Improving the Performance of Reduction to Hessenberg Form

Gregorio Quintana-Orti
Departamento de Ingenieria y Ciencia de Computadores
Universidad Jaume I, Campus Riu Sec, 12.071
Castellon, Spain
gquintan@icc.uji.es

Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

rvdgQcs.utexas.edu

FLAME Working Note #14
October 12, 2004

Abstract
In this paper, a modification of the blocked algorithm for reduction to Hessenberg form is presented

that improves performance by shifting more computation from less efficient matrix-vector operations to
highly efficient matrix-matrix operations. Significant performance improvements are reported relative to
the performance achieved by the current LAPACK implementation.

1 Introduction

The reduction to Hessenberg form is an important and time consuming step in the computation of the Schur
decomposition of a square nonsymmetric matrix. The Schur decomposition itself is important since it solves
the nonsymmetric eigenvalue problem [9] and is a step towards the solution of the Sylvester equation and
other linear algebra equations that arise in control theory [15, 2, 8, 9]. Thus, improving the performance of
this computation impacts a number of important applications.

Algorithms for the computation of the reduction to Hessenberg form date back to the early 1960s [17, 13].
In the 1980s, it was observed that the key to attaining high performance on architectures with complex multi-
level memories is to cast computation in terms of matrix-matrix operations, like the matrix-matrix product.
These operations are supported by the level-3 Basic Linear Algebra Subprograms (BLAS) [5]. The idea
is that such operations perform O(n?®) floating point operations (flops) on O(n?) data, where n equals the
matrix dimension of the operands. This allows data to be brought into fast cache memory, amortizing
the cost of this data movement over a large number of computations. An algorithm that casts part of
the computation required for the reduction in terms of matrix-matrix operations (level 3 BLAS) was first
presented in [7]. The currently most widely used library for linear algebra operations, the Linear Algebra
Package (LAPACK) [1], incorporates one such algorithm in the routine DGEHRD.

As we will review later in this paper, inherently a considerable part of the computation must be in
terms of matrix-vector operations (level-2 BLAS [6]) that attain only a modest percent of the peak of an

architecture due to memory bandwidth limitations. Thus, even if the rest of the computation is cast in
terms of level-3 BLLAS, the part that requires level-2 BLAS will remain and will limit the percentage of peak
that the algorithm can achieve. The problem with the implementation that is currently part of LAPACK
is that it leaves more computation in terms of level-2 BLAS than necessary. It is this shortcoming that the
algorithm in this paper addresses.

The primary benefit of our new implementation is a shift of computation from level-2 to level-3 BLAS.
A secondary benefit comes from the fact that the computation that is not in level-3 BLAS involves less
data, improving data locality and reducing cache traffic during those operations: The current LAPACK
implementation touches in every iteration (that is, n times) all columns to the right of the current column
while our algorithm only touches the part of those same columns that is below the current row.

The remainder of this paper is organized as follows: Householder transformations and related transforms
are reviewed in Section 2. The traditional (unblocked) algorithm for reduction to Hessenberg form is given
in Section 3. Blocked algorithms are then described in Section 4. Performance results are given in Section 5
followed by concluding remarks in the final section.

2 Householder transforms

Given a nonzero vector u € R™, a Householder transformation (or reflector) is defined by H = I,,, — uu® /7,
where I,,, denotes the (square) identity matrix of order m and 7 = uTw/2 [11]. It is an orthogonal matrix
(HTH = HHT = I,;;) and symmetric (HT = H). This transformation has wide application in the solution
of linear least-squares problems, the computation of orthonormal bases, and the solution of the algebraic
eigenvalue problem.

Householder transformations will be used in this paper in an effort to annihilate elements below the first

subdiagonal of a given matrix. More precisely, given vector z, partition = (X1 | T2)T, where y; equals

the first element of z. Define the Householder vector associated with z as the vector u = (1 | uz)T, where
uz = x3/p1 with p1 = x1 + sign(x1)||z||2- Here sign(«) returns 1 or —1 depending on the sign of a. Let
7 =ulu/2. Then (I —uu®/7)z = {0\B} where 8 = —sign(x1)||z||2 and {0\3} equals the zero vector with
the first element replaced by 5. Let us introduce the notation [{u\3}, 7] := Hous(z) for the operation that
computes the above mentioned 3, u, and 7 from the given vector x. Here {u\\8} indicates the vector u with
the first element (which is implicitly equal to “1”) overwritten by the value (.

