
Online Hierarchical Cooperative Caching

Xiaozhou Li1

Microsoft Corporation
C. Greg Plaxton2,3 and Mitul Tiwari2,4

University of Texas at Austin

Arun Venkataramani5

University of Massachusetts, Amherst

October 18, 2004

Abstract

We address a hierarchical generalization of the well-known disk paging problem. In the
hierarchical cooperative caching problem, a set ofn machines residing in an ultrametric space
cooperate with one another to satisfy a sequence of read requests to a collection of read-only
files. A seminal result in the area of competitive analysis states that the ”least recently used”
(LRU) paging algorithm is constant-competitive if it is given a constant-factor blowup in ca-
pacity over the offline algorithm. Does such a constant-competitive deterministic algorithm,
with a constant-factor blowup in the machine capacities, exist for the hierarchical cooperative
caching problem? In this paper, we present a deterministic hierarchical generalization of LRU
that is constant-competitive when the capacity blowup is linear ind, the depth of the cache
hierarchy. Furthermore, we exhibit an infinite family of depth-d hierarchies such that any ran-
domized hierarchical cooperative caching algorithm with capacity blowupb has competitive
ratioΩ(log d

b) against an oblivious adversary. Thus, our upper and lower bounds imply a tight
bound ofΘ(d) on the capacity blowup required to achieve constant competitiveness.

1 Microsoft Digital Anvil, 400 West Cesar Chavez Street, 4th Floor, Austin, TX 78701. Email: xili@microsoft.com.
Most of this work was done while the author was a Ph.D. student at UT Austin supported by NSF Grant CCR–0310970.

2 Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, Texas
78712–0233.

3 Email: plaxton@cs.utexas.edu. Supported by NSF Grant CCR–0310970. Also affiliated with Akamai Technolo-
gies, Inc., Cambridge, MA 02142.

4 Email: mitult@cs.utexas.edu. Supported by NSF Grant ANI–0326001.
5 Computer Science Building, 140 Governors Drive, University of Massachusetts, Amherst, MA 01003-9264.

Email: arun@cs.umass.edu. Most of this work was done while the author was a Ph.D. student at UT Austin sup-
ported by Texas Advanced Technology Project 003658–0503–2003 and by IBM.

1 Introduction

In the classic disk paging problem, which has been extensively studied, we are given a cache and
a sequence of requests for pages. When a page is requested, we incur a miss if it is not already
present in the cache. In the event of a miss, we are required to load the requested page into the
cache, which may necessitate the eviction of another page. Our goal is to minimize the cost of
processing the request sequence, where the cost is defined as the number of misses incurred. A
caching algorithm isonline if it processes each successive request with no knowledge of future
requests. A caching algorithm isoffline if it is given the entire request sequence in advance.

An online algorithm isc-competitiveif, for all request sequencesτ , the cost incurred by the
online algorithm to processτ is at mostc times that incurred by an optimal offline algorithm. In
the seminal paper introducing the notion of competitive analysis, Sleator and Tarjan [11] show that
LRU (Least-Recently-Used) and several other online deterministic caching algorithms arek

k−h+1
-

competitive, wherek is the cache capacity of the online algorithm andh is the cache capacity of
the offline algorithm. They also show thatk

k−h+1
is the best competitive ratio that can be achieved

by any deterministic online caching algorithm. Young [14] proposes theLANDLORD algorithm
that achieves competitive ratio k

k−h+1
for a case where the files being cached have nonuninform

sizes and retrieval costs. Note that LRU andLANDLORD are constant-competitive assuming a
constant-factor capacity blowup over the corresponding optimal offline algorithm.

In cooperative caching [8], a set of caches cooperate in serving requests for each other and in
making caching decisions. The benefits of cooperative caching have been supported by several
studies. For example, the Harvest cache [7] introduces the notion of a hierarchical arrangements
of caches. Harvest uses the Internet Cache Protocol [13] to support discovery and retrieval of
documents from other caches. The Harvest project later became the public domain Squid cache
system [12]. Adaptive Web Caching [15] builds a mesh of overlapping multicast trees; the popular
files are pulled down towards their users from their origin servers. In local-area network environ-
ments, the xFS [1] system utilizes workstations cooperating with each other to cache data and to
provide serverless file system services.

A cooperative caching scheme can be roughly divided into three components: placement,
which determines where to place copies of files, search, which directs each request to an appro-
priate copy of the requested file, and consistency, which maintains the desired level of consistency
among the various copies of a file. In this paper, we study the placement problem, and we assume
that a separate mechanism enables a cache to locate a nearest copy of a file, free of cost, and we
assume that files are read-only (i.e., copies of a file are always consistent).

We focus on a class of networks where the cost of communication among caches is specified
by an ultrametric distance function, the precise definition of which is given in Section 2. We call
the cooperative caching problem in such networks thehierarchical cooperative caching (HCC)
problem.

Ultrametrics are equivalent up to a constant-factor to the hierarchically well-separated tree
(HST) metrics, as introduced by Bartal [3]. Refining earlier results by Bartal [3, 5], Fakcharoen-
phol et al. [9] have shown that any metric space can be approximated by the HST metrics with a
logarithmic distortion. Hence, many results for the HST metrics imply corresponding results for
arbitrary metric spaces at the expense of an extra logarithmic factor.

1

For the case where the access distribution of each file at each cache is fixed and known in
advance, Korupolu et al. [10] provide a polynomial-time algorithm for the HCC problem that
minimizes the average retrieval cost and does not require a capacity blowup. In addition, they
provide a faster constant-factor approximation algorithm that does not require a capacity blowup.
On the other hand, the assumption in Korupolu et al. [10] of a fixed access distribution is rather
strong. Furthermore, even in applications where the access distribution is relatively stable, it may
be expensive to track.

Since the HCC problem generalizes the disk paging problem mentioned earlier, we cannot hope
to achieve constant competiveness for the HCC problem without at least a constant-factor capacity
blowup. Our main motivation in pursuing the present research has been to determine whether there
exists a constant-competitive algorithm with a constant-factor capacity blowup for the HCC prob-
lem. Since theLANDLORD algorithm by Young is designed for files with non-uniform retrieval
cost, one could think of applyingLANDLORD to solve the HCC problem. However, simply run-
ning LANDLORD at each cache does not provide a good competitive ratio for the HCC problem,
sinceLANDLORD is not designed to exploit the benefits of cooperation among caches. As stated in
Young [14], the focus ofLANDLORD “is on simplelocal caching strategies, rather than distributed
strategies in which caches cooperate to cache pages across a network”.

In this paper, we show that if an online algorithm is given a sufficiently large capacity blowup,
then constant competitiveness can be achieved. In Section 4, we present a deterministic hierar-
chical generalization of LRU that is constant-competitive when the capacity blowup is linear in
d, the depth of the cache hierarchy. We content ourselves by dealing with files of unit sizes only.
However, a hierarchical generalization ofLANDLORD can be used to deal with files of nonuniform
sizes.

