
Supporting Run-time Adaptation in Packet Processing Syste ms

Vinod Balakrishnan†, Ravi Kokku‡, Aaron Kunze†, Harrick Vin‡, Erik J. Johnson†

†Intel Research and Development ‡University of Texas at Austin
†{vinod.k.balakrishnan,aaron.kunze,erik.j.johnson}@intel.com

‡{rkoku,vin}@cs.utexas.edu
Abstract:

Implementors of packet-processing applications on
multi-core processors must balance two requirements: (1)
adapt processor allocations dynamically to reduce the
overall resource provisioning requirement for the system,
achieve robustness to traffic fluctuations, and reduce energy
consumption; and (2) utilize, for each application stage, re-
sources (e.g., memory levels, inter-processor communica-
tion mechanisms, etc.) closer or local to the processors on
which the stages are mapped to achieve the highest possible
throughput. In this paper, we describe the design and im-
plementation of a run-time adaptation system that can meet
these two requirements simultaneously. Our design allows
each application stage to utilize local resources whenever
possible in the steady state. Upon adapting the allocation
of processors to stages, the run-time system (1) binds each
resource usage within a stage to a new resource instance;
and (2) checkpoints and migrates the state from the previ-
ous resource instance to the newly-bound resource instance.
We describe the design and implementation of our adapta-
tion system in the context of a packet processing system
designed using the IntelR© IXP2400 network processor. We
show that our design has little impact (14%) on the steady-
state throughput of the system. We further show that our
design is able to perform resource adaptation for a real ap-
plication in less than 100ms, allowing processor allocations
to be adapted at a very fine time-scale.

1 Introduction
Packet processing systems are optimized to process net-
work packets efficiently. These systems are required to
support high-bandwidth links (and hence, high packet pro-
cessing throughput) as well as a set of complex packet
processing applications (e.g., protocol conversion, firewall,
Secure Socket Layer, intrusion detection, and virus scan-
ning). Together, these requirements yield scenarios where
the time to process a packet exceeds the inter-arrival time
of packets at a system. To support complex applications
in high-bandwidth environments, modern packet process-
ing systems (and in particular, network processors) uti-
lize multi-threaded, multi-processor architectures, sophis-
ticated memory hierarchies, and specialized inter-processor
communication mechanisms [6]. For instance, the IntelR©

IXP2400 network processor includes eight RISC micro-
engines (ME) each with eight hardware threads and an In-
tel XScaleR© core, a multi-level memory hierarchy with

memory local to individual microengines, on-chip mem-
ory shared across all processor cores, interfaces to exter-
nal SRAM and DRAM, as well as next-neighbor rings and
multiple hardware queue implementations for efficient data
movement between processor cores. Such network proces-
sor architectures fore-shadow a more general trend toward
the design of multi-core, multi-threaded architectures tar-
geted for high-throughput computing environments.

Packet processing applications are often implemented
on such multi-core, multi-threaded architectures using the
pipelined modelof computation. In this model, appli-
cation functionality is partitioned into a graph of packet
processing stages connected by communication channels
(or queues); each stage is then mapped onto one or more
processors [17, 31, 15, 13]. The sequence of stages in-
voked for processing a packet depends on the type of the
packet (determined based on the header/payload of the
packet) [14, 17]. For example, a Secure Socket Layer [10]
termination application processes three packet types—setup
packets (that create per-flow state), outgoing packets (that
involve encryption), and incoming packets (that require de-
cryption).

To implement such pipelined applications on parallel ar-
chitectures, designers must balance two requirements. First,
to achieve the highest possible throughput, each pipeline
stage should utilize resources (e.g., memory levels, inter-
processor communication mechanisms, etc.) closer or lo-
cal to the processors on which they are mapped; access-
ing local resources incurs smaller latencies and minimizes
the use of shared global resources. Second, because of the
traffic fluctuations inherent in packet networks, the work-
load seen by each pipeline stage may vary significantly over
time. Hence, the allocation of processors to pipeline stages
needs to be adapted over time. Adapting processor alloca-
tions dynamically reduces the overall resource provisioning
requirement for the system, achieves robustness to traffic
fluctuations, and reduces energy consumption. In fact, it has
been shown that a device that can adapt–without incurring
any adaptation overheads–the mapping of pipeline stages to
processors at run-time needs up to 50% less processing re-
sources to process the same packet traces, and can reduce
its average power consumption by up to 80% [18]. Real-
izing these benefits, however, requires the system to adapt
processor allocations at fine time-scales.

These two requirements—adapting processor allocations
at fine time-scales and achieving high throughput—can be

1

contradictory. Whereas allocation of local resources to
pipeline stages is desirable for achieving high throughput,
doing so complicates adaptation on systems with diverse
hardware resources (such as the IXP2400 network proces-
sor). Since many of these hardware features have restric-
tions on how and when they can be used, it is difficult to
consistently use the most efficient hardware resources when
processor allocation is adapted dynamically. Adaptation
can be simplified if pipeline stages use only globally ac-
cessible resources; however, doing so can decrease signif-
icantly the throughput supported by the system. Hence, a
key challenge is to design a packet processing system that
can support adaptation and achieve high throughput simul-
taneously.

In this paper, we describe the design and implementa-
tion of a run-time adaptation system that meets this chal-
lenge. Our design allows each pipeline stage to utilize lo-
cal resources whenever possible in the steady state. Upon
adapting the allocation of processors to stages, the run-
time system (1) binds each resource usage within a pipeline
stage to a new resource instance, and (2) checkpoints and
migrates the state from the previous resource instance to
the newly-bound resource instance. We show that by ex-
ploiting the features of packet processing applications one
can reduce significantly the overhead of run-time adapta-
tion. We describe the design and implementation of the
checkpointing/state-migration mechanism and the resource
binding mechanism in the context of a packet processing
system designed using the IntelR© IXP2400 network proces-
sor. We show that our design has little impact (14%) on the
steady-state throughput of the system. We further show that
our design is able to perform resource adaptation for a real
application in less than 100ms, allowing processor alloca-
tions to be adapted at a very fine time-scale.

The rest of the paper is organized as follows. In Section 2,
we formulate the problem of adapting resource allocations
for packet processing applications, and discuss the design
alternatives for the check-pointing/state-migration andre-
source binding mechanisms. In Section 3, we describe our
implementation. We present experimental results from our
prototype in Section 4, and discuss optimization opportu-
nities in Section 5. Section 6 compares our work with re-
lated research, and finally, Section 7 summarize our contri-
butions.

2 Problem Formulation
Efficient use of resources (e.g., memory and communica-
tion channels) local, or closer, to processor cores is critical
for achieving the best possible performance for applications
running on network processors. In such environments, dy-
namically adapting allocation of processor cores to applica-
tion stages offers some unique challenges. In this section,
we first motivate the use of local resources for achieving
high throughput in the context of the IntelR© IXP2400 net-

work processor (Section 2.1), and then describe the chal-
lenges in designing an adaptive system on this platform
(Section 2.2).