Multiplying two or more Householder transformations results again in an orthogonal matrix, although
not symmetric. This allows Householder transformations to be accumulated into a composed transformation.
Traditionally, the compact WY transform (CWY) is used, which has the form I — USU”, where the columns
of U consist of the Householder vectors being accumulated: Letting the columns of Uj_; equal the first &
Householder vectors uj, 0 < j <k,

(I —woug [10) -+ (I —up—1uj_y/Th-1) = (I = Up-18k1U;_y),

where Sop = 1/79 and Sy, = (Sko_l I —Sk—llU/kT—1Uk/Tk)
k

A little-known alternative [12, 14, 16], which we call the UT transform, has the form I — UT*U7T where

(I — woug /m0) -+~ (I —up—ruf 1 /m—1) = (I = Ue 1 T, UL),

Ti—1 | Up—1up
0 | Tk
triangular part only) followed by the dividing of the diagonal elements of the resulting 7' by two. Upper

triangular matrices T' and S are related by S =T 1.

with Ty = 79 and T}, = () Note that 7' can be computed from U as T' = UTU (upper

Both the CWY and the UT transform allow the application of a series of Householder transformations
to be cast in terms of high-performance matrix-matrix operations:

(I-USUT)A= A-U[§] @ 1] and (I —UT'UT) A= A-U[T} @ 1] .

GEMM GEMM
———— —_—————
TRMM TRSM
GEMM GEMM

3 New notation for the traditional reduction algorithm

In this section, we discuss the basic idea behind the algorithm for computing the Hessenberg reduction of a
square matrix A: A = QBQT, where Q is unitary and B is upperHessenberg (B has zeroes below the first
subdiagonal). We will see that @ will be computed as a sequence of Householder transformations, that B
can overwrite A, and that the Householder vectors can overwrite the parts of A below the first subdiagonal.

Let us denote the original contents of matrix A as A and assume that A is to be overwritten by the
upperHessenberg matrix. Partition

T A /\T
8% Qa A 11 a
A— 1 12 and A — — 12 .
as | A2 Go21 | A2

Let [{u\B}21,71] = Hous(az;) and Hy = H(us1,7) = I — uz ud; /71 so that {0\B}21 = Hoaz;. Then the
first step of the reduction updates

A::(a11|afz>::(1|0)(a11|a§’12>(1|0):(11 |aT2H0)

az1 | Az 0 | Hy as1 | Az 0 | H, {0\B}21 | HyAy Hy

To complete an upperHessenberg reduction, the procedure continues by recursively computing Householder
transformations from the updated Ass, and applying them to that matrix as well as the part of matrix A

that appears above Ass. R
The above procedure can be described more completely as follows. After k steps, partition A and A as

A—>(1L IATR) and A (] Arn
{0\\6}BL I ABr Apr, ABR ’

where B and flTL are k x k, By, is upperHessenberg, and {0\(8} 5y, is the Ama,trix of all zeroes except with
BpL in the top-right corner. Notice that by now A has been computed from A by computing {Ho, ..., Hr_1}
so that

A=Hy ,---HyAHy---Hy ,, where H; = (Ijarl 13)
j

Let us examine how A must be updated as part of the kth step. Repartition

Boo ao1 | Aoz

Bry | Arr) . . o
{0\s8} o a R
e eyl e e

| Algorithm: [A,{] := HESREDUNB(A)

{U\B}rL | Arr

tr

Partition A — (

{U\B}BL | ABR

while m(Arr) < m(A) do
Repartition

).t

where {U\B}rr is 0 X 0 and t7 has 0 elements

(

tB

)

where «i; and 71 are scalars

{U\B}oo | ao1 | Ao2 to
{U\B}rz | Arr - t .
(Hrteetzs) - (Copiaitst) = ()~ (3)

[{u\B}21,71] := Hous(az21)

Agz := Ag2H (u21,71)

afy := af, H(u1,71)

Az := H(u21,71)A22H (u21,71)

({u\B}21 overwrites as1)

} via the steps in (1)—(4).

Continue with

endwhile

{U\B}oo bo1 Ap2 to
(EZ§E;TL I ::TR) — ({u\\ﬁ}fo B11 aTQ) and (zT) — (T)
BL BR Uao {u\B}21 | A22 B t2

Figure 1: Unblocked reduction to upperHessenberg form.

where {0\ 8}, equals the row vector of all zeroes except for the last element, which equals B19. Hj is now
computed as Hy = H (u21,71) where [{u\B}21,71] = Hous(as;) and A is updated with

I. 10| O Boo o1 | Aos 1ol o
011/ 0 {0\B}io | @11 | aiy 0111 0 _
0]0| Hg 0 as1 | Aso o [0
Boo ao1 Ao Hy,
{0\\5}{0 a1 a%“sz
0 {0\BYa1 | HrAsxHy,
The thick lines that indicate progress through the matrix can then be moved to include the next diagonal
element:
Bry | Arr BOOT ao1 A%ZH,c
({0\B}5L | ABr) « | 10\S}o Q11 aty Hy,
0 {0\B}21 | HrAz2Hy

We finish this section by noting that vector uj can be stored in the elements of A from which it was
computed since it by design has a first element that equals “1”, which therefore needs not be stored. The
scalars 7, are typically stored in a vector. Thus, after k steps A contains

({U\B}rp, | Arr)
{U\B}p, | ABr)’
which is meant to indicate that the upperHessenberg matrix By is stored in the upperHessenberg part of

{U\B}, the element Bpy, is stored in the top-right element of {U\ 3}, and the kth column' of A stores
uy, below the first subdiagonal of that column. The complete algorithm is now given in Fig. 1.

IThe Oth column of A is the left-most column here, since we start indexing at 0.

In Fig. 1, it is important to realize that H (us1,71) is never explicitly formed, and the following formulae:

Aps := AozH(U21771) = A01(I - U21Ugl/71)
a{z = a{zH(uzl,Tl) = afz(I - UZIUgl/Tl)
Agp i= H(UZI’TI)AZZH(UleTl) = (I - U21Ugl/Tl)A22(I - Uzlugl/Tl)

can be implemented as

Vo1 Apy
Vi1 = aio U21 (1)
V21 Ao
Agy Ao Vo1
aiz = afz - Vi1 Ugl /Tt (2)
Ao Az V21
w;l = ’u/g'lAzz (3)
A22 = A22 — Uzlwgl/Tl (4)
For the step where {U\ B}y, is k X k, the cost of each computation in (1) and (2) is roughly 2n(n—k—1)

flops while each cost in (3) and (4) is roughly 2(n — k — 1)? flops. The total cost for reducing A € R**" is
thus approximately

|
-

n
1
(4n(n —k —1) + 4(n — k — 1)?) flops ~ §0n3ﬂops.
0

=~
Il

4 Blocked algorithms

In Section 2 we noted that by accumulating multiple Householder transformations into a single transform
higher performance can be achieved when these transformations are to be applied to a matrix. The com-
plication is that A must be updated with part of the computations in (1)—(4) before the next Householder
transform can be computed. We first show how to progress to the point where a number of Householder trans-
formations have been accumulated, after which we show how to then cast the remainder of the computation
mostly in terms of matrix-matrix products.

4.1 Building up a block

We will need a temporary matrix V' € R**? in which to store the vectors v that appeared in (1) and a matrix
T € R**? that appears in the UT transform. In this discussion we will also treat U € R"*?, which stored
the Householder vectors, as a separate matrix although in practice it overwrites part of A.

Partition all matrices involved as

A:(ATL ATR) Ao Arp | Arr U:(UTL 0)
Apr | ABr)’ Apr | Agr |’ Upr | Usr)’

Vre | Vrr) (Trr | Trr)
V= , and T =)
(Ver | VBr 0 | Tsr

where X7 € R¥¥F k< b, for X € {A,A, U,V,T}. Consider

(I — uk,lu{_l/m,l) e (I — uOug/To) A (I — uOug/To) e (I — uk,lu{_l/Tk,l)

_ I < UrL)TT< UrL >T Arp | Arg I (Urr >T1< Urt >T
Usr L \ UpyL Agr | Agr Usr TL\ UgpL

_ (- < Urr)T_T< Urr)T Arp | Arg B < Vrr)T_1< Urr)T
UL TL \ Upg Agr | Asr VBL TL\ Upg ’

VrL Arp | Ar Urt

VBL>:<ABL|ABR><UBL

the first £ columns have been updated with that part of the desired Hessenberg matrix:

where <) The idea is that not all of this has overwritten A. Only

< Arp | Arr > . Bri | Arr
currently contains R
Apr | ABr {0\G}BL I ABr
where
(Bty) I (Urr)TT(Urr)T Arp _ (Vrr)TIUT
{0\B}BL UsL L \ UgyL App VBL TLETL -

The question now becomes how to update the next column of A so that the next Householder transform
can be computed (the next column of U), from which then the next columns of V' and T' can be computed.
Repartition

Ao | a0y | A X X Ao | dor | A
A7 | Arr 3«0 i ;{2 Arp | Arr A;O — ASF
ABL ABR — aio 11 ajo 5 i i — aio 11 ajo ,
Ay | a1 | Az BL BR Ao | G21 | A2z
\% v \% U 0 0
Vrr | Vrr 29 = (1)"2 UrL 0 2"0
Voo | Var) \—adofiuivi | Ups | Usr) |~ 0 L0]
Vao | va1 | Va2 Uso | u21 | Uz
and
T t T
Tro | Trr 00 | o1 2012
0 T — 0 T11 t12
BL BR 0 0 | T
The next column of A must be updated by
T N
bo1 Uoo Uoo o1 Voo
P = 1| ul | To | ulo Qa1 Uljo Too 10
b21 Uso Uso 21 Vao

before the next Householder vector can be computed from the so updated bs;. After this, the next columns
of V and T can be computed by the formulae

Up1 Ao | Go1 | Aoz 0 Agaua;

_ ~T S ~T _ =
Y11 = | %10 | @11 | 91 0 = | _912U21 (5)
V21 Ao | G21 | A2 U21 Asoun

and

T
to1 Ujguar
T11 = T11 y
0 0

where 717 is the value returned by the routine that computes the Householder reflection. We note that V'
here is accumulated since at some future point this next column of V will be needed in order to update the
next column of A.

An algorithm that embodies the above insights is given in Fig. 2.

4.2 A new blocked algorithm

Now we show how a blocked algorithm can be achieved by repeatedly performing the steps in Section 4.1.
Once again, assume the computation has proceeded to where

{U\B}rr | Arr
4= (T\ 5z | Asr) ’

where B € REXF and Argr and AAB r have been updated according to the Householder transformations
computed so far: A = Hyp_1---HyoAHy--- Hi_1. Repartition

{U\B}oo | Ao1 | Ao2
{U\B}1o | A1 | A2 |,
Uso Azi | Az

{U\B}rL | Arr
({U\B}sL | 4Br > -

where A;; € R®*?. The idea now is to call the algorithm in Fig. 2 to compute

() - (). (3).

where A;5 and Ass are not updated yet. Upon return, the following computations still need to be performed
on the non-blank submatrices:

Ao | Aoz
Ao
Az

These parts of the matrix must then be updated by

o o) G) (1= () ()

T
= (Ao | Aoz) —WT7! (U)

(42) = (o= (B = ()) ((42) - () o).

A complete blocked algorithm based on these insights given in Fig. 3.

and

| Algorithm: [A,V,T] := HESREDBUILDBLK(A, V,T)

e {U\B}rz | Arr) (Vrr | Vrr) (Trr | Trr)
Partition A — , V= , T —
({U\B}BL | ABR Ver | VBr 0 |Tsr
where {U\B}rr is 0 x 0, Vg is 0 x 0, Ty is 0 x 0
while n(Vrr) <n(V) do
Repartition
{U\B}rr | Arr {U\\B}ﬁo U A;{z
OVB1s [Asr)~ (AWho pou L ee |,
Uso as | Az
\% \%, T t T
Voo | Vor . UOTO Z01 Ut;z Trr | Trr . ((])0 T01 tqo;
VBL VBR 10 11 12 ’ 0 TBR 11 12
Voo | var | Va2 0 0 | Tho
where a;;is1x1,v7is1x1,m1is1x1
T
bo1 Uoo Uoo ap1 Voo
P11 =L — | ui TOT)T Uio a11 — | _Yio To_olulo
bo1 Uso Uzo az1 V2o

via the steps
(Y10 := Tgg w0

ao1 ao1 Voo
[=5) - (25) - (GE)~
as1 as1 Vao
bo1 Uoo Uoo T ao1
() - [~ (3) = ()) (55)
b21 Uzo Uso as1

[{u\B}21,711] := Hous(az1)

({u\B}21 overwrites as;)

Vo1 Aoz’u,zl tOl Ug(;uz]_

v | = | _anua |5 VR I G T

21 Az 0 0

Continue with . b i
{U\\B}TL I ATR { \\ }:,QO 01 %2
{U\B}sL | AR < {u\Blio Bi1 aiy |,
U20 {U’\\IB}ZI A22
\% Vi T . -

Vrr | Vrr OTO Vo1 (:)Fz Tys | Ton w0 | tor %2
Vi V, — | vip | Vi1 | via |, 1= - 0 T [5
BL BR Vao | Va1 | Vaso BR 5 T

endwhile

Figure 2: Algorithm for building up blocks for the blocked algorithm in Fig. 3.

| Algorithm: [A,V,T]:= HESREDBLK(A,V,T)

partition 4 — (Gt) v = () 7 ()

where {U\ B}y is 0 x 0, V has 0 rows, T has 0 rows
while m(Arz) <m(A4) do

Determine block size b

Repartition

{U\\B}OO AOl A02
(Ao e) ()

{U\B} An | A
{0\B}az | Asr S I

#)-(3) @) (3)

where A;; is b x b, V7 has b rows, 177 has b rows

[({L{g\\\\g}]:zlll I ﬁi) ’(1‘2 >,T1] := HESREDBUILDBLK << ﬁ; I

RN
SN——
S
5=
SN——
i
SN——

- Ui
T
(Aor | Aoz) :=(Box [Aoz) = (Aor | Aoa)_V0T11<g;>

T
Az \ _ [, (Uu —r(Un Az \ (W 17T
<A22)._(1 (o) (U))((A) (3h) o).
Continue with

{U\\B}oo By A02
< {U\B}rc | ATR ({U\B}10 | {U\B}11 | Az),

{U\B}sL | ABR Uso {U\B}21 | A22

- () - (8

endwhile

Figure 3: Blocked algorithm for computing the reduction to upperHessenberg form.

4.3 Outline of LAPACK-style algorithm

The implementation that is currently part of LAPACK updates A slightly differently. Consider the reparti-
tioning

{U\\/B}IO All A12

({U\B}r. | Arr
Uzo Aoy | Az

{U\\B}OO AOl A02
{U\B}sL | ABR)

where A;; € RPXP. In the LAPACK implementation, the routine equivalent to HESSREDBUILDBLK,
DLAHRD, returns having computed Vj, V1, and V5, and having updated Ag; as well as A;; and As; with the
final results for those submatrices. Upon return, the updates still need to be performed on the non-blank

submatrices:
Aoz

A12
A22

These parts of the matrix must then be updated by
A02 = A02 - ‘/()Tl_leji

Az |\ _ Ui —7(Un T Arp Vi —177T
() = (o (B ()) () - () mes),
An inefficiency lies with the fact that the update of Ay; as well as the computation of Vj are cast in terms
of level-2 BLAS rather than level-3 BLAS.

An additional performance hit comes from the fact that the LAPACK implementation touches in every
iteration (that is, n times) the whole rest of the matrix (Arg, and Aggr). By contrast, in every iteration the
algorithm in Section 4.2 only touches Agr. This improves data locality and reduces cache traffic.

We note that the LAPACK-style algorithm described above and its current implementation as part of
LAPACK is different than the original LAPACK implementation described in [7]. The original algorithm
proposed in that paper cast even more computation in terms of matrix-vector product.

and

4.4 Cost analysis

The problem in all algorithms for reducing a matrix to upperHessenberg form is that some of the computation
is in level-2 BLAS operations, which attain only a fraction of the peak performance of current architectures.
In particular, it is the matrix-vector product in (5) that contributes O(n®) flops aggregate over all iterations.
It is the constant before n3 that sets the algorithms in Sections 4.2 and 4.3 apart.

For the new algorithm proposed in Section 4.2 the matrix in (5) is roughly (n — k) x (n — k) during the
iteration involving the kth column of A. The total number of flops in this operation, over all iterations,
is approximately 2 ZZ;S“ (n —k)? =~ §n3. By contrast, in the LAPACK-like algorithm the matrix in that
computation spans all rows and is thus roughly n x (n — k). Combined over all iterations, the number
of flops computed with matrix-vector products for the LAPACK-style algorithm is given by approximately
2 Zz;g n(n — k) ~ n®. Recalling that the total cost of a reduction is about 13—0n3 flops, the new algorithm
performs about 20% of its computation in level-2 BLAS and about 80% in level-3 BLAS. By contrast, the
LAPACK-style algorithm spends about 30% in level-2 BLAS and about 70% in level-3 BLAS.

Even though most computation is in high-performing level-3 BLAS, the time spent in these matrix-vector
products is often the dominant term since they are executed at a much lower rate. As a result, the reduction
of the amount of computation being performed in the matrix-vector products is significant as we will see in
performance reported in the next section.

10

5 Experiments

We now demonstrate that by shifting the computation from level-2 BLAS to level-3 BLAS operations, a
noticeable performance improvement can be observed.

Three different implementations were tested. The first two were from the LAPACK library: DGEHD2 and
DGEHRD which implement an unblocked algorithm and the LAPACK-style blocked algorithm. The third one,
FLA_HRD, implements the new blocked algorithm using the Formal Linear Algebra Methods Environment
(FLAME) Application Programming Interface (API) for the C programming language. The FLAME APIs
allow code to closely resemble the algorithms as they are given in Figs. 1-3. We refer the interested reader
to other papers on FLAME [4, 3].

The implementations of the LAPACK-style and the new algorithm do not accumulate 7. Rather, they
accumulate its inverse, S. Moreover, in our implementation this matrix S is combined with U so that the
product UST is accumulated in a matrix W: I —UT~TUT becomes I —WUT and VI'~*UT becomes VIWT.
We note that in the previous sections we presented the algorithms using the UT transform since it is a more
general way of stating the algorithm before these kinds of details are incorporated.

In Fig. 4 performance is reported for the Xeon (2.4GHz), Pentium4 (1.8GHz), and Itanium2 (900MHz)
processors. The Pentium4 has two levels of cache, with a 512 Kbyte L2 cache. The Xeon and Itanium2 each
have three levels of cache, with 1 Mbyte and 1.5 Mbyte L3 caches, respectively. On all platforms BLAS
libraries implemented by Kazushige Goto were used [10]. Since in this paper we are primarily concerned with
demonstrating the benefits of the new algorithm rather than a complete study of the effect of blocking on
different architectures, the block size was fixed at 32 for both blocked algorithms. From additional experi-
ments it was obvious that for smaller problems smaller blocksizes should be employed. On all three platforms
the new algorithm was noticeably faster than the one implemented in LAPACK. As can be expected, the
difference was the least for the Itanium2 processor, which has a very fast and very large (1.5 MBytes) L3
cache.

6 Conclusion

In this paper we have presented a new blocked algorithm for the reduction of a matrix to upperHessenberg
form. While the new algorithm performs roughly the same number of computations as the algorithm that
is currently included in LAPACK, it shifts more computation to high-performing matrix-matrix computa-
tions (level-3 BLAS). As a result, the overall performance of the computation is improved. The predicted
improvement in performance was observed in practice on processors that are currently in common use.

Acknowledgments

This research was partially sponsored by NSF grants ACI-0305163 and CCF-0342369 and an equipment
donation from Hewlett-Packard.

References

[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.
McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, 1992.

[2] R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C: Algorithm 432.
Communications of the ACM, 15:820-826, 1972.

11

