Parallelizing FLAME Code with OpenMP Task Queues

Tze Meng Low
Kent F. Milfeld
Robert A. van de Geijn
Field G. Van Zee
The University of Texas at Austin
Austin, TX 78712

FLAME Working Note #15

Dec. 3, 2004

Abstract

We discuss the OpenMP parallelization of linear algebra algorithms that are coded using the Formal
Linear Algebra Methods Environment (FLAME) API. This API expresses algorithms at a higher level
of abstraction, avoids the use of indices, and thus represents these algorithms as they are formally
derived and presented. Traditional OpenMP directives require an explicit loop index, or explicit critical-
region constructs on a variable, in order to indicate parallelism in loops and thus the lack of indices
previously posed a challenge. A feature, task queues, that has been proposed for adoption into OpenMP
3.0 overcomes this problem. We illustrate the issues and solutions by discussing the parallelization of the
symmetric rank-k update and report impressive performance on a 4 CPU Itanium?2 server.

1 Introduction

The Formal Linear Algebra Methods Environment (FLAME) project pursues a systematic methodology
for deriving and implementing linear algebra libraries [2, 9]. The methodology is goal-oriented: Given a
mathematical specification of the operation to be implemented, prescribed steps yields a family of algorithms
for computing the opreation. As part of the derivation, the proof of correctness of the algorithm is also given.
The resulting algorithms are expressed at a high level of abstraction, much like one would present algorithms
with pseudo-code in a classroom setting. Application Programming Interfaces (APIs) have been developed
allow the code to closely resemble the formal algorithm structure so that the opportunity for the introduction
of “bugs” in the translation from algorithm to implementation is reduced. APIs have been defined for the
Matlab M-script language, for the C and Fortran programming languages, and even as an extension to
the Parallel Linear Algebra Package (PLAPACK) [3, 13]. The scope of FLAME includes the Basic Linear
Algebra Subprograms (BLAS) [10, 6, 5], most of LAPACK [1], and a large number of operations encountered
in Control Theory [11].

Integrating OpenMP directives into the resulting code is a problem in that the code is devoid of indexing;:
OpenMP constructs for parallelizing loops usually require a loop-index to indicate how the loop is to be
parallelized. Task queues, a construct that was recently proposed for inclusion in OpenMP 3.0, allow tasks
to be defined by a single control structure. These tasks are then scheduled for execution on the different
threads. We show in this paper how this Workqueuing Model naturally supports parallelism in C code
written with the FLAME/C API. We refer to the resulting extension of FLAME/C as OpenFLAME. The

Workqueuing Model can be applied to many algorithms that are systematically derived via the FLAME
approach for operations supported by the BLAS and LAPACK.

We demonstrate the general applicