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tWe dis
uss the OpenMP parallelization of linear algebra algorithms that are 
oded using the FormalLinear Algebra Methods Environment (FLAME) API. This API expresses algorithms at a higher levelof abstra
tion, avoids the use of indi
es, and thus represents these algorithms as they are formallyderived and presented. Traditional OpenMP dire
tives require an expli
it loop index, or expli
it 
riti
al-region 
onstru
ts on a variable, in order to indi
ate parallelism in loops and thus the la
k of indi
espreviously posed a 
hallenge. A feature, task queues, that has been proposed for adoption into OpenMP3.0 over
omes this problem. We illustrate the issues and solutions by dis
ussing the parallelization of thesymmetri
 rank-k update and report impressive performan
e on a 4 CPU Itanium2 server.1 Introdu
tionThe Formal Linear Algebra Methods Environment (FLAME) proje
t pursues a systemati
 methodologyfor deriving and implementing linear algebra libraries [2, 9℄. The methodology is goal-oriented: Given amathemati
al spe
i�
ation of the operation to be implemented, pres
ribed steps yields a family of algorithmsfor 
omputing the opreation. As part of the derivation, the proof of 
orre
tness of the algorithm is also given.The resulting algorithms are expressed at a high level of abstra
tion, mu
h like one would present algorithmswith pseudo-
ode in a 
lassroom setting. Appli
ation Programming Interfa
es (APIs) have been developedallow the 
ode to 
losely resemble the formal algorithm stru
ture so that the opportunity for the introdu
tionof \bugs" in the translation from algorithm to implementation is redu
ed. APIs have been de�ned for theMatlab M-s
ript language, for the C and Fortran programming languages, and even as an extension tothe Parallel Linear Algebra Pa
kage (PLAPACK) [3, 13℄. The s
ope of FLAME in
ludes the Basi
 LinearAlgebra Subprograms (BLAS) [10, 6, 5℄, most of LAPACK [1℄, and a large number of operations en
ounteredin Control Theory [11℄.Integrating OpenMP dire
tives into the resulting 
ode is a problem in that the 
ode is devoid of indexing:OpenMP 
onstru
ts for parallelizing loops usually require a loop-index to indi
ate how the loop is to beparallelized. Task queues, a 
onstru
t that was re
ently proposed for in
lusion in OpenMP 3.0, allow tasksto be de�ned by a single 
ontrol stru
ture. These tasks are then s
heduled for exe
ution on the di�erentthreads. We show in this paper how this Workqueuing Model naturally supports parallelism in C 
odewritten with the FLAME/C API. We refer to the resulting extension of FLAME/C as OpenFLAME. The1



Workqueuing Model 
an be applied to many algorithms that are systemati
ally derived via the FLAMEapproa
h for operations supported by the BLAS and LAPACK.We demonstrate the general appli
ability of the approa
h with a 
on
rete example: the 
omputation ofthe symmetri
 rank-k update (syrk) operation. This operation is supported by the BLAS and is importantin higher-level operations like the Cholesky fa
torization and the formation of the normal equations in linearleast-squares problems. For that example, impressive performan
e is reported on an Intel Itanium2 (R)Symmetri
 Multipro
essor (SMP).The paper is organized as follows: In Se
tion 2 we dis
uss the syrk operation, four algorithmi
 variantsfor 
omputing it, and the implementation of those algorithms using FLAME/C. The parallelization of the re-sulting implementations using OpenMP and task queues is dis
ussed in Se
tion 3. An additional algorithmi
variant is presented in Se
tion 4. The parallelization of that �fth variant requires partial results, 