Furthermore, we exhibit an infinite family of depth-d hierarchies such that any randomized
online HCC algorithm with a capacity blowupb has competitive ratioΩ(log d

b
) against an oblivious

adversary. In particular, we construct a hierarchy with a sufficiently large depth and show that an
oblivious adversary can generate an arbitrarily long request sequence such that the randomized
online HCC algorithm incurs a costΩ(log d

b
) times that of an offline algorithm. In terms ofn, the

number of caches, our lower bound result shows that the competitive ratio of any randomized HCC
algorithm isΩ(log log n− log b). Our upper and lower bounds imply a tight bound ofΘ(d) on the
capacity blowup required to achieve constant competitiveness.

Several paging problems (e.g., distributed paging, file migration, and file allocation) have been
considered in the literature, some of which are related to the HCC problem. (See, e.g., the survey
paper by Bartal [4] for the definitions of these problems.) In particular, the HCC problem can be
formulated as the read-only version of the distributed paging problem on ultrametrics. And the
HCC problem without replication is a special case of the constrained file migration problem where
the cost accessing a file at distanced is equal to the cost of migrating the file a distance ofd. Most
existing work on these problems focuses on upper bound results, and lower bound results only
apply to algorithms without a capacity blowup. For example, for the distributed paging problem,
Awerbuch et al. [2] show that, given polylog(n, ∆) capacity blowup, there exists a deterministic
polylog(n, ∆)-competitive algorithm for general networks, where∆ is the normalized diameter of
the network. For the constrained file migration problem, if we letm denote the total capacity of

2

the n caches, Bartal [3] gives a deterministic lower bound ofΩ(m), a randomized lower bound
of Ω(log m), and a randomized upper bound ofO((log m) log2 n). Applying the recent result of
Fakcharoenphol et al. [9], the latter upper bound may be improved toO((log m) log n).

The rest of this paper is organized as follows. Section 2 provides some preliminary definitions.
Section 3 presents our lower bound. Section 4 presents our upper bound.

2 Preliminaries

Assume that we are given a set of caches, each with a specified nonnegative capacity, and a distance
functionh that specifies the cost of communication between any pair of caches. Such a distance
function is ametricif it is nonnegative, symmetric, satisfies the triangle inequality, andh(u, v) = 0
if and only if u = v for all cachesu andv. A metric distance functionh is an ultrametric if
h(u, v) ≤ max(h(u,w), h(v, w)) for all cachesu, v, andw; note that the latter condition subsumes
the triangle inequality.

We now describe another method to specify a distance function over a set of caches. In this
method, the distance function is encoded as a rooted tree where each node of the tree has an
associated nonnegative diameter. There is a one-to-one correspondence between the set of caches
and the leaves of the tree, and each leaf has a diameter of zero. The diameter of any node is required
to be less than that of its parent. The distance between two caches is then defined as the diameter
of the least common ancestor of the corresponding leaves. It is well-known (and easy to prove)
that a distance function can be specified by a tree in this manner if and only if it is an ultrametric.
We say that such a tree isλ-separated, whereλ > 1, if the diameter of any node is at leastλ times
that of any of its children.

In all of the caching problems addressed in this paper, we assume that the distance function
specifying the cost of communication is an ultrametric, and we adopt the tree view of an ultrametric
discussed in the preceding paragraph. The main advantage of this view is that it enables us to
leverage standard tree terminology in our technical arguments. Table 1 lists a number of useful
definitions based on tree terminology.

Notation Meaning
root the root of the tree

α.parent the parent ofα, whereα 6= root
α.ch children ofα

α.anc the ancestors ofα (includingα)
α.desc the descendants ofα (includingα)

α.depth the depth ofα, where the root is considered to be at depth0
α.diam the diameter ofα

α.caches the set of caches in the subtree rooted atα
α.cap the total capacity of the caches inα.caches

Table 1: Some useful notation. The variableα refers to a tree node.

3

In the caching problems addressed in this paper, we refer to the objects to be cached asfiles.
The files are assumed to be read-only, so we do not need to deal with the issue of consistency
maintenance. Each file is assumed to be indivisible; we do not consider schemes in which a
copy of a file may be broken into fragments and spread across multiple caches. Each filef has a
specified size, denotedsize(f), and penalty, denotedpenalty(f). We assume that any file can fit
in any cache, that is, the maximum file size is assumed to be at most the minimum cache capacity.
The penalty associated with a file represents the cost per unit size to retrieve the file when it is not
stored anywhere in the tree of caches, and is assumed to exceed the diameter of the tree.

A copy is a pair(u, f) whereu is a cache andf is a file with size at most the capacity ofu. A
set of copies is called aplacement. If (u, f) belongs to a placementP , we say that a copy off is
placed atu in P . A placementP is b-feasibleif the total size of the files placed in any cache is at
mostb times the capacity of the cache.

A caching algorithm maintains a placement. Initially, the placement is empty. Two basic
operations,deleteandadd, may be used to update a given placementP . A delete operation removes
a copy fromP ; the algorithm incurs no cost for such a deletion. In an add operation, a copy(u, f)
is added toP . If, prior to the add,P does not place a copy off at any cache, then the cost of the
add is defined to bepenalty(f). Otherwise, the cost issize(f) · dist(u, v), wherev is the closest
cache at which a copy off is placed. A caching algorithmA is b-feasible if it always maintains a
b-feasible placement.

A requestis a pair(u, f) whereu is a cache andf is a file. To process such a request, a
caching algorithm performs an arbitrary sequence of add and delete operations, subject only to the
constraint that(u, f) belongs to at least one of the placements traversed.

The HCC problem is to process a given sequence of requests with the goal of minimizing cost.
For any (randomized) HCC algorithmA, and any request sequenceτ , we defineTA(τ) as the
(expected) cost forA to processτ . An online HCC algorithmA is c-competitiveif for all request
sequencesτ and1-feasible HCC algorithmsB, TA(τ) ≤ c · TB(τ). (Remark: The asymptotic
bounds established in this paper are unchanged if we allow an additive slack in the definition of
c-competitiveness, as in [6, Chapter 1].)

An HCC algorithm isb-quasifeasible if it maintains ab-feasible placement before and after
processing a request, and while processing a request, removal of at most one copy of a file from
its placement makes its placementb-feasible. Observe that anyb-quasifeasible HCC algorithm is
a (b + 1)-feasible HCC algorithm. In Section 4, we present a deterministic constant-competitive
O(d)-quasifeasible online HCC algorithm; by the preceding observation, our algorithm isO(d)-
feasible.

