
Research Challenges for a Scalable Distributed Information
Management System

Praveen Yalagandula and Mike Dahlin
Laboratory for Advanced Systems Research

Department of Computer Sciences
The University of Texas at Austin

Abstract

A Scalable Distributed Information Management System (SDIMS) thataggregatesinformation about large-scale
networked systems can serve as a basic building for a broad-range of large-scale distributed applications simplifying
the design, development, and deployment of such services. In this document, we outline four key requirements such an
aggregation system should satisfy to be useful as a general middleware building block – scalability with both nodes
and data attributes, flexibility to accommodate broad range of services, administrative autonomy and isolation for
availability and security, and robustness to reconfigurations in the system. We propose a new aggregation framework
that leverages Distributed Hash Tables (DHTs) and a new aggregation abstraction that builds on a previously proposed
abstraction in Astrolabe. We also present details of several significant applications that we propose to build on top of
SDIMS.

1 Introduction
The goal of this research is to design and build a Scalable Distributed Information Management System (SDIMS)
that aggregatesinformation about large-scale networked systems and that can serve as a basic building block for a
broad range of large-scale distributed applications. Monitoring, querying, and reacting to changes in the state of a
distributed system are core components of applications such as system management [11, 36, 71, 80, 84, 93], service
placement [35, 94], grid scheduling [4, 7, 8, 17, 21, 47, 34, 32, 54, 76], data sharing and caching [61, 70, 74, 79, 83,
100], sensor monitoring and control [48, 56], multicast tree formation [14, 15, 86, 78, 81], and naming and request
routing [16, 19]. We therefore speculate that an SDIMS in a networked system would provide a “distributed operating
systems backbone” and facilitate the development and deployment of new distributed services.

For a large scale information system,hierarchical aggregationis a fundamental abstraction for scalability. Rather
than expose all information to all nodes, hierarchical aggregation allows a node to access detailed views of nearby
information and summary views of global information. In an SDIMS based on hierarchical aggregation, different
nodes can therefore receive different answers to the query “find a [nearby] node with at least 1 GB of free memory” or
“find a [nearby] copy of file foo.” A hierarchical system that aggregates information through reduction trees [56, 86]
allows nodes to access information they care about while maintaining system scalability.

1.1 Requirements
To be used as a general middleware building block, an SDIMS should have four properties – (1)Scalabilitywith
respect to both nodes and attributes, (2)Flexibility to accommodate a broad range of applications, (3)Administrative
autonomy and isolationfor availability and security, and (4)Robustnessto reconfigurations in the system.

Scalability The system should accommodate large numbers of participating nodes, and it should allow applications
to install and monitor large numbers of data attributes. Enterprise and global scale systems might have tens of thou-
sands to millions of nodes and these numbers will increase as desktop machines give way to larger numbers of smaller
devices. Similarly, we hope to support many applications and each application may track several attributes (e.g., the
load and free memory of a system’s machines) or millions of attributes (e.g., which files are stored on which machines).

Flexibility The system should have flexibility to accommodate a broad range of applications and attributes. For ex-
ample,read-dominatedattributes likenumCPUsrarely change in value, whilewrite-dominatedattributes likecpuLoad
change quite often. An approach tuned for read-dominated attributes will suffer from high bandwidth consumption
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when applied to write-dominated attributes. Conversely, an approach tuned for write-dominated attributes may suffer
from unnecessary query latency or imprecision for read-dominated attributes. Therefore, an SDIMS should provide
a flexible mechanism that can efficiently handle different types of attributes and either leave the policy decision of
tuning read and write propagation to the application installing an attribute or autonomously self-tune it strategies to
suit the observed workload characteristics.

Autonomy and Isolation In a large computing platform, it is natural to arrange nodes in an organizational, ad-
ministrative, or virtual-organization [33] hierarchy. An SDIMS should support administrative autonomy so that, for
example, a system administrator can control what information flows out of her machines and what queries may be
installed on them. And, an SDIMS should provide isolation in which queries about a domain’s information can be sat-
isfied within the domain so that the system can operate during disconnections and so that an external observer cannot
monitor or affect intra-domain queries.

Robustness The system must be robust to node failures and disconnections. An SDIMS should adapt to reconfigura-
tions in a timely fashion and should also provide mechanisms so that applications can exploit the tradeoff between the
cost of adaptation versus the consistency level in the aggregated results and the response latency when reconfigurations
occur.

1.2 Our approach
We propose to develop a working SDIMS prototype that meets the above requirements and to refine this prototype
framework by developing several significant applications over it.

Our SDIMS prototype will explore a number of key research issues for meeting the listed goals. It will build on
the emerging literature of distributed hash tables (DHTs) [5, 40, 43, 49, 53, 58, 59, 61, 68, 70, 74, 79, 100] to provide
a scalable, self-managing substrate for aggregation by mapping different attributes to the myriad different virtual trees
commonly present in DHTs’ internal structures. Although this basic strategy appears promising, our initial analysis
suggests that significant research challenges must be overcome to adapt DHT technology to address the problem of
scalable aggregation. We will adapt the aggregation API to supportscalabilityby ensuring that aggregation requests
expose sufficient parallelism to the underlying architecture to allow us to efficiently and scalably map them to different
paths within the underlying DHT, and we will also study ways to efficiently answer composite queries that span multi-
ple aggregation trees. We will develop an aggregation API that providesflexibility by allowing applications to control
the propagation of information through the system to adapt to the read/write frequency of different applications and to
adapt to spatial and temporal heterogeneity of applications’ access patterns, and we will also explore mechanisms and
policies for making this adaptation self-tuning so that it requires less intervention by the application programmer. We
will adapt the aggregation API and DHT routing protocols to ensureadministrative autonomyso that queries across
a set of administratively related nodes can be satisfied by just those nodes despite the changes in the DHT substrate.
Finally, we will address the problem ofrobustness.Although the literature of DHTs provides ways for a DHT to
reconfigure itself in the face of failures, we must go further and ensure that the aggregation abstraction defined over
trees internal to a DHT continue to return sensible results in the face of reconfigurations of the underlying DHT. We
will explore how to combine replication in space and in time in order to allow an application whose functionality is
intimately tied to the underlying DHT architecture to continue to function despite DHT reconfigurations.

