 �11 tT120 0 T22 1A :The next
olumn of A must be updated by0� b01�11b21 1A := 0B�I �0� U00uT10U20 1AT�T00 0� U00uT10U20 1AT1CA0�0� â01�̂11â21 1A�0� V00vT10V20 1AT�100 u101Abefore the next Householder ve
tor
an be
omputed from the so updated b21. After this, the next
olumnsof V and T
an be
omputed by the formulae0� v01�11v21 1A := 0B� Â00 â01 Â02âT10 �̂11 âT12Â20 â21 Â22 1CA0� 00u21 1A = 0B� Â02u21âT12u21Â22u21 1CA (5)6

and 0� t01�110 1A := 0� UT20u21�110 1A ;where �11 is the value returned by the routine that
omputes the Householder re
e
tion. We note that Vhere is a

umulated sin
e at some future point this next
olumn of V will be needed in order to update thenext
olumn of A.An algorithm that embodies the above insights is given in Fig. 2.4.2 A new blo
ked algorithmNow we show how a blo
ked algorithm
an be a
hieved by repeatedly performing the steps in Se
tion 4.1.On
e again, assume the
omputation has pro
eeded to whereA! � fUnnBgTL ATRfUnn�gBL ABR � ;where BTL 2 Rk�k and ATR and ABR have been updated a

ording to the Householder transformations
omputed so far: A = �Hk�1 � � � �H0Â �H0 � � � �Hk�1. Repartition� fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 A01 A02fUnn�g10 A11 A12U20 A21 A22 1A ;where A11 2 Rb�b . The idea now is to
all the algorithm in Fig. 2 to
ompute� A11 A12A21 A22 � := � fUnnBg11 A12fUnn�g21 A22 � ; � V1V2 � ; and T1;where A12 and A22 are not updated yet. Upon return, the following
omputations still need to be performedon the non-blank submatri
es: 0� A01 A02A12A22 1A :These parts of the matrix must then be updated by� A01 A02 � := � A01 A02 � I �� U11U21 �T�11 � U11U21 �T!= � A01 A02 �� V0T�11 � U11U21 �Tand � A12A22 � := I �� U11U21 �T�T1 � U11U21 �T!�� A12A22 ��� V1V2 �T�11 UT21� :A
omplete blo
ked algorithm based on these insights given in Fig. 3.7

Algorithm: [A; V; T ℄ := HesRedBuildBlk(A; V; T)Partition A! � fUnnBgTL ATRfUnn�gBL ABR � , V ! � VTL VTRVBL VBR � , T ! � TTL TTR0 TBR �where fUnnBgTL is 0� 0, VTL is 0� 0, TTL is 0� 0while n(VTL) < n(V) doRepartition� fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 a01 A02funn�gT10 �11 aT12U20 a21 A22 1A,� VTL VTRVBL VBR �! 0� V00 v01 V02vT10 �11 vT12V20 v21 V22 1A, � TTL TTR0 TBR �! 0� T00 t01 T020 �11 tT120 0 T22 1Awhere �11 is 1� 1 , �11 is 1� 1 , �11 is 1� 10� b01�11b21 1A := 0B�I �0� U00uT10U20 1AT�T00 0� U00uT10U20 1AT1CA0�0� a01�11a21 1A�0� V00vT10V20 1AT�100 u101Avia the steps8>>>>>>>>><>>>>>>>>>:
y10 := T�100 u100� a01�11a21 1A := 0� a01�11a21 1A�0� V00vT10V20 1A y100� b01�11b21 1A := 0B�I �0� U00uT10U20 1AT�T00 0� U00uT10U20 1AT1CA0� a01�11a21 1A[funn�g21; �11℄ := Hous(a21) (funn�g21 overwrites a21)0� v01�11v21 1A := 0B� Â02u21âT12u21Â22u21 1CA ; 0� t01�110 1A := 0� UT20u21�110 1AContinue with� fUnnBgTL ATRfUnn�gBL ABR � 0� fUnnBg00 b01 A02funn�gT10 �11 aT12U20 funn�g21 A22 1A,� VTL VTRVBL VBR � 0� V00 v01 V02vT10 �11 vT12V20 v21 V22 1A, � TTL TTR0 TBR � 0� T00 t01 T020 �11 tT120 0 T22 1AendwhileFigure 2: Algorithm for building up blo
ks for the blo
ked algorithm in Fig. 3.