An HCC algorithm isnice if on a request(u, f), it first adds a copy(u, f) to its placement
and then performs an arbitrary sequence of add and delete operations. Observe that anyb-feasible
c-competitive HCC algorithm can be easily converted into a nice(b + 1)-feasible2c-competitive
HCC algorithm. (Remark: With additional care it may be possible to argue that the factor of2
appearing in the preceding observation can be eliminated.) In Section 3 we prove that for any
nice b-feasible randomized online HCC algorithmA, there exists a request sequenceτ and a1-
quasifeasible offline HCC algorithmB such thatTA(τ) = Ω(log d

b
) · TB(τ). By the foregoing

observation, together with that of the preceding paragraph, we can conclude that the competitive

4

ratio of anyb-feasible randomized online HCC algorithm isΩ(log d
b
).

3 The Lower Bound

In this section, we present a lower bound that holds for an arbitrary nice randomizedb-feasible
online HCC algorithmON, whereb is a positive integer. The lower bound holds forON with
respect to the trees drawn from an infinite family ofk-ary, depthd trees, parameterized by integers
d andk such thatd = 8bk − 1. We denote a tree from this family byT (d, k). Furthermore, the
diameter of an internal node,α, of treeT (d, k) is set to beλd−i−1, whereλ = max(15

7
, Ω(log k)),

i = α.depth, and0 ≤ α.depth < d. Recall from the previous section that the diameter of a leaf
is 0. For any filef placed inT (d, k), penalty(f) is set to beλ · root .diam. Note thatT (d, k) is a
λ-separated tree.

In Figure 1, we present an algorithm for anoblivious adversary[6, Chapter 4],ADV, that
constructs a request sequenceσ of any given lengthN . Algorithm ADV is oblivious since it con-
structs the request sequence without examining the random bits used byON during its execution.
Whenever line18 of ADV is executed, a request is appended toσ andON processes this request.
The main technical result to be established in this section is that, forN sufficiently large,TON(σ)
is Ω(log d

b
) timesTA(σ) for any1-quasifeasible offline algorithmA.

We fix d + 1 disjoint sets of unit-sized filesF (i), 0 ≤ i ≤ d, such that|F (i)| = dkd−i−1e for
0 ≤ i ≤ d. We define the functiong(i, j), wherei ≥ 0 andj > 0, as

g(i, j) = kd−i ·
(

i− 1

8k
+

1

4j

)
.

3.1 Correctness of ADV

We show in this section thatADV is well-defined (i.e.,π 6= root just before line 5,π is not a leaf
just before line 8, and line 14 finds a child) and that each round terminates with the generation of
a request. For the sake of brevity, in our reasoning below, we call a predicate aglobal invariantif
it holds everywhere inADV (i.e., it holds initially and it holds between any two adjacent lines of
the pseudocode in Figure 1).

Lemma 3.1 Let I1 denote that every internal node has a child withx field equal to 0,I2 denote
that π is a node, andI3 denote thatπ.load ≥ π.deact . ThenI1 ∧ I2 is a global invariant andI3

holds everywhere in the down loop.

Proof: The predicateI1 ∧ I2 holds initially becauseπ = root andα.x = 0 for all α, andI3 holds
just before the down loop due to the guard of the up loop. We next show that every line of code
outside the down loop preservesI1 ∧ I2 (i.e., if I1 ∧ I2 holds before the line, then it holds after the
line) and every line of code in the down loop preservesI1 ∧ I2 ∧ I3.

Each line of code outside the down loop preservesI1 because such lines do not assign a nonzero
value to anx field. The only line that affectsI2 is line 5. We observe thatπ 6= root just before line

5

{initially, N ≥ 0, count = 0, π = root , root .x = root .y = root .act = g(0, k),
α.x = α.y = 0 for all α 6= root , andσ is empty}

1 while count < N do {main loop}
2 while π.load < π.deact do {up loop}
3 π.y := π.react ;
4 for every childδ of π, set bothδ.x andδ.y to 0;
5 π := π.parent
6 od; {end of up loop}
7 while π.missing = ∅ do {down loop}
8 if a childδ of π satisfiesδ.x > 0 ∧ δ.load ≥ δ.react then
9 π := δ

10 else
11 if π has exactly one child withx equal to0 then
12 for every childδ of π, set bothδ.x andδ.y to 0
13 fi;
14 π := a childδ of π such thatδ.x = 0 ∧ δ.load ≥ δ.act ;
15 set bothπ.x andπ.y to π.act
16 fi
17 od; {end of down loop}
18 append toσ a request for an element inπ.missing at an arbitrary cache inπ;
19 count := count + 1
20 od {end of main loop}

Figure 1: TheADV algorithm. For any nodeα, we define associated “reactivation” and “de-
activation” valuesα.react = g(α.depth, k) and α.deact = g(α.depth, 2k). At any point in
the execution, we define the “activation” value ofα, denotedα.act , as g(α.depth, r) where
r = |{β : β ∈ α.parent .ch : β.x = 0}|. In addition, we defineα.load andα.missing in terms of
the program variableσ, as follows. First, letα.placed denote set of distinct files placed by ON in
α.caches after processing the request sequenceσ. SinceON is a randomized algorithm,α.placed is
a random variable. We then defineα.load as the expected value of|(∪0≤i<α.depthF (i))∩α.placed |,
andα.missing as the set of all filesf in F (α.depth) andPr(f ∈ α.placed) ≤ 1

2
. Finally, we

remark that they field maintained at each node has no impact on the computation of the request
sequenceσ. (To see this, note that they field is written, but never read.) They field has been
introduced to facilitate our analysis.

6

5, due to the guard of the up loop and the observation thatroot .load ≥ root .deact = 0. Hence,
line 5 preservesI2.

In the down loop, the only line that affectsI1 is 15, butI3 and the innerif statement establish
thatπ has at least two children withx field equal to 0 just before line 14. Hence, line 15 preserves
I1.

To argue that each iteration of the down loop preservesI2, it is sufficient to prove thatπ.depth <
8bk − 1 (i.e., π is not a leaf) just before line 8 and that if the assignment statement of line 14 is
executed, the RHS is well-defined (i.e., some childδ of π satisfiesδ.x = 0 andδ.load ≥ δ.act). To
establish the former claim, let us assume to the contrary thatπ.depth = 8bk − 1 just before line
8. (Note thatI2 implies thatπ.depth cannot take on a higher value.) By the guard of the down
loop, the probability thatπ.placed contains the lone file inF (8bk − 1) is at least1

2
. Furthermore,

I3 implies thatπ.load ≥ π.deact = g(8bk − 1, 2k) = b− 1
8k

. It follows that the expected number
of files stored byON in the cache associated with the leafπ is at leastb− 1

8k
+ 1

2
> b, which is a

contradiction sinceπ.cap = 1 andON is b-feasible. Hence,π.depth < 8bk − 1 just before line 8.
We now argue that if the assignment statement of line 14 is executed, the RHS is well-defined.