The second major aspect of our work will be to construct three significant real-world applications over this SDIMS
middleware. First, we will use SDIMS as a control backplane for a new enterprise-scale file system that provides
Partial Replication, Arbitrary Consistency, and Topology Independence (PRACTI) [27]. In this environment, SDIMS
will provide (1) a data location service for routing requests to the nearest current replica of a given object, (2) a
monitoring backplane to ensure that a minimum number of replicas is maintained at all times, (3) a substrate for
rendezvousing to form multicast trees for the self-tuning [51, 89] propagation of updates to nodes interested in specific
sets of files, and (4) a monitoring system to track object read and write frequencies to support massive speculative
replication [88]. A key challenge in this environment will be dealing with a heterogeneous collection of fixed-location
servers and intermittently-connected mobile devices. Second, we will construct a grid information system that exports
the MDS-2 [20] or GIS [2] interface but that internally makes use of SDIMS for improved scalability, flexibility,
simplicity of administration, and robustness. Using an existing grid information system API will allow a broad range
of existing applications and services to make immediate use of our improved abstraction as well as enable new, more
demanding grid applications. We will focus particular attention on developing a grid scheduler [4, 7, 8, 17, 21, 47,
34, 32, 54, 76] based on the Community Scheduling Framework (CSF) [77] suitable for deployment by the Texas
Advanced Computing Center across both campus-scale and state-scale grids. This scheduler will use SDIMS both to
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monitor system health and performance within clusters and to aggregate information across federations of clusters to
guide global scheduling decisions. Third, we will use SDIMS to develop novel network monitoring applications that,
for example, detect unusual global patterns such as a distributed denial of service attack (DDOS) by aggregating key
traffic pattern events from sensors implemented on programmable routers [42] across the network.

Our SDIMS development and application prototyping efforts will be closely tied and we will iteratively refine
the SDIMS abstraction and implementation to address limitations or opportunities exposed by our efforts to construct
applications over it.

This research will result in a new abstraction that acts as a “distributed systems backplane”, that is qualitatively
more scalable, flexible, simple to administer, and robust than existing solutions, and that dramatically simplifies the
development of new classes of large-scale information systems.

2 Background
In this section, we first formally define our aggregation abstraction and then discuss key related work on which we
build.

2.1 Aggregation abstraction
Aggregation is a natural abstraction for a large-scale distributed information system because aggregation can support
scalability by allowing a node to view detailed information about the state near it and progressively coarser-grained
summaries about progressively larger subsets of a system’s data [86].

Our aggregation abstraction is defined across a tree spanning all nodes in the system. Each physical node in the
system is a leaf and each subtree represents a logical group of nodes. Note that logical groups can correspond to
virtual organizations [33] (e.g., a multi-agency task force responding to a natural disaster), traditional administrative
unit (e.g., a department in a company or a university in a system), a DNS domain or subdomain, or groups of nodes
within a domain (e.g., a /28 subnet with 14 hosts on a LAN in the CS department).

Each physical node haslocal datastored as a set of(attributeType, attributeName, value) tuples such as(con-
figuration, numCPUs, 16), (mcast membership, session foo, yes), or (file stored, foo, myIPaddress). The system asso-
ciates anaggregation functionftype with each attribute type, and for each level-i subtreeTi in the system, the system
defines anaggregate valueVi,type,name for each(attributeType, attributeName)pair as follows. For a (physical) leaf
nodeT0 at level0, V0,type,name is the locally stored value for the attribute type and name or NULL if no matching tuple
exists. Then the aggregate value for a level-i subtreeTi is the aggregation function for the type computed across the ag-
gregate values of each ofTi’s k children:Vi,type,name = ftype(V 0

i−1,type,name, V
1
i−1,type,name, . . . , V

k−1
i−1,type,name).

Although SDIMS allows arbitrary aggregation functions, it is often desirable that aggregation functions satisfy
thehierarchical computationproperty [56]:f(v1, ..., vn) = f(f(v1, ..., vs1), f(vs1+1, ..., vs2), ..., f(vsk+1, ..., vn)),
wherevi is the value of an attribute at nodei. For example, the average operation, defined asavg(v1, ..., vn) =
1/n.

∑n
i=0 vi, does not satisfy the property. But, if instead an attribute type stores values as tuples(sum, count)

and defines the aggregation function asavg(v1, ..., vn) = (
∑n

i=0 vi.sum,
∑n

i=0 vi.count), the attribute satisfies the
hierarchical computation property. Note that an application wrapper then must compute the average from the aggregate
sum and count values.

Notice that this definition of the aggregation abstraction leaves a number of degrees of freedom to an implementa-
tion to decide who computes a given subtree’s aggregates (e.g., one node or many nodes) and when they are computed
(e.g., eagerly on updates or lazily on reads). As described below, in our proposed SDIMS system an internal non-leaf
nodeNi of the aggregation tree is simulated by one or more physical nodes that belong to the subtree for which the
Ni is the root, and the system will use these degrees of freedom to adjust replication and propagation to improve
robustness and efficiency.

Finally, note that for a large-scale system, it is difficult or impossible to insist that the aggregation value returned by
a probe corresponds to the function computed over the current values at the leaves at the instant of the probe. Therefore
our proposed implementation provides only weak consistency guarantees – specifically eventual consistency as defined
in [86]. Section 3.4 discusses issues relating to consistency in more detail.

2.2 Previous work
We draw inspiration most directly from two main bodies of previous work: distributed monitoring systems and Dis-
tributed Hash Tables (DHTs).
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Distributed monitoring. Astrolabe [86] is a robust information management system from which we draw most
heavily. Astrolabe provides the abstraction of a single logical aggregation tree that mirrors a system’s administrative
hierarchy for autonomy and isolation. It provides a general interface for installing new aggregation functions and
provides eventual consistency on its data. Astrolabe is highly robust due to its use of an unstructured gossip protocol
for disseminating information and its strategy of replicating all aggregated attribute values for a subtree to all nodes in
the subtree. This combination allows any communication pattern to yield eventual consistency and allows any node
to answer any query using local information. This high degree of replication, however, may limit the system’s ability
to accommodate large numbers of attributes. Also, although the approach works well for read-dominated attributes,
an update at one node can eventually affect the state at all nodes, which may limit the system’s flexibility to support
write-dominated attributes.

