Online Hierarchical Cooperative Caching

Xiaozhou L} C. Greg Plaxtof® and Mitul Tiwari*
Microsoft Corporation University of Texas at Austin

Arun Venkataramani
University of Massachusetts, Amherst

October 18, 2004

Abstract

We address a hierarchical generalization of the well-known disk paging problem. In the
hierarchical cooperative caching problem, a set afachines residing in an ultrametric space
cooperate with one another to satisfy a sequence of read requests to a collection of read-only
files. A seminal result in the area of competitive analysis states that the "least recently used”
(LRU) paging algorithm is constant-competitive if it is given a constant-factor blowup in ca-
pacity over the offline algorithm. Does such a constant-competitive deterministic algorithm,
with a constant-factor blowup in the machine capacities, exist for the hierarchical cooperative
caching problem? In this paper, we present a deterministic hierarchical generalization of LRU
that is constant-competitive when the capacity blowup is lineat, ithe depth of the cache
hierarchy. Furthermore, we exhibit an infinite family of degthierarchies such that any ran-
domized hierarchical cooperative caching algorithm with capacity blawhigs competitive
ratio Q2(log %) against an oblivious adversary. Thus, our upper and lower bounds imply a tight
bound of©(d) on the capacity blowup required to achieve constant competitiveness.

! Microsoft Digital Anvil, 400 West Cesar Chavez Street, 4th Floor, Austin, TX 78701. Email: xili@microsoft.com.
Most of this work was done while the author was a Ph.D. student at UT Austin supported by NSF Grant CCR-0310970.
2 Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, Texas
78712-0233.

3 Email: plaxton@cs.utexas.edu. Supported by NSF Grant CCR-0310970. Also affiliated with Akamai Technolo-
gies, Inc., Cambridge, MA 02142.

4 Email: mitult@cs.utexas.edu. Supported by NSF Grant ANI-0326001.

5 Computer Science Building, 140 Governors Drive, University of Massachusetts, Amherst, MA 01003-9264.
Email: arun@cs.umass.edu. Most of this work was done while the author was a Ph.D. student at UT Austin sup-
ported by Texas Advanced Technology Project 003658—0503-2003 and by IBM.

1 Introduction

In the classic disk paging problem, which has been extensively studied, we are given a cache and
a sequence of requests for pages. When a page is requested, we incur a miss if it is not already
present in the cache. In the event of a miss, we are required to load the requested page into the
cache, which may necessitate the eviction of another page. Our goal is to minimize the cost of
processing the request sequence, where the cost is defined as the number of misses incurred. A
caching algorithm ionline if it processes each successive request with no knowledge of future
requests. A caching algorithmadflineif it is given the entire request sequence in advance.

An online algorithm isc-competitiveif, for all request sequences the cost incurred by the
online algorithm to processis at mostc times that incurred by an optimal offline algorithm. In
the seminal paper introducing the notion of competitive analysis, Sleator and Tarjan [11] show that
LRU (Least-Recently-Used) and several other online deterministic caching algorithljg_éf@fe
competitive, wheré: is the cache capacity of the online algorithm a@ni the cache capacity of
the offline algorithm. They also show th,gc\jtﬁ—+1 is the best competitive ratio that can be achieved
by any deterministic online caching algorithm. Young [14] proposed_theDLORD algorithm
that achieves competitive rat'@_;j—Jrl for a case where the files being cached have nonuninform
sizes and retrieval costs. Note that LRU dndNDLORD are constant-competitive assuming a
constant-factor capacity blowup over the corresponding optimal offline algorithm.

In cooperative caching [8], a set of caches cooperate in serving requests for each other and in
making caching decisions. The benefits of cooperative caching have been supported by several
studies. For example, the Harvest cache [7] introduces the notion of a hierarchical arrangements
of caches. Harvest uses the Internet Cache Protocol [13] to support discovery and retrieval of
documents from other caches. The Harvest project later became the public domain Squid cache
system [12]. Adaptive Web Caching [15] builds a mesh of overlapping multicast trees; the popular
files are pulled down towards their users from their origin servers. In local-area network environ-
ments, the xFS [1] system utilizes workstations cooperating with each other to cache data and to
provide serverless file system services.

A cooperative caching scheme can be roughly divided into three components: placement,
which determines where to place copies of files, search, which directs each request to an appro-
priate copy of the requested file, and consistency, which maintains the desired level of consistency
among the various copies of a file. In this paper, we study the placement problem, and we assume
that a separate mechanism enables a cache to locate a nearest copy of a file, free of cost, and we
assume that files are read-only (i.e., copies of a file are always consistent).

We focus on a class of networks where the cost of communication among caches is specified
by an ultrametric distance function, the precise definition of which is given in Section 2. We call
the cooperative caching problem in such networkshieearchical cooperative caching (HCC)
problem

Ultrametrics are equivalent up to a constant-factor to the hierarchically well-separated tree
(HST) metrics, as introduced by Bartal [3]. Refining earlier results by Bartal [3, 5], Fakcharoen-
phol et al. [9] have shown that any metric space can be approximated by the HST metrics with a
logarithmic distortion. Hence, many results for the HST metrics imply corresponding results for
arbitrary metric spaces at the expense of an extra logarithmic factor.

1

For the case where the access distribution of each file at each cache is fixed and known in
advance, Korupolu et al. [10] provide a polynomial-time algorithm for the HCC problem that
minimizes the average retrieval cost and does not require a capacity blowup. In addition, they
provide a faster constant-factor approximation algorithm that does not require a capacity blowup.
On the other hand, the assumption in Korupolu et al. [10] of a fixed access distribution is rather
strong. Furthermore, even in applications where the access distribution is relatively stable, it may
be expensive to track.

Since the HCC problem generalizes the disk paging problem mentioned earlier, we cannot hope
to achieve constant competiveness for the HCC problem without at least a constant-factor capacity
blowup. Our main motivation in pursuing the present research has been to determine whether there
exists a constant-competitive algorithm with a constant-factor capacity blowup for the HCC prob-
lem. Since theANDLORD algorithm by Young is designed for files with non-uniform retrieval
cost, one could think of applyingQANDLORD to solve the HCC problem. However, simply run-
ning LANDLORD at each cache does not provide a good competitive ratio for the HCC problem,
sinceLANDLORD is not designed to exploit the benefits of cooperation among caches. As stated in
Young [14], the focus oE ANDLORD “is on simplelocal caching strategies, rather than distributed
strategies in which caches cooperate to cache pages across a network”.