8

Algorithm: [A; V; T ℄ := HesRedBlk(A; V; T)Partition A! � fUnnBgTL ATRfUnn�gBL ABR � , V ! � VTVB � , T ! � TTTB �where fUnnBgTL is 0� 0, VT has 0 rows, TT has 0 rowswhile m(ATL) < m(A) doDetermine blo
k size bRepartition� fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 A01 A02fUnn�g10 A11 A12U20 A21 A22 1A,� VTVB �! 0� V0V1V2 1A , � TTTB �! 0� T0T1T2 1Awhere A11 is b� b , V1 has b rows, T1 has b rows�� fUnnBg11 A12fUnn�g21 A22 � ;� V1V2 � ; T1� := HesRedBuildBlk�� A11 A12A21 A22 � ;� V1V2 � ; T1�V0 := � A01 A02 �� U11U12 �� A01 A02 � := � B01 A02 � = � A01 A02 �� V0T�11 � U11U21 �T� A12A22 � := I �� U11U21 �T�T1 � U11U21 �T!�� A12A22 ��� V1V2 �T�11 UT21� :Continue with� fUnnBgTL ATRfUnn�gBL ABR � 0� fUnnBg00 B01 A02fUnn�g10 fUnnBg11 A12U20 fUnn�g21 A22 1A,� VTVB � 0� V0V1V2 1A , � TTTB � 0� T0T1T2 1AendwhileFigure 3: Blo
ked algorithm for
omputing the redu
tion to upperHessenberg form.
9

4.3 Outline of LAPACK-style algorithmThe implementation that is
urrently part of LAPACK updates A slightly di�erently. Consider the reparti-tioning � fUnnBgTL ATRfUnn�gBL ABR �! 0� fUnnBg00 A01 A02fUnn�g10 A11 A12U20 A21 A22 1Awhere A11 2 Rb�b . In the LAPACK implementation, the routine equivalent to HessRedBuildBlk,dlahrd, returns having
omputed V0, V1, and V2, and having updated A01 as well as A11 and A21 with the�nal results for those submatri
es. Upon return, the updates still need to be performed on the non-blanksubmatri
es: 0� A02A12A22 1A :These parts of the matrix must then be updated byA02 := A02 � V0T�11 UT21and � A12A22 � := I �� U11U21 �T�T1 � U11U21 �T!�� A12A22 ��� V1V2 �T�11 UT21� :An ineÆ
ien
y lies with the fa
t that the update of A01 as well as the
omputation of V0 are
ast in termsof level-2 BLAS rather than level-3 BLAS.An additional performan
e hit
omes from the fa
t that the LAPACK implementation tou
hes in everyiteration (that is, n times) the whole rest of the matrix (ATR, and ABR). By
ontrast, in every iteration thealgorithm in Se
tion 4.2 only tou
hes ABR. This improves data lo
ality and redu
es
a
he traÆ
.We note that the LAPACK-style algorithm des
ribed above and its
urrent implementation as part ofLAPACK is di�erent than the original LAPACK implementation des
ribed in [7℄. The original algorithmproposed in that paper
ast even more
omputation in terms of matrix-ve
tor produ
t.4.4 Cost analysisThe problem in all algorithms for redu
ing a matrix to upperHessenberg form is that some of the
omputationis in level-2 BLAS operations, whi
h attain only a fra
tion of the peak performan
e of
urrent ar
hite
tures.In parti
ular, it is the matrix-ve
tor produ
t in (5) that
ontributes O(n3)
ops aggregate over all iterations.It is the
onstant before n3 that sets the algorithms in Se
tions 4.2 and 4.3 apart.For the new algorithm proposed in Se
tion 4.2 the matrix in (5) is roughly (n� k)� (n� k) during theiteration involving the kth
olumn of A. The total number of
ops in this operation, over all iterations,is approximately 2Pn�kk=0 (n � k)2 � 23n3. By
ontrast, in the LAPACK-like algorithm the matrix in that
omputation spans all rows and is thus roughly n � (n � k). Combined over all iterations, the numberof
ops
omputed with matrix-ve
tor produ
ts for the LAPACK-style algorithm is given by approximately2Pn�kk=0 n(n � k) � n3. Re
alling that the total
ost of a redu
tion is about 103 n3
ops, the new algorithmperforms about 20% of its
omputation in level-2 BLAS and about 80% in level-3 BLAS. By
ontrast, theLAPACK-style algorithm spends about 30% in level-2 BLAS and about 70% in level-3 BLAS.Even though most
omputation is in high-performing level-3 BLAS, the time spent in these matrix-ve
torprodu
ts is often the dominant term sin
e they are exe
uted at a mu
h lower rate. As a result, the redu
tionof the amount of
omputation being performed in the matrix-ve
tor produ
ts is signi�
ant as we will see inperforman
e reported in the next se
tion. 10