Other related information management projects include Willow [87], Cone [9], DASIS [1], and SOMO [99].
Willow, DASIS and SOMO build a single tree for aggregation. Cone builds a tree per attribute and requires a total
order on the attribute values.

Whereas above mentioned projects propose a general information collection and management system, several
academic [36, 56, 93] and commercial [84] distributed monitoring systems have been designed to particularly monitor
the status of large networked systems. Some of them are centralized where all the monitoring data is collected and
analyzed at a single central host. Ganglia [36, 60] uses a hierarchical system where the attributes are replicated
within clusters using multicast and then cluster aggregates are further aggregated along a single tree. Sophia [93] is
a distributed monitoring system, currently deployed on Planet-Lab [67], and is designed around a declarative logic
programming model where the location of query execution is both explicit in the language and can be calculated in
the course of evaluation. This research is complementary to our work; the programming model can be exploited in our
system too. TAG [56] collects information from a large number of sensors along a single tree.

In the grid community, a number of existing information systems such as GIS [2], MDS-2 [20], R-GMA [12],
and Hawkeye [44] each provide a core distributed information management system designed to support a range of
applications and services such as scheduling, replica selection, service discovery, and system monitoring. All of
these systems use a client-server model in whichInformation Providerscollect or generate data and supply this data
to Information Serversthrough which applications access data.1 In some of these systems, scalability beyond this
basic client-server model is provided by time to live (TTL) based caching, pushing of updates, and arrangement of
Information Servers into cache hierarchies.

DHTs. Recent research in peer-to-peer structured networks resulted in Distributed Hash Tables (DHTs) [5, 40, 43,
49, 53, 58, 59, 61, 68, 70, 74, 79, 100]—a data structure that scales with the number of nodes and that distributes the
read-write load for different queries among the participating nodes.

It is interesting to note that the observation that DHTs internally provide a scalable forest of reduction trees is not
new. Plaxton et al.’s [68] original paper describes not a DHT abstraction, but a system for hierarchically aggregating
and querying object location data in order to route requests to nearby copies of objects. Many systems—building
upon both Plaxton’s bit-correcting strategy [74, 100] and upon other strategies [61, 70, 79]—have chosen to hide this
power and export a simple and general distributed hash table abstraction as a useful building block for a broad range
of distributed applications. Some of these systems internally make use of the reduction forest not only for routing
but also for caching [74], but for simplicity, these systems do not generally export this powerful functionality in their
external interface. Our goal is to develop and expose the internal reduction forest of DHTs as a similarly general
and useful abstraction and building block. Dabek et al. [25] propose common APIs (KBR) for structured peer-to-
peer overlays that facilitate the application development that is independent from the underlying overlay. While KBR
facilitates the deployment of our abstraction on any DHT implementation that supports the KBR API, it does not
provide any interface to access the list of children for different prefixes. It therefore seems appealing to develop an
SDIMS abstraction that exposes this internal functionality in a general way so that scalable trees for aggregation can
be considered a basic system building block alongside the distributed hash tables.

Although object-location application are a predominant target for DHTs, several other applications like multi-
cast [14, 15, 78, 81], file storage [23, 52, 73], and DNS [19] are also built using DHTs. All of these applications
implicitly perform aggregation on some attribute, and each one of them must be designed to handle any reconfigura-
tions in the underlying DHT. With the aggregation abstraction provided by our system, designing and building of such
applications would become easier.

1Rather than use the terminology for different components used by different systems, we follow Zhang et al.’s [98] terminology for the common
features of these systems.
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Figure 1: Example DHT tree across a collection of five nodes for objectKey 111XX. In the left figure, filled circles
represent nodes and larger circles indicate node membership in DNS domains. In the right figure, filled circles repre-
sent physical nodes, empty circles represent virtual nodes, and shaded regions show which virtual nodes are simulated
by which physical nodes.

3 SDIMS Research and Development
The SDIMS architecture maps a forest of aggregation trees to a collection of nodes using distributed hash table (DHT)
techniques. As Figure 1 illustrates, distributed hash tables assign each node in the system a randomnodeKeyand use a
cooperative peer-to-peer algorithm to route a request with someobjectKeyto the nodeKey that matches the objectKey
in the most bits.2 For example, Plaxton’s algorithm has each nodeN1 forward a request to a nodeN2 whose nodeKey
matches the request’s objectKey in more bits thanN1’s nodeKey. Note that if all of the nodes were to issue requests
with the same objectKey, the union of the routes taken by the requests would form a tree with all of the nodes acting as
leaves, some of the nodes acting as interior nodes, and one node acting as root. Also note that the set of routes taken by
different objectKeys represents a forest of trees, with each node acting as the root of an approximatelyn-node subtree
for approximately1

n of the objectKeys.
The simple idea at the core of SDIMS is to exploit a DHT’s forest of trees as a collection of reduction trees for

data aggregation: trees are a natural framework for aggregation and DHT constructions should result in good load
balancing and locality across these trees.

At first glance, it might appear obvious that simply combining DHTs with an aggregation abstraction will result in
an SDIMS. However, for SDIMS to form the basis of a general distributed systems control backplane, it must address
four questions: (i) How to provide flexibility in the aggregation to accommodate different application requirements?,
(ii) How to scalably map different attributes to different aggregation trees within a DHT mesh? (iii) How to adapt
a global, flat DHT mesh to satisfy the required autonomy and isolation properties? and (iv) How to provide good
robustness without unstructured gossip and total replication? Our research will address these issues.