In this paper, we show that if an online algorithm is given a sufficiently large capacity blowup,
then constant competitiveness can be achieved. In Section 4, we present a deterministic hierar-
chical generalization of LRU that is constant-competitive when the capacity blowup is linear in
d, the depth of the cache hierarchy. We content ourselves by dealing with files of unit sizes only.
However, a hierarchical generalizationlokNDLORD can be used to deal with files of nonuniform
sizes.

Furthermore, we exhibit an infinite family of depthhierarchies such that any randomized
online HCC algorithm with a capacity blowwhas competitive ratiél(log ¢) against an oblivious
adversary. In particular, we construct a hierarchy with a sufficiently large depth and show that an
oblivious adversary can generate an arbitrarily long request sequence such that the randomized
online HCC algorithm incurs a co$t(log %l) times that of an offline algorithm. In terms of the
number of caches, our lower bound result shows that the competitive ratio of any randomized HCC
algorithm isQ2(log log n — log b). Our upper and lower bounds imply a tight boundaifl) on the
capacity blowup required to achieve constant competitiveness.

Several paging problems (e.g., distributed paging, file migration, and file allocation) have been
considered in the literature, some of which are related to the HCC problem. (See, e.g., the survey
paper by Bartal [4] for the definitions of these problems.) In particular, the HCC problem can be
formulated as the read-only version of the distributed paging problem on ultrametrics. And the
HCC problem without replication is a special case of the constrained file migration problem where
the cost accessing a file at distanlde equal to the cost of migrating the file a distance .oMost
existing work on these problems focuses on upper bound results, and lower bound results only
apply to algorithms without a capacity blowup. For example, for the distributed paging problem,
Awerbuch et al. [2] show that, given polylbg A) capacity blowup, there exists a deterministic
polylog(n, A)-competitive algorithm for general networks, whexes the normalized diameter of
the network. For the constrained file migration problem, if wentetlenote the total capacity of

the n caches, Bartal [3] gives a deterministic lower boundXfn), a randomized lower bound
of Q(logm), and a randomized upper bound®@f(logm)log®n). Applying the recent result of
Fakcharoenphol et al. [9], the latter upper bound may be improvéd og m) logn).

The rest of this paper is organized as follows. Section 2 provides some preliminary definitions.
Section 3 presents our lower bound. Section 4 presents our upper bound.

2 Preliminaries

Assume that we are given a set of caches, each with a specified nonnegative capacity, and a distance
function i that specifies the cost of communication between any pair of caches. Such a distance
function is ametricif it is nonnegative, symmetric, satisfies the triangle inequality,/gndv) = 0

if and only if w = v for all cachesu andv. A metric distance functior is an ultrametric if

h(u,v) < max(h(u,w), h(v,w)) for all caches., v, andw; note that the latter condition subsumes

the triangle inequality.

We now describe another method to specify a distance function over a set of caches. In this
method, the distance function is encoded as a rooted tree where each node of the tree has an
associated nonnegative diameter. There is a one-to-one correspondence between the set of caches
and the leaves of the tree, and each leaf has a diameter of zero. The diameter of any node is required
to be less than that of its parent. The distance between two caches is then defined as the diameter
of the least common ancestor of the corresponding leaves. It is well-known (and easy to prove)
that a distance function can be specified by a tree in this manner if and only if it is an ultrametric.
We say that such a tree dsseparategdwhere)\ > 1, if the diameter of any node is at leastimes
that of any of its children.

In all of the caching problems addressed in this paper, we assume that the distance function
specifying the cost of communication is an ultrametric, and we adopt the tree view of an ultrametric
discussed in the preceding paragraph. The main advantage of this view is that it enables us to
leverage standard tree terminology in our technical arguments. Table 1 lists a number of useful
definitions based on tree terminology.

Notation | Meaning
root | the root of the tree
a.parent | the parent ofy, wherea # root
a.ch | children ofa
a.anc | the ancestors af (including«)
a.desc | the descendants of (including)
a.depth | the depth ofy, where the root is considered to be at depth
a.diam | the diameter of
a.caches | the set of caches in the subtree rooted at
a.cap | the total capacity of the cachesdncaches

Table 1: Some useful notation. The variableefers to a tree node.

In the caching problems addressed in this paper, we refer to the objects to be cafilesd as
The files are assumed to be read-only, so we do not need to deal with the issue of consistency
maintenance. Each file is assumed to be indivisible; we do not consider schemes in which a
copy of a file may be broken into fragments and spread across multiple caches. Egdhaie
specified size, denotedze(f), and penalty, denotegenalty(f). We assume that any file can fit
in any cache, that is, the maximum file size is assumed to be at most the minimum cache capacity.
The penalty associated with a file represents the cost per unit size to retrieve the file when it is not
stored anywhere in the tree of caches, and is assumed to exceed the diameter of the tree.

A copy is a pair(u, f) whereu is a cache and is a file with size at most the capacity of A
set of copies is called placementf (u, f) belongs to a placemetit, we say that a copy of is
placed at. in P. A placementP is b-feasibleif the total size of the files placed in any cache is at
mostb times the capacity of the cache.

A caching algorithm maintains a placement. Initially, the placement is empty. Two basic
operationsgeleteandadd may be used to update a given placentenf delete operation removes
a copy fromP; the algorithm incurs no cost for such a deletion. In an add operation, a(eopy
is added taP. If, prior to the add,P does not place a copy gfat any cache, then the cost of the
add is defined to bgenalty(f). Otherwise, the cost isize(f) - dist(u,v), wherev is the closest
cache at which a copy of is placed. A caching algorithr is b-feasible if it always maintains a
b-feasible placement.

A requestis a pair(u, f) whereu is a cache and is a file. To process such a request, a
caching algorithm performs an arbitrary sequence of add and delete operations, subject only to the
constraint thatw, f) belongs to at least one of the placements traversed.

The HCC problem is to process a given sequence of requests with the goal of minimizing cost.
For any (randomized) HCC algorithmd, and any request sequencewe defineT4(7) as the
(expected) cost fod to process. An online HCC algorithmA is c-competitivaf for all request
sequences and 1-feasible HCC algorithms3, T4(7) < ¢ - Tg(7). (Remark: The asymptotic
bounds established in this paper are unchanged if we allow an additive slack in the definition of
c-competitiveness, as in [6, Chapter 1].)