Let A = {α : α ∈ π.ch ∧ α.x = 0} andB = {β : β ∈ π.ch ∧ β.x > 0}. Let r denote|A| andi
denoteπ.depth. We observe that

∑
α∈A

α.load

=
∑
α∈A

α.load +
∑

β∈B

β.load −
∑

β∈B

β.load

≥ π.load +
|F (i)|

2
−

∑

β∈B

β.load

≥ π.deact +
|F (i)|

2
−

∑

β∈B

β.react

= g(i, 2k) +
kd−i−1

2
−

∑

β∈B

g(i + 1, k)

= kd−i · i

8k
+

kd−i−1

2
− (k − r) · kd−i−1 · (i + 2)

8k

= r · kd−i−1 ·
(

i

8k
+

1

4r
+

1

4k

)
.

(In the derivation above, the first inequality is due to the definition ofload and the guard of the
down loop, i.e, for each filef in |F (i)|, Pr(f ∈ α.placed) > 1

2
, and the second inequality is due to

the guard of the outerif statement andI3. Formula for|F (i)| is valid in the second equality since
i < 8bk − 1.)

7

Hence, by an averaging argument (note thatr > 0 by I1), there exists a childδ of π such that

δ.load

≥ kd−i−1 ·
(

i

8k
+

1

4r

)

= δ.act .

Hence, step 14 finds a child. AndI2 is preserved.
The only lines that affectI3 are 9 and 14. Both of these lines preserveI3 because by definition,

α.react ≥ α.deact andα.act ≥ α.deact for all α.
The claim of the lemma then follows. ¤

Lemma 3.2 The up loop terminates.

Proof: Every iteration of the up loop movesπ to its parent, androot .load ≥ root .deact by
definition. Hence, the up loop terminates. ¤

Lemma 3.3 The down loop terminates.

Proof: Every iteration of the down loop movesπ to one of its children. ByI2 of Lemma 3.1,π is
always a well defined node. Hence, the down loop terminates. ¤

Lemma 3.4 After generating a sequenceσ of N requests,ADV terminates.

Proof: Follows from Lemmas 3.2 and 3.3. ¤

3.2 Some Properties of ADV

We first prove some properties ofADV that follow directly from its structure. For the sake of
brevity, for a property that is a global invariant, we sometimes only state the property but omit
stating that the property holds everywhere.

Lemma 3.5 For all α, α.x = 0 or α.x ≥ α.react .

Proof: The claim holds initially becauseα.x = 0 for all α. The only line that assigns a nonzero
value tox is 15, which preserves the claim because by definition,α.act ≥ α.react for all α. ¤

Lemma 3.6 For all α, α.y equals 0 orα.react or α.x.

Proof: The claim holds initially becauseα.y = 0 for all α. The only lines that modifyx are 4, 12,
and 15. The only lines that modifyy are 3, 4, 12, and 15. By inspection of the code, all of these
lines trivially preserve the claim. ¤

8

Lemma 3.7 LetP denote the predicate that every node inπ.anc has a positivex value and every
node that is neither inπ.anc nor a child of a node inπ.anc has a zerox value. ThenP is a loop
invariant of the up loop, the down loop, and the main loop.

Proof: Let X denoteπ.anc and letY denote the set of nodes that are neither inX nor children of
the nodes inX.

Every iteration of the up loop movesπ to its parent. To avoid confusion, we useπ to denote
the old node (i.e., child) andπ′ to denote the new node (i.e., parent). An iteration of the up loop
removesπ from X, addsπ.ch to Y , and sets thex value ofπ.ch to 0. Therefore, it preservesP .

Every iteration of the down loop movesπ to one of its children. To avoid confusion, we useπ
to denote the old node (i.e., parent) andπ′ to denote the new node (i.e., child). Suppose the down
loop takes the first branch of the outerif statement. Then it addsπ′, which has a positivex value,
to X and removesπ′.ch from Y . Hence it preservesP . Suppose the down loop takes the second
branch of the outerif statement. If line 12 is executed,P is preserved because line 12 leavesX
andY unchanged and only changes thex value of the nodes in neitherX norY . Then lines 14 and
15 preservesP because they addπ′, which has a positivex value after line 15, toX and removes
π′.ch from Y . Hence, it preservesP .

The main loop preservesP because both the up loop and the down loop preserveP . ¤

Lemma 3.8 For all α, α.y ≤ α.x.

Proof: The claim holds initially becauseα.x = α.y = 0 for all α. The only lines that modify
thex or y field are 3, 4, 12, and 15. At lines 4, 12, and 15, thex andy fields become the same
value. It follows from Lemma 3.7 and the guard of the up loop that just before line 3,π 6= root
andπ.x > 0. It then follows from Lemmas 3.5 and 3.6 that line 3 preservesπ.y ≤ π.x. ¤

We now introduce the notion of an active sequence to facilitate our subsequent proofs. A
sequence〈a0, a1, . . . , ar〉, where0 ≤ r < k, is calledi-active if aj = g(i + 1, k − j) for all
0 ≤ j ≤ r.

Lemma 3.9 For every internal nodeα, the nonzerox fields of the children ofα form ani-active
sequence, wherei = α.depth.

Proof: The claim holds initially becauseα.x = 0 for all α. The only lines that modify thex field
are 4, 12, and 15. Lines 4 and 12 preserve the claim because thex fields of the children ofπ
all become 0. Line 15 preserves the claim (forπ.parent) becauseπ.x becomesπ.act , which by
definition equalsg(i + 1, k − j), wherei = π.parent .depth andj equals the number of children
of π.parent that have a positivex field. ¤

Lemma 3.10 Let P (α) denote the predicate that for allβ that are not ancestors ofα, β.y ≤
β.react . ThenP (π) holds initially andP (π) is a loop invariant of the up loop, the down loop, and
the main loop.

9

Proof: The predicateP (π) holds initially becauseπ = root andα.y = 0 for all α. The up loop
preservesP (π) because every iteration first establishesπ.y = π.react and then movesπ to its
parent. The down loop preservesP (π) because it does not set they field to a nonzero value. The
main loop preservesP (π) because both the up loop and the down loop preserveP (π). ¤

3.3 Colorings

In order to facilitate the presentation of an offline algorithm in Section 3.4, we introduce the notion
of colorings in this section and the notion of consistent placements in the next.

A coloring of T (d, k) (recall thatT (d, k) is the tree of caches) is an assignment of one of the
colors{white, black} to every node inT (d, k) so that the following rules are observed: (1)root is
white, (2) every internal white node has exactly one black child andk − 1 white children, and (3)
the children of a black node are black. A coloring is calledconsistent(with ADV) if for every α,
if α.x > 0, thenα is white.

For any coloringC and any pair of sibling nodesα andβ, we defineswapc(C, α, β) (swap
coloring) as the coloring obtained fromC by exchanging the color of each node in the subtree
rooted atα with that of the corresponding node in the subtree rooted atβ. (Note that the subtrees
rooted atα andβ have identical structure.)