3.1 Flexible Computation and Propagation
The definition of the aggregation abstraction permits a continuous spectrum of computation and propagation strategies
ranging from lazy aggregate computation and propagation on reads to an aggressive immediate computation and
propagation of aggregate values on writes. In Figure 2, we illustrate both these extreme strategies and an intermediate
strategy. Under the lazyUpdate-Localcomputation and propagation strategy, an update (aka write) only affects local
state. Then, a probe (aka read) that reads a level-i aggregate value is sent up the tree to the issuing node’s level-i
ancestor and then down the tree to the leaves. The system then computes the desired aggregate value at each layer up
the tree until the level-i ancestor that holds the desired value. Finally, the level-i ancestor sends the result down the tree
to the issuing node. In the other extreme case of the aggressiveUpdate-Allimmediate computation and propagation
on reads [86], when an update occurs, changes are aggregated up the tree, and each new aggregate value is broadcast
to all of a node’s descendants. In this case, each level-i node not only maintains the aggregate values for the level-i
subtree but also receives and locally stores copies of all of its ancestors’ level-j (j > i) aggregation values. Also, a
leaf satisfies a probe for a level-i aggregate using purely local data. In an intermediateUpdate-Upstrategy, the root
of each subtree maintains the subtree’s current aggregate value, and when an update occurs, the leaf node updates its
local state and passes the update to its parent, and then each successive enclosing subtree updates its aggregate value
and passes the new value to its parent. This strategy satisfies a leaf’s probe for a level-i aggregate value by sending the
probe up to the level-i ancestor of the leaf and then sending the aggregate value down to the leaf. Finally, notice that
other strategies also exist. In general, an Update-Upk -Downj strategy aggregates up to thek th level and propagates
the aggregate values of a node at levell (s.t. l ≤ k) downwards forj levels.

2Some DHT algorithm route objectKeys to the node with the highest nodeKey value that does not exceed objectKey.
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Figure 2: Illustration of policies supported by SDIMS’s flexible API

Although this large design space exist for the aggregation computation, previous systems like Astrolabe [86],
Ganglia [36] and DHT based systems [70, 74, 79, 100] chose to implement a single static propagation mechanism. For
example, Astrolabe implements an Update-All strategy for robustness while most DHT based systems chose Update-
Up.

Why should an SDIMS provide flexibility? For SDIMS to to be a general abstraction that is useful to a wide range
of applications, it must provide a wide range of flexible computation and propagation strategies. In particular, it should
accommodateapplication heterogeneitywhere different applications or attributes have different access patterns; for
example aread-dominatedattribute likenumCPUsrarely changes in value, while awrite-dominatedattribute like
numProcesseschanges quite often. An aggregation strategy like Update-All works well for read-dominated attributes
but suffers high bandwidth consumption when applied for write-dominated attributes. Conversely, an approach like
Update-Local works well for write-dominated attributes but suffers from unnecessary query latency or imprecision
for read-dominated attributes. Furthermore, SDIMS should accommodatespatial heterogeneitywhere an attribute is
accessed with different access patterns in different regions of the system or by different nodes scattered throughout the
system. For example, a particular data file might be of interest to applications running across a set of geographically
close nodes (e.g., a cluster), so a file-directory system should optimize the performance of queries about that file from
that region of the system. And SDIMS should accommodatetemporal heterogeneitywhen an attribute is accessed
differently at different times during the execution of an application or across hours or days as application mixes
change.

Research Agenda. We propose to develop mechanisms and policies to control flexible aggregation.
On the mechanism side, to provide the level of control required we must decompose the aggregation abstrac-

tion into a distributed interface that provides appropriate control of installation, updates, and probes and that allows
different policies for different attributes and for different nodes. We have developed an initial design in which (1)
installation requeststhat install a new attribute type specify the aggregation function for the type and also control
the default upward propagation of updates and downward propagation of computed aggregates, (2)update requests
that update the value for an (attributeType, attributeName) pair can override the default up/down propagation, and
where (3) probe requests that retrieve an aggregate value for a particular (attributeType, attributeName, levelOfTree)
can specify whether to return just the current value or whether to propagate new values down towards the requester
when an update triggers a change to the aggregate value (e.g., to support continuous queries). The mechanisms further
allow an attribute’s “up” and “down” values to be reset on a node-by-node basis so that the system can cope with
heterogeneous demands across time or across space.

The simulation results in Figure 3 illustrates the potential benefits of this flexibility. We simulate a system with
4096 nodes arranged in a domain hierarchy with branching factor (bf) of 16 and install several attributes with different
up anddownparameters. We plot the average number of messages per operation incurred by different attributes for
a wide range of read-to-write ratios of the operations. This graph clearly demonstrates the need for a wide range
of computation and propagation strategies for a middleware that seeks to support heterogeneous services: different
settings yield order of magnitude differences in per-request overheads. Furthermore, not only does this flexibility to
control propagation allow applications to optimize overhead, it also allows applications to reduce read latency at the
cost of additional overhead when responsiveness is more important than efficiency.

Given these mechanisms, some applications will wish to explicitly control the propagation of updates and probes,
but other applications will benefit fromself-tuning adaptationpolicies. Such policies will be most useful when access
patterns to different attributes within an application vary over time (temporal heterogeneity) or vary across nodes (spa-
tial heterogeneity). Instead of requiring applications to keep track of the exact read-to-write ratios, which we expect to
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Figure 3: Flexibility of our approach. With different UP and DOWN values in a network of 4096 nodes for different
read-write ratios.

be dynamic, an SDIMS system should adapt to changing read-to-write ratios by dynamically adapting the computation
and propagation modes to conserve computation and communication resources while still meeting application targets
for responsiveness or availability.

A final challenge is providing consistency guarantees beyond best-effort eventual consistency. In particular, an
application should be able to trade precision for performance. SDIMS queries should be capable of providing a
range of consistency guarantees at a range of costs, such as best-effort eventual consistency to specific bounds on
the numerical error or staleness of a query result. We believe that past efforts in single tree aggregation [64, 63] or
peer-to-peer data replication [97] can be adapted to the requirements of SDIMS, but a challenge is reframing these
abstractions to support the more flexible update/probe API we envision.

3.2 Scalability
One of the key requirements of an SDIMS system is that it should be able to scale with both the number of nodes and
the number of attributes. Enterprise and global scale systems might have tens of thousands to millions of nodes and
these numbers will increase as desktop machines give way to larger numbers of smaller devices. Similarly, we hope
to support many applications and each application may track several attributes (e.g., the load and free memory of a
system’s machines) or millions of attributes (e.g., which files are stored on which machines).

Compared to past aggregation systems, we believe SDIMS can achieve scalability with respect to both nodes and
attributes by (1) leveraging DHT technologies to create load balanced aggregation trees, (2) optimizing the system
to minimize the cost of handlingsparse attributes, and (3) developing query planning strategies for dealing with
composite queries.

First, while some previous distributed information management systems like Astrolabe [86] and Ganglia [36]
aggregate all attributes on a single aggregation hierarchy and others such as MDS-2 [20] and GIS [2] rely on “flat”
all-to-all communication among clusters, we leverage Distributed Hash Tables to construct multiple aggregation trees
and aggregate different attributes on different trees to achieve scalability with both nodes and attributes. A single tree
is unscalable with attributes as the number of aggregations that the root has to perform grows linearly with the number
of attributes and the number of updates or probes to those attributes. By aggregating different attributes along different
trees, the load of aggregation is split across multiple nodes. In particular, we propose to hash an attribute’s name and
type and use the resulting key’s DHT tree as the aggregation tree for that key. Further refinements should address
limiting each node’s in-degree to avoid overloading nodes by giving them unexpectedly large numbers of children in
DHT formation. For example, RANCH [53], SkipNet [43], and Skip Graph [5] attain anO(log n) indegree through
linear ordering of the nodes and enforcing rules on the prefix pointers that a node can choose; it may be possible to
adapt these approaches for SDIMS tree formation.

Second, an SDIMS must optimize its handling ofsparse attributesto achieve scalability to large numbers of
attributes. We expect most systems to have a few dense attributes that are accessed by most or all of the nodes but
many sparse attributes that are of more narrow interest. We propose to restrict the scope of sparse attribute propagation
by using the flexible propagation mechanisms described above to control downward propagation of updates to only the
nodes interested in the updates. Furthermore, in contrast with previous hierarchical systems [36, 86], we have defined
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a new aggregation abstraction that specifies both an attribute type and attribute name and associates an aggregation
function with a type rather than just specifying an attribute name and associating a function with a name. Installing
a single function that can operate on many different named attributes matching a specific type enables our system to
efficiently handle applications that install a large number of attributes with same aggregation function. For example,
to construct a file location service, our interface allows us to install a single function that computes an aggregate value
for any named file (e.g., the aggregate value for the (function, name) pair for a subtree would be the ID of one node
in the subtree that stores the named file). Conversely, Astrolabe copes with such attributes by congregating them
into a single set and having aggregation functions compute on such sets; Astrolabe also suggests that scalability can
be improved by representing such sets with Bloom filters [10]. Exposing names within a type provides at least two
advantages. First, when the value associated with a name is updated, only the state associated with that name need
be updated and (potentially) propagated to other nodes. Second, splitting values associated with different names into
different aggregation values allows our system to leverage Distributed Hash Tables(DHT) to map different names to
different trees.

Third, we will explore ways to efficiently handle composite queries that span multiple attributes such as a probe
like find a nearest machine with load less than 20 percent and has more than 2 GB of memory. The load balancing and
scalability provided by hashing different attributes to different trees makes composite queries more complex to handle
than simpler schemes that propagate all information via a single tree; composite queries must now gather data from
multiple trees and combine the results. If query compositions are known in advance, then attributes can be grouped
and can be aggregated along one tree. For example, load and memory of machines can be aggregated along one
tree if queries as in the above example are very common. But by grouping extensively, we lose the property of load
balancing. This tradeoff presents a fundamental limitation of distributing attributes across trees. One possible approach
is to leverage ongoing efforts by other researchers to provide the relational database abstraction on DHTs [46, 38] and
to adapt query planning techniques to this environment. As a simple example, queries with OR and AND operations
might be handled as follows: (1)a OR b: Walk along trees corresponding to both attributesa andb; (2) a AND b:
Guess the smaller of the trees corresponding toa andb, and compute the predicate along the tree. In the latter case, two
approaches can be used to determine the size of the trees: (a) Along with the computation of the aggregation function
for an attribute, maintain a count of the number of contributing nodes or (b) Use statistical sampling techniques –
randomly choose a small percentage of nodes and evaluate the attributes. Given these building blocks, for handling
general logical expressions, one can convert the logical expressions to their Disjunctive Normal Forms (DNF) and use
above AND operation for each conjunctive term.

We believe that the combination of DHTs and careful handling of sparse attributes is crucial and we believe that
by combining these approaches, a node’s work should increase linearly with the average number of attributes a node
reads or writes and with the log of the number of nodes in the system, resulting in good scalability both with attributes
and nodes. Quantifying the scalability of such systems under more complex queries, however, will require gaining
experience with real-world workloads.

3.3 Autonomy
The property ofautonomyallows applications to restrict some SDIMS updates and probes to collections of machines
corresponding to administrative units such as DNS subdomains, IP subnets, or organizational units (e.g., a floor of
a building, a team in a department, a department in a company, or a virtual organization spanning groups from mul-
tiple companies). It is important that SDIMS support autonomy for three reasons: First, autonomy is important for
availability—a relatively common failure pattern is for a collection of machines to become disconnected from the
internet but remain connected to one another [3, 26]; it is therefore highly desirable that a department be able to con-
tinue to access SDIMS for queries about state that resides within the department even when the department’s network
connection to the rest of the world is down. Second, autonomy is important for security—an organization must be able
to prevent information about certain installed attributes, queries, or probes from “leaking” out of the organization, so it
must be able to restrict some SDIMS requests to within organizational boundaries. Third, constraining aggregation to
follow administrative structure is important for delivering meaningful results to some types of queries. For example,
in a Grid scheduling application, one could imagine a policy that preferentially seeks to assign jobs to “fixed cost”
in-organization computing resources before farming jobs out to pay-per-use external computing resources [35].

We propose to develop techniques to support autonomy in SDIMS by (1) developing algorithms forAutonomous
Distributed Hash Tables(ADHTs) and (2) extending the API to and implementation of our middleware to expose
administrative information to the aggregation abstraction.

To conform to the administrative autonomy requirement, an ADHT should satisfy two properties:
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Figure 4: In contrast with the DHT system illustrated in Figure 1, our Autonomous DHT algorithm satisfies the
isolation property.

1. Path Locality : Search paths should always be contained in the smallest possible domain.

2. Path Convergence : Search paths for a key from two different nodes in a domain should converge at a node in the
same domain.