An HCC algorithm isb-quasifeasible if it maintains &feasible placement before and after
processing a request, and while processing a request, removal of at most one copy of a file from
its placement makes its placemeérfeasible. Observe that amyquasifeasible HCC algorithm is
a (b + 1)-feasible HCC algorithm. In Section 4, we present a deterministic constant-competitive
O(d)-quasifeasible online HCC algorithm; by the preceding observation, our algoritbris
feasible.

An HCC algorithm isniceif on a requestu, f), it first adds a copyu, f) to its placement
and then performs an arbitrary sequence of add and delete operations. Observe Gitfatarhte
c-competitive HCC algorithm can be easily converted into a (ice 1)-feasible2c-competitive
HCC algorithm. (Remark: With additional care it may be possible to argue that the fac?or of
appearing in the preceding observation can be eliminated.) In Section 3 we prove that for any
nice b-feasible randomized online HCC algorith#) there exists a request sequencand al-
quasifeasible offline HCC algorithm® such thatTs(7) = Q(log %) - Ts(7). By the foregoing
observation, together with that of the preceding paragraph, we can conclude that the competitive

ratio of anyb-feasible randomized online HCC algorithntiglog %).

3 The Lower Bound

In this section, we present a lower bound that holds for an arbitrary nice randotrfeedible
online HCC algorithmON, whereb is a positive integer. The lower bound holds foN with
respect to the trees drawn from an infinite familykediry, depthd trees, parameterized by integers
d andk such thatd = 8bk — 1. We denote a tree from this family §(d, k). Furthermore, the
diameter of an internal node, of treeT'(d, k) is set to be\’~"~!, where\ = max (22, Q(log k)),

1 = a.depth, and0 < a.depth < d. Recall from the previous section that the diameter of a leaf
is 0. For any filef placed inT'(d, k), penalty(f) is set to be\ - root.diam. Note thatl’(d, k) is a
A-separated tree.

In Figure 1, we present an algorithm for ablivious adversary6, Chapter 4],ADV, that
constructs a request sequelcef any given lengthV. Algorithm ADV is oblivious since it con-
structs the request sequence without examining the random bits useN Hyring its execution.
Whenever linel8 of ADV is executed, a request is appended endON processes this request.
The main technical result to be established in this section is thaly feufficiently large Ton (o)
is Q(log ¢) timesT4 (o) for any1-quasifeasible offline algorithm.

We fix d + 1 disjoint sets of unit-sized fileg'(i), 0 < ¢ < d, such tha{F(i)| = [k¢~~1] for
0 <1 < d. We define the function(s, j), wherei > 0 andj > 0, as

. , — 1 1
- :kd—z' ¢ i

3.1 Correctness of ADV

We show in this section thatDV is well-defined (i.e.;r # root just before line 57 is not a leaf

just before line 8, and line 14 finds a child) and that each round terminates with the generation of
a request. For the sake of brevity, in our reasoning below, we call a predighibad invariantif

it holds everywhere il\DV (i.e., it holds initially and it holds between any two adjacent lines of
the pseudocode in Figure 1).

Lemma 3.1 Let I; denote that every internal node has a child witfield equal to 0,/; denote
that 7 is a node, and; denote thatr.load > w.deact. Thenl; A I5 is a global invariant andls
holds everywhere in the down loop.

Proof: The predicatd; A I, holds initially because = root anda.x = 0 for all o, and/; holds
just before the down loop due to the guard of the up loop. We next show that every line of code
outside the down loop preservésh I, (i.e., if I; A I, holds before the line, then it holds after the
line) and every line of code in the down loop preseries I, A Is.

Each line of code outside the down loop preseydsecause such lines do not assign a nonzero
value to ane field. The only line that affects, is line 5. We observe that # root just before line

5

{initially, N > 0, count = 0, m = root, root.x = root.y = root.act = g(0, k),
a.x = a.y = 0forall o # root, ando is empty}

1 while count < N do {main loog
2 while 7.load < 7.deact do {up loop}
3 Ty = m.react;
4 for every childj of 7, set bothy.z andd.y to O;
5 m = mw.parent
6 od; {end of up loop
7 while m.missing = () do {down loop
8 if a child¢ of = satisfies).z > 0 A d.load > d.react then
9 Ti=90
10 else
11 if 7 has exactly one child withr equal to0 then
12 for every child) of 7, set bothy.z andéd.y to O
13 fi;
14 m := a childé of = such that.x = 0 A d.load > 6.act;
15 set bothr.x andr.y to 7.act
16 fi

17 od; {end of down loop

18 append t@ a request for an element inmissing at an arbitrary cache im;
19 count := count + 1

20 od {end of main loop

Figure 1: TheADV algorithm. For any noder, we define associated “reactivation” and “de-
activation” valuesa.react = g(a.depth, k) and a.deact = g(a.depth,2k). At any point in
the execution, we define the “activation” value @f denoteda.act, as g(a.depth,r) where
r=|{6: 0 € a.parent.ch : f.x = 0}|. In addition, we definev.load anda.missing in terms of
the program variable, as follows. First, letv.placed denote set of distinct files placed by ON in
a.caches after processing the request sequenc8inceON is a randomized algorithna,. placed is
arandom variable. We then defindoad as the expected value BfJo<i<q.depin F' (7)) Nav.placed|,
and a.missing as the set of all fileg in F(a.depth) andPr(f € a.placed) < 5. Finally, we
remark that they field maintained at each node has no impact on the computation of the request
sequencer. (To see this, note that thefield is written, but never read.) Thefield has been
introduced to facilitate our analysis.

5, due to the guard of the up loop and the observationihatioad > root.deact = 0. Hence,
line 5 preserves,.

In the down loop, the only line that affecigis 15, but/; and the inneif statement establish
thatr has at least two children withfield equal to O just before line 14. Hence, line 15 preserves
1.

To argue that each iteration of the down loop presefygsis sufficient to prove that.depth <
8bk — 1 (i.e., 7w is not a leaf) just before line 8 and that if the assignment statement of line 14 is
executed, the RHS is well-defined (i.e., some chitd 7 satisfies).x = 0 andd.load > é.act). To
establish the former claim, let us assume to the contrarysth&pth = 8bk — 1 just before line
8. (Note that/, implies thatr.depth cannot take on a higher value.) By the guard of the down
loop, the probability thatr.placed contains the lone file i’ (8bk — 1) is at Ieas%. Furthermore,

I3 implies thatr.load > m.deact = g(8bk — 1,2k) = b — Sik It follows that the expected number
of files stored byON in the cache associated with the leai at leasb — X + 1 > b, which is a
contradiction sincer.cap = 1 andON is b-feasible. Hencer.depth < 8bk — 1 just before line 8.

We now argue that if the assignment statement of line 14 is executed, the RHS is well-defined.
LetA={a:a€nchANax=0}andB = {5 : 3 € n.ch A B.x > 0}. Letr denote|A| and:
denoter.depth. We observe that

Z a.load

a€cA
=) aload + Y B.load — Y B.load
acA BEB BEB
i
> w.load + # — Z (.load
BeB
£ ()]
> m.deact + 5 Zﬁ.r@act
BeB
k,d—i—l
= g(i,2k) + — —) gli+1,k)
BeB
A ., (i+2)
_ i v —(k—p) k41212
skt e sk

| 11
Y (L
: <8k LT 4k)

(In the derivation above, the first inequality is due to the definitiovofl and the guard of the
down loop, i.e, for each filg in |F(i)], Pr(f € a.placed) > 1, and the second inequality is due to
the guard of the outdf statement and;. Formula for| F'(7)| is valid in the second equality since
i < 8bk —1.)

Hence, by an averaging argument (note that 0 by I;), there exists a child of = such that

d.load

)) 1
> kd—l—l . L _
- (8]@ " 47‘)

= Jd.act.

Hence, step 14 finds a child. Andis preserved.

The only lines that affect; are 9 and 14. Both of these lines presefybecause by definition,
a.react > «.deact anda.act > «o.deact for all a.

The claim of the lemma then follows. OJ

Lemma 3.2 The up loop terminates.

Proof: Every iteration of the up loop moves to its parent, andoot.load > root.deact by
definition. Hence, the up loop terminates. O

Lemma 3.3 The down loop terminates.

Proof: Every iteration of the down loop movesto one of its children. By, of Lemma 3.1 is
always a well defined node. Hence, the down loop terminates. O

Lemma 3.4 After generating a sequeneeof N requestsADV terminates.

Proof: Follows from Lemmas 3.2 and 3.3. OJ

3.2 Some Properties of ADV

We first prove some properties 8fDV that follow directly from its structure. For the sake of
brevity, for a property that is a global invariant, we sometimes only state the property but omit
stating that the property holds everywhere.

Lemma 3.5 For all o, .z = 0 or a.x > «v.react.

Proof: The claim holds initially because.x = 0 for all «. The only line that assigns a nonzero
value tozx is 15, which preserves the claim because by definithongt > «.react forall . [

Lemma 3.6 For all o, a.y equals 0 ora.react or a.x.

Proof: The claim holds initially because.y = 0 for all . The only lines that modify: are 4, 12,
and 15. The only lines that modifyare 3, 4, 12, and 15. By inspection of the code, all of these
lines trivially preserve the claim. 0J

Lemma 3.7 Let P denote the predicate that every noderimnc has a positiver value and every
node that is neither imr.anc nor a child of a node inr.anc has a zerar value. ThenP is a loop
invariant of the up loop, the down loop, and the main loop.

Proof: Let X denoter.anc and letY” denote the set of nodes that are neitheKimor children of
the nodes inX.

Every iteration of the up loop movesto its parent. To avoid confusion, we usdo denote
the old node (i.e., child) and’ to denote the new node (i.e., parent). An iteration of the up loop
removesr from X, addsr.ch to Y, and sets the value ofr.ch to 0. Therefore, it preserves.

Every iteration of the down loop movesto one of its children. To avoid confusion, we use
to denote the old node (i.e., parent) arido denote the new node (i.e., child). Suppose the down
loop takes the first branch of the oui€érstatement. Then it adds, which has a positive value,
to X and removes’.ch from Y. Hence it preserves. Suppose the down loop takes the second
branch of the outeif statement. If line 12 is executef, is preserved because line 12 leaves
andY unchanged and only changes thealue of the nodes in neithéf norY. Then lines 14 and
15 preserve$’ because they add, which has a positive value after line 15, toX and removes
7'.ch from Y. Hence, it preserveB.

The main loop preserve? because both the up loop and the down loop presErve O

Lemma 3.8 For all o, a.y < a.x.

Proof: The claim holds initially because.z = «.y = 0 for all . The only lines that modify
thex or y field are 3, 4, 12, and 15. At lines 4, 12, and 15, thendy fields become the same
value. It follows from Lemma 3.7 and the guard of the up loop that just before line=3,root
andr.z > 0. It then follows from Lemmas 3.5 and 3.6 that line 3 presermgs< r.x. O

We now introduce the notion of an active sequence to facilitate our subsequent proofs. A
sequenc€ay, ai, .. .,a,), where0 < r < k, is calledi-activeif a; = ¢g(: + 1,k — j) for all
0<y<r.

Lemma 3.9 For every internal nodey, the nonzera: fields of the children ofr form an:-active
sequence, where= «.depth.

Proof: The claim holds initially because.z = 0 for all . The only lines that modify the field
are 4, 12, and 15. Lines 4 and 12 preserve the claim becauseftblels of the children ofr
all become 0. Line 15 preserves the claim (foparent) becauser.x becomesr.act, which by
definition equalg(i + 1,k — j), wherei = m.parent.depth andj equals the number of children
of m.parent that have a positive field. O

Lemma 3.10 Let P(«) denote the predicate that for alf that are not ancestors af, 5.y <
B.react. ThenP () holds initially andP() is a loop invariant of the up loop, the down loop, and
the main loop.

Proof: The predicate”(r) holds initially becauser = root anda.y = 0 for all . The up loop
preservesP(w) because every iteration first establisieg = w.react and then moves to its
parent. The down loop preserve$r) because it does not set thdield to a nonzero value. The
main loop preserveB(w) because both the up loop and the down loop presB(wg. O

3.3 Colorings

In order to facilitate the presentation of an offline algorithm in Section 3.4, we introduce the notion
of colorings in this section and the notion of consistent placements in the next.

A coloring of T'(d, k) (recall thatT'(d, k) is the tree of caches) is an assignment of one of the
colors{white, black to every node if7'(d, k) so that the following rules are observed: (&)t is
white, (2) every internal white node has exactly one black childfardl white children, and (3)
the children of a black node are black. A coloring is calteasisten{with ADV) if for every «,
if a.x > 0, thena is white.

For any coloringC' and any pair of sibling nodes and 3, we defineswapc(C, «,) (swap
coloring) as the coloring obtained frofi by exchanging the color of each node in the subtree
rooted at with that of the corresponding node in the subtree rootgdl éNote that the subtrees
rooted atn and have identical structure.)

3.4 Consistent Placements

A placement igolorableif there exists a coloring’ such that: (1) for each white internal node
of T'(d, k), the set of filed"(«.depth) are stored in (and fill) the caches associated with the unique
black child of«; (2) for each white leafv of T'(d, k), the (singleton) set of fileg'(«.depth) is
stored in (and fill) the cache. Note that in the preceding definition of a colorable placement,
the coloringC, if it exists, is unique. A placement is callednsistenif it is colorable and the
associated coloring is consistent.

For any placemenP and any pair of siblings: and 3, we defineswapp(P, o,) (Swap place-
ment) as the placement obtained frdtrby exchanging the contents of each cache inith that
of the corresponding cache) (It is convenient to assume that the children of each node in
T(d, k) are ordered from left to right. This induces an overall left to right ordering aiches and
(.caches. For alli, thei-th cache inw.caches corresponds to théth cache in3.caches.) Note
that for any colorable placememRtwith associated coloring’ and any pair of sibling nodesand
3, the placementwapp(P, «, [3) is colorable, and its associated coloringisipc(C, a, 3).

3.5 The Offline Algorithm OFF

For every internal node, we maintain an additional variabtelast defined as follows. First, we
partition the execution of the adversary algorithm into epochs with respect Tde first epoch

begins at the start of the execution. Each subsequent epoch begins when either line 4 or line 12 is
executed withr = a. The variablen.last is updated at the start of each epoch, when it is set to
the child 5 of « for which line 15 is executed with = 3 furthest in the future. (If one or more

10

children of « are such that line 15 is never executed with- (5 in the future, thenv.last is set
to an arbitrary such chil@d.) Note that the variables.last are introduced solely for the purpose
of analysis and have no impact on the execution of ADV.

At any point in the execution of ADV, the values of that fields determine a unique coloring,
denoted byCorr, as follows: root is white and the black child of each internal white nedés
a.last.

We define d-quasifeasible offline algorith@FF that maintains a placemeftrr as follows.

We initialize Porr to an arbitrary consistent placement with associated cold@ripg. We update

Porr to swapp(Porr, , 3) Whenever line 4 or line 12 is executed, whereand 5 denote the
values ofr.last before and after the execution of the line. Whenever Iifies executed, a request

is generated and the algorithoF'F uses the placemeiiyrr to process this request. On a request

(u, f), if there is not already a copy of filtatu, OFF creates a copfu, f) in order to process the
request and then immediately discards the copy. Note that the capacity constraint can be violated
atu by one unit when the coplu, f) is created, but the capacity is satisfied before processing the
next request. Hence, the placeméiir remains the same before and after lirke and Popr is
updated only at lineg and12.

Lemma 3.11 Throughout the execution of AD¥rr is colorable and has associated coloring
Corr.

Proof: Immediate from the wayorr is updated wheneverlast field is updated. O

Lemma 3.12 Execution of line 4 or line 12 preserves the consistenay .

Proof: Assume that'opr is consistent before line 4. Sois white inCopr before line 4, because
by Lemma 3.7 .z is positive before line 4. By the definition &forr, before line 4,r.last is
black. Leta be 7.last before line 4, and leti be w.last after line 4. Before and after line 4,
the = values of the descendants @fare equal to 0. By Lemma 3.7, thevalues of all proper
descendants gf are equal to 0 before and after line 4. Sinite = 0 after line 4, ther values of
all descendants af and are equal to O after line 4. Hence, theapp operation preserves the
consistency o€orr. The same argument applies to line 12. O

Lemma 3.13 Execution of line 15 preserves the consistenayfr.

Proof: Assume thatUorr is consistent before line 15. Line 14 implies that root just before
line 15. Letn’ denoter.parent. By Lemma 3.7'.z > 0 and hencer’ is white before line 15.
Therefore, by construction DV, 7’.last is the black child ofr’.

Let ¢ denote the start of the current epoch #dri.e.,t is the most recent time at whiet.last
was assigned. Just after timehex values of all children ofr” were equal to 0. By the definition
of ¢, no child of 7’ has been set to 0 since timeBy Lemma 3.1, every internal node has at least
one child withxz equal to 0. Therefore, from tinteuntil after the execution of line 15, at madst- 1
children ofr’ have had their: value set to a nonzero value. (Note that line 15 is the only line that
setsz to a nonzero value.) Thus, by the definitionle$t, 7’.last.x remains 0 after the execution

11

of line 15. Thusy'.last # w. Sincen’ is white andr’.last is black inCorr, we conclude that is
white in Corr. SO0Copr remains consistent even with the additional constraintithatrequired
to be white. (Note that.z is set to a positive value by line 15.) O

Lemma 3.14 The placemenbyrr is always consistent.

Proof: Lines 4, 12, and 15 are the only lines that can affect the consistencyefsince they are
the only lines that modify théust field or thez field of any node. From Lemmas 3.12 and 3.13,
these lines preserve the consistencyCgfr. From Lemma 3.11 it follows thaPorr is always
consistent. O

3.6 A Potential Function Argument

In this section, we use a potential function argument to showQhais 2 (i) -competitive, where

) A Ink 1
v=min | —,— — —
16~ 8 8

andv' = ﬁ Let T} rr(0) denote the total cost incurred IY'F to process request sequence
except that we exclude frofff,z (o) the cost of initializingPorr. (This initialization cost is taken
into account in the proof of Theorem 1 below.) We define potential function, as:

® = v Topp(o) —v' - Ton(o) + (1)
Z a.parent.diam - oa.x +

a€m.ancAaz#root

Z a.parent.diam - (c.x — .y + a.load)

agr.anc

Lemma 3.15 The cost incurred bywapp(P, o, 3) is at most2 - k%~ . a.parent.diam, where
1 = a.depth.

Proof: The cost incurred is the cost of exchanging the files placed amd 5 with each other,
which is at mos® - av.cap - a..parent.diam = 2 - k% - a.parent.diam. Note thatr and3 have the
same capacity. O

Lemma 3.16 The predicateb < 0 is a loop invariant of the up loop.