3.4 Consistent Placements

A placement iscolorableif there exists a coloringC such that: (1) for each white internal nodeα
of T (d, k), the set of filesF (α.depth) are stored in (and fill) the caches associated with the unique
black child ofα; (2) for each white leafα of T (d, k), the (singleton) set of filesF (α.depth) is
stored in (and fill) the cacheα. Note that in the preceding definition of a colorable placement,
the coloringC, if it exists, is unique. A placement is calledconsistentif it is colorable and the
associated coloring is consistent.

For any placementP and any pair of siblingsα andβ, we defineswapp(P, α, β) (swap place-
ment) as the placement obtained fromP by exchanging the contents of each cache inα with that
of the corresponding cache inβ. (It is convenient to assume that the children of each node in
T (d, k) are ordered from left to right. This induces an overall left to right ordering ofα.caches and
β.caches. For all i, the i-th cache inα.caches corresponds to thei-th cache inβ.caches.) Note
that for any colorable placementP with associated coloringC and any pair of sibling nodesα and
β, the placementswapp(P, α, β) is colorable, and its associated coloring isswapc(C, α, β).

3.5 The Offline Algorithm OFF

For every internal nodeα, we maintain an additional variableα.last defined as follows. First, we
partition the execution of the adversary algorithm into epochs with respect toα. The first epoch
begins at the start of the execution. Each subsequent epoch begins when either line 4 or line 12 is
executed withπ = α. The variableα.last is updated at the start of each epoch, when it is set to
the childβ of α for which line 15 is executed withπ = β furthest in the future. (If one or more

10

childrenβ of α are such that line 15 is never executed withπ = β in the future, thenα.last is set
to an arbitrary such childβ.) Note that the variablesα.last are introduced solely for the purpose
of analysis and have no impact on the execution of ADV.

At any point in the execution of ADV, the values of thelast fields determine a unique coloring,
denoted byCOFF, as follows: root is white and the black child of each internal white nodeα is
α.last .

We define a1-quasifeasible offline algorithmOFF that maintains a placementPOFF as follows.
We initializePOFF to an arbitrary consistent placement with associated coloringCOFF. We update
POFF to swapp(POFF, α, β) whenever line 4 or line 12 is executed, whereα andβ denote the
values ofπ.last before and after the execution of the line. Whenever line18 is executed, a request
is generated and the algorithmOFF uses the placementPOFF to process this request. On a request
(u, f), if there is not already a copy of filef atu, OFF creates a copy(u, f) in order to process the
request and then immediately discards the copy. Note that the capacity constraint can be violated
atu by one unit when the copy(u, f) is created, but the capacity is satisfied before processing the
next request. Hence, the placementPOFF remains the same before and after line18, andPOFF is
updated only at lines4 and12.

Lemma 3.11 Throughout the execution of ADV,POFF is colorable and has associated coloring
COFF.

Proof: Immediate from the wayPOFF is updated whenever alast field is updated. ¤

Lemma 3.12 Execution of line 4 or line 12 preserves the consistency ofCOFF.

Proof: Assume thatCOFF is consistent before line 4. Soπ is white inCOFF before line 4, because
by Lemma 3.7,π.x is positive before line 4. By the definition ofCOFF, before line 4,π.last is
black. Letα be π.last before line 4, and letβ be π.last after line 4. Before and after line 4,
the x values of the descendants ofα are equal to 0. By Lemma 3.7, thex values of all proper
descendants ofβ are equal to 0 before and after line 4. Sinceβ.x = 0 after line 4, thex values of
all descendants ofα andβ are equal to 0 after line 4. Hence, theswapp operation preserves the
consistency ofCOFF. The same argument applies to line 12. ¤

Lemma 3.13 Execution of line 15 preserves the consistency ofCOFF.

Proof: Assume thatCOFF is consistent before line 15. Line 14 implies thatπ 6= root just before
line 15. Letπ′ denoteπ.parent . By Lemma 3.7,π′.x > 0 and henceπ′ is white before line 15.
Therefore, by construction ofADV, π′.last is the black child ofπ′.

Let t denote the start of the current epoch forπ′, i.e.,t is the most recent time at whichπ′.last
was assigned. Just after timet, thex values of all children ofπ′ were equal to 0. By the definition
of t, no child ofπ′ has been set to 0 since timet. By Lemma 3.1, every internal node has at least
one child withx equal to 0. Therefore, from timet until after the execution of line 15, at mostk−1
children ofπ′ have had theirx value set to a nonzero value. (Note that line 15 is the only line that
setsx to a nonzero value.) Thus, by the definition oflast , π′.last .x remains 0 after the execution

11

of line 15. Thus,π′.last 6= π. Sinceπ′ is white andπ′.last is black inCOFF, we conclude thatπ is
white in COFF. SoCOFF remains consistent even with the additional constraint thatπ is required
to be white. (Note thatπ.x is set to a positive value by line 15.) ¤

Lemma 3.14 The placementPOFF is always consistent.

Proof: Lines 4, 12, and 15 are the only lines that can affect the consistency ofCOFF since they are
the only lines that modify thelast field or thex field of any node. From Lemmas 3.12 and 3.13,
these lines preserve the consistency ofCOFF. From Lemma 3.11 it follows thatPOFF is always
consistent. ¤

3.6 A Potential Function Argument

In this section, we use a potential function argument to show thatON isΩ
(

ν
ν′

)
-competitive, where

ν = min

(
λ

16
,
ln k

8
− 1

8

)

andν ′ = λ
λ−1

. Let T ′
OFF(σ) denote the total cost incurred byOFF to process request sequenceσ,

except that we exclude fromT ′
OFF(σ) the cost of initializingPOFF. (This initialization cost is taken

into account in the proof of Theorem 1 below.) We defineΦ, a potential function, as:

Φ = ν · T ′
OFF(σ)− ν ′ · TON(σ) + (1)∑

α∈π.anc∧α6=root

α.parent .diam · α.x +

∑

α/∈π.anc

α.parent .diam · (α.x− α.y + α.load)

Lemma 3.15 The cost incurred byswapp(P, α, β) is at most2 · kd−i · α.parent .diam, where
i = α.depth.

Proof: The cost incurred is the cost of exchanging the files placed inα andβ with each other,
which is at most2 · α.cap · α.parent .diam = 2 · kd−i · α.parent .diam. Note thatα andβ have the
same capacity. ¤

Lemma 3.16 The predicateΦ ≤ 0 is a loop invariant of the up loop.