omputedby di�erent tasks in the task queue, to be summed. Performan
e attained by the di�erent implementationsis presented in Se
tion 5. Con
luding remarks are given in the �nal se
tion.2 A Con
rete ExampleConsider the 
omputation C := AAT +C where C is symmetri
 and hen
e only the lower triangular part ofC is stored and updated. This operation is known as a symmetri
 rank-k update (syrk).In the FLAME approa
h to deriving algorithms, matri
es are partitioned into regions:C ! � CTL ?CBL CBR � and A! � ATAB �where the thi
k lines indi
ate how far into the matri
es the 
omputation has rea
hed. It is assumed thatCTL is square so that both CTL and CBR are symmetri
. Here the '?' symbol indi
ates the symmetri
 partof C that is not stored.We will let Ĉ denote the original 
ontents of C so that upon 
ompletion C should 
ontain C = AAT + Ĉ,whi
h is 
alled the post
ondition. It des
ribes the state of the variables upon 
ompletion of the 
omputation.Substituting the partitioned matri
es into the post
ondition yields� CTL ?CBL CBR � = � ATAB �� ATAB �T + ĈTL ?ĈBL ĈBR !=  ATATT + ĈTL ?ABATT + ĈBL ABATB + ĈBR ! : (1)This shows that m(CTL) should equalm(AT ) and that Ĉ should be partitioned as is C, where m(X) denotesthe row dimension of matrix X .The idea now is that (1) tells us all 
omputations that must be performed in terms of the di�erentsubmatri
es of Ĉ and A. What we want to determine is the state of matrix C at the top of a loop that
omputes the result C = AAT + Ĉ. This state is referred to as the loop-invariant. If the loop 
omputesthe result, not all 
omputation that is required has already been performed. This suggests the states givenin Fig. 1 as states that 
an be maintained as loop-invariants at the top of a loop: they are partial resultstowards the �nal result.What is important here is that for ea
h loop-invariant there is a 
orresponding algorithmi
 variant: Loop-invariant k in Fig. 1 yields the algorithmi
 Variant k in Fig. 2, in whi
h so-
alled blo
ked algorithms are giventhat in the loop-body update various submatri
es of matrix C. An unblo
ked algorithm 
an be 
reated bytaking m(C11) = m(A1) = 1, in whi
h 
ase the updates in the body of the loop be
ome simpler operations2



Loop-invariant1 � CTL ?CBL CBR � =  ATATT + ĈTL ?ĈBL ĈBR !2 � CTL ?CBL CBR � =  ATATT + ĈTL ?ABATT + ĈBL ĈBR !3 � CTL ?CBL CBR � =  ĈTL ?ĈBL ABATB + ĈBR !4 � CTL ?CBL CBR � =  ĈTL ?ABATT + ĈBL ABATB + ĈBR !Figure 1: Loop-invariants for 
omputing syrk.like the matrix-ve
tor produ
t and inner-produ
t. In ea
h of the loop-bodies there is the 
omputation of asyrk operation with smaller submatri
es of A and C.Having the ability to derive 
orre
t algorithms solves only part of the problem sin
e translating thosealgorithms to 
ode ordinarily required deli
ate indexing into arrays, whi
h exposes opportunities for theintrodu
tion of errors. We now illustrate how appropriately de�ned APIs over
ome this problem. In Fig. 3,we show an example of FLAME/C 
ode 
orresponding to Variant 1 in Fig. 2. To understand the 
ode, itsuÆ
es to know that C and A are des
riptors for the matri
es C and A, respe
tively. The various routinesfa
ilitate the 
reation of views into the data des
ribed by C and A. Think of a variable like CTL as a fan
ypointer into the array C. Furthermore, the 
alls to FLA Gemm and FLA Syrk perform the same operationsas the BLAS 
alls dgemm (matrix-matrix multipli
ation) and dsyrk (symmetri
 rank-k update). What ismost striking about this 
ode is the absen
e of intri
ate indexing and absense of a loop 
ontrol with a singlevariable.3 OpenFLAME := FLAME/C + ( OpenMP + Task Queues )The strength of FLAME 
