Supporting Run-time Adaptation in Packet Processing Syste ms

Vinod Balakrishnan', Ravi Kokku*, Aaron Kunze', Harrick Vin*, Erik J. Johnson
TIntel Research and Development IltUnivers.ity of Texas at Austin
T{vinod. k. bal akri shnan, aar on. kunze, eri k. j.johnson}@ntel . com

*{rkoku, vi n}@s. ut exas. edu

Abstract: memory local to individual microengines, on-chip mem-
Implementors of packet-processing applications ey shared across all processor cores, interfaces to exter-
multi-core processors must balance two requirements: (& SRAM and DRAM, as well as next-neighbor rings and
adapt processor allocations dynamically to reduce thltiple hardware queue implementations for efficient data
overall resource provisioning requirement for the systemovement between processor cores. Such network proces-
achieve robustness to traffic fluctuations, and reduce gnesgr architectures fore-shadow a more general trend toward
consumption; and (2) utilize, for each application stage, ithe design of multi-core, multi-threaded architectures ta
sources (e.g., memory levels, inter-processor communigated for high-throughput computing environments.
tion mechanisms, etc.) closer or local to the processors otPacket processing applications are often implemented
which the stages are mapped to achieve the highest possiblguch multi-core, multi-threaded architectures usirgy th
throughput. In this paper, we describe the design and ipipelined modelof computation. In this model, appli-
plementation of a run-time adaptation system that can meation functionality is partitioned into a graph of packet
these two requirements simultaneously. Our design allopi®cessing stages connected by communication channels
each application stage to utilize local resources wheneyer queues); each stage is then mapped onto one or more
possible in the steady state. Upon adapting the allocatigocessors [17, 31, 15, 13]. The sequence of stages in-
of processors to stages, the run-time system (1) binds eacked for processing a packet depends on the type of the
resource usage within a stage to a new resource instapegket (determined based on the header/payload of the
and (2) checkpoints and migrates the state from the prgyacket) [14, 17]. For example, a Secure Socket Layer [10]
ous resource instance to the newly-bound resource instategnination application processes three packet types—-setu
We describe the design and implementation of our adaptackets (that create per-flow state), outgoing packets$ (tha
tion system in the context of a packet processing systé@molve encryption), and incoming packets (that require de
designed using the Inf811XP2400 network processor. Wecryption).
show that our design has little impact (14%) on the steady-To implement such pipelined applications on parallel ar-
state throughput of the system. We further show that qiitectures, designers must balance two requirements, Fir
design is able to perform resource adaptation for a real gp-achieve the highest possible throughput, each pipeline
plication in less than 100ms, allowing processor allot®tiostage should utilize resources (e.g., memory levels, -inter

to be adapted at a very fine time-scale. processor communication mechanisms, etc.) closer or lo-
) cal to the processors on which they are mapped; access-
1 Introduction ing local resources incurs smaller latencies and minimizes

Packet processing systems are optimized to process Hw-use of shared global resources. Second, because of the
work packets efficiently. These systems are requiredttaffic fluctuations inherent in packet networks, the work-
support high-bandwidth links (and hence, high packet plead seen by each pipeline stage may vary significantly over
cessing throughput) as well as a set of complex packiéme. Hence, the allocation of processors to pipeline stage
processing applications (e.g., protocol conversion, fitw needs to be adapted over time. Adapting processor alloca-
Secure Socket Layer, intrusion detection, and virus scéiens dynamically reduces the overall resource provisigni
ning). Together, these requirements yield scenarios whegguirement for the system, achieves robustness to traffic
the time to process a packet exceeds the inter-arrival tiffi€tuations, and reduces energy consumption. In factsit ha
of packets at a system. To support complex applicatidﬁ@en shown that a device that can adapt—without incurring
in high-bandwidth environments, modern packet proceg#y adaptation overheads-the mapping of pipeline stages to
ing systems (and in particular, network processors) UBrOCessors at run-time needs up to 50% less processing re-
lize multi-threaded, multi-processor architectures,héop sources to process the same packet traces, and can reduce
ticated memory hierarchies, and specialized inter-psmresits average power consumption by up to 80% [18]. Real-
communication mechanisms [6]. For instance, the fhteizing these benefits, however, requires the system to adapt
IXP2400 network processor includes eight RISC micrgrocessor allocations at fine time-scales.

engines (ME) each with eight hardware threads and an InThese two requirements—adapting processor allocations
tel XScal® core, a multi-level memory hierarchy withat fine time-scales and achieving high throughput—can be



contradictory. Whereas allocation of local resources wwrk processor (Section 2.1), and then describe the chal-
pipeline stages is desirable for achieving high throughplgnges in designing an adaptive system on this platform
doing so complicates adaptation on systems with dive(Section 2.2).
hardware resources (such as the IXP2400 network proces- .
sor). Since many of these hardware features have restﬁc’L A Case for Using Local Resources
tions on how and when they can be used, it is difficult the Inte® IXP2400 network processor includes eight
consistently use the most efficient hardware resources wiRt8C microengines each with eight hardware threads and
processor allocation is adapted dynamically. Adaptatian Intel XScal® core. It offers multiple implementations
can be simplified if pipeline stages use only globally aof packet channels to facilitate communication of packets
cessible resources; however, doing so can decrease Sigrgfween pipeline stages in the application, as well as mul-
icantly the throughput supported by the system. Hencetigle implementations of locks to provide synchronization
key challenge is to design a packet processing system thetiveen threads. These implementations have different per
can support adaptation and achieve high throughput simigkmance characteristics and different restrictions oenvh
taneously. they can be used. For example, the next-neighbor regis-
In this paper, we describe the design and implementers in the IXP2400 network processor can be used to move
tion of a run-time adaptation system that meets this chphckets from a microengirenly to its neighboring micro-
lenge. Our design allows each pipeline stage to utilize lengine. In addition to next-neighbor registers, the IXR240
cal resources whenever possible in the steady state. Upetwork processor offers globally available queuing mech-
adapting the allocation of processors to stages, the ranisms that can be used to move packets betwegipair
time system (1) binds each resource usage within a pipelafeprocessors including (1) a limited number of scratch-
stage to a new resource instance, and (2) checkpoints pad rings implemented using on-chip memory, and (2) off-
migrates the state from the previous resource instancechip SRAM memory that can be used to implement packet
the newly-bound resource instance. We show that by ekannels in large quantities but with lower performance.
ploiting the features of packet processing applications owhen the mapping of application pipeline stages to proces-
can reduce significantly the overhead of run-time adaptors changes, the set of available hardware resources may
tion. We describe the design and implementation of tbhange as well and hence the performance of the applica-
checkpointing/state-migration mechanism and the resoution depends on the ability to adapt to this changing re-
binding mechanism in the context of a packet processisgurce availability. Adaptation can be simplified if pipeli
system designed using the IftelXP2400 network proces- stages use only globally accessible resources (e.g.cherat
sor. We show that our design has little impact (14%) on tpad rings or SRAM rings); however, since using non-local
steady-state throughput of the system. We further show thegources results in unnecessary usage of internal arrd exte
our design is able to perform resource adaptation for a real bus bandwidths and incurs larger latency, the throughpu
application in less than 100ms, allowing processor allocaipported by the system can decrease significantly.
tions to be adapted at a very fine time-scale. To quantify the impact of inefficient usage of hardware
The rest of the paper is organized as follows. In Sectionr@sources, consider the bus structure of the IXP2400 net-
we formulate the problem of adapting resource allocatioggrk processor. The various internal buses in IXP2400 net-
for packet processing applications, and discuss the desigitk processor used by packet channel implementations are
alternatives for the check-pointing/state-migration aed shown in Figure 1. The IXP2400 network processor has
source binding mechanisms. In Section 3, we describe suir internal buses that connect the microengines to SRAM
implementation. We present experimental results from astintrollers and scratchpad memory. These buses are called
prototype in Section 4, and discuss optimization opporthe S-Push and S-Pull buses. Each cluster of microengines
nities in Section 5. Section 6 compares our work with rehares an S-Push bus for sending data to devices and an S-
lated research, and finally, Section 7 summarize our confull bus for receiving data from devices. There are two mi-