Proof: Every iteration of the up loop movesπ to its parent. To avoid confusion, we useπ to refer to
the old node (i.e., child) and we useπ′ to refer to the new node (i.e., parent). Consider the change
in Φ in a single iteration of the up loop.ON incurs no cost in the up loop. By the definition ofΦ,
line 3 preservesΦ. By Lemma 3.8, line 4 does not increaseΦ. Let i = π.depth. By Lemma 3.15,

12

after the execution of line 4,OFF incurs a cost of at mostc = 2 · kd−i−1 · π.diam to move from
the current consistent placement to the next. Thus, the total change inΦ in an iteration is at most

ν · c− π′.diam · (π.y − π.load)

≤ ν · c− π′.diam · (π.react − π.deact)

= ν · c− π′.diam · (g(i, k)− g(i, 2k))

= ν · c− π′.diam · kd−i−1 · 1

8

≤ ν · c− λ

16
· c

≤ 0.

(In the derivation above, the first inequality is due to the guard of the up loop and line 3, and the
second inequality is due to the assumption thatT (d, k) is λ-separated.) ¤

Lemma 3.17 The predicateΦ ≤ 0 is a loop invariant of the down loop.

Proof: Every iteration of the down loop movesπ to one of its children. To avoid confusion, we
useπ to refer to the old node (i.e., parent) andπ′ to refer to the new node (i.e., child).ON incurs
no cost in the down loop. We consider the following three cases.

Suppose that the outerif statement takes the first branch. In this case,OFF does not incur any
cost. Thus, the change inΦ is

π.diam · (π′.y − π′.load)

≤ π.diam · (π.react − π.react)

= 0,

where the inequality is due to Lemma 3.10 and the guard of the outerif statement.
Suppose that the outerif statement takes the second branch and that line 12 is not executed. In

this case,OFF does not incur any cost. Thus, the change inΦ is

π.diam · (π′.y − π′.load)

= π.diam · (π′.x− π′.load)

≤ 0,

where the equality is due to line 15 and the inequality is due to lines 14 and 15.
Suppose that the outerif statement takes the second branch and that line 12 is executed. By

Lemma 3.15, in this case,OFF incurs a cost ofc = 2 · kd−i−1 · π.diam, wherei = π.depth. Thus,

13

the change inΦ due to line 12 is at most

ν · c− π.diam ·
∑

δ∈π.ch

(δ.x− δ.y)

≤ ν · c− π.diam ·
∑

δ∈π.ch

(δ.x− δ.react)

= ν · c− π.diam ·
k−2∑
j=0

(g(i + 1, k − j)− g(i + 1, k))

= ν · c− π.diam · kd−i−1

k−2∑
j=0

(
1

4(k − j)
− 1

4k

)

≤ ν · c−
(

ln k

8
− 1

8

)
· c

≤ 0.

(In the above derivation,δ.x andδ.y denotes the values just before the execution of line 12, the first
inequality follows from Lemma 3.10, the first equality follows from Lemma 3.9, and the second
inequality follows from the fact thatHk−1 > ln k, whereHk−1 denotes the(k − 1)th harmonic
number, that is,Hk−1 =

∑k−1
i=1

1
i
.) By the analysis of the previous case (i.e., the outerif statement

takes the second branch but line 12 is not executed), lines 14 and 15 do not increaseΦ. Thus, every
iteration of the down loop preservesΦ ≤ 0. ¤

Lemma 3.18 Lines 18 to 19 preserveΦ ≤ 0.

Proof: Let the request appended toσ in line 18 be(u, f). The guard of the down loop ensures that
f is in π.missing . Algorithm OFF incurs cost at mostπ.diam to process such a request because it
stores all the files inF (π.depth) in a child ofπ, andπ.missing ⊆ F (π.depth).

SinceON is nice, it processes a request(u, f) in two phases as follows: in the first phase,ON
adds a copy(u, f) to its placement; in the second phase,ON performs an arbitrary sequence of
add and delete operations. Ifπ is equal toroot , thenON incurs expected cost at leastλ

2
· π.diam

in the first phase since the miss penalty associated with any file isλ · root .diam. If π is not equal
to root , thenON incurs expected cost at least1

2
· π.parent .diam = λ

2
· π.diam in the first phase.

Thus, in either case,ON incurs expected cost at leastλ
2
· π.diam it the first phase. LetX be the

set of nodes on the path fromπ to u, excludingπ. Note thatα.load , for α ∈ X, may increase by1
during the first phase.

The change inΦ due to the first phase ofON and due toOFF in processing a request is at most

14

ν · π.diam − ν ′ · λ · π.diam

2
+

∑
α∈X

α.parent .diam

≤ π.diam ·
(

ν − ν ′ · λ
2

)
+ π.diam ·

∑
j≥0

λ−j

≤ π.diam ·
(

ν − ν ′ · λ
2

+
λ

λ− 1

)

= π.diam ·
(

ν − λ2 − 2λ

2(λ− 1)

)

≤ π.diam · λ

16
·
(

15− 7λ

λ− 1

)

≤ 0,

(In the above derivation, the second last inequality follows fromν ≤ λ
16

and the last inequality
follows fromλ ≥ 15

7
.)

For analyzing the second phase ofON in processing a request, it is convenient to view the ran-
domized online algorithmON as a probability distribution over a collection of deterministic online
algorithms. For each such deterministic algorithmA, we define an associated potential function
ΦA as in Equation 1, but withTON(σ) replaced by the cost incurred byA onσ, denotedTA(σ), and
each termα.load appearing in the second summation replaced by|(∪0≤i<α.depthF (i))∩α.placedA|,
whereα.placedA denotes the set of distinct files placed byA in α.caches after processing the re-
quest sequenceσ. We denote|(∪0≤i<α.depthF (i)) ∩ α.placedA| by α.loadA. Note thatTON(σ) is
the expected value ofTA(σ) whenA is chosen at random from the probability distribution asso-
ciated withON. Similarly, for any nodeα, α.load is the expected value ofα.loadA andΦ is the
expected value ofΦA. Thus it is sufficient to prove that for anyA, each individual operation (i.e.,
each addition or deletion of a file) performed byA during the second phase does not increaseΦA.
For deletions, this claim is immediate since all terms inΦA are unchanged except that terms of the
form α.loadA may decrease by one. When a file is added, the set of nodes with an increasedloadA

value form a pathP from some node, sayα, to a leaf, andA incurs a cost ofα.parent .diam. Let
the set of nodes on pathP beY . (Note thatroot does not belong toY sinceroot .load is always
zero.) Since the diameters of the nodes ofP areλ-separated, the change inΦA is at most

−ν ′ · α.parent .diam +
∑

β∈Y

β.parent .diam

≤ −ν ′ · α.parent .diam + α.parent .diam ·
∑
j≥0

λ−j

= −ν ′ · α.parent .diam +
λ

λ− 1
· α.parent .diam

= 0.

The claim of the lemma then follows. ¤

15

Lemma 3.19 ON is Ω
(

ν
ν′

)
-competitive.