Although existing DHTs can be adapted to provide some support for path locality by including information about
administrative structure in the proximity metric they use to select parent/child pairings [13, 39], these systems do
not guarantee path convergence. For example, Figure 1 illustrates a simple case where Pastry’s bit-correcting rout-
ing scheme cannot ensure convergence even if the proximity metric is tweaked to consider administrative structure:
because two nodes within one domain match the specified key in the same maximum number of bits, the parent that
aggregates all values in the domain must lie outside of the domain. SkipNet [43] solves a related problem by providing
domain restricted routing where a key search can be limited to a specified domain. Unfortunately, SkipNet is not ap-
propriate for SDIMS because it sacrifices the aggregation tree abstraction property of DHTs as its domain constrained
routing might touch a node more than once (as it searches forward and then backward to stay within a domain).

To provide the new ADHT abstraction required by SDIMS, the system’s route table construction algorithm must
provide a single exit point in each domain for a key and its routing protocol should route keys along intra-domain
paths before routing them along inter-domain paths. Here we outline modifications to Pastry’s route table construction
and key-routing protocols achieve these goals; we hypothesize that similar transformation could be applied to other
existing DHT implementations to transform them into ADHT systems. Figure 4 illustrates how our ADHT algorithm
routes towards the node with nodeId101XX for key 111XX. In the ADHT, each node maintains a separate leaf set
for each domain it is part of; in contrast, Pastry’s DHT construction maintains a single leaf set for all the domains.
Note that this change increases the number of neighbors that each node tracks to(2b)∗ lgb n+ c.l from (2b)∗ lgb n+ c
in unmodified Pastry, whereb is the number of bits in a digit,n is the number of nodes,c is the leafset size, andl
is the number of domain levels. The algorithm for populating each node’s routing table is similar to Pastry with the
following difference: it uses hierarchical domain proximity as the primary proximity metric (two nodes that match in
i levels of a hierarchical domain are more proximate than two nodes that match in fewer thani levels of a domain) and
network distance as the secondary proximity metric (if two pairs of nodes match in the same number of domain levels,
then the pair whose separation by network distance is smaller is considered more proximate).

Our research agenda for fulfilling this ADHT vision includes completing development of an ADHT algorithm for
Pastry, generalizing this approach to other DHTs such as the standard DHT API recently proposed [22], quantifying
the increase in overhead and reduction in network efficiency caused by ADHT’s additional routing constraints, and
extending the low-level implementation of the ADHT algorithm to integrate securely with existing secure node ID
systems such as secure DNS and distributed directories to prevent unauthorized nodes from joining a domain. Once an
ADHT has been developed, we believe that the SDIMS abstraction and interfaces can be extended to support autonomy
on installs, updates, and probes. Note that in addition to restricting the propagation of information out of a domain due
to a domain’s own install/update/probe commands, the system must also prevent attributes installed by other domains
from accessing and aggregating aspects of local state that are not intended for dissemination; adding an access control
list to leaf nodes’ attributes is one way to enforce such restrictions [85].

3.4 Robustness
SDIMS faces two key challenges to robustness. First, to scale to a large number of nodes distributed across a network,
an SDIMS system must cope with an increasing rate of node failures as well as an increasing rate of site disconnections
when a collection of nodes fails or becomes disconnected from the rest of the system. Although DHT systems have
explored strategies for improving robustness by replicating the root values for a key to several nearby (in key space)
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nodes [18, 23, 55, 73], SDIMS faces a more difficult problem because its abstraction exposes not only the value at
a key’s root but values computed along the path from each node to the root. Second, SDIMS aims to scale to large
numbers of attributes, which increases the amount of per-node state that must be reconstructed on a failure.

Our approach for robustness across failures will follow three tracks: masking and isolating failures at the DHT
level, replication (of aggregation information) in space, and replication in time.

We will measure and improve the stability of DHT algorithms to reduce the change in the internal structure of the
DHT tree over time. Most past DHT applications have stored application-visible per-key state at the root of the DHT
trees, so they are free to adjust internal topology when, for example, measured round trip times between nodes change.
We will improve the stability of DHTs internal structure by developing algorithms to weigh the cost/benefit trade-offs
of improving routing efficiency versus redistributing internal application-visible state. Also, to exploit the incremental
state reconstruction algorithms outlined below, we will develop DHT algorithms that retain their structure over long
periods of time so that if a node fails and then rejoins the system, it will tend to rejoin in the same position it previously
held and will therefore be able to re-use much of its prior application-visible state. Finally, we will exploit ADHT’s
properties to isolate topology changes so that reconfigurations in one subtree do not ripple to sibling subtrees.

We will explore using replication in space to improve the robustness of the system to node failures. Our main focus
will be on developing asupernode[57] based approach in whichk nodes join together to simulate a single virtual node
and thereby mask temporary failures of individual nodes. A key challenge to using supernodes in an SDIMS system
is developing a cooperative reliable messaging layer that ensures that allk nodes that are simulating the same node
see the same sequence of incoming messages. Other research issues include node selection (balancing the robustness
of using widely distributed nodes against the network efficiency of using nearby nodes) and retaining flexibility by
allowing different attributes to use different degrees of replication. In addition to our supernodes based strategy,
we also will explore a simpler replication-in-space strategy of allowing applications to use the up/down propagation
flexibility to mask node failures: a failure of a descendent can be temporarily masked by installing attributes so that
nodes propagate values at least one extra layer up the tree, and a failure of an ancestor can be temporarily masked by
propagating aggregate results at least one extra layer down the tree. It will be interesting to compare the effectiveness
of this simple approach to the more powerful but more complex supernodes approach.

We will also use replication in time to improve robustness. In particular, no matter how effective the stability-
improvement and space-replication strategies are in reducing the number of reconfigurations of SDIMS’s internal
state, occasional reconfigurations are inevitable (e.g., when a node first joins or permanently leaves the system.)
Unfortunately, the amount of state per node increases with the number of attributes in the system, so for SDIMS to be a
general middleware that supports large numbers of attributes, we must take steps to mask this state transfer time so that
it does not interfere with availability. We plan to adapt our volume leases recovery algorithms [96], which provides
a way to quickly notice when a client and server have become desynchronized and to incrementally resynchronize
the state while continuing to answer queries about the state by reconstructing what is required to answer demand
requests. In particular, all stored state is associated with anepoch numberand the current epoch is incremented when
communication between the client and server fails; state can be resynchronized by replaying the missing messages
or by scanning through the state, validating synchronization, and updating the epoch number. Demand requests to
state from a prior epoch trigger communication that updates the state and epoch. Key challenges to adapting this
algorithm to our environment include extending it to handle hierarchies and to maintain different epochs for different
subspaces of keys created by the DHT construction. Also, in order to support our goal of flexibility, the API should
allow application probes to accept stale data or to trigger reaggregation if the staleness of data exceeds some bound.