Proof: Every iteration of the up loop movesto its parent. To avoid confusion, we us¢o refer to
the old node (i.e., child) and we uséto refer to the new node (i.e., parent). Consider the change
in @ in a single iteration of the up loo@N incurs no cost in the up loop. By the definition ®f
line 3 preserve®. By Lemma 3.8, line 4 does not increaBeleti = w.depth. By Lemma 3.15,

12

after the execution of line 4)FF incurs a cost of at most= 2 - k=~ . 7.diam to move from
the current consistent placement to the next. Thus, the total chadgmian iteration is at most

v-c—n.diam - (r.y — w.load)
v-c—'.diam - (mw.react — mw.deact)
= v-c—a.diam - (g(i, k) — g(i,2k))

. 1
= V-C—W/.diam'/{d_l_l-g
A
< v-c——-c
16
< 0.

(In the derivation above, the first inequality is due to the guard of the up loop and line 3, and the
second inequality is due to the assumption th@t, k) is A-separated.) O

Lemma 3.17 The predicateb < 0 is a loop invariant of the down loop.

Proof: Every iteration of the down loop movesto one of its children. To avoid confusion, we
user to refer to the old node (i.e., parent) amdto refer to the new node (i.e., childpN incurs
no cost in the down loop. We consider the following three cases.

Suppose that the outéf statement takes the first branch. In this c&$€l' does not incur any
cost. Thus, the change inis

w.diam - (7'.y — 7'.load)
< m.diam - (m.react — w.react)
= 0,

where the inequality is due to Lemma 3.10 and the guard of the tfuséstement.
Suppose that the outé statement takes the second branch and that line 12 is not executed. In
this caseOFF does not incur any cost. Thus, the change iis

w.diam - (7'.y — 7'.load)
= m.diam - (7".x — 7'.load)
S O;

where the equality is due to line 15 and the inequality is due to lines 14 and 15.
Suppose that the outéf statement takes the second branch and that line 12 is executed. By
Lemma 3.15, in this cas@FF incurs a cost of = 2 - k~i~! . 7. diam, wherei = 7.depth. Thus,

13

the change ib due to line 12 is at most

v-c—m.diam - Z (0.x — d.y)

d€m.ch
< v-c—m.diam - Z (0.x — d.react)
d€m.ch
k—2
= vee—mdiam- Y (g(i+ 1,k —j) —g(i +1,k))
=0
k—2 1 1
g g d—ie] _ L
= v-c—m.diam -k j;o (4(k—j) 4k>
< Ink 1
]/ . —_— —_—— — .
< c 5 <)
< 0.

(In the above derivatior, = andd.y denotes the values just before the execution of line 12, the first
inequality follows from Lemma 3.10, the first equality follows from Lemma 3.9, and the second
inequality follows from the fact thatf,_; > Ink, whereH,_; denotes thék — 1)th harmonic
number, thatisf,_; = Zf;ll %.) By the analysis of the previous case (i.e., the oiftstatement

takes the second branch but line 12 is not executed), lines 14 and 15 do not iderdases, every
iteration of the down loop preservés< 0. O

Lemma 3.18 Lines 18 to 19 preservé < 0.

Proof: Let the request appendeddan line 18 be(u, f). The guard of the down loop ensures that
fis inm.missing. Algorithm OFF incurs cost at most. diam to process such a request because it
stores all the files iF'(7.depth) in a child of 7, andr.missing C F(m.depth).

SinceON is nice, it processes a requést f) in two phases as follows: in the first pha€gy
adds a copyu, f) to its placement; in the second pha&gy performs an arbitrary sequence of
add and delete operations.7lfis equal toroot, thenON incurs expected cost at Iea?t m.diam
in the first phase since the miss penalty associated with any fileisot.diam. If 7 is not equal
to root, thenON incurs expected cost at Ieagst w.parent.diam = % - w.diam in the first phase.
Thus, in either casé)N incurs expected cost at Ieag;t- w.diam it the first phase. LeK be the
set of nodes on the path fromto u, excludingr. Note thatw.load, for o € X, may increase by
during the first phase.

The change i due to the first phase @IN and due t@FF in processing a request is at most

14

v\ diam

v - m.diam — — + Z a.parent.diam
aeX

. ZD _ »

< ﬂ.dzam-<l/— 5 >+7T.dzam-2)\ J
Jj=0

< di L v N A
< mw.diam 5 1
- T 25— 1)

. A 15—=T7A
< mw.diam - — -

16 A—1

S O;

(In the above derivation, the second last inequality follows frorg % and the last inequality
follows from\ > 2.)

For analyzing the second phase(@X in processing a request, it is convenient to view the ran-
domized online algorith®N as a probability distribution over a collection of deterministic online
algorithms. For each such deterministic algoritdmwe define an associated potential function
4 as in Equation 1, but witliox (o) replaced by the cost incurred byon o, denoted’s (o), and
each termw.load appearing in the second summation replacefOyx; < q.depin F' (7)) Nev.placed 4],
wherea.placed , denotes the set of distinct files placed byn «a.caches after processing the re-
quest sequence. We denotd(Up<i<q.deptn F' (7)) N a.placed 4| by .load 4. Note thatlon (o) is
the expected value df4(c) when A is chosen at random from the probability distribution asso-
ciated withON. Similarly, for any nodev, «.load is the expected value a@f.load , and® is the
expected value ob 4. Thus it is sufficient to prove that for any, each individual operation (i.e.,
each addition or deletion of a file) performed Ayduring the second phase does not increkage
For deletions, this claim is immediate since all term®ipare unchanged except that terms of the
form a.load 4 may decrease by one. When a file is added, the set of nodes with an inclkealksed
value form a pathP from some node, say, to a leaf, and4 incurs a cost ofv.parent.diam. Let
the set of nodes on path beY. (Note thatroot does not belong td” sinceroot.load is always
zero.) Since the diameters of the node$’adre A\-separated, the changedr, is at most

—v' - a.parent.diam + Z B.parent.diam
BeY

< —v' - a.parent.diam + «.parent.diam - Z A
j=0

= —v' - a.parent.diam + 3

= 0.

T a.parent.diam

The claim of the lemma then follows. O

15

Lemma 3.19 ON is Q2 (%)-competitive.

Proof: Initially, & = 0. By Lemmas 3.16, 3.17, and 3.18, < 0 is a loop invariant of the
main loop. Therefore, by Lemmas 3.5 and 3[8x (o) > % - Thpp(o) holds initially and is a
loop invariant of the main loop. Let' be the cost incurred b FF in moving from the empty
placement to the first placement. Note tha{ serves every request with a cost at least 1 (because
the diameter of an internal node is at least 1). Hefieg,(o) tends toco as N (the length of the

(@) _ v i

request sequence tends toco. Therefore, we can ensure thﬂ% = (17) by choosing

N sufficiently large. O

Theorem 1 ON is 2 (log ¢)-competitve.

Proof: Recall that\ is Q2(log k). Hencey = ©(log k) andv’ = ©(1). Lemma 3.19 then implies
thatON is Q(log k)-competitive. The theorem follows sinde= 8bk — 1, thatis,k = ©(d/b). O

It is also possible to express the preceding lower bound in terms of the number of eaches
and the capacity blowupp Since,n = k¢ andd = 8bk — 1, we haven = k%*~1, Solving these
equations fot (e.g., using bootstrapping), we find that @(m) and hence,

logk = ©O(loglogn — logb — log(loglogn — logb))
= O(loglogn —loghb).

It follows that ON is Q(log log n — log b)-competitive.

4 An Upper Bound

We show in this section that, given(d) capacity blowup, wheréd is the depth of the cache hier-
archy, a simple LRU-like algorithm, which we refer toldeerarchical LRU(HLRU), is constant-
competitive with respect to an optimal offline algorittoPT. For the sake of simplicity, we
assume that every file has unit size and uniform miss penalty. Our result can easily be extended to
handle variable file sizes and nonuniform miss penalties using an approach sirhifeddoORD

[14].

4.1 TheHLRU Algorithm

In this section we presentAd + 1)-quasifeasiblddLRU algorithm that is constant-competitive
with respect ta@OPT. HLRU divides every cache intd+ 1 equal-sized segments numbered from
0 to d. For a nodex, we definea.small to be the union of segment depth of all the caches in
a.caches, and we definev. big to be the union ofs.small for all 5 € a.desc.

For the rest of this section, we extend the definitions abpyand aplacement(defined in
Section 2) to internal nodes as well. A copy is a fair f) where« is a node and is file that
is stored ina.small. A placement refers to a set of copies. TH&RU algorithm, shown in
Figure 2, maintains a placemeht In HLRU, a nodex uses a variable.ts[f] to keep track of

16

the timestamp of a fil¢. For the convenience of presentation, we defing.parent to be a fake
node that has every file irvot.parent.small (and hence also inoot.parent.big), and we define
root.parent.diam to be the uniform miss penalty.

{On arequestd,)}

1 ¢:=now;
2 do
3 flag = false;
4 P:=PU{(a,f)};
5 a.ts[f] := max(a.ts[f], 1);
6 if capacity is violated ai. small then
7 f := file with smallest nonzera.ts|f];
8 P= P\{(a,)}
9 if f ¢ a.big then
10 t:= a.ts[f];
11 a.ts[f] :==0;
12 a = a.parent;
13 flag := true
14 fi
15 fi

16 while flag
Figure 2: The HLRU algorithm.

4.2 Analysis of theHLRU Algorithm

For any nodex and file f, we partition time inteepochswith respect tax and f as follows. The
first epoch begins at the start of the execution, which is defined to be time 1. Subsequent epochs
begin just after the execution of line 11.

We definex.ts*[f] to be the time of the most recent access to file a cache inv.caches in
the current epoch with respect to nadand file f. If no such access exists, we defines*|f] to
be 0.

For the convenience of analysis, we categorize the file moveme®&RRU into two types:
retrievalsandevictions On a requesty, f), the HLRU algorithm first performs a retrieval (this
corresponds to the block of code from the beginning of the code to line 5 of the first iteration of the
loop) of f from the nearest cachethat has a copy. Let be the least common ancestorwoénd
v. Then the cost of such a retrievalisdiam. Let X denote the set of nodes on the path freno
u, excludinga but includingu. For every node? in X, we charge @seudocostf 3.parent.diam
to nodex for such a retrieval.

Each subsequent iteration of the loop performs an eviction (this corresponds to the block
of code from line 6 of an iteration to line 5 of the next iteration) of a file frammall to
a.parent.small for some nodex. We charge a pseudocost @fparent.diam to « for such an
eviction.

17

The only cost incurred b®PT is due to retrievals. LeDPT adds (or retrieves) a cogy, f)
by fetchingf from v, a be the least common ancestorcindv, and.X be the set of nodes on the
path from froma to u, excludinga but includingu. Then the cost of such a retrievaldsdiam.
For every node’ in X, we charge a pseudocost@iparent.diam to nodex for such a retrieval by
OPT.

For any nodev and file f, we define auxiliary variables.in[f] anda.out[f] for the purpose
of our analysis. These variables are initialized t&Ve incrementv.in|f] whenever a retrieval of
file f charges a pseudocost to nadeWe incrementv.out|[f] whenever eviction of filg' charges
a pseudocost to node

Lemma 4.1 Before and after every retrieval or eviction, for any nadand file f, f € «.big iff
B.ts[f] > 0 for somes € a.desc.

Proof: Initially, both sides of the equivalence are false. If both sides of the equivalence are false,
then according to the code in Figure 2, the only event that truthifies either side is a retri¢g\atl of
a cacheu in a..caches, which in fact truthifies both sides. It remains to prove that if both sides of
the equivalence are true, and if one side becomes false, then the other side becomes false.
The only event that falsifies the left side is an eviction of the last copy of a.big from
a.small. Prior to this eviction,5.ts[f] = 0 for all proper descendants of « (note that the
equivalence holds fof) anda.ts[f] > 0. The eviction then sets.t¢s[f] to 0, falsifying the right
side.
The only event that can falsify the right side (i.e., line 11) is an evictioffodm «.small such
that, after the evictionf ¢ «.big. Note that eviction off from 3.small, for a proper descendant
3 of a, cannot falsify the right side because such an eviction engugesent.ts[f] > 0 (line 5).
Thus, falsification of the right side implies falsification of the left side. O

Lemma 4.2 Before and after every retrieval or eviction, for any nadand file f,

a.ts*[f] = max [.ts[f].

BEa.desc

Proof: Initially, both sides of the equality are zero. By the definitionaofs*|f], the value of
a.ts*[f] changes from nonzero to O (i.e., a new epoch with respeetand f begins) after line
11. By the guard of the inndf statementf ¢ «.big just before line 11. Hence, by Lemma 4.1,
B.ts[f]is 0 forall g € a.desc.

The valuea.ts*[f] increases due to some accesy @it a cache: in a.caches. The equality
holds because thaax value on the right side is at

Between the changes ofts*|[f], only the eviction off from a.big can change thewax (reset
it to 0) on the right side of the equality. This eviction also resets*[f] to 0 because a new epoch
begins. d

Lemma 4.3 Before and after every retrieval or eviction, for any nadend file f, a.ts[f] <
a.ts*[f]. Furthermore, just after line 8, if & «.big, thena.ts[f] = a.ts*[f].

18

Proof: The first claim of the lemma follows immediately from Lemma 4.2. For the second claim,
note that we are evicting the last copy pfin a.big from «.small. By Lemma 4.1, all proper
descendants of o haveg.ts[f] = 0. Soa.ts|f] = a.ts*[f] by Lemma 4.2. O

Lemma 4.4 If a file movement (between two caches) has actualCastd charges a total pseu-
docost ofC”’, then

A
<(O'< —C.
C_(J_)_lC

Proof: Suppose the file movement is from cach® cachev. Leta be the least common ancestor
of v andv and letB be the nodes on the path framto v, excludinga but includingu. Then

C
= «a.diam
< Zﬁ.parent.dmm
BEB
< oz.diam-z}_j
j=0
A
= a0 ¢

Lemma 4.5 For any nodex, the total pseudocost charged to nadeue to retrievals is

Z a.in[f] - a.parent.diam.
f

Proof: Follows from the observation that whenever a pseudocost is charged tavohae to a
retrieval, the pseudocostadsparent.diam. O

Lemma 4.6 For any nodey, the total pseudocost charged to nagdéue to evictions is at most

Z a.out|f] - a.parent.diam.
f

Proof: Follows from the observation that whenever a pseudocost is charged tavrthgeto an
eviction, the pseudocost is at maesparent.diam. O

Lemma 4.7 For any nodex and file f,

a.out[f] < a.in|[f].

19

Proof: We observe that if a pseudocost is charged to a rods a result of a retrieval, then the
retrieval truthifiesf € «.big. Similarly, if a pseudocost is charged to nodes a result of an
eviction, then the eviction falsifies € «.big. It then follows that

a.out[f] < a.in[f] < a.out[f] +1
becausef ¢ a.big initially. O

Lemma 4.8 For any nodex, «.big always contains the most recently accesded.cap files by
a.caches.

Proof: Let X denote the set of the most recently accessed. cap files. We consider the places
where afile is added t& or removed fromu. big.

A file f can be added t& only whenf is requested at a cachan «.caches. In this casef
is added ta:.small and is not evicted from.small because it is the most recently accessed item.
Hence,f € a.big.

Afile f can be removed from.big only when it is moved froma.small to a. parent.small as
the result of an eviction and there is no other copy @h «.big. This means thaf is chosen as
the LRU item at line 7. Sincég is the LRU item, there ar2 - a..cap itemsg in a.small such that
a.ts|f] < a.ts[g] < a.ts*[g]. By Lemma 4.3¢.ts[f] = a.ts*[f] just after line 8. It follows then
from the definition ofts* that f ¢ X. O

Lemma 4.9 For any nodex, the total pseudocost due to retrievals chargedvtby HLRU is at
most twice the pseudocost chargeditby OPT.

Proof: Fix a nodea. For OPT, we say that a request for a fflaat a cache inv.caches results

in a miss if no copy off exists at any cache in.caches at the time of the request. For HLRU,

a miss occurs if no copy of is in a.big. By Lemma 4.8, HLRU incurs at most as many misses

as an LRU algorithm with capacity- «.cap running on the subsequence of requests originating
from the caches in.caches. (Note that LRU misses whenever HLRU misses.) By the well-known
result of Sleator and Tarjan [11], such an LRU algorithm incurs at most twice as many misses as
OPT.

Note that a miss results in a pseudocostxgfarent.diam being charged tev. Therefore,
the total pseudocost charged to nadeén OPT is at least the number of misses in OPT times
a.parent.diam. Furthermore, within HLRU, a pseudocost is charged to nedaly on a miss.
Therefore, the total pseudocost charged to nada HLRU is at most the number of misses
incurred by HLRU timesy.parent.diam. The claim of the lemma then follows. O

Lemma 4.10 For any nodex, the total pseudocost charged doby HLRU is at most four times
the total pseudocost chargeddadby OPT.

Proof: Follows immediately from Lemmas 4.5, 4.6, 4.7, and 4.9. O

Theorem 2 HLRU is constant-competitive.

Proof: Follows immediately from Lemmas 4.4 and 4.10. 0J

20

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

T. E. Anderson, M. D. Dahlin, J. N. Neefe, D. A. Patterson, D. S. Rosselli, and R. Y. Wang.
Serverless network file systems.Rroceedings of the 15th Symposium on Operating Systems
Principles pages 109-126, 1995.

B. Awerbuch, Y. Bartal, and A. Fiat. Distributed paging for general networksurnal of
Algorithms 28:67-104, July 1998.

Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Spaegyes
184-193, October 1996.

Y. Bartal. Distributed paging. In A. Fiat and G. J. Woeginger, editdis 1996 Dagstuhl
Workshop on Online Algorithmsolume 1442 ot ecture Notes in Computer Sciengages
97-117. Springer, 1998.

Y. Bartal. On approximating arbitrary metrics by tree metrics.Phoceedings of the 30th
Annual ACM Symposium on Theory of Computpapes 161-168, May 1998.

A. Borodin and R. El-Yaniv. Online computation and competitive analysi€ambridge
University Press, 1998.

C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The Harvest
information discovery and access syste@omputer Networks and ISDN Syste@8:119—
125, 1995.

M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative caching: Us-
ing remote client memory to improve file system performancePrioceedings of the First
Symposium on Operating Systems Design and Implementaages 267—-280, November
1994.

[9] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics

[10]

[11]

[12]

[13]

by tree metrics. IfProceedings of the 35th Annual ACM Symposium on Theory of Computing
pages 448-455, June 2003.

M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Placement algorithms for hierarchical
cooperative cachinglournal of Algorithms38:260-302, January 2001.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rGlesh-
munications of the ACM28:202-208, 1985.

D. Wessels. Squid Internet object cache. Available at URL http://squid.nlanr.net/squid, Jan-
uary 1998.

D. Wessels and K. Claffy. RFC 2187: Application of Internet Cache Protocol, 1997.

21

[14] N. E. Young. On-line file cachingAlgorithmica 33:371-383, 2002.

[15] L. Zhang, S. Floyd, and V. Jacobson. Adaptive Web CachingPrateedings of the 1997
NLANR Web Cache Workshd®97.

22