2.1 A Case for Using Local Resources

The IntelR© IXP2400 network processor includes eight
RISC microengines each with eight hardware threads and
an Intel XScaleR© core. It offers multiple implementations
of packet channels to facilitate communication of packets
between pipeline stages in the application, as well as mul-
tiple implementations of locks to provide synchronization
between threads. These implementations have different per-
formance characteristics and different restrictions on when
they can be used. For example, the next-neighbor regis-
ters in the IXP2400 network processor can be used to move
packets from a microengineonly to its neighboring micro-
engine. In addition to next-neighbor registers, the IXP2400
network processor offers globally available queuing mech-
anisms that can be used to move packets betweenanypair
of processors including (1) a limited number of scratch-
pad rings implemented using on-chip memory, and (2) off-
chip SRAM memory that can be used to implement packet
channels in large quantities but with lower performance.
When the mapping of application pipeline stages to proces-
sors changes, the set of available hardware resources may
change as well and hence the performance of the applica-
tion depends on the ability to adapt to this changing re-
source availability. Adaptation can be simplified if pipeline
stages use only globally accessible resources (e.g., scratch-
pad rings or SRAM rings); however, since using non-local
resources results in unnecessary usage of internal and exter-
nal bus bandwidths and incurs larger latency, the throughput
supported by the system can decrease significantly.

To quantify the impact of inefficient usage of hardware
resources, consider the bus structure of the IXP2400 net-
work processor. The various internal buses in IXP2400 net-
work processor used by packet channel implementations are
shown in Figure 1. The IXP2400 network processor has
four internal buses that connect the microengines to SRAM
controllers and scratchpad memory. These buses are called
the S-Push and S-Pull buses. Each cluster of microengines
shares an S-Push bus for sending data to devices and an S-
Pull bus for receiving data from devices. There are two mi-
croengine clusters on the IXP2400 network processor, each
with four microengines. The IXP2400 network processor
has two SRAM controllers, each with a read and write bus
connected to external SRAM memories.

The impact on the available bus bandwidths for different
channel implementations is shown in Tables 1 and 2. The
SRAM ring implementation is a pure software implemen-
tation that can be used to communicate packets between
any two processors. The scratchpad ring implementation
can also be used for any pair of processors, but there are
only sixteen such rings in the system. The next-neighbor

2

ME 0:0 ME 0:1

ME 0:2ME 0:3

ME 1:0 ME 1:1

ME 1:2ME 1:3

SRAM

SRAM

Controller

Controller

Scratchpad
Memory

Cluster 0

Cluster 1

Read

Read

Write

Write

S
−

P
ul

l

S
−

P
us

h

S
−

P
us

h

S
−

P
ul

l

Figure 1: IXP2400 network processor internal buses

ring implementation can only be used between adjacent mi-
croengines. Table 1 shows the number of bytes transfered
on the S-Push and S-Pull buses for a single packet that is
successfully transmitted over an instance of the different
packet channel implementations. Table 2 shows the impact
of using the various packet channel implementations on the
SRAM buses. In both tables, the bandwidth percentages
show the amount of bus bandwidth utilized for supporting
a single packet channel processing 1Gb/s of 64-byte Ether-
net packets from one microengine to another. The data in
these two tables are based on a 600MHz IXP2400 network
processor[23]. Note also that, for both the internal and ex-
ternal buses, the impact of using SRAM rings with statistics
shown in Tables 1 and 2 represent the best-case statistics.
The SRAM ring implementation uses spin-locks in SRAM
to provide synchronization; hence, the bus overhead would
be even greater in the presence of higher lock contention.

The differences in bus bandwidth usages in Tables 1
and 2 result in differences in packet processing through-
put. We evaluated the throughput impact of using dif-
ferent packet channel implementations by comparing the
forwarding rates achieved by the IPv4 switching and for-
warding application shown in Figure 2. The L2 classifi-
cation, L3 forwarding, and Ethernet encapsulation pipeline
stages were each mapped to only one microengine. We var-
ied the packet channel implementation used by channels 2
and 5 between next-neighbor ring implementations, scratch
ring implementations and SRAM ring implementations and
measured the forwarding rate of the application in the dif-
ferent configurations. The application input traffic consisted
of packets destined to the L3 forwarding pipeline stage. We
measured the forwarding rate while varying the packet size
from 64 bytes to 256 bytes. The result of this experiment
is shown in Figure 3. This result was obtained using the
experimental setup described in Section 4. Since this appli-

cation is compute-intensive and not bound by internal bus
bandwidth, it does not show a throughput benefit in using
next-neighbor rings over scratchpad rings, but we don’t ex-
pect this to be true for all applications. In either case, the
results clearly show that using on-chip resources for com-
municating packets between pipeline stages offers signifi-
cant performance improvements.

Rx Tx
Ethernet
encapsul

ation

L2
classifier

L2
bridge

Chnl 1

C
h

n
l 2

C
hn 3

Chnl 4

Chnl
6

C
hnl 5

C
h

nl
 7

L3
fwdr

Figure 2: Layer 3 switching and forwarding application

0

200

400

600

800

1000

1200

60 80 100 120 140 160 180 200 220 240

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Packet size (Bytes)

Next-neighbor
Scratch
SRAM

Figure 3: Throughput benefits of packet channel adapta-
tion(Source:Intel)

Lock resources used for synchronization also consume
unnecessary bus bandwidth when the most efficient imple-
mentation is not used when it is available. For example, us-
ing a spin-lock in microengine local memory provides syn-
chronization between microengine threads without using
any bus bandwidth, whereas using a spin-lock in scratchpad
memory or SRAM uses internal and/or external bus band-
width. The impact on system performance due to spin-locks
in scratchpad memory or SRAM will vary greatly based on
lock contention.

Clearly, using the most efficient packet channel and lock
implementations available to the application in its current
processor mapping is critical for maximizing system per-

3

Implementation # of S-Push % of S-Push # of S-Pull % of S-Pull
Bytes Bandwidth Bytes Bandwidth

Next-neighbor 0 0% 0 0%
Scratchpad Ring 4 0.47% 4 0.47%

SRAM Ring w/ Stats 68 7.9% 68 7.9%

Table 1: Internal bus usage for packet channel operations onone channel carrying 1Gb/s of 64-byte packets

Implementation # of SRAM % of SRAM # of SRAM % of SRAM
Read Bytes Read Bandwidth Write Bytes Write Bandwidth

Next-neighbor 0 0% 0 0%
Scratchpad Ring 0 0% 0 0%

SRAM Ring w/ Stats 76 13% 68 12%

Table 2: External bus usage for packet channel operations onone channel carrying 1Gb/s of 64-byte packets

formance. Hence, in the face of adaptation, a mechanism
for rebinding pipeline stages to resource implementationsis
needed in order to maintain high throughput on an adaptive
packet processing system.

2.2 Adaptation Mechanisms

Our design allows each pipeline stage to utilize local re-
sources whenever possible in the steady state. Upon adapt-
ing the allocation of processors to stages, the run-time sys-
tem (1) binds each resource usage within a pipeline stage to
a new resource instance, and (2) checkpoints and migrates
the state from the previous resource instance to the newly-
bound resource instance. In what follows, we describe the
challenges in implementing these mechanisms.

2.2.1 Resource Binding

Packet-processing environments offer some difficulties for
the design and implementation of binding mechanisms.
First, given the extreme performance requirements of many
packet-processing applications, the solution must have very
little impact on the run-time performance of the system.
Second, since the workloads in a packet-processing envi-
ronment fluctuate frequently and since packet-processing is
often done in an embedded environment, the solution must
be simple enough to allow for rebinding to occur on a very
fine time-scale. Finally, the solution must work well in a
system with fixed-size code stores, such as the IXP2400 net-
work processor microengines.

A few alternatives for binding mechanisms exist. For ex-
ample, run-time checks could direct packet-processing code
to use the correct hardware resource. So, when a pipeline
stage wants to perform an operation on a packet channel or a
lock, the code could check a variable in memory that identi-
fies the resource instance the code should use. The variable
could be an enumeration or a set of function pointers. We
call this mechanism “run-time binding”. Run-time binding
has the advantage that it does not require any modification
of the application binary to adapt the binding. When the re-

binding occurs, the system just rewrites a variable in mem-
ory to make the rebinding take effect. One disadvantage
of run-time binding is that it incurs a run-time performance
penalty. Every time a resource is accessed, the indirection
needed to implement run-time binding uses valuable pro-
cessor/memory resources. Run-time binding has another
disadvantage in a fixed-size code store environment such
as an IXP2400 processor microengine. In this environment,
all of the resource implementations would need to fit in the
code store, which has very limited space.

Another alternative for binding, at the other end of the
complexity spectrum, is recompilation. Resource imple-
mentation could be compiled into the pipeline stage, and
when the resource is rebound, the pipeline stage could be re-
compiled. This has the advantage of incurring no run-time
performance penalty, as well as perhaps leveraging com-
piler optimizations to gain extra run-time performance. On
the other hand, re-compilation is a complicated operation
that would severely limit the frequency at which adaptation
could be done.

We designed and implemented a solution in between
these two points on the complexity spectrum. Our so-
lution has the advantages of having very little run-time
performance penalty, being sensitive to limited instruction
store processors, and being much less complicated than re-
compilation.

The implementation details of the mechanisms used to
perform resource binding are described in Section 3.

2.2.2 Checkpointing and State Migration

To adapt processor allocations, a mechanism is needed to
adjust the mapping of pipeline stages to processors at run-
time and to migrate state between them. This state migra-
tion involves migrating code between processors and mi-
grating any data being manipulated by the code. It also
involves migrating data being managed by other allocated
resources, such as packet channels. This mechanism must
be designed to meet the following requirements:

4

• Allow for adding and removing processing resources
to pipeline stages and adaptating other resources at
run-time without losing any intermediate state in the
running pipeline stages. For example, if a packet is be-
ing processed by a pipeline stage or stored in a packet
channel, the memory buffer storing the packet should
not be lost when the resource mapping of the stage is
changed. This is complicated on processor architec-
tures with resources local to individual processors that
is not easily accessible from other processors.

• Allow migration of pipeline stages between differ-
ent processor architectures, including processors with
fixed-size instruction stores (such as IXP2400 network
processor microengines) and processors with instruc-
tion caches (such as the Intel XScaleR© core).

• Be sensitive to the performance requirements of packet
processing code. In this environment, packet inter-
arrival rates are on the same timescale as memory la-
tencies, which means the mechanisms must have as lit-
tle run-time performance impact as possible.

Existing mechanisms used in symmetric multi-
processing systems and parallel processing systems
do not meet these requirements. For example, the Linux
kernel does not allow for the safe addition or removal
of processing resources to code at run time, or for the
migration of processes between processor architectures,
and its mechanism for migrating processes depends on an
instruction cache on each processor[22]. Checkpointing–a
method used to migrate processes in the parallel process-
ing domain–could be adapted to fit these requirements,
but it imposes an unacceptable run-time performance
penalty [20] and does not allow for adding and removing
processing resources.

To address these requirements, we have designed a
mechanism that leverages the unique properties of packet-
processing applications. We describe this mechanism in de-
tail in Section 3.

3 Design and Implementation
We implemented a run-time system (RTS) on the IXP2400
network processor that meets the requirements for the run-
time adaptation mechanisms listed in the previous section.
In this section we explain the design choices we made
for the adaptation mechanisms that we implemented in the
RTS. We also describe the important steps that the RTS per-
forms in adapting from one processor mapping configura-
tion to another.

3.1 Design/Implementation of resource bind-
ing

We implemented an adaptation-time linking solution for the
resource binding mechanism. To enable this mechanism, a

pipeline stage binary uses resources, like packet channels
and locks, through a software interface definition (a set of
methods) to the pipeline stage binary. Each interface can
have multiple implementations that utilize different hard-
ware resources. The adaptation-time linking solution links
in the appropriate implementation into the pipeline stage bi-
nary.

This approach has the advantages of not requiring a re-
compilation of the pipeline stage binary every time the bind-
ing of a software construct needs to change and incurs less
run-time performance and code store size overheads than
a run-time binding solution. Less code store is required
since only the implementations used are linked in the final
binary. In the remainder of this section we describe the soft-
ware interface abstracting the resources and then describe
the adaptation-time linking solution.

3.1.1 Resource Abstraction

Resources are exposed to a pipeline stage binary by the Re-
source Abstraction Layer (RAL). The RAL provides a set
of interface definitions which we callRAL interfaces. We
call a method in a RAL interface aRAL method. Each RAL
interface can be realized using different hardware resources
and we call each realization of a RAL interface aRAL im-
plementation. A pipeline stage binary can have multiple
instantiations of RAL interfaces and we call theseRAL in-
stances.

Figure 4 shows the important hardware resources in a
simplified representation of the Intel IXP2400 network pro-
cessor. The different resources have different constraints
on their usage and different performance characteristics as
described in Section 2.1. The RAL interfaces required for
adaptation and the different hardware resources used by
their implementations are given below:

• Packet channel: A packet channel provides a conduit
for transferring packets between two pipeline stages.
The packet channel interface provides methods to en-
queue and dequeue packets into the packet channel.
The RAL currently provides three packet channel im-
plementations that use different hardware resources:
(1) channels that use SRAM (2) channels that use the
Hardware-supported packet rings in on-chip scratch-
pad memory and (3) channels that use next-neighbor
registers.

• Locks: The lock interface provides synchronization
methods to acquire and release a mutex. The RAL cur-
rently provides two lock implementations: (1) locks
that use the local memory in an ME to provide syn-
chronization between the threads in an ME, and (2)
locks that use a spin lock in scratchpad memory, which
is available to all processors.

5

SRAM

P1

LM

P2

LM

P3

LM

P4

LMNN
ring

NN
ring

NN
ring

Simplified IXP2400 network
processor representation

P1, P2, P3, P4:
processing units

LM: local memory

Scratchpad
memory

SRAM
controller

Figure 4: Simplified representation of the IXP2400 network processor hardware

Adaptation
-time

linking

NN.put (1);
scratch.put (2);

Scratch.put (handle)

NN..put (handle)

Channel1 <-> NN
Channel 2 <->

scratch
channel1.put (handle1);

…..
channel2.put (handle2);

SRAM.put (handle)

NN.put (handle)

Scratch.put (handle)

Pipeline stage A
binary

mapping

RAL
implement

ations

linked binary Stage A binary
with resolved
references

RAL
implementation
binaries linked in

Figure 5: Linking illustrated

3.1.2 Adaptation-time linking

We now describe how a RAL instance in a pipeline stage is
bound to a RAL implementation.

Adaptation-time linking (Figure 5) takes as input:

• The binary type, either an ME binary or an Intel
XScaleR© core binary

• A pipeline stage binary containing unresolved refer-
ences to the RAL methods

• A list of RAL instances used in the binary along with
their implementation mapping and methods invoked
on each RAL instance and handle values of each RAL
instance.

• The RAL implementation binaries

The adaptation-time linking links in the RAL implementa-
tion binaries in the pipeline stage binary and resolves the
references to the RAL methods in the binary.

The adaptation-time linking also resolves references to
RAL handles. A RAL instance handle is introduced to al-
low sharing of the same RAL implementation code between
all of the RAL instances using the RAL implementation.
This works as follows: each RAL instance is given a unique
instance handle value. This value is passed as an argument
to the RAL methods of the RAL interface. The RAL im-
plementation can then distinguish between the multiple in-
stances on a per-call basis. In order to enable binding two
RAL instances of the same interface to different RAL im-
plementations, the name of each RAL method is qualified
with the RAL instance name in the binary.

3.2 Design/Implementation of state migration
State migration mechanisms are required to change the
mapping of a pipeline stage to a processing unit and en-
sure that none of the application or processor state is lost.
The RTS currently only supports a one-to-many mapping
of pipeline stages to processing units. State migration en-
tails three operations: checkpointing and data migration,re-
source state migration, and code migration. These three op-
erations are described in detail in the following sections.

3.2.1 Data migration/Checkpointing

Packet processing code has some unique characteristics that
make the design of a data migration mechanism much sim-
pler than general-purpose data migration mechanisms de-
signed before.

First, packet processing code is typically written in a sin-
gle infinite loop, as diagrammed in the pseudo-code below.

while (1) {
dequeue a packet from an input channel;
process the packet;
enqueue packet(s) on output channel;

}

The second characteristic of packet processing code is that
the loops shown above iterate at very high speeds. This is

6

necessitated by the rates at which packets must be processed
in packet processing systems. The final characteristic is that
at the beginning of this loop, the packet processing code has
no local state. The compiler [30] that we use to compile
the application does not allow for thread-local memory, it
ensures that the stack is empty of useful information, and
does not allow the programmer to acquire locks across loop
iterations. These characteristics allow for the creation of a
light-weight checkpointing mechanism that can be used to
stop packet processing code very efficiently without losing
any important state.

When code needs to be stopped, checkpointing is done in
two simple steps. First, the RTS tells the running code to
stop before starting another iteration of the top-level loop.
Second, the run-time system waits until all of the threads
running the affected code have stopped at the top of the
loop. At this point, the code may be safely stopped without
losing any state and restarted on another processor, even if
the processor has a different architecture.

Checkpointing on the ME involves stopping the ME ex-
ecution, writing a thread halt instruction at the checkpoint
location (top of the loop) and restarting the ME. This causes
all the threads in the ME to halt at a safe location. The ME
checkpointing incurs no run-time performance penalty.

On the Intel XScaleR© core, before starting a new itera-
tion, the Linux kernel thread checks a flag and exits if the
flag is set. The RTS sets this flag when it wants to migrate
the pipeline stage that is mapped to that thread. The In-
tel XScaleR© core checkpointing incurs the run-time perfor-
mance overhead of checking a flag.

3.2.2 Resource state migration

We implement resource state migration for packet chan-
nels. Packet channel state migration is the mechanism used
to save the packet handles in a packet channel implemen-
tation and initialize a new packet channel implementation
with those packets. This mechanism is required to prevent
packet resource leakage, when a packet channel instance is
remapped from one implementation to another.

A possible solution to packet channel state migration
consists of checkpointing the source pipeline stage and al-
lowing the channel to be drained before checkpointing the
next pipeline stage that the channel is used to communicate
with. This method breaks down if the data-flow graph has
loops. Consider an application (Figure 6) with 3 stages A, B
and C. This application has a loop between the stages A and
B consiting of the channels:channel1 and channel3. If we
have to migrate both channel 1 and channel 3, then check-
point ordering A, B or B, A will not suffice since with either
option, there could be a packet channel with packet handles
in it after the checkpointing is completed, resulting in leak-
age of the resources associated with those packet handles.
Since data flow graphs with loops occur in some network
applications, we need to implement a packet channel state
migration mechanism.

A

B

C

Chann

el 1

Channel 2Pipeline
stages

Channel 3

Figure 6: Example application with a loop

We implement channel state migration by first check-
pointing both the source and sink pipeline stages and then
copying the packet handles from the original packet channel
into the new packet channel.

3.2.3 Code migration/Loading code

Migrating code requires associating a processing unit with
a pipeline stage binary and starting execution of the code
on that processing unit. The RTS provides two types of pro-
cessing units: (1) Linux kernel threads on the Intel XScaleR©

core (the cardinality of which is bounded by the memory
in the system) and (2) ME, of which there are 8 on the
IXP2400 network processor, and each ME can have 4 or
8 hardware threads.

Each pipeline stage is associated with two binaries of
different formats, one for ME and the other for the Intel
XScaleR© core. This enables RTS to migrate code for a
pipeline stage between the two types of processing units
as well as between processing units of the same type. The
MEs have a fixed-size code that is loaded with the instruc-
tions that need to be executed and started by writing an en-
able register on the ME. On the Intel XScaleR© core, loading
code on a processing unit associates a function entry point
for a Linux kernel thread. For the Intel XScaleR© core, start-
ing a processing unit means creating and starting a Linux
kernel thread and passing it the function pointer that was
associated with the processing unit in a previous load com-
mand.

3.3 Adaptation steps

To explain our adaptation mechanisms, in this section we
consider the example application in Figure 7 running on
the simplified version of the IXP2400 network processor as
shown in Figure 4, and describe the steps performed by the
RTS in adapting from one processor mapping configuration
to another. A processor mapping configuration consists of
the pipeline stage to processor mapping along with the new
RAL instance mapping.

Initially (Figure 8), stage A is mapped to processor P1,
stage B is mapped to processor P2 and stage C is mapped
to processors P3 and P4. Stage A communicates to stage B
using a local packet channel implementation (next-neighbor
ring) since they are mapped to adjacent processing units

7

A

B

C

Channel

1

Channel2

Pipeline stages

Lock L1

Lock L2

Figure 7: Pipeline stages in an example application

and stage A uses a global packet channel implementation
(scratch ring) to communicate with stage C. In the exam-
ple, stage B is able to use a local lock implementation for
L1 since it is mapped to only one processor whereas stage
C uses a global lock implementation since it is mapped to
multiple processors. In order to migrate the system from the
initial to the final mapping (Figure 8) the following changes
must be made:

• Stage B migrates from executing on one processor P2
to executing on two processors (P3, P4).

• Stage C migrates from executing on two processors
(P3, P4) to executing on (P2) only.

• Channel 1 needs to use a global ring implementation
instead of a NN ring implementation.

• Channel 2 can now use a local NN ring implementation
instead of a global ring implementation.

• Lock L1 needs to use a global lock implementation in-
stead of a local lock implementation.

• Lock L2 can use a local lock implementation instead
of a global lock implementation.

The RTS performs the following steps to adapt from an
initial mapping to a final mapping.

1. Checkpointing: In our example, P1, P2, P3, P4 would
be checkpointed.

2. Packet channel state migration: In our example, pack-
ets in the NN ring implementation of channel 1 are
saved and after the new global ring implementation has
been allocated, it is initialized with the saved packets.

3. Binding: In our example, in the stage A binary chan-
nel 1 is rebinded to use a global ring implementation
and channel 2 is rebinded to NN ring implementation.
In Stage B binary, channel 1 is rebinded to a global
ring implementation and lock L1 is bound to a global
lock implementation. Similarly in stage C, channel 2
is rebinded to a NN ring implementation and lock L2
is bound to a local lock implementation.

4. Loading: In our example, processing units P1, P2, P3,
P4 are all loaded with the new binary and restarted. An
interesting optimization in the loading process would
be to determine the order of loading the processing
units to minimize packet loss. For example, in the final
mapping in our example (Figure 8), pipeline stage B is
mapped to two processing units P3, P4, while stage C
is mapped to P2 only. In this case, the loading order
P3, P2, P4 results in less system disruption time (de-
fined as the time the system is not processing packets)
than the loading order P3, P4, P2.

4 Results
Our RTS implementation was done on a RadiSys, Inc. ENP-
2611* with a single 600 MHz IXP2400 network processor,
running MontaVista* Linux* . Our evaluation was primarily
done on this hardware platform with one evaluation done on
the cycle accurate simulator for the IXP2400 network pro-
cessor provided in the IntelR©Internet Exchange Architec-
ture (IXA) Software Development Kit (SDK) Workbench
version 3.5.

To understand and evaluate our RTS adaptation mecha-
nisms, we used a set of application-agnostic microbench-
marks and application-specific microbenchmarks. We also
measured the cumulative effects of the RTS adaptation
mechanism using two metrics: total time to adapt and to-
tal time a processor is down.

We used a 37.5 MHz hardware-based timer on the
IXP2400 network processor to measure the time taken for
the different operations. We measured the overhead of in-
voking the method used to read the timer value as 0.53µs
from both Linux user and kernel space.

In the following sections we outline the experimental
setup and the results of these studies. The measurements
were taken in the Linux kernel on the Intel XScaleR© core
unless otherwise mentioned.

4.1 Application-agnostic microbenchmark
4.1.1 Cost of checkpointing

We used the following metrics to evaluate the checkpoint
mechanisms:

• time to inform the processing unit to stop at the begin-
ning of the loop

• time to check if the threads in the processing unit have
all stopped execution

The results on both the Intel XScaleR© core and the ME are
shown in Table 3. The ME numbers are larger than the Intel
XScaleR© core numbers because the ME checkpointing con-
sists of stopping the ME, writing a thread halt instruction in
the code store at the checkpoint location and restarting the
ME execution. The Intel XScaleR© core checkpointing, on

8

A

B

C

NN

rin
g

Global
ring

Initial mapping

{P1}

{P2}

{P3, P4}

A

B

C

Glo
bal

rin
g

NNring

Final mapping

{P1}

{P3, P4}

{P2}

{local lock}

{global lock} {local lock}

{global lock}

Figure 8: Initial and final mapping

Implementation inform time check time
(µs) (µs)

ME 60 34
Intel XScaleR© core 3 3

Table 3: Overhead of checkpointing processing units
(Source:Intel)

0

0.5

1

1.5

2

2.5

3

20 30 40 50 60 70 80 90 100

T
im

e
(in

 m
ill

is
ec

on
ds

)

of packets

NN ring initialize/capture
Scratch ring initialize/capture
SRAM ring initialize/capture

Figure 9: Microbenchmark results for migration of packet
channels (Source:Intel)

the other hand, involves just setting a flag in a known mem-
ory location. The difference in the ME and Intel XScaleR©

core numbers are due to the overhead of stopping an ME,
writing an instruction into the code store and starting the
ME again.

4.1.2 Cost of packet channel state migration

We measured the time to save the packet handles from one
packet channel implementation and restore them in another
implementation. Figure 9 shows the overhead of packet
channel migration for the different channel implementa-
tions. This figure shows that the overhead of this mecha-
nism is proportional to the number of packet handles saved
and restored, as expected.

The numbers for NN ring are high because we need to
execute code on an ME to save or initialize the NN ring
packet channel. We thus incur the overhead of loading an

ME binary image that performs the state migration. The
other two packet channel implementations can be migrated
from the Intel XScaleR© core and thus have lower overhead.

4.1.3 Cost of binding

We measured the overhead of the adaptation-time linking
approach on both the MEs and the Intel XScaleR© core. The
MEs instructions have no hardware support for relative ad-
dressing. Thus ME linking must explicitly relocate the RAL
implementation binary and append the instructions in the
RAL with the instructions in the pipeline stage binary. On
the Intel XScaleR© core, since the RAL implementations are
already loaded as Linux kernel modules, no overhead of
relocation of the RAL implementation occurs. The Intel
XScaleR© core adaptation-time linking implementation in-
curs the overhead of the Linux insmod program, which is
used to load the pipeline stage binary into the kernel.

In order to measure the overhead, we generated binaries
with varying numbers of:

• call sites that invoke a RAL method. These were
equally distributed among a fixed number of RAL in-
stances.

• relocatable instructions (for ME only)

We measured the cost of adaptation-time linking for each
binary and the contribution of the various steps involved
in the current implementation. The steps are: reading
the binary from a memory-mapped filesystem on the Intel
XScaleR© core, relocating RAL implementations (only for
ME), patching call sites and writing the linked binary in the
filesystem.

Figure 10 shows the results for ME adaptation-time link-
ing as a function of number of call sites. As we can see, the
ME adaptation time linking (labeled Total link time) varies
linearly with the number of call sites. This is because the
overhead in patching call sites varies linearly with the num-
ber of call sites. Each call site invoking a RAL method
contains a branch instruction with an unresolved target ad-
dress. The ME binding mechanism patches the branch in-
struction at each RAL method call site with the instruction
address of the correct RAL implementation method that was

9

linked in. The ME linking also incurs a fixed overhead for
reading (4.5 ms), writing (3.5 ms) and relocation cost (2.1
ms). The relocation cost consists of the cost of relocating a
packet channel implementation and a lock implementation.
We also observed that the overhead in ME linking varies
linearly with the number of relocatable instructions, but for
the sake of brevity we do not show that graph.

0

5

10

15

20

25

30

100 150 200 250 300 350 400

T
im

e
(in

 m
ill

is
ec

on
ds

)

call sites

Total link time
Patch
Read

Relocate
Write

Figure 10: Microbenchmark results for binding code for the
ME (Source:Intel)

Figure 11 shows the results of the Intel XScaleR© core
adaptation-time linking. The total link time is around 160
ms for the Intel XScaleR© core, of which there is a fixed
overhead (80 ms) involved in the write operation which uses
the insmod utility. The Intel XScaleR© core patching times
are independent of the number of call sites since the Intel
XScaleR© core binding involves renaming the methods in
the symbol table which only needs to be done once for each
unique method per RAL instance. This is the crucial differ-
ence between Intel XScaleR© core binding and ME binding
results.

We also observed that both the ME binding and Intel
XScaleR© core binding times vary linearly with number of
RAL instances. This is because both the ME and the Intel
XScaleR© core linking involves patching the handle values
for the RAL instance in the binary. We do not show these
figures for the sake of brevity.

4.1.4 Cost of loading code

We measured the performance of our loading mechanism
on the ME and Intel XScaleR© core. The Intel XScaleR©

core load involves associating a function entry point with
the Linux kernel thread and was measured to be 0.054 ms.

The RAL ME processing unit load method implementa-
tion takes as input the pipeline stage binary file name that
resides on a memory-mapped filesystem and thus incurs the
overhead of reading the binary and accessing the instruc-
tions from the binary before writing them into the ME code
store. In the experimental setup we generated ME bina-
ries with varying numbers of instructions and measured the

0

20

40

60

80

100

120

140

160

80 100 120 140 160 180 200 220 240 260

T
im

e
(in

 m
ill

is
ec

on
ds

)

call sites

Total link time
Patch
Read
Write

Figure 11: Microbenchmark results for binding code for the
Intel XScaleR© core (Source:Intel)

time to load the binary into the ME code store using the load
method of the ME processing unit. The result of this setup is
shown in Figure 12. The graph shows the total time taken by
ME load as a function of the number of instructions and the
contribution of different steps in the implementation: read-
ing the binary, writing the code store and cleanup (freeing
resources allocated in reading the binary).

As we can see the result shows that there is a fixed
cost overhead incurred in reading the binary (4.0 ms) and
cleanup (0.630 ms). The write time into the code store on
the ME is proportional to the number of instructions in the
binary, as expected.

0

1

2

3

4

5

6

7

8

500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(in

 m
ill

is
ec

on
ds

)

of instructions in the binary

Total load time
Read binary

Write to code store
Cleanup

Figure 12: Microbenchmark results for loading code on the
ME (Source:Intel)

4.1.5 Cost of starting processing units

We evaluated the costs of starting a processing unit. The
IXA SDK provides methods for starting the ME. For the
Intel XScaleR© core, this cost is equal to the cost of creat-
ing and starting a new Linux kernel thread. We measured
the cost of starting an ME to be 0.036 ms and the cost of
creating and starting a Linux kernel thread to be 0.097 ms.

10

4.2 Application-specific microbenchmark
4.2.1 Function call mechanism overhead

The RAL methods are linked in as function calls and hence
incur the overheads of a function call (branch, return and
stack setup overheads) for every RAL method that is in-
voked. We evaluated the run-time performance degradation
due to this overhead by comparing the throughput of an ap-
plication using the RAL methods as function calls with the
same application using inlined RAL methods. The applica-
tion used was the 4Gbps Ethernet IPv4 application (Figure
13) that is shipped as part of the IXA SDK. We evaluated
the performance overhead using the IXA SDK Workbench
version 3.5.

Packet
RX

Etherne
t

decap/
classify

IPv4
Forwar

der
QM

Scheduler

CSIX TX

Channel
1

Channel
2

Channel
3

Channel
4

Channel
5

Figure 13: IPv4 IXA SDK application

We ran two configurations for 200,000 cycles in the simu-
lator provided by the IXA SDK Workbench. One configura-
tion had all packet channel RAL methods inlined (this was
the unmodified application) and the other was with RAL
methods on channel 1 and channel 2 (Figure 13) invoked as
function calls. We fed each configuration an input traffic of
64 byte packets at 4Gbps and measured the number of bytes
forwarded in 200,000 cycles.

We observed that the configuration with the function call
overhead forwarded 100352 bytes compared to the unmodi-
fied application that forwarded 116416bytes. This gives us a
measure of the performance penalty incurred for processing
64 byte packets at 4Gbps with a function call overhead to be
14%. To validate this result we counted the compute cycles
added per RAL method for the function call overhead, to
be 20 cycles. Thus the IPv4 pipeline stage incurs a total of
40 extra compute cycles for every packet being processed.
The worst case compute cycles of the IPv4 pipeline stage
without the overhead is approximately 250 cycles. Thus we
could expect a 16% degradation in the performance.

4.3 Cumulative effects of adaptation
We used two metrics to evaluate the cumulative affects of
our RTS adaptation mechanisms:

• Total adaptation time: defined as the time taken by the
system to reach the final mapping from the initial map-
ping. This metric is useful to determine how fast the

system can adapt.

• Processor downtime: defined as the total time a proces-
sor is not processing packets while the system transi-
tions from the initial to the final mapping. This metric
gives a measure of the system disruption during adap-
tation. This metric impacts packet loss and provides
important insight into how well the system is able to
perform the transition without disrupting processing.

We used the layer 3 switching and forwarding application
(Figure 2) implemented using the Baker language. We mea-
sured the overhead of adapting between the same process-
ing unit implementations (ME to ME) using the mapping
configurations shown in table 5 and the overhead of adapt-
ing between processing units of different implementations
(ME to Intel XScaleR© core) as shown in table 4. We only
show the pipeline stages whose mapping has changed in the
tables.

L3 fwdr L2 bridge

Initial mapping 4 MEs Intel
XScaleR©

core
Final mapping Intel

XScaleR©

core

4 MEs

Table 4: Configuration to measure the ME to the Intel
XScaleR© core adaptation overhead

We measured the total time to adapt and the time the pro-
cessors are down by inserting appropriate timer probes in
the code.

Table 6 and Table 7 show the results of this evaluation
after running for 5 iterations and averaging them out (the
standard deviation for the values was small).

Total time to adapt 254.3 ms
Time proc unit ME 0:3 was
down

84.0 ms

Time proc unit ME 0:2 was
down

106.9 ms

Time proc unit ME 1:0 was
down

61.2 ms

Time proc unit ME 1:1 was
down

38.4 ms

Time Intel XScaleR© core
proc unit was down

250.0 ms

Table 6: Results of ME to Intel XScaleR© core adaptation
(Source:Intel)

The processor down times are different for the different
processing units because their start times are staggered as
shown in the Figure 14. So for the result in Table 7, we can

11

L3 fwdr L2 bridge Channel 2 Channel 3
Initial mapping 1 ME 3 MEs sram pkt channel scratchpad pkt

channel
Final mapping 3 MEs 1 ME scratch pad pkt

channel
scratchpad pkt
channel

Table 5: Configuration to measure ME to ME adaptation overhead

Total time to adapt 99.5 ms
Time proc unit ME 0:1 was
down

96.41 ms

Time proc unit ME 0:2 was
down

76.48 ms

Time proc unit ME 1:1 was
down

47.30 ms

Time proc unit ME 1:2 was
down

25.47 ms

Table 7: Results of ME to ME adaptation (Source:Intel)

see from the Figure, time ME 1:2 was down = (t3 - t1) =
25.47 ms. Similarly time ME 1:1 was down = (t4 - t2) =
47.30 ms.

ME 1:2
restarts

t3

ME 1:2
bind time

ME 1:2
load time

Time
line

ME 1:1
bind time

ME 1:1
load time

ME 1:2
checkp
ointed

t1

ME 1:1
restarts

t4

ME 1:1
checkp
ointed

t2

Figure 14: Time line of adaptation steps

5 Discussion
Evaluation of our current prototype shows that the bind-
ing mechanism contributes a significant percent of the total
adaptation latency. Consider, for instance, a design point
where the code deployed on an ME has 200 call sites, and
has 2000 instructions, and the associated packet channel has
100 packets in a scratch ring. For this case, adapting the ME
takes around 27ms. Of this, the time required to stop the
ME, load the ME with the new code, and re-start the ME is
about 7ms; the remaining time is contributed by the binding
mechanism.

In our current prototype, the overhead of the binding
mechanism affects (1) the duration for which a particular
processor is unavailable for processing packets (and hence
the amount of packet loss), and (2) the frequency with
which processor allocations can be adapted. One can re-
duce the effect of binding overhead on processor down-
time by overlapping the construction of the new binary im-

age with packet processing; a processor can continue to
process packets until the new binary image is ready to be
loaded. Observe that binding involves patching the handle
values for the RAL instances in the binary. Unfortunately,
in our current implementation, obtaining handles for RAL
instances requires resource allocation to be completed, but
this, in turn, requires a processor to be stopped. We are
currently exploring ways of obtaining handles to resource
instances without performing resource allocation. This will
allow us to mask the binding overhead completely; in such
a case, the processor down time would be determined by the
overhead of taking a checkpoint, load and restart a process-
ing unit.

The above optimization can reduce the duration for which
a processor is unavailable for processing packets; however,
it does not reduce the adaptation latency. The binding over-
head continues to govern the frequency with which pro-
cessor allocations can be adapted. This overhead exposes
a fundamental trade-off between adaptation-time and run-
time binding mechanisms. On the one hand, adaptation-
time binding yields efficient code that imposes little run-
time overhead and produces minimum size binary images;
however, it incurs a significant adaptation latency. On the
other hand, the use of run-time binding mechanism virtually
eliminates the adaptation-time binding overhead; however,
it incurs greater run-time overhead and results in larger size
binary images.

The relative performance of these two binding mecha-
nisms depends on the system and application characteris-
tics. For instance, as we argued in Section 2.2.1, run-
time binding does add additional instruction to process each
packet. For a processor with support for hardware multi-
threading, the additional computational instructions result-
ing from run-time binding will have little impact on the
packet processing throughput if the total number of com-
putational instructions executed by all threads between suc-
cessive memory accesses are insufficient to hide memory
access latency; in this case, addition of computation in-
structions only reduces processor stall and has little effect
on the packet processing throughput. Similarly, the loss
in throughput resulting from run-time binding should be
evaluated relative to the drawbacks—of reducing the fre-
quency of adaptation and dropping a set of packets dur-
ing adaptation—of the adaptation-time binding mechanism.
Finally, run-time binding may be better suited for proces-

12

sors that support instruction caches (e.g., the Intel XScaleR©

core on the IXP2400 network processor), have relatively
large instruction stores (such that more than one resource in-
stance could be pre-loaded), or process packets with a lower
throughput requirement.

Since the choice of the mechanism depends on several
factors, we argue that mechanism selection is a policy issue.
To provide the flexibility of choosing the right mechanism,
we plan to implement the run-time binding design into our
system.

6 Related Work
With the advent of specialized multiprocessor hardware
for supporting packet processing applications, several re-
search efforts have developed tools and systems to make the
hardware easily programmable, and achieve high through-
put [1, 2, 3, 4, 11, 19, 28, 29, 30]. Most of these systems
allocate resources in the multiprocessor system to pipeline
stages of an application statically (at design time). In this
paper, we develop a core set of mechanisms required to
adapt resources to stages at run time. Our work is moti-
vated by the observation that network traffic fluctuates sig-
nificantly [18, 26, 32]. In [18], we show that adapting pro-
cessor allocations to stages at run time can reduce the provi-
sioning level of a packet processing system, and can make
the system robust to traffic fluctuations.

In this paper, we build and study the checkpointing, state
migration, and dynamic binding mechanisms required to
adapt resources in a multiprocessor system to application
stages at run-time. Many past systems provide checkpoint-
ing and state migration [12, 20, 21, 24, 27], and dynamic
binding mechanisms [7, 9, 25] in the general-purpose ap-
plication domain. However, as discussed in Section 3, our
implementation exploits the unique characteristics of the
packet processing domain to achieve efficiency. For in-
stance, by exploiting the loop nature of packet processing
applications, we reduced the overhead of checkpointing and
state-migration significantly. Similarly, given the require-
ment to support high throughput and the constraints on in-
struction store sizes, we explore the benefits and tradeoffs
of using adaptation-time binding mechanism.

NetBind [19] and VERA [29] allow dynamic allocation
of resources in order to support extensibility of network
services [5, 8, 16]. NetBind enables dynamic creation of
packet processing pipelines through the dynamic binding of
small pieces of machine language code. VERA focuses on
making a router consisting of a PC with a host processor
and a few network processors (1) extensible by allowing
dynamic installation of new functionality, and (2) efficient
by offloading the most frequently executed packet process-
ing functions to network processors. Such offloading al-
lows VERA to support router extensions on the host pro-
cessor. Neither NetBind nor VERA address the problem of
adapting processor allocations at run-time to maximize the

throughput of the system in the presence of traffic fluctua-
tions.