ode is that it hides intri
ate indexing. For OpenMP Standard 2.0, however,this strength is a weakness: inherently 
urrent OpenMP dire
tives require loop indi
es in order to expressparallelism in the exe
ution of loops and/or expli
it 
riti
al-region blo
ks for atomi
ally updating a loopvariable. Fortunately, a feature, task queues, is proposed for OpenMP Standard 3.0. It is this feature thatallows a large number of algorithms to be easily parallelized when implemented with the FLAME API.3.1 Task queuesCon
eptually, the Workqueuing Model forms a queue for distributing tasks. Two workqueuing pragmas,taskq and task, formx a queue and units of work (tasks) for parallel exe
ution, respe
tively. A single threadexe
utes the taskq blo
k, enqueuing tasks within the task blo
k. Other threads dequeue tasks and exe
utethem in parallel.3.2 Appli
ation to syrkIn Fig. 4 we show how the while loop in Fig. 3 
an be annotated with OpenMP dire
tives to 
reate paralleltasks via the task queue me
hanism. In Fig. 4: 3



Algorithm: C := Syrk blk var1 2( A, C )Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CTL is 0� 0, AT has 0 rowswhile m(CTL) < m(C) doDetermine blo
k size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 1: Variant 2:C10 := A1AT0 +C10 C21 := A2AT1 + C21C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB � 0� A0A1A2 1AendwhileAlgorithm: C := Syrk blk var3 4( A, C )Partition C ! � CTL CTRCBL CBR � , A! � ATAB �where CBR is 0� 0, AB has 0 rowswhile m(CBR) < m(C) doDetermine blo
k size bRepartition� CTL CTRCBL CBR �! 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB �! 0� A0A1A2 1Awhere C11 is b� b , A1 has b rowsVariant 3: Variant 4:C21 := A2AT1 +C21 C10 := A1AT0 + C10C11 := A1AT1 +C11 C11 := A1AT1 + C11Continue with� CTL CTRCBL CBR � 0� C00 C01 C02C10 C11 C12C20 C21 C22 1A, � ATAB � 0� A0A1A2 1AendwhileFigure 2: Blo
ked algorithms for 
omputing C := AAT + C. The top algorithm implements Variants 1 and2, 
orresponding to Loop-invariants 1 and 2 in Fig. 1. The bottom algorithm implements Variants 3 and 4,
orresponding to Loop-invariants 3 and 4 in Fig. 1. The top algorithm sweeps through C from the top-leftto the bottom-right, while the bottom algorithm traverses the matrix in the opposite dire
tion.
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1 #in
lude "FLAME.h"23 int Syrk_blk_var1( FLA_Obj C, FLA_Obj A, int nb_alg )4 {5 FLA_Obj CTL, CTR, C00, C01, C02,6 CBL, CBR, C10, C11, C12,7 C20, C21, C22;8 FLA_Obj AT, A0,9 AB, A1,10 A2;11 int b;1213 FLA_Part_2x2( C, &CTL, &CTR,14 &CBL, &CBR, 0, 0, FLA_TL );15 FLA_Part_2x1( A, &AT,16 &AB, 0, FLA_TOP );1718 while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){19 b = min( FLA_Obj_length( CBR ), nb_alg );2021 FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,22 /*************/ /*********************/23 &C10, /**/ &C11, &C12,24 CBL, /**/ CBR, &C20, /**/ &C21, &C22,25 b, b, FLA_BR );26 FLA_Repart_2x1_to_3x1( AT, &A0,27 /* ** */ /* ** */28 &A1,29 AB, &A2, b, FLA_BOTTOM );30 /*-----------------------------------------------------------*/3132 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A1, A0, ONE, C10 );33 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C11 );3435 /*-----------------------------------------------------------*/36 FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,37 C10, C11, /**/ C12,38 /**************/ /******************/39 &CBL, /**/ &CBR, C20, C21, /**/ C22,40 FLA_TL );41 FLA_Cont_with_3x1_to_2x1( &AT, A0,42 A1,43 /* ** */ /* ** */44 &AB, A2, FLA_TOP );45 }46 } Figure 3: FLAME/C 
ode for a blo
ked implementation of Variant 1.
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17 #pragma intel omp parallel taskq18 {19 while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){20 b = min( FLA_Obj_length( CBR ), nb_alg );2122 FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, /**/ &C01, &C02,23 /*************/ /*********************/24 &C10, /**/ &C11, &C12,25 CBL, /**/ CBR, &C20, /**/ &C21, &C22,26 b, b, FLA_BR );27 FLA_Repart_2x1_to_3x1( AT, &A0,28 /* ** */ /* ** */29 &A1,30 AB, &A2, b, FLA_BOTTOM );31 /*-----------------------------------------------------------*/32 #pragma intel omp task 
aptureprivate( A0, A1, C10, C11 )33 {34 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A0, A1, ONE, C10 );35 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, C11 );36 } /* end task */37 /*-----------------------------------------------------------*/38 FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, C01, /**/ C02,39 C10, C11, /**/ C12,40 /**************/ /******************/41 &CBL, /**/ &CBR, C20, C21, /**/ C22,42 FLA_TL );43 FLA_Cont_with_3x1_to_2x1( &AT, A0,44 A1,45 /* ** */ /* ** */46 &AB, A2, FLA_TOP );47 }48 } /* end of taskq */Figure 4: FLAME/C 
ode with task queuing OpenMP dire
tives for the 
ode in Fig. 3.� Line 17 
reates the taskq blo
k and forms a single-threaded taskqueue.� Line 32 starts a se
tion of 
ode that de�nes a task to be added to the task queue. The des
riptors A0,A1, C10, and C11 
hange from iteration to iteration. They need to be private (lo
al) variables and tohave value assigned (
aptured) from the taskq thread for use in the 
alls to FLA Gemm and FLA Syrk.� Line 36 ends the s
ope of the task being added to the queue.� Line 48 ends the s
ope of the taskq blo
k. The threads are syn
hronized at that line.Clearly, task queues provide a simple me
hanism for dire
ting the parallel exe
ution in this 
ode. Moreover,without the task queue me
hanism indi
es would have had to be reintrodu
ed into the 
ode, making itsubstantially more 
omplex and aestheti
ally less pleasing.Espe
ially for blo
ked algorithms, the 
ost of the indexing operations (FLA Repart ... and FLA Cont with ...)is amortized over enough 
omputation that the asso
iated overhead is negligible. Thus it suÆ
es to parallelizethe useful 
omputation in the loop and not these indexing operations.3.3 OptionsIn Fig. 4 the 
alls to FLA Gemm and FLA Syrk are independent and 
an, therefore, be exe
uted in any orderand/or queued as separate tasks. One option is to split the single task in the loop-body of Fig. 4 into two6



tasks:#pragma intel omp task 
aptureprivate(A0, A1, C10){ FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A1, A0, ONE, C10 );}#pragma intel omp task 
aptureprivate(A1, C11){ FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11 );}This 
reates twi
e the number of tasks for the task queue to s
hedule.A further observation is that the 
omputations C10 := A1AT0 + C10 and C11 := A1AT1 + C11 (updatingthe lower triangle only) 
ost about 2bn(C10)n(A) and b2n(A) 
oating point arithmeti
 operations (
ops),respe
tively. Here n(X) indi
ates the 
olumn dimension of matrix X . Sin
e n(C10) grows linearly with ea
hiteration of the loop the number of 
ops required to update C10 in
reases propotionally. Thus is unfortunate,sin
e 
ostly tasks at the end of a s
heduling queue 
an 
reate a large load imbalan
e.One option to over
ome this problem is to exe
ute the loop in reverse order (in 
ompiler terms: applya loop reversal transformation), sin
e this would then 
reate the more 
ostly tasks �rst. Variants 4 and 3in Fig. 2 exe
ute the loops in Variants 1 and 2 in reverse, respe
tively. This illustrates the value of theFLAME methodology whi
h 
an systemati
ally �nd algorithmi
 variants that have di�erent strengths andweaknesses. In fa
t, Variants 1 and 3 have the property that tasks be
ome more 
ostly as the loop pro
eedswhile Variants 2 and 4 generate progressively less 
ostly tasks. What we will later see is that di�eren
es inperforman