Proof: Initially, Φ = 0. By Lemmas 3.16, 3.17, and 3.18,Φ ≤ 0 is a loop invariant of the
main loop. Therefore, by Lemmas 3.5 and 3.8,TON(σ) ≥ ν

ν′ · T ′
OFF(σ) holds initially and is a

loop invariant of the main loop. LetC be the cost incurred byOFF in moving from the empty
placement to the first placement. Note thatON serves every request with a cost at least 1 (because
the diameter of an internal node is at least 1). Hence,TON(σ) tends to∞ asN (the length of the
request sequenceσ) tends to∞. Therefore, we can ensure thatTON(σ)

T ′OFF(σ)+C
= Ω

(
ν
ν′

)
by choosing

N sufficiently large. ¤

Theorem 1 ON is Ω
(
log d

b

)
-competitve.

Proof: Recall thatλ is Ω(log k). Hence,ν = Θ(log k) andν ′ = Θ(1). Lemma 3.19 then implies
thatON is Ω(log k)-competitive. The theorem follows sinced = 8bk − 1, that is,k = Θ(d/b). ¤

It is also possible to express the preceding lower bound in terms of the number of cachesn
and the capacity blowupb. Since,n = kd andd = 8bk − 1, we haven = k8bk−1. Solving these
equations fork (e.g., using bootstrapping), we find thatk = Θ(log n

b(log log n−log b
) and hence,

log k = Θ(log log n− log b− log(log log n− log b))

= Θ(log log n− log b).

It follows thatON is Ω(log log n− log b)-competitive.

4 An Upper Bound

We show in this section that, givenO(d) capacity blowup, whered is the depth of the cache hier-
archy, a simple LRU-like algorithm, which we refer to asHierarchical LRU(HLRU), is constant-
competitive with respect to an optimal offline algorithmOPT. For the sake of simplicity, we
assume that every file has unit size and uniform miss penalty. Our result can easily be extended to
handle variable file sizes and nonuniform miss penalties using an approach similar toLANDLORD

[14].

4.1 TheHLRU Algorithm

In this section we present a2(d + 1)-quasifeasibleHLRU algorithm that is constant-competitive
with respect toOPT. HLRU divides every cache intod + 1 equal-sized segments numbered from
0 to d. For a nodeα, we defineα.small to be the union of segmentα.depth of all the caches in
α.caches, and we defineα.big to be the union ofβ.small for all β ∈ α.desc.

For the rest of this section, we extend the definitions of acopyand aplacement(defined in
Section 2) to internal nodes as well. A copy is a pair(α, f) whereα is a node andf is file that
is stored inα.small . A placement refers to a set of copies. TheHLRU algorithm, shown in
Figure 2, maintains a placementP . In HLRU, a nodeα uses a variableα.ts [f] to keep track of

16

the timestamp of a filef . For the convenience of presentation, we defineroot .parent to be a fake
node that has every file inroot .parent .small (and hence also inroot .parent .big), and we define
root .parent .diam to be the uniform miss penalty.

{On a request (α, f)}
1 t := now;
2 do
3 flag := false;
4 P := P ∪ {(α, f)};
5 α.ts [f] := max(α.ts [f], t);
6 if capacity is violated atα.small then
7 f := file with smallest nonzeroα.ts [f];
8 P := P\{(α, f)};
9 if f /∈ α.big then

10 t := α.ts [f];
11 α.ts [f] := 0;
12 α := α.parent ;
13 flag := true
14 fi
15 fi
16 while flag

Figure 2: The HLRU algorithm.

4.2 Analysis of theHLRU Algorithm

For any nodeα and filef , we partition time intoepochswith respect toα andf as follows. The
first epoch begins at the start of the execution, which is defined to be time 1. Subsequent epochs
begin just after the execution of line 11.

We defineα.ts∗[f] to be the time of the most recent access to filef in a cache inα.caches in
the current epoch with respect to nodeα and filef . If no such access exists, we defineα.ts∗[f] to
be 0.

For the convenience of analysis, we categorize the file movements inHLRU into two types:
retrievalsandevictions. On a request (u, f), theHLRU algorithm first performs a retrieval (this
corresponds to the block of code from the beginning of the code to line 5 of the first iteration of the
loop) of f from the nearest cachev that has a copy. Letα be the least common ancestor ofu and
v. Then the cost of such a retrieval isα.diam. Let X denote the set of nodes on the path fromα to
u, excludingα but includingu. For every nodeβ in X, we charge apseudocostof β.parent .diam
to nodeα for such a retrieval.

Each subsequent iteration of the loop performs an eviction (this corresponds to the block
of code from line 6 of an iteration to line 5 of the next iteration) of a file fromα.small to
α.parent .small for some nodeα. We charge a pseudocost ofα.parent .diam to α for such an
eviction.

17

The only cost incurred byOPT is due to retrievals. LetOPT adds (or retrieves) a copy(u, f)
by fetchingf from v, α be the least common ancestor ofu andv, andX be the set of nodes on the
path from fromα to u, excludingα but includingu. Then the cost of such a retrieval isα.diam.
For every nodeβ in X, we charge a pseudocost ofβ.parent .diam to nodeα for such a retrieval by
OPT.

For any nodeα and filef , we define auxiliary variablesα.in[f] andα.out [f] for the purpose
of our analysis. These variables are initialized to0. We incrementα.in[f] whenever a retrieval of
file f charges a pseudocost to nodeα. We incrementα.out [f] whenever eviction of filef charges
a pseudocost to nodeα.

Lemma 4.1 Before and after every retrieval or eviction, for any nodeα and filef , f ∈ α.big iff
β.ts [f] > 0 for someβ ∈ α.desc.

Proof: Initially, both sides of the equivalence are false. If both sides of the equivalence are false,
then according to the code in Figure 2, the only event that truthifies either side is a retrieval off at
a cacheu in α.caches, which in fact truthifies both sides. It remains to prove that if both sides of
the equivalence are true, and if one side becomes false, then the other side becomes false.

The only event that falsifies the left side is an eviction of the last copy off in α.big from
α.small . Prior to this eviction,β.ts [f] = 0 for all proper descendantsβ of α (note that the
equivalence holds forβ) andα.ts [f] > 0. The eviction then setsα.ts [f] to 0, falsifying the right
side.

The only event that can falsify the right side (i.e., line 11) is an eviction off from α.small such
that, after the eviction,f 6∈ α.big . Note that eviction off from β.small , for a proper descendant
β of α, cannot falsify the right side because such an eviction ensuresβ.parent .ts [f] > 0 (line 5).
Thus, falsification of the right side implies falsification of the left side. ¤

Lemma 4.2 Before and after every retrieval or eviction, for any nodeα and filef ,

α.ts∗[f] = max
β∈α.desc

β.ts [f].

Proof: Initially, both sides of the equality are zero. By the definition ofα.ts∗[f], the value of
α.ts∗[f] changes from nonzero to 0 (i.e., a new epoch with respect toα andf begins) after line
11. By the guard of the innerif statement,f 6∈ α.big just before line 11. Hence, by Lemma 4.1,
β.ts [f] is 0 for allβ ∈ α.desc.