4 Application Prototyping
In addition to developing an SDIMS prototype we will use this prototype to construct several significant applications.
The purpose of this work is twofold. First, to demonstrate that SDIMS, in fact, is a useful abstraction that qualita-
tively simplifies the development of large-scale networked systems. Second, to stress-test SDIMS under real world
applications in order to identify and fix places where the initial SDIMS design is lacking.

We plan to examine three applications, which we describe in the rest of this section. In addition, we plan to make
our software available to other researchers and to respond to their feedback from their experiences.

4.1 Scalable control for PRACTI replication
In other work, we are beginning to develop a unified replication toolkit to unify the development of large scale data
replication systems such as enterprise replication [75], web caching [83], web prefetching [51], edge servers [37],
and personal file systems [95]. In order to unify these disparate applications, the system must support the PRACTI
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properties: Partial Replication, Arbitrary Consistency, and Topology Independence [27]. Conversely, past replication
systems [41, 45, 50, 62, 65, 75, 82, 97] have only been able to provide at most two of these three properties. In order
to achieve its goals, this PRACTI replication toolkit is designed to carefully separate the control path from the data
path: the data path allows any node to safely exchange information with any other node, and the control path decides
which nodes should exchange information.

We propose to use SDIMS to construct a scalable, distributed control system for an enterprise-scale file system built
over the unified replication toolkit’s flexible data path. Our initial analysis of the application suggests than a general
SDIMS middleware could potentially be extremely helpful for the development of this file system by providing a
common framework for a broad range of coordination tasks that it requires. In particular, we envision that the system’s
control plane will use SDIMS to (1) locate nearby copies of data to satisfy demand misses, (2) monitor the health of the
replicated servers, (3) allow nodes that share each subset of data to rendezvous and form a topology-aware spanning
tree for propagating updates about each subset of data, (4) allow nodes that miss a sequence of updates to identify
nearby nodes that have the needed updates, and (5) to support aggressive self-tuning prefetching [51, 90, 89, 91] by
tracking the update rate and read rate of each object in the system. It thus appears to us that SDIMS may enable a
novel file system that is considerably more sophisticated along a number of dimensions than any that has been built in
the past; without a common, scalable, flexible, robust aggregation framework, it is not clear that it would be feasible
to construct such a system.

This PRACTI file system also appears to be an excellent stress test of key aspects of the SDIMS system. In
particular, our initial analysis has suggested four issues that will challenge our SDIMS design. First, the file system
may pose unexpected query types to the SDIMS system. For example, file-location has been a working example in
much of our work to sketch an SDIMS design, but when we went from this abstract problem to the specific queries
we would use in this file system, we realized that the file system case would be considerably more demanding than the
abstract problem because the file system needs to be able to locate nearby copies of specific byte ranges within files
rather than just locating nearby copies of whole files. Furthermore, because the PRACTI system does not constrain
writes to any specific block size, the offsets in byte range queries can be arbitrary. In principle, we can define an
aggregation function that uses the file ID as an attribute name and that maintains byterange data for each file, but it
remains to be seen how complex programming such a function under our system will be. Also, note that the attribute
value for each attribute name may be quite large—a sequence of{offset, length, metadata} tuples—and that for
efficiency it may be desirable to incrementally update subranges of the attribute value rather than always resending
and recomputing the full attribute value whenever it changes. A second challenge posed by scalable PRACTI control
to SDIMS is the scale of the number of attributes; our goal was for SDIMS to scale to millions of attribute values,
and using SDIMS to track per-file control data for an enterprise-scale file system will test that aspect of our system.
One key question is whether we will need to extend SDIMS to page data to disk to scale to a sufficient size. A third
challenge is flexibility; attributes range considerably in read frequency, write frequency, global popularity, and latency
sensitivity, so different propagation strategies will be required by different attribute types and by different attribute
names at different times and places within the system. A fourth challenge is reliability: our file system will rely on
SDIMS for correctness and performance, and our proposed methods for providing high availability and reliability for
SDIMS will certainly be tested by this scalable replication application.

4.2 Grid information systems and scheduling
We plan to integrate the SDIMS implementation with the Globus Global Information Service (GIS) interface [20, 2]
in order to significantly improve the state of the art and capabilities of GIS and the grid services and applications
that depend on it. In particular, we believe that SDIMS’s use of self-tuning peer-to-peer aggregation can provide a
significant boost in capabilities compared to more traditional client-server architectures by scaling to more nodes,
simplifying the deployment of distributed information managing services, supporting broader range of applications
than is currently feasible, and simplifying the construction of applications that use the service.

A number of existing grid information systems such as GIS [2], MDS-2 [20], R-GMA [12], and Hawkeye [44]
each provide a core distributed information management system designed to support a range of applications and
services such as scheduling, replica selection, service discovery, and system monitoring. All of these systems use
a client-server model in whichInformation Providerscollect or generate data and supply this data toInformation
Serversthrough which applications access data. In some of these systems, scalability beyond this basic client-server
model is provided by time to live (TTL) based caching, pushing of updates, and arrangement of Information Servers
into cache hierarchies. However, Zhang et al. [98] find that existing systems have difficulty scaling to more than
about 100 Information Providers and that scalability depends on placement of key components on well-connected and
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well-provisioned machines.
We plan to study using SDIMS to improve on the implementation of the grid information services abstraction.

In particular, Globus’s GIS and MDS-2 define a common API, data model, and schema for grid information systems
that is orthogonal to their underlying implementation [20, 30]. By extending SDIMS to support this interface, we can
provide an enhanced implementation that is immediately usable by existing GIS or MDS-2 clients.