5 ExperimentsWe now demonstrate that by shifting the
omputation from level-2 BLAS to level-3 BLAS operations, anoti
eable performan
e improvement
an be observed.Three di�erent implementations were tested. The �rst two were from the LAPACK library: dgehd2 anddgehrd whi
h implement an unblo
ked algorithm and the LAPACK-style blo
ked algorithm. The third one,fla hrd, implements the new blo
ked algorithm using the Formal Linear Algebra Methods Environment(FLAME) Appli
ation Programming Interfa
e (API) for the C programming language. The FLAME APIsallow
ode to
losely resemble the algorithms as they are given in Figs. 1{3. We refer the interested readerto other papers on FLAME [4, 3℄.The implementations of the LAPACK-style and the new algorithm do not a

umulate T . Rather, theya

umulate its inverse, S. Moreover, in our implementation this matrix S is
ombined with U so that theprodu
t UST is a

umulated in a matrixW : I�UT�TUT be
omes I�WUT and V T�1UT be
omes V W T .We note that in the previous se
tions we presented the algorithms using the UT transform sin
e it is a moregeneral way of stating the algorithm before these kinds of details are in
orporated.In Fig. 4 performan
e is reported for the Xeon (2.4GHz), Pentium4 (1.8GHz), and Itanium2 (900MHz)pro
essors. The Pentium4 has two levels of
a
he, with a 512 Kbyte L2
a
he. The Xeon and Itanium2 ea
hhave three levels of
a
he, with 1 Mbyte and 1.5 Mbyte L3
a
hes, respe
tively. On all platforms BLASlibraries implemented by Kazushige Goto were used [10℄. Sin
e in this paper we are primarily
on
erned withdemonstrating the bene�ts of the new algorithm rather than a
omplete study of the e�e
t of blo
king ondi�erent ar
hite
tures, the blo
k size was �xed at 32 for both blo
ked algorithms. From additional experi-ments it was obvious that for smaller problems smaller blo
ksizes should be employed. On all three platformsthe new algorithm was noti
eably faster than the one implemented in LAPACK. As
an be expe
ted, thedi�eren
e was the least for the Itanium2 pro
essor, whi
h has a very fast and very large (1.5 MBytes) L3
a
he.6 Con
lusionIn this paper we have presented a new blo
ked algorithm for the redu
tion of a matrix to upperHessenbergform. While the new algorithm performs roughly the same number of
omputations as the algorithm thatis
urrently in
luded in LAPACK, it shifts more
omputation to high-performing matrix-matrix
omputa-tions (level-3 BLAS). As a result, the overall performan
e of the
omputation is improved. The predi
tedimprovement in performan
e was observed in pra
ti
e on pro
essors that are
urrently in
ommon use.A
knowledgmentsThis resear
h was partially sponsored by NSF grants ACI-0305163 and CCF-0342369 and an equipmentdonation from Hewlett-Pa
kard.Referen
es[1℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.M
Kenney, S. Ostrou
hov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.[2℄ R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C: Algorithm 432.Communi
ations of the ACM, 15:820{826, 1972.11