e 
an be observed for di�erent variants.An alternative option is to 
reate two loops (in 
ompiler terms: apply a loop �ssion transformation),repla
ing the single loop in Fig. 4 with two loops: the �rst for 
omputing all the updates to C10 and these
ond loop for 
omputing the updates to C11:#pragma intel omp parallel taskq{ while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){b = min( FLA_Obj_length( CBR ), nb_alg );FLA_Repart_2x2_to_3x3([ ... ℄#pragma intel omp task 
aptureprivate(A0, A1, C10){ FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,ONE, A1, A0, ONE, C10 );} [ ... ℄} /* end of first while loop */
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while ( FLA_Obj_length( CTL ) < FLA_Obj_length( C ) ){b = min( FLA_Obj_length( CBR ), nb_alg );FLA_Repart_2x2_to_3x3([ ... ℄#pragma intel omp task 
aptureprivate(A1, C11){ FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,ONE, A1, ONE, C11 );} [ ... ℄} /* end of se
ond while loop */} /* end of taskq */The updates to C11 require less work and are all equal in 
ost, allowing them to be used to balan
e theworkload among threads before the syn
hronization upon 
ompletion of the tasks.3.4 An illustration of the bene�ts of di�erent optionsThe expe
ted di�eren
es in performan
e are illustrated for Variants 2 and 3 in Fig. 5. In that �gure, wereport a simulation of the s
heduling of tasks to four threads for the di�erent options des
ribed above. Thematri
es A and C are taken to be of dimension 1200�1200 and the blo
k size b in Fig. 2 is taken to equal 104(ex
ept possibly during the last iteration), whi
h is a blo
k size that we will use in our experimental se
tionas well. Ea
h of the tasks is represented by a box that has a height that is proportional to the number of
ops performed by the task. The integers in the boxes indi
ate the order in whi
h the tasks are queued inthe task queue. The tasks are s
heduled to threads as they be
ome idle. Re
all that these variants performthe same 
omputations, but the loop is exe
uted in reverse for Variant 3.We see that Variant 2 in general performs better than Variant 3 sin
e the 
osts of the tasks de
reasetowards the end, allowing them to be more easily balan
ed among the threads before syn
hronization.Splitting the task in the loop-body into two tasks improves the load-balan
e for Variant 2, but not forVariant 3. Both variants bene�t from splitting the loop into two loops, with the smaller tasks s
heduled bythe se
ond loop. These small tasks, generated by the se
ond loop, will be exe
uted by those threads that
omplete their share of the tasks generated by the �rst loop early.4 Summing Contributions from TasksFrom experien
e with parallelizing algorithms on distributed memory ar
hite
tures [13, 8, 12℄, we (andothers) have 
on
luded that there are two types of 
ommuni
ations needed to support the parallelization ofoperations like those in the BLAS and LAPACK: the �rst is data dupli
ation where data are 
ommuni
atedto di�erent pro
essors and followed by the exe
ution of 
ompletely independent tasks on ea
h pro
essor. These
ond involves the redu
tion of lo
ally 
omputed 
ontributions to a global result. Typi
ally the redu
tionis in fa
t a summation of 
ontributions (partial sums) from ea
h pro
essor.The method for using OpenMP des
ribed so far supports the SMP equivalent of the �rst type of 
om-muni
ation: It de�nes separate tasks that update parts of matri
es that do not overlap, using data that areshared and may be a

essed 
on
urrently. In lieu of dupli
ation, ea
h separate task reads the same data, asneeded, from shared storage. In order to support independent tasks 
ontributing to an update of the samedata via the task queue 
onstru
t, it has to be possible to 
ompute 
ontributions independently using datathat are not shared, and to then redu
e the results into a shared matrix or ve
tor. We illustrate now how toa

ommodate this via task queues by dis
ussing a �fth variant for 
omputing syrk.8