The valueα.ts∗[f] increases due to some access off at a cacheu in α.caches. The equality
holds because themax value on the right side is atu.

Between the changes ofα.ts∗[f], only the eviction off from α.big can change themax (reset
it to 0) on the right side of the equality. This eviction also resetsα.ts∗[f] to 0 because a new epoch
begins. ¤

Lemma 4.3 Before and after every retrieval or eviction, for any nodeα and filef , α.ts [f] ≤
α.ts∗[f]. Furthermore, just after line 8, iff 6∈ α.big , thenα.ts [f] = α.ts∗[f].

18

Proof: The first claim of the lemma follows immediately from Lemma 4.2. For the second claim,
note that we are evicting the last copy off in α.big from α.small . By Lemma 4.1, all proper
descendantsβ of α haveβ.ts [f] = 0. Soα.ts [f] = α.ts∗[f] by Lemma 4.2. ¤

Lemma 4.4 If a file movement (between two caches) has actual costC and charges a total pseu-
docost ofC ′, then

C ≤ C ′ ≤ λ

λ− 1
C.

Proof: Suppose the file movement is from cacheu to cachev. Letα be the least common ancestor
of u andv and letB be the nodes on the path fromα to v, excludingα but includingu. Then

C

= α.diam

≤
∑

β∈B

β.parent .diam

= C ′

≤ α.diam ·
∑
j≥0

λ−j

=
λ

λ− 1
· C.

¤

Lemma 4.5 For any nodeα, the total pseudocost charged to nodeα due to retrievals is

∑

f

α.in[f] · α.parent .diam.

Proof: Follows from the observation that whenever a pseudocost is charged to nodeα due to a
retrieval, the pseudocost isα.parent .diam. ¤

Lemma 4.6 For any nodeα, the total pseudocost charged to nodeα due to evictions is at most

∑

f

α.out [f] · α.parent .diam.

Proof: Follows from the observation that whenever a pseudocost is charged to nodeα due to an
eviction, the pseudocost is at mostα.parent .diam. ¤

Lemma 4.7 For any nodeα and filef ,

α.out [f] ≤ α.in[f].

19

Proof: We observe that if a pseudocost is charged to a nodeα as a result of a retrieval, then the
retrieval truthifiesf ∈ α.big . Similarly, if a pseudocost is charged to nodeα as a result of an
eviction, then the eviction falsifiesf ∈ α.big . It then follows that

α.out [f] ≤ α.in[f] ≤ α.out [f] + 1

becausef 6∈ α.big initially. ¤

Lemma 4.8 For any nodeα, α.big always contains the most recently accessed2 · α.cap files by
α.caches.

Proof: Let X denote the set of the most recently accessed2 · α.cap files. We consider the places
where a file is added toX or removed fromα.big .

A file f can be added toX only whenf is requested at a cacheu in α.caches. In this case,f
is added tou.small and is not evicted fromu.small because it is the most recently accessed item.
Hence,f ∈ α.big .

A file f can be removed fromα.big only when it is moved fromα.small to α.parent .small as
the result of an eviction and there is no other copy off in α.big . This means thatf is chosen as
the LRU item at line 7. Sincef is the LRU item, there are2 · α.cap itemsg in α.small such that
α.ts [f] < α.ts [g] ≤ α.ts∗[g]. By Lemma 4.3,α.ts [f] = α.ts∗[f] just after line 8. It follows then
from the definition ofts∗ thatf 6∈ X. ¤

Lemma 4.9 For any nodeα, the total pseudocost due to retrievals charged toα by HLRU is at
most twice the pseudocost charged toα by OPT.

Proof: Fix a nodeα. For OPT, we say that a request for a filef at a cache inα.caches results
in a miss if no copy off exists at any cache inα.caches at the time of the request. For HLRU,
a miss occurs if no copy off is in α.big . By Lemma 4.8, HLRU incurs at most as many misses
as an LRU algorithm with capacity2 · α.cap running on the subsequence of requests originating
from the caches inα.caches. (Note that LRU misses whenever HLRU misses.) By the well-known
result of Sleator and Tarjan [11], such an LRU algorithm incurs at most twice as many misses as
OPT.

Note that a miss results in a pseudocost ofα.parent .diam being charged toα. Therefore,
the total pseudocost charged to nodeα in OPT is at least the number of misses in OPT times
α.parent .diam. Furthermore, within HLRU, a pseudocost is charged to nodeα only on a miss.
Therefore, the total pseudocost charged to nodeα in HLRU is at most the number of misses
incurred by HLRU timesα.parent .diam. The claim of the lemma then follows. ¤

Lemma 4.10 For any nodeα, the total pseudocost charged toα by HLRU is at most four times
the total pseudocost charged toα by OPT.

Proof: Follows immediately from Lemmas 4.5, 4.6, 4.7, and 4.9. ¤

Theorem 2 HLRU is constant-competitive.

Proof: Follows immediately from Lemmas 4.4 and 4.10. ¤

20

References

[1] T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson, D. S. Rosselli, and R. Y. Wang.
Serverless network file systems. InProceedings of the 15th Symposium on Operating Systems
Principles, pages 109–126, 1995.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networks.Journal of
Algorithms, 28:67–104, July 1998.

[3] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, pages
184–193, October 1996.

[4] Y. Bartal. Distributed paging. In A. Fiat and G. J. Woeginger, editors,The 1996 Dagstuhl
Workshop on Online Algorithms, volume 1442 ofLecture Notes in Computer Science, pages
97–117. Springer, 1998.

[5] Y. Bartal. On approximating arbitrary metrics by tree metrics. InProceedings of the 30th
Annual ACM Symposium on Theory of Computing, pages 161–168, May 1998.

[6] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

[7] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The Harvest
information discovery and access system.Computer Networks and ISDN Systems, 28:119–
125, 1995.

[8] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative caching: Us-
ing remote client memory to improve file system performance. InProceedings of the First
Symposium on Operating Systems Design and Implementation, pages 267–280, November
1994.

[9] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. InProceedings of the 35th Annual ACM Symposium on Theory of Computing,
pages 448–455, June 2003.

[10] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Placement algorithms for hierarchical
cooperative caching.Journal of Algorithms, 38:260–302, January 2001.

[11] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.Com-
munications of the ACM, 28:202–208, 1985.

[12] D. Wessels. Squid Internet object cache. Available at URL http://squid.nlanr.net/squid, Jan-
uary 1998.

[13] D. Wessels and K. Claffy. RFC 2187: Application of Internet Cache Protocol, 1997.

21

[14] N. E. Young. On-line file caching.Algorithmica, 33:371–383, 2002.

[15] L. Zhang, S. Floyd, and V. Jacobson. Adaptive Web Caching. InProceedings of the 1997
NLANR Web Cache Workshop, 1997.

22