butions. croengine clusters on the IXP2400 network processor, each
. with four microengines. The IXP2400 network processor
2 Problem Formulation has two SRAM controllers, each with a read and write bus

Efficient use of resources (e.g., memory and communiég@nnected to external SRAM memories.

tion channels) local, or closer, to processor cores iscatiti  The impact on the available bus bandwidths for different
for achieving the best possible performance for applicatiochannel implementations is shown in Tables 1 and 2. The
running on network processors. In such environments, §RAM ring implementation is a pure software implemen-
namically adapting allocation of processor cores to applidation that can be used to communicate packets between
tion stages offers some unique challenges. In this sectiany two processors. The scratchpad ring implementation
we first motivate the use of local resources for achievimgn also be used for any pair of processors, but there are
high throughput in the context of the InfIXP2400 net- only sixteen such rings in the system. The next-neighbor



Read [ SRAM T ] [ ] ' cationis compute-intensive and not bound by internal bus
e Controller 1| MEO MEOL | bandwidth, it does not show a throughput benefit in using
I H H H 9,
| | next-neighbor rings over scratchpad rings, but we don't ex-
! ! ect this to be true for all applications. In either case, the
! |
;e—?‘d SRAM ' | MEO: meo:2 1  results clearly show that using on-chip resources for com-
_write | Controller | | L T L
| municating packets between pipeline stages offers signifi-
= | cuser) can performance improvements.
aada | MEL MEL] ! L3
| | fwdr
Scratchpa ! | ~ o
Memory | I 5 :
| . . : ° Chnl
|| MEL MELZ L Ethemet | ¢
| 1 Rx - classifier ! encapsul P TX
1 Cluster 1_ Chnl'1 Ul Chnl 4 ation
______________ -
i ; S N
Figure 1: IXP2400 network processor internal buses A ©
L2
bridge

ring implementation can only be used between adjacent mi-
croengines. Table 1 shows the number of bytes transfered
on the S-Push and S-Pull buses for a single packet that fsigure 2: Layer 3 switching and forwarding application
successfully transmitted over an instance of the different

packet channel implementations. Table 2 shows the impact

of using the various packet channel implementations on the ST v——
SRAM buses. In both tables, the bandwidth percentages 1200 r Scratch -
show the amount of bus bandwidth utilized for supporting
a single packet channel processing 1Gb/s of 64-byte Ethes-
net packets from one microengine to another. The data%
these two tables are based on a 600MHz IXP2400 netwogk
processor[23]. Note also that, for both the internal and e>§ 600 |
ternal buses, the impact of using SRAM rings with statisticg
shown in Tables 1 and 2 represent the best-case statist'@s.ztoo
The SRAM ring implementation uses spin-locks in SRAM

to provide synchronization; hence, the bus overhead would 2% o
be even greater in the presence of higher lock contention.  |*7

The differences in bus bandwidth usages in Tables 1 ~ 60 8 100 120 140 160 180 200 220 240
and 2 result in differences in packet processing through- Packet size (Bytes)

put. We evaluated the throughput impact of using diF.

ferent packet channel implementations by comparing {heure 3: Throughput benefits of packet channel adapta-

forwarding rates achieved by the IPv4 switching and for> n(Source:Intel)

warding application shown in Figure 2. The L2 classifi- Lock resources used for synchronization also consume
cation, L3 forwarding, and Ethernet encapsulation pigelinnnecessary bus bandwidth when the most efficient imple-
stages were each mapped to only one microengine. We vaentation is not used when it is available. For example, us-
ied the packet channel implementation used by channel®@ a spin-lock in microengine local memory provides syn-
and 5 between next-neighbor ring implementations, scratdironization between microengine threads without using
ring implementations and SRAM ring implementations ar&ny bus bandwidth, whereas using a spin-lock in scratchpad
measured the forwarding rate of the application in the diftemory or SRAM uses internal and/or external bus band-
ferent configurations. The application input traffic cotesiis width. The impact on system performance due to spin-locks
of packets destined to the L3 forwarding pipeline stage. Wescratchpad memory or SRAM will vary greatly based on
measured the forwarding rate while varying the packet sizek contention.

from 64 bytes to 256 bytes. The result of this experimentClearly, using the most efficient packet channel and lock
is shown in Figure 3. This result was obtained using tiaplementations available to the application in its cutren
experimental setup described in Section 4. Since this-appliocessor mapping is critical for maximizing system per-

1000 -

T




Implementation # of S-Push| % of S-Push| # of S-Pull | % of S-Pull
Bytes Bandwidth Bytes Bandwidth

Next-neighbor 0 0% 0 0%
Scratchpad Ring 4 0.47% 4 0.47%
SRAM Ring w/ Stats 68 7.9% 68 7.9%

Table 1: Internal bus usage for packet channel operatiommerthannel carrying 1Gb/s of 64-byte packets

Implementation # of SRAM % of SRAM # of SRAM % of SRAM
Read Bytes| Read Bandwidth| Write Bytes | Write Bandwidth

Next-neighbor 0 0% 0 0%
Scratchpad Ring 0 0% 0 0%
SRAM Ring w/ Stats 76 13% 68 12%

Table 2: External bus usage for packet channel operatioosemrhannel carrying 1Gb/s of 64-byte packets

formance. Hence, in the face of adaptation, a mechanibimding occurs, the system just rewrites a variable in mem-
for rebinding pipeline stages to resource implementati®n®ry to make the rebinding take effect. One disadvantage
needed in order to maintain high throughput on an adaptivierun-time binding is that it incurs a run-time performance
packet processing system. penalty. Every time a resource is accessed, the indirection
needed to implement run-time binding uses valuable pro-
cessor/memory resources. Run-time binding has another
Our design allows each pipeline stage to utilize local rdisadvantage in a fixed-size code store environment such
sources whenever possible in the steady state. Upon adagptan IXP2400 processor microengine. In this environment,
ing the allocation of processors to stages, the run-time sg# of the resource implementations would need to fit in the
tem (1) binds each resource usage within a pipeline stagedde store, which has very limited space.

a new resource instance, and (2) checkpoints and migrateanother alternative for binding, at the other end of the
the state from the previous resource instance to the nevwdgmplexity spectrum, is recompilation. Resource imple-
bound resource instance. In what follows, we describe #@ntation could be compiled into the pipeline stage, and
challenges in implementing these mechanisms. when the resource is rebound, the pipeline stage could be re-
2.2.1 Resource Binding compiled. This has the advantage of incurring no run-time

erformance penalty, as well as perhaps leveraging com-

pectaacesng enronmentsoflr some s Gpialir g o e e O
9 P 9 Re other hand, re-compilation is a complicated operation

First, given the (_axtreme_ per_formance req_uwements of M4t would severely limit the frequency at which adaptation
packet-processing applications, the solution must hame V&€, uld be done

little impact on the run-time performance of the system. . . L
X . . We designed and implemented a solution in between
Second, since the workloads in a packet-processing enyi-

ronment fluctuate frequently and since packet-processinﬁr}es’e two points on the complexity spectrum. — Our so-

often done in an embedded environment, the solution mustlon has the advantages of having very little run-time

erformance penalty, being sensitive to limited insticti

be simple enough to allow for rebinding to occur on a vePS\{ . :
T : . . ore processors, and being much less complicated than re-
fine time-scale. Finally, the solution must work well in &

system with fixed-size code stores, such as the IXP2400 & [npllgtlon. . . .
he implementation details of the mechanisms used to

work processor microengines. L . . .

A few alternatives for binding mechanisms exist. For eg_erform resource binding are described in Section 3.
ample, run-time checks could direct packet-processing cad?-2 Checkpointing and State Migration
to use the correct hardware resource. So, when a pipellioeadapt processor allocations, a mechanism is needed to
stage wants to perform an operation on a packet channel adaust the mapping of pipeline stages to processors at run-
lock, the code could check a variable in memory that identime and to migrate state between them. This state migra-
fies the resource instance the code should use. The varigible involves migrating code between processors and mi-
could be an enumeration or a set of function pointers. Weating any data being manipulated by the code. It also
call this mechanism “run-time binding”. Run-time bindingnvolves migrating data being managed by other allocated
has the advantage that it does not require any modificati@sources, such as packet channels. This mechanism must
of the application binary to adapt the binding. When the ree designed to meet the following requirements:

2.2 Adaptation Mechanisms



¢ Allow for adding and removing processing resourcgspeline stage binary uses resources, like packet channels
to pipeline stages and adaptating other resourcesaatl locks, through a software interface definition (a set of
run-time without losing any intermediate state in th@ethods) to the pipeline stage binary. Each interface can
running pipeline stages. For example, if a packet is deave multiple implementations that utilize different hard
ing processed by a pipeline stage or stored in a packetre resources. The adaptation-time linking solutiondink
channel, the memory buffer storing the packet shouldthe appropriate implementation into the pipeline stage b
not be lost when the resource mapping of the stagenary.

changed. This is complicated on processor architec-This approach has the advantages of not requiring a re-
tures with resources local to individual processors th@mpilation of the pipeline stage binary every time the bind
is not easily accessible from other processors. ing of a software construct needs to change and incurs less

o Allow miaration of pipeline stages between diﬁ(_}r_run—time performance and code store size overheads than
Y PP 9 un-time binding solution. Less code store is required

. ; . r
ent processor architectures, including processors W%Bce only the implementations used are linked in the final

fixed-size instruction stores (such as IXP2400 netWobmary. In the remainder of this section we describe the soft

Eg%cfjsﬁgsmg;gﬁniqﬁz)l:?tr;? ;é%%?:jfers with mStrV\(fére interface abstracting the resources and then describe
( ): the adaptation-time linking solution.

e Be sensitive to the performance requirements of packet. 1 Resource Abstraction

processing code. In this environment, packet inter- L .
arrival rates are on the same timescale as memoryﬁ{iﬁsources are gxposed to a pipeline stage blnar.y by the Re-
tencies, which means the mechanisms must have asﬁﬁgrce Abstraction Layer (RAL). The RAL provides a set
" . . of interface definitions which we caRAL interfaces We
tle run-time performance impact as possible. ; .
P P P call a method in a RAL interfaceRAL methodEach RAL

Existing mechanisms used in symmetric muliinterface can be realized using different hardware ressurc

processing systems and parallel processing systé?'ﬂg we chI each .realllzauon of a.RAL interfac&®aL im-

do not meet these requirements. For example, the Liigmentation A pipeline stage binary can have multiple
kernel does not allow for the safe addition or removijstantiations of RAL interfaces and we call the®aL in-

of processing resources to code at run time, or for tRENCES

migration of processes between processor architectureg;igure 4 shows the important hardware resources in a
and its mechanism for migrating processes depends orstRplified representation of the Intel IXP2400 network pro-
instruction cache on each processor[22]. Checkpointing=&ssor. The different resources have different consgraint
method used to migrate processes in the parallel proce¥stheir usage and different performance characteristics a
ing domain—could be adapted to fit these requiremerfi§scribed in Section 2.1. The RAL interfaces required for
but it imposes an unacceptable run-time performan@gaptation and the different hardware resources used by
penalty [20] and does not allow for adding and removirt§eir implementations are given below:

processing resources.

To address these requirements, we have designed a
mechanism that leverages the unique properties of packet-
processing applications. We describe this mechanism in de-
tail in Section 3.

Packet channel: A packet channel provides a conduit
for transferring packets between two pipeline stages.
The packet channel interface provides methods to en-
queue and dequeue packets into the packet channel.
3 Design and Implementation The RAL currently provides three packet channel im-

plementations that use different hardware resources:
(1) channels that use SRAM (2) channels that use the
Hardware-supported packet rings in on-chip scratch-
pad memory and (3) channels that use next-neighbor
registers.

We implemented a run-time system (RTS) on the IXP2400
network processor that meets the requirements for the run-
time adaptation mechanisms listed in the previous section.
In this section we explain the design choices we made
for the adaptation mechanisms that we implemented in the
RTS. We also describe the important steps that the RTS per-

forms in adapting from one processor mapping configura-* Locks: The Iock_ interface provides synchronization
tion to another. methods to acquire and release a mutex. The RAL cur-

) ) ) rently provides two lock implementations: (1) locks
3.1 Design/Implementation of resource bind- that use the local memory in an ME to provide syn-
ing chronization between the threads in an ME, and (2)
We implemented an adaptation-time linking solution for the ~ locks that use a spin lock in scratchpad memory, which
resource binding mechanism. To enable this mechanism, a is available to all processors.



SRAM
A
/
SRAM
controller

\J
A A

h ) t 17 Y #
Scratchpad PL —Pp{ P2 P P3 =P P4

memory Y] NN Y NN Y] NN Y]
ring ring ring

Simplified IXP2400 network
processor representation

-

P1, P2, P3, P4:

. . LM: local memor
processing units y

Figure 4: Simplified representation of the IXP2400 netwardcessor hardware

Channel1 <-> NN The adaptation-time linking also resolves references to
Chasngrjtfh<'>l_ RAL handles. A RAL instance handle is introduced to al-
channell.put (handle1); SRAM.put (handle) low sharing of the same RAL implementation code between

channel2.put (handle2);

o~ ¥
Pipeline stage A

X (
binary Adaptation
-time
linking

mppping

all of the RAL instances using the RAL implementation.
This works as follows: each RAL instance is given a unique
RAL instance handle value. This value is passed as an argument
implement to the RAL methods of the RAL interface. The RAL im-
atons plementation can then distinguish between the multiple in-
stances on a per-call basis. In order to enable binding two

linked binary NNput @) Stage A binary RAL instances of the same interface to different RAL im-
scratch.put (2); win resolved plementations, the name of each RAL method is qualified
NN.put (handle) RAL with the RAL instance name in the binary.
Scratch.put (handle) e 3.2 Design/Implementation of state migration
State migration mechanisms are required to change the
Figure 5: Linking illustrated mapping of a pipeline stage to a processing unit and en-
sure that none of the application or processor state is lost.
The RTS currently only supports a one-to-many mapping
3.1.2 Adaptation-time linking of pipeline stages to processing units. State migration en-
We now describe how a RAL instance in a pipeline stage!fils three operations: checkpointing and data migratien,
bound to a RAL implementation. source state migration, and code migration. These three op-

erations are described in detail in the following sections.
3.2.1 Data migration/Checkpointing

e The binary type, either an ME binary or an Intebacket processing code has some unique characteristics tha
XScalé® core binary make the design of a data migration mechanism much sim-
pler than general-purpose data migration mechanisms de-
e A pipeline stage binary containing unresolved refesigned before.
ences to the RAL methods First, packet processing code is typically written in a sin-

gle infinite loop, as diagrammed in the pseudo-code below.
e A list of RAL instances used in the binary along with

their implementation mapping and methods invokedwn. | 1
on each RAL instance and handle values of each RALM" ' € (1) { .
dequeue a packet froman input channel;

instance.
process the packet;
enqueue packet(s) on output channel;

Adaptation-time linking (Figure 5) takes as input:

e The RAL implementation binaries

The adaptation-time linking links in the RAL implementa-
tion binaries in the pipeline stage binary and resolves thke second characteristic of packet processing code is that
references to the RAL methods in the binary. the loops shown above iterate at very high speeds. This is



necessitated by the rates at which packets must be processed
in packet processing systems. The final characteristi@ats th

at the beginning of this loop, the packet processing code has
no local state. The compiler [30] that we use to compile

the application does not allow for thread-local memory, it >| A

ensures that the stack is empty of useful information, and

does not allow the programmer to acquire locks across loop Pipeline

iterations. These characteristics allow for the creatiba o stages

light-weight checkpointing mechanism that can be used to

stop packet processing code very efficiently without losing Figure 6: Example application with a loop

any important state.

When code needs to be stopped, checkpointing is done in
two simple steps. First, the RTS tells the running code toWe implement channel state migration by first check-
stop before starting another iteration of the top-leveplooP0inting both the source and sink pipeline stages and then
Second, the run-time system waits until all of the threa88PYing the packet handles from the original packet channel
running the affected code have stopped at the top of {RE the new packet channel.
loop. At this point, the code may be safely stopped witho8®2.3 Code migration/Loading code

losing any state and restarted on another processor, evQljilfiating code requires associating a processing unit with
the processor has a different architecture. - a pipeline stage binary and starting execution of the code
Checkpointing on the ME involves stopping the ME eX5, that processing unit. The RTS provides two types of pro-
ecution, writing a thread halt instruction at the CheCkpo'Eessing units: (1) Linux kernel threads on the Intel XSBale
location (top of the loop) and restarting the ME. This causgg, o (the cardinality of which is bounded by the memory
all the threads in the ME to halt at a safe location. The MK ihe system) and (2) ME, of which there are 8 on the

checkpointing incurs no run-time performance penalty. |vp2400 network processor, and each ME can have 4 or
On the Intel XScal® core, before starting a new iterag hardware threads.

tion, the Linux kernel thread checks a flag and exits if the
flag is set. The RTS sets this flag when it wants to migr
the pipeline stage that is mapped to that thread. The

Each pipeline stage is associated with two binaries of
fiferent formats, one for ME and the other for the Intel
L h , Scalé® core. This enables RTS to migrate code for a
tel XScalé&® core Checkp0|_nt|ng incurs the run-time perfor{)ipeline stage between the two types of processing units
mance overhead of checking a flag. as well as between processing units of the same type. The
3.2.2 Resource state migration MESs have a fixed-size code that is loaded with the instruc-
We implement resource state migration for packet chaiens that need to be executed and started by writing an en-
nels. Packet channel state migration is the mechanism uablé register on the ME. On the Intel XSc8leore, loading
to save the packet handles in a packet channel implemesde on a processing unit associates a function entry point
tation and initialize a new packet channel implementatiéor a Linux kernel thread. For the Intel XSc&eore, start-
with those packets. This mechanism is required to prevémg a processing unit means creating and starting a Linux
packet resource leakage, when a packet channel instané@igel thread and passing it the function pointer that was
remapped from one implementation to another. associated with the processing unit in a previous load com-
A possible solution to packet channel state migrationand.
consists of checkpointing the source pipeline stage and al: .
lowing the channel to be drained before checkpointing t e3 Adaptation steps
next pipeline stage that the channel is used to communicheeexplain our adaptation mechanisms, in this section we
with. This method breaks down if the data-flow graph hasnsider the example application in Figure 7 running on
loops. Consider an application (Figure 6) with 3 stages A tBe simplified version of the IXP2400 network processor as
and C. This application has a loop between the stages A ahdwn in Figure 4, and describe the steps performed by the
B consiting of the channels:channell and channel3. If Rd'S in adapting from one processor mapping configuration
have to migrate both channel 1 and channel 3, then cheigkanother. A processor mapping configuration consists of
point ordering A, B or B, A will not suffice since with eitherthe pipeline stage to processor mapping along with the new
option, there could be a packet channel with packet handRAL instance mapping.
in it after the checkpointing is completed, resulting inkdea Initially (Figure 8), stage A is mapped to processor P1,
age of the resources associated with those packet handiegye B is mapped to processor P2 and stage C is mapped
Since data flow graphs with loops occur in some netwotdx processors P3 and P4. Stage A communicates to stage B
applications, we need to implement a packet channel stasing a local packet channel implementation (next-neighbo
migration mechanism. ring) since they are mapped to adjacent processing units



Pipeline stages 4. Loading: In our example, processing units P1, P2, P3,

. Lock L1 P4 are all loaded with the new binary and restarted. An

@&\e 5 interesting optimization in the loading process would

O be to determine the order of loading the processing

» A units to minimize packet loss. For example, in the final

o mapping in our examplg (Figu_re 8), pipeline _stage Bis

e c mapped to two processing units P3, P4, while stage C

L% . . .

is mapped to P2 only. In this case, the loading order

Lock L2 P3, P2, P4 results in less system disruption time (de-
. o _ o fined as the time the system is not processing packets)

Figure 7: Pipeline stages in an example application than the loading order P3, P4, P2.

and stage A uses a global packet channel implementattbn Results

(scratch nng)_ to communicate with stage C. In the EXaByrrTS implementation was done on a RadiSys, Inc. ENP-
ple, stage B is able to use a local lock implementation f

; - 9611 with a single 600 MHz 1XP2400 network processor,
L1 since it is mapped to only one processor whereas stage . ko : S
. . . o ranning MontaVista Linux . Our evaluation was primarily
C uses a global lock implementation since it is mapped {0 . : :
. . one on this hardware platform with one evaluation done on
multiple processors. In order to migrate the system from the

N . . . . e cycle accurate simulator for the 1XP2400 network pro-
initial to the final mapping (Figure 8) the following Changeéessor provided in the IntInternet Exchange Architec-
must be made:

ture (IXA) Software Development Kit (SDK) Workbench
e Stage B migrates from executing on one processor ¥sion 3.5.
to executing on two processors (P3, P4). To understand and evaluate our RTS adaptation mecha-
_ ) nisms, we used a set of application-agnostic microbench-
e Stage C migrates from executing on two processqfs,ys and application-specific microbenchmarks. We also

(P3, P4) to executing on (P2) only. measured the cumulative effects of the RTS adaptation

e Channel 1 needs to use a global ring implementatif#echanism using two metrics: total time to adapt and to-
instead of a NN ring implementation. tal time a processor is down.

We used a 37.5 MHz hardware-based timer on the

e Channel 2 can now use alocal NN ring implementatiQR P2400 network processor to measure the time taken for

instead of a global ring implementation. the different operations. We measured the overhead of in-

e Lock L1 needs to use a global lock implementation id_okmg the method used to read the timer value as|&53

stead of a local lock implementation. rom both Lmux. user an'd kernel space. i
In the following sections we outline the experimental

e Lock L2 can use a local lock implementation insteagktup and the results of these studies. The measurements
of a global lock implementation. were taken in the Linux kernel on the Intel XScBleore

The RTS performs the following steps to adapt from éjnnless otherwise mentioned.

initial mapping to a final mapping. 4.1 Application-agnostic microbenchmark

1. Checkpointing: In our example, P1, P2, P3, P4 woulfdtt Cost of checkpointing
be checkpointed. We used the following metrics to evaluate the checkpoint

o mechanisms:
2. Packet channel state migration: In our example, pack-

ets in the NN ring implementation of channel 1 are e time to inform the processing unit to stop at the begin-
saved and after the new global ring implementation has ning of the loop
been allocated, it is initialized with the saved packets.

o . _ e time to check if the threads in the processing unit have
3. Binding: In our example, in the stage A binary chan- 5| stopped execution

nel 1 is rebinded to use a global ring implementation

and channel 2 is rebinded to NN ring implementatiofThe results on both the Intel XSc&eore and the ME are

In Stage B binary, channel 1 is rebinded to a globshown in Table 3. The ME numbers are larger than the Intel
ring implementation and lock L1 is bound to a globaXScalé® core numbers because the ME checkpointing con-
lock implementation. Similarly in stage C, channel gists of stopping the ME, writing a thread halt instruction i

is rebinded to a NN ring implementation and lock L#he code store at the checkpoint location and restarting the
is bound to a local lock implementation. ME execution. The Intel XScaf core checkpointing, on



Initial mapping Final mapping
(P2} {local lock} {P3, P4} {global lock}
B B |
S @
—» A *{\@ I: —» A Q\oé&
S
{P1} o;);%/ c > {P1} o;,Z/V c >
{P3, P4} {global lock} {P2} {local lock}
Figure 8: Initial and final mapping
Implementation | inform time | check time ME binary image that performs the state migration. The
(bs) (us) other two packet channel implementations can be migrated
ME 60 34 from the Intel XScal® core and thus have lower overhead.
Intel XScalé® core 3 3 4.1.3 Cost of binding

Y¥e measured the overhead of the adaptation-time linking
approach on both the MEs and the Intel XS&kore. The
MEs instructions have no hardware support for relative ad-
NS m— \ dressing. Thus ME linking must explicitly relocate the RAL
ring initialize/capture —+— . R , ) _ )
Seratch FEES 222%22!25:5223%3:2 - |mplementat|qn bmar.y anq append t'he mstructl.ons in the
RAL with the instructions in the pipeline stage binary. On
the Intel XScal® core, since the RAL implementations are
already loaded as Linux kernel modules, no overhead of
relocation of the RAL implementation occurs. The Intel
XScalé® core adaptation-time linking implementation in-
curs the overhead of the Linux insmod program, which is
used to load the pipeline stage binary into the kernel.
In order to measure the overhead, we generated binaries

Table 3: Overhead of checkpointing processing un
(Source:Intel)

3

25

Time (in milliseconds)
P
- (6] N
: :
1 1 1

o
3

T - with varying numbers of:
%% 30 20 50 8 70 8 9 100 e call sites that invoke a RAL method. These were
# of packets equally distributed among a fixed number of RAL in-
; : L stances.
Figure 9: Microbenchmark results for migration of packet
channels (Source:intel) e relocatable instructions (for ME only)

the other hand, involves just setting a flag in a known melfy¢ measured the cost of adaptation-time linking for each
ory location. The difference in the ME and Intel XSc@le binary and the contribution of the various steps involved
core numbers are due to the overhead of stopping an MfE (N€ current implementation.  The steps are: reading

writing an instruction into the code store and starting thBE binary from a memory-mapped filesystem on the Intel
ME again. XScalé® core, relocating RAL implementations (only for

ME), patching call sites and writing the linked binary in the
filesystem.
We measured the time to save the packet handles from onBigure 10 shows the results for ME adaptation-time link-
packet channel implementation and restore them in anotfigy as a function of number of call sites. As we can see, the
implementation. Figure 9 shows the overhead of pachet adaptation time linking (labeled Total link time) varies
channel migration for the different channel implementéinearly with the number of call sites. This is because the
tions. This figure shows that the overhead of this mechgserhead in patching call sites varies linearly with the Aum
nism is proportional to the number of packet handles savgst of call sites. Each call site invoking a RAL method
and restored, as expected. contains a branch instruction with an unresolved target ad-
The numbers for NN ring are high because we needdress. The ME binding mechanism patches the branch in-
execute code on an ME to save or initialize the NN rirgruction at each RAL method call site with the instruction
packet channel. We thus incur the overhead of loading ahdress of the correct RAL implementation method that was

4.1.2 Cost of packet channel state migration



linked in. The ME linking also incurs a fixed overhead for 160

reading (4.5 ms), writing (3.5 ms) and relocation cost (2.1 Patch -
; ; ; 140 - Read —x*— 1
ms). The relocation cost consists of the cost of relocating a Write o

T

packet channel implementation and a lock implementation, 120

We also observed that the overhead in ME linking varie‘é 100 1

linearly with the number of relocatable instructions, bt f §
the sake of brevity we do not show that graph. I R A —— 1
S 60
%0 Total link time —+— ‘ ‘ £
I;atcg e o
25 ¢ Relofaﬁe 77777 : ] 20
Write -
5 20 T 80 100 120 140 160 180 200 220 240 260
;:3’ # call sites
% 15 = X 4
E . Figure 11: Microbenchmark results for binding code for the
e 0l | Intel XScalé® core (Source:Intel)
5 g« time to load the binary into the ME code store using the load
. s method of the ME processing unit. The result of this setup is
0 ‘ ‘ ‘ : : shown in Figure 12. The graph shows the total time taken by
100 150 200 250 300 350 400 . . .
# call sites ME load as a function of the number of instructions and the

contribution of different steps in the implementation: dea
Figure 10: Microbenchmark results for binding code for thag the binary, writing the code store and cleanup (freeing
ME (Source:Intel) resources allocated in reading the binary).

Figure 11 shows the results of the Intel XS€leore ~ As we can see the result shows that there is a fixed
adaptation-time linking. The total link time is around 1660St overhead incurred in reading the binary (4.0 ms) and
ms for the Intel XSca® core, of which there is a fixedcleanup (0.630 ms). The write time into the code store on
overhead (80 ms) involved in the write operation which usé¥ ME is proportional to the number of instructions in the
the insmod utility. The Intel XScaf® core patching times binary, as expected.
are independent of the number of call sites since the Intel
XScalé® core binding involves renaming the methods in 8 ™ otal Tond tme ———
the symbol table which only needs to be done once for each, | ;0 Je240inary
unique method per RAL instance. This is the crucial differ- Cleanup
ence between Intel XScéecore binding and ME binding °
results.

We also observed that both the ME binding and Inte§ F
XScalé® core binding times vary linearly with number of< _ | |
RAL instances. This is because both the ME and the Intél e
XScalé® core linking involves patching the handle values 2| 1
for the RAL instance in the binary. We do not show these 1 | e
figures for the sake of brevity.

4.1.4 Cost of loading code

We measured the performance of our loading mechanism
on the ME and Intel XScafé core. The Intel XSca® Figure 12: Microbenchmark results for loading code on the
core load involves associating a function entry point WitliE (Source:Intel)
the Linux kernel thread and was measured to be 0.054 ms.

The RAL ME processing unit load method implement4-1.5 Cost of starting processing units
tion takes as input the pipeline stage binary file name thae evaluated the costs of starting a processing unit. The
resides on a memory-mapped filesystem and thus incursik& SDK provides methods for starting the ME. For the
overhead of reading the binary and accessing the instrintel XScalé® core, this cost is equal to the cost of creat-
tions from the binary before writing them into the ME codimg and starting a new Linux kernel thread. We measured
store. In the experimental setup we generated ME birthe cost of starting an ME to be 0.036 ms and the cost of
ries with varying numbers of instructions and measured thieating and starting a Linux kernel thread to be 0.097 ms.

econds)

5L

0 . . . . . .
500 1000 1500 2000 2500 3000 3500 4000
# of instructions in the binary

10



4.2 Application-specific microbenchmark system can adapt.

4.2.1 Function call mechanism overhead Processor downtime: defined as the total time a proces-

[ ]
The RAL methods are linked in as function calls and hence  gor js not processing packets while the system transi-
incur the overheads of a function call (branch, return and  tjons from the initial to the final mapping. This metric
stack setup overheads) for every RAL method that is in-  giyes a measure of the system disruption during adap-
voked. We evaluated the run-time performance degradation tation. This metric impacts packet loss and provides
due to this overhead by comparing the throughput of an ap- important insight into how well the system is able to
plication using the RAL methods as function calls with the  parform the transition without disrupting processing.
same application using inlined RAL methods. The applica-
tion used was the 4Gbps Ethernet IPv4 application (FiguréVe used the layer 3 switching and forwarding application
13) that is shipped as part of the IXA SDK. We evaluatd@igure 2) implemented using the Baker language. We mea-
the performance overhead using the IXA SDK Workbenslured the overhead of adapting between the same process-
version 3.5. ing unit implementations (ME to ME) using the mapping
configurations shown in table 5 and the overhead of adapt-
ing between processing units of different implementations
Scheduler (ME to Intel XScal® core) as shown in table 4. We only
show the pipeline stages whose mapping has changed in the

cha;nel +§ E* Chazne' tables.

e Ewerne [ 1oy, | | L3fwdr | L2 bridge |
> Rx |:|:|:| decapl || "o |:|:|:| QM |:|:|:| csixx Initial mapping | 4 MEs Intel

> (Lol > > XScale®
Channel Channel Channel

1 2 5 core

Final mapping | Intel 4 MEs
Figure 13: IPv4 IXA SDK application XScale?
core

we ran_two configurations for 200,000 cyclesinthg Siml‘IL'abIe 4: Configuration to measure the ME to the Intel
Igtor provided by the IXA SDK Workbench. .O.ne conﬂguraXSCalé@ core adaptation overhead
tion had all packet channel RAL methods inlined (this was
the unmodified application) and the other was with RAL We measured the total time to adapt and the time the pro-
methods on channel 1 and channel 2 (Figure 13) invokedcassors are down by inserting appropriate timer probes in
function calls. We fed each configuration an input traffic afie code.
64 byte packets at 4Gbps and measured the number of bytéable 6 and Table 7 show the results of this evaluation
forwarded in 200,000 cycles. after running for 5 iterations and averaging them out (the
We observed that the configuration with the function caltandard deviation for the values was small).
overhead forwarded 100352 bytes compared to the unmodi-

fied application that forwarded 116416bytes. This gives us a Total time to adapt 254.3 ms
measure of the performance penalty incurred for processing Time proc unit ME 0:3 wag 84.0 ms
64 byte packets at 4Gbps with a function call overhead to be down

14%. To validate this result we counted the compute cycles Time proc unit ME 0:2 wag 106.9 ms
added per RAL method for the function call overhead, to down

be 20 cycles. Thus the IPv4 pipeline stage incurs a total of Time proc unit ME 1:0 was 61.2 ms
40 extra compute cycles for every packet being processed. down

The worst case compute cycles of the IPv4 pipeline stage Time proc unit ME 1:1 was 38.4 ms
without the overhead is approximately 250 cycles. Thus we down

could expect a 16% degradation in the performance. Time Intel XScal® core| 250.0 ms
4.3 Cumulative effects of adaptation proc unit was down

We used two metrics to evaluate the cumulative affectsgfpje 6: Results of ME to Intel XScake core adaptation
our RTS adaptation mechanisms: (Source:Intel)

e Total adaptation time: defined as the time taken by theThe processor down times are different for the different
system to reach the final mapping from the initial majprocessing units because their start times are staggered as
ping. This metric is useful to determine how fast thehown in the Figure 14. So for the result in Table 7, we can

11



L3 fwdr L2 bridge | Channel 2 Channel 3
Initial mapping | 1 ME 3 MEs sram pkt channel | scratchpad  pki
channel
Final mapping | 3 MEs 1 ME scratch pad pkt scratchpad  pkt
channel channel

Table 5: Configuration to measure ME to ME adaptation ovathea

Total time to adapt 99.5 ms age with packet processing; a processor can continue to
Time proc unit ME 0:1 was 96.41 ms process packets until the new binary image is ready to be
down loaded. Observe that binding involves patching the handle
Time proc unit ME 0:2 was 76.48 ms values for the RAL instances in the binary. Unfortunately,
down in our current implementation, obtaining handles for RAL
Time proc unit ME 1:1 was 47.30 ms instances requires resource allocation to be completed, bu
down this, in turn, requires a processor to be stopped. We are
Time proc unit ME 1:2 was 25.47 ms currently exploring ways of obtaining handles to resource
down instances without performing resource allocation. Thi$ wi

_ allow us to mask the binding overhead completely; in such
Table 7: Results of ME to ME adaptation (Source:Intel)a case, the processor down time would be determined by the
overhead of taking a checkpoint, load and restart a process-

ing unit.
see from the Figure, time ME 1:2 was down = (13 - t1) = g
25.47 ms. Similarly time ME 1:1 was down = (t4 - t2) = The above optimization can reduce the duration for which

47.30 ms. a processor is unavailable for processing packets; however
it does not reduce the adaptation latency. The binding over-
MEl2  MEL1 head continues to govern the frequency with which pro-
checkp checkp ME 1:2 ME 1:1 H H
ointed ointed restans restarts cessor allocations can be adapted. This overhead exposes

u @ 3 “ a fundamental trade-off between adaptation-time and run-
e time binding mechanisms. On the one hand, adaptation-
line time binding vyields efficient code that imposes little run-

time overhead and produces minimum size binary images;

ME 1:2 ME 1:2 ME 1:1 ME 1:1 . X " .
bind ime  load time  bind time load time however, it incurs a significant adaptation latency. On the
other hand, the use of run-time binding mechanism virtually
Figure 14: Time line of adaptation steps eliminates the adaptation-time binding overhead; however

it incurs greater run-time overhead and results in larger si
binary images.

5 Discussion The relative performance of these two binding mecha-
Evaluation of our current prototype shows that the bindisms depends on the system and application characteris-
ing mechanism contributes a significant percent of the totials. For instance, as we argued in Section 2.2.1, run-
adaptation latency. Consider, for instance, a design pdinte binding does add additional instruction to procestieac
where the code deployed on an ME has 200 call sites, gratket. For a processor with support for hardware multi-
has 2000 instructions, and the associated packet charmethaeading, the additional computational instructionsittes
100 packets in a scratch ring. For this case, adapting the Mg from run-time binding will have little impact on the
takes around 27is Of this, the time required to stop thepacket processing throughput if the total number of com-
ME, load the ME with the new code, and re-start the ME fsutational instructions executed by all threads between su
about Tns the remaining time is contributed by the bindingessive memory accesses are insufficient to hide memory
mechanism. access latency; in this case, addition of computation in-
In our current prototype, the overhead of the bindirgructions only reduces processor stall and has littleceffe
mechanism affects (1) the duration for which a particulan the packet processing throughput. Similarly, the loss
processor is unavailable for processing packets (and heimcéhroughput resulting from run-time binding should be
the amount of packet loss), and (2) the frequency wiglvaluated relative to the drawbacks—of reducing the fre-
which processor allocations can be adapted. One canqeency of adaptation and dropping a set of packets dur-
duce the effect of binding overhead on processor downg adaptation—of the adaptation-time binding mechanism.
time by overlapping the construction of the new binary inkinally, run-time binding may be better suited for proces-

12



sors that support instruction caches (e.g., the Intel X&calthroughput of the system in the presence of traffic fluctua-

core on the IXP2400 network processor), have relativelgns.

large instruction stores (such that more than one resonrce] .

stance could be pre-loaded), or process packets with a lower Conclusion

throughput requirement. Implementors of packet-processing applications on multi-
Since the choice of the mechanism depends on seveéetie processors must balance two requirements: (1) adapt

factors, we argue that mechanism selection is a policy isspeocessor allocations dynamically to reduce the overall re

To provide the flexibility of choosing the right mechanisngource provisioning requirement for the system, to achieve

we plan to implement the run-time binding design into oupbustness to traffic fluctuations, and to reduce energy con-

system. sumption; and (2) utilize for each application stage re-
sources (e.g., memory levels, inter-processor communica-
6 Related Work tion mechanisms, etc.) closer or local to the processors on

With the advent of specialized multiprocessor hardwaflich the stages are mapped to achieve the highest possible
for supporting packet processing applications, several faroughput. In this paper, we describe the design and im-
search efforts have developed tools and systems to makdX{gg'entation of a run-time adaptation system that can meet
hardware easily programmable, and achieve high throudfese two requirements simultaneously. Our design allows
put [1, 2, 3, 4, 11, 19, 28, 29, 30]. Most of these systerﬁ@Ch_ app_llcat|0n stage to utilize local resources Wheneyer
allocate resources in the multiprocessor system to pigelRPSsiPle in the steady state. Upon adapting the allocation
stages of an application statically (at design time). Is tHff Processors to stages, the run-time system (1) binds each

paper, we develop a core set of mechanisms required §80UrCe usage within a stage to a new resource instance;
adapt resources to stages at run time. Our work is méd (2) checkpoints and migrates the state from the previ-
vated by the observation that network traffic fluctuates s@{;‘s resource instance to the newly-bound resource instance
nificantly [18, 26, 32]. In [18], we show that adapting pro’/€ descrlbe.the design and implementation of our adapta-
cessor allocations to stages at run time can reduce the priP? System in the context of a packet processing system
sioning level of a packet processing system, and can m&&signed using the Intel IXP2400 network processor. We
the system robust to traffic fluctuations. show that our design has little impact (14%) on the steady-
In this paper, we build and study the checkpointing, staig€ throughput of the system. We further show that our
migration, and dynamic binding mechanisms required ([18_5|g_n is able to perform resource adaptation for a rea_l ap-
adapt resources in a multiprocessor system to applicaffiyation in less than 100ms, allowing processor allocatio

stages at run-time. Many past systems provide checkpomt-be adapted at a very fine time-scale. Finally, we discuss
ing and state migration [12, 20, 21, 24, 27], and dynam?@veral optimizations for reducing the adaptation ovethea

binding mechanisms [7, 9, 25] in the general-purpose &yen further.
plication domain. However, as discussed in Section 3, our
|mplementat|on'epr0|ts t_he unique chara}c'.[enstlcs of t??eferences
packet processing domain to achieve efficiency. For in-
stance, by exploiting the loop nature of packet processir{

appllcat|ons, we reduced the overhead of checkpomtmg a http://www.agere.com/enterpriseetraaccess/networkrocessors.html.

state-migration Slgmflcantly' Similarly, given the_reqaﬂ .[3] TejaNPTM: A Software Platform for Network Processors.
ment to support high throughput and the constraints on in-  ntp:/amww.teja.com.
struction store sizes, we explore the benefits and tradeoff$ m. adiletta, D. Hooper, and M. Wilde. Packet Over SONETHiev-
of using adaptation-time binding mechanism. ing 10 Gigabit/sec Packet Processing with IXP280@el Technol-
NetBind [19] and VERA [29] allow dynamic allocation ~ ©9Y Journal 6(3), 2002. _ -

of resources in order to support extensibility of network>! A- T. Campbell, H. D. Meer, M. E. Kounavis, K. Miki, J. Vicea

. 5, 8, 16]. NetBind enables dynamic creation of and D. Villela. The genesis kernel: A virtual network opergtsys-
services [3, 8, It y e tem for spawning network architectures. and IEEE International
packet processing pipelines through the dynamic binding of conference on Open Architectures and Network Programpiiago.
small pieces of machine language code. VERA focuses @) D. Comer. Network Systems Design Using Network Processors
making a router consisting of a PC with a host processor Prentice Hall, ISBN 0-13-141792-4, 2002.
and a few network processors (1) extensible by allowingy] C. Cowan, T. Autrey, C. Krasic, C. Pu, and J. Walpole. Feastcur-
dynamic installation of new functionality, and (2) efficten  rentdynamic linking for an adaptive operating systempPfaceed-
by offloading the most frequently executed packet process- ings of the 3rd International Conference on Configurabletihsited
: y 0 - 9 ! Yy p p_ Systemgpage 108. IEEE Computer Society, 1996.
ing functions to network processors. Such offloading al 5 5 o _ _
lows VERA to support router extensions on the host pro- el XScale?, Intel™ IXP2400 is a trademark or registered trade-

. . mark of Intel Corporation or its subsidiaries in the Unitedt8$ and other

cessor. Neither NetBind nor VERA address the problem &immes_
adapting processor allocations at run-time to maximize theother names and brands may be claimed as the property of others.

CloudShield Technologiedit t p: / / www. cl oudshi el d. com
Payloadplus family of network processors.

13



(8]

(9]

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

D. Decasper, Z. Dittia, G. M. Parulkar, and B. Plattnepufer Plu-
gins: A Software Architecture for Next Generation RoutérsPro-
ceedings of ACM SIGCOMM 998.

D. R. Engler, M. F. Kaashoek, and J. O'Toole. Exokerneh @p-
erating system architecture for application-level reseumanage-
ment. InSymposium on Operating Systems Principfeges 251—
266, 1995.

A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Prota@&rsion
3.0. Internet Draft, November 1996.

L. George and M. Blume. Taming the ixp network processoPrb-
ceedings of the ACM SIGPLAN 2003 conference on Programming

language design and implementatiopages 26-37. ACM Press,[gl]

2003.

K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Celluflisco:
resource management using virtual clusters on shared-memory mul
tiprocessorsSIGOPS Oper. Syst. Re83(5), 1999.

S. Harizopoulos and A. Ailamak. A Case for Staged Datal&ss-
tems. InProceedings of 1st Conference on Innovative Data Systems
Research2003.

N. C. Hutchinson and L. L. Peterson. The x-Kernel: Anitecture
for Implementing Network ProtocolslEEE Transactions on Soft-
ware Engineering17(1), 1991.

J.Larus and M. Parkes. Using Cohort Scheduling to Eca&erver
Performance. IfProceedings of USENIX Annual Technical Confer-
ence 2002.

R. Keller, L. Ruf, A. Guindehi, and B. Plattner. Prome®\ Dy-
namically Extensible Router Architecture Supporting EgiplRout-
ing. In Proceedings of Fourth Annual International Working Confer
ence on Active Networks (IWAN20O2.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kla@ek. The
Click Modular Router. ACM Transactions on Computer Systems
18(3), August 2000.

R. Kokku, T. Riche, A. Kunze, J. Mudigonda, J. Jason, End/in.

A case for run-time adaptation in packet processing systexaivi
SIGCOMM Computer Communication Revj&4(1):107-112, Jan-
uary 2004.

M. E. Kounavis, A. T. Campbell, S. T. Chou, and J. Vicentro-
gramming the Data Path in Network Processor-Based Rousers.
ware Practice and Experienc&pecial Issue on Software for Net-
work Processors, 2004.

K. Li, J. F. Naughton, and J. S. Plank. Real-time, corenircheck-
point for parallel programs. Ir2nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programmingages 79-88,
1990.

M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of ligl
workstations. InProceedings of the 8th International Conference of
Distributed Computing Systemhiine 1988.

R. Love.Linux Kernel DevelopmenSams Publishing, 800 East 96th
Street, Indianapolis, IN, 2004.

U. Naik and P. ChandralXP2400/2800 Application Designintel
Press, To be published.

S. Osman, D. Subhraveti, G. Su, and J. Nieh. The desigimapie-
mentation of zap: a system for migrating computing environments
SIGOPS Oper. Syst. Re86(S1):361-376, 2002.

P. Pardyak and B. N. Bershad. Dynamic binding for an esitde
system. InProceedings of the second USENIX symposium on Oper-
ating systems design and implementatib®96.

Y. Qiao, J. Skicewicz, and P. Dinda. Multiscale Prealility of
Network Traffic. Northwestern University. Technical repor

C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. SnLand

M. Rosenblum. Optimizing the migration of virtual computers.
SIGOPS Oper. Syst. Re86(SI):377-390, 2002.

14

(29]

(30]

[28] N. Shah, W. Plishker, and K. Keutzer. NP-Click: A Pragraing

Model for the Intel IXP1200. IrProceedings of the 2nd Workshop
on Network Processors (NP;February 2003.

T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Riimg a Ro-
bust Software-Based Router Using Network ProcessorBrdoeed-
ings of the 18th ACM Symposium on Operating Systems Prascipl
(SOSP)October 2001.

H. Vin, J. Mudigonda, J. Jason, E. J. Johnson, R. Ju, Az€uand

R. Lian. A programming environment for packet-processing sys-
tems: Design considerations. 3nd Workshop on Network Proces-
sors and Applicationd=ebruary 2004.

M. Welsh, D. Culler, and E. Brewer. SEDA: An Architectufor
Well-Conditioned, Scalable Internet Services. Rroceedings of
the Eighteenth ACM Symposium on Operating Systems Préscipl
(SOSP)October 2001.

[32] Z. Zhang, V. Ribeiro, S. Moon, and C. Diot. Small-Time Scgl

Behaviors of Internet Backbone Traffic: An Empirical Studyn |
Proceedings of the IEEE INFOCOM2003.