This work will test the hypothesis that an SDIMS-based GIS will provide several key advantages over existing GIS
implementations.

• Simplified deployment and scalability to large numbers of nodes.SDIMS underlying DHT technology provides
a framework for highly-effective self-tuning load balancing and locality [5, 40, 43, 49, 53, 58, 59, 61, 68, 70, 74,
79, 100]. In contrast, existing client-server architectures require configuration of specific well-connected and well-
provisioned machines to act as Information Collectors and Information Servers for specific sets of machines, and
they may require manual configuration of caching hierarchies for additional scalability.

• Support for a broader range of applications and services.The scalable forest of trees provided by SDIMS’s
underlying DHT framework allows the system to support applications such as global file location [24, 69, 72, 83] that
tracks millions of attributes (fileIds) and to provide locally-relevant views (e.g., “find the nearest copy of/foo/bar”),
and that Although some researchers have proposed using GIS for a file-location service [20] it is not clear how to
make such an approach scale to millions of files partially replicated across thousands of sites without configuring
different cache hierarchies for each collection of data. As a result, data-location applications typically construct
their own distributed information service. For example, the Storage Resource Broker (SRB) [6], a widely used grid
data manager, uses a logically centralized metadata catalog.

• Improved performance for applications and services. The self-tuning replication we propose to develop for
SDIMS will complement the DHT-based load balancing to improve the trade-offs among bandwidth, query latency,
and consistency compared to existing approaches. Furthermore, by being self-tuning, gaining these advantages will
be simpler than with manually-tuned systems.

• Simplified development of applications and services.SDIMS performs “in the network”, “multi-scale” aggrega-
tion so that it is natural to query aggregate values at individual machines, clusters or collections of workstations on a
subnet, the machines in a department, the machines in a virtual organization (VO) [33], or the machines “nearby” on
the network. This uniformity allows a simple programming model where the programmer focuses on the aggrega-
tion function itself and the underlying system performs this aggregation at varying degrees of granularity, balances
load across machines, and manages replication to balance overhead and performance. In contrast, MDS-2 is ar-
chitected so that the “natural” level of aggregation is a cluster: Information Providers typically collect information
from a pre-defined cluster of machines and Information Servers collect information from Information Providers
and supply that information to a pre-defined cluster of client machines. Beyond the configuration and scalability
challenges discussed above, this approach increases the complexity of doing aggregation at different levels of gran-
ularity and requires programming of separate abstractions for collecting and aggregating data within a hierarchy (at
the Information Providers) and across hierarchies (at the Information Servers.)

We plan to proceed in three phases. First, we will develop techniques to integrate SDIMS with GIS or MDS-2.
This work will include providing the GIS/MDS-2 API over the SDIMS system; our initial evaluation suggests that
the abstractions are similar enough that this should be feasible. It will also include developing an internal interface
for data transfer between SDIMS-based and traditional GIS implementations as well as enhancements of SDIMS to
enforce the GIS security model. Second, once SDIMS and GIS share a common interface, we will be in a position to
compare them directly and test the hypotheses discussed above. Third, we will apply this system to an effort by the
Texas Advanced Computing Center (TACC) to develop and deploy a Community Scheduler Framework (CSF) [77]
based scheduling framework for the University of Texas grid. An attached letter of support from Dr. John R. Boisseau,
the Director of TACC, discusses his support for this collaboration.

4.3 Network monitoring
An emerging trend in network router design is to construct them using programmable network processing units such
as AMCCs np7xxx, Ageres PaylodPlus, IBMs PowerNP, Silicon Accesss iFlow, Motorolas CPort, and Intels IXP. This
trend will enable the deployment of sophisticated functionality in the network fabric such as intrusion detection, proto-
col conversion, QoS provisioning, XML firewalls, and VPNs. However high data rates and complex node architectures
and sophisticated distributed algorithms makes programming such systems difficult. We will explore using SDIMS to
address the distributed algorithms aspect of network monitoring systems.
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We plan to examine the “distributed heavy hitter problem.” The goal of the heavy hitter problem is to identify
network sources, destinations, or protocols that account for significant or unusual amounts of traffic. As noted by
Estan et al. [29], this information is useful for a variety of applications such as intrusion detection (e.g., port scanning),
denial of service detection, worm detection and tracking, fair network allocation, or network maintenance. Significant
work has been done on developing high-performance stream-processing algorithms for identifying heavy hitters at one
router [29, 28, 31], but this is just a first step: ideally these applications would like not just one router’s views of the
heavy hitters but an aggregate view. We plan to use SDIMS to allow local information about heavy hitters to be pooled
into a view of global heavy hitters. Initially, we will deploy this system as a distributed denial of service detector
for PlanetLab [66] experiments (to flag experiments that accidently exceed acceptable loads on nodes outside of the
PlanetLab testbed). We will then extend this work to developing a more general distributed heavy hitter monitoring
system that runs on the Shangri-La runtime system [92] for programmable network routers.

We anticipate that this application class will stress a number of aspects of the SDIMS system. First, these network
monitoring applications can generate large amounts of data on each node, so a challenge will be developing update
propagation strategies that flexibly trade bandwidth for accuracy and then achieving an acceptable level of accuracy
for an acceptable amount of bandwidth. Second, many of these network monitoring applications are security-related,
so they are likely to drive us to further harden our design to secure the system from unauthorized inputs and to make
the calculation of aggregate values robust against a small number of misbehaving nodes.

5 Conclusion
The goal of the proposed research is to design and build a Scalable Distributed Information Management System
(SDIMS) thataggregatesinformation about large-scale networked systems and that can serve as a basic building
block for a broad range of large-scale distributed applications. Monitoring, querying, and reacting to changes in the
state of a distributed system are core components of applications such as system management [11, 36, 71, 80, 84, 93],
service placement [35, 94], grid scheduling [4, 7, 8, 17, 21, 47, 34, 32, 54, 76], data sharing and caching [61, 70, 74,
79, 83, 100], sensor monitoring and control [48, 56], multicast tree formation [14, 15, 86, 78, 81], and naming and
request routing [16, 19]. We therefore speculate that an SDIMS in a networked system would provide a “distributed
operating systems backbone” and facilitate the development and deployment of new distributed services.
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