7 Conclusion
Implementors of packet-processing applications on multi-
core processors must balance two requirements: (1) adapt
processor allocations dynamically to reduce the overall re-
source provisioning requirement for the system, to achieve
robustness to traffic fluctuations, and to reduce energy con-
sumption; and (2) utilize for each application stage re-
sources (e.g., memory levels, inter-processor communica-
tion mechanisms, etc.) closer or local to the processors on
which the stages are mapped to achieve the highest possible
throughput. In this paper, we describe the design and im-
plementation of a run-time adaptation system that can meet
these two requirements simultaneously. Our design allows
each application stage to utilize local resources whenever
possible in the steady state. Upon adapting the allocation
of processors to stages, the run-time system (1) binds each
resource usage within a stage to a new resource instance;
and (2) checkpoints and migrates the state from the previ-
ous resource instance to the newly-bound resource instance.
We describe the design and implementation of our adapta-
tion system in the context of a packet processing system
designed using the Intel IXP2400 network processor. We
show that our design has little impact (14%) on the steady-
state throughput of the system. We further show that our
design is able to perform resource adaptation for a real ap-
plication in less than 100ms, allowing processor allocations
to be adapted at a very fine time-scale. Finally, we discuss
several optimizations for reducing the adaptation overhead
even further.

References
[1] CloudShield Technologies.http://www.cloudshield.com.

[2] Payloadplus family of network processors.
http://www.agere.com/enterprisemetroaccess/networkprocessors.html.

[3] TejaNPTM: A Software Platform for Network Processors.
http://www.teja.com.

[4] M. Adiletta, D. Hooper, and M. Wilde. Packet Over SONET: Achiev-
ing 10 Gigabit/sec Packet Processing with IXP2800.Intel Technol-
ogy Journal, 6(3), 2002.

[5] A. T. Campbell, H. D. Meer, M. E. Kounavis, K. Miki, J. Vicente,
and D. Villela. The genesis kernel: A virtual network operating sys-
tem for spawning network architectures. In2nd IEEE International
Conference on Open Architectures and Network Programming, 1999.

[6] D. Comer. Network Systems Design Using Network Processors.
Prentice Hall, ISBN 0-13-141792-4, 2002.

[7] C. Cowan, T. Autrey, C. Krasic, C. Pu, and J. Walpole. Fastconcur-
rent dynamic linking for an adaptive operating system. InProceed-
ings of the 3rd International Conference on Configurable Distributed
Systems, page 108. IEEE Computer Society, 1996.

0Intel XScaleR©, IntelR© IXP2400 is a trademark or registered trade-
mark of Intel Corporation or its subsidiaries in the United States and other
countries.

*Other names and brands may be claimed as the property of others.

13

[8] D. Decasper, Z. Dittia, G. M. Parulkar, and B. Plattner. Router Plu-
gins: A Software Architecture for Next Generation Routers.In Pro-
ceedings of ACM SIGCOMM, 1998.

[9] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An op-
erating system architecture for application-level resource manage-
ment. InSymposium on Operating Systems Principles, pages 251–
266, 1995.

[10] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Protocol Version
3.0. Internet Draft, November 1996.

[11] L. George and M. Blume. Taming the ixp network processor. In Pro-
ceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, pages 26–37. ACM Press,
2003.

[12] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular disco:
resource management using virtual clusters on shared-memory mul-
tiprocessors.SIGOPS Oper. Syst. Rev., 33(5), 1999.

[13] S. Harizopoulos and A. Ailamak. A Case for Staged Database Sys-
tems. InProceedings of 1st Conference on Innovative Data Systems
Research, 2003.

[14] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An Architecture
for Implementing Network Protocols.IEEE Transactions on Soft-
ware Engineering, 17(1), 1991.

[15] J.Larus and M. Parkes. Using Cohort Scheduling to Enhance Server
Performance. InProceedings of USENIX Annual Technical Confer-
ence, 2002.

[16] R. Keller, L. Ruf, A. Guindehi, and B. Plattner. PromethOS: A Dy-
namically Extensible Router Architecture Supporting Explicit Rout-
ing. In Proceedings of Fourth Annual International Working Confer-
ence on Active Networks (IWAN), 2002.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. ACM Transactions on Computer Systems,
18(3), August 2000.

[18] R. Kokku, T. Riche, A. Kunze, J. Mudigonda, J. Jason, andH. Vin.
A case for run-time adaptation in packet processing systems.ACM
SIGCOMM Computer Communication Review, 34(1):107–112, Jan-
uary 2004.

[19] M. E. Kounavis, A. T. Campbell, S. T. Chou, and J. Vicente.Pro-
gramming the Data Path in Network Processor-Based Routers.Soft-
ware Practice and Experience, Special Issue on Software for Net-
work Processors, 2004.

[20] K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent check-
point for parallel programs. In2nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 79–88,
1990.

[21] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle
workstations. InProceedings of the 8th International Conference of
Distributed Computing Systems, June 1988.

[22] R. Love.Linux Kernel Development. Sams Publishing, 800 East 96th
Street, Indianapolis, IN, 2004.

[23] U. Naik and P. Chandra.IXP2400/2800 Application Design. Intel
Press, To be published.

[24] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design andimple-
mentation of zap: a system for migrating computing environments.
SIGOPS Oper. Syst. Rev., 36(SI):361–376, 2002.

[25] P. Pardyak and B. N. Bershad. Dynamic binding for an extensible
system. InProceedings of the second USENIX symposium on Oper-
ating systems design and implementation, 1996.

[26] Y. Qiao, J. Skicewicz, and P. Dinda. Multiscale Predictability of
Network Traffic. Northwestern University. Technical report.

[27] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum. Optimizing the migration of virtual computers.
SIGOPS Oper. Syst. Rev., 36(SI):377–390, 2002.

[28] N. Shah, W. Plishker, and K. Keutzer. NP-Click: A Programming
Model for the Intel IXP1200. InProceedings of the 2nd Workshop
on Network Processors (NP-2), February 2003.

[29] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a Ro-
bust Software-Based Router Using Network Processors. InProceed-
ings of the 18th ACM Symposium on Operating Systems Principles
(SOSP), October 2001.

[30] H. Vin, J. Mudigonda, J. Jason, E. J. Johnson, R. Ju, A. Kunze, and
R. Lian. A programming environment for packet-processing sys-
tems: Design considerations. In3rd Workshop on Network Proces-
sors and Applications, February 2004.

[31] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. InProceedings of
the Eighteenth ACM Symposium on Operating Systems Principles
(SOSP), October 2001.

[32] Z. Zhang, V. Ribeiro, S. Moon, and C. Diot. Small-Time Scaling
Behaviors of Internet Backbone Traffic: An Empirical Study. In
Proceedings of the IEEE INFOCOM., 2003.

14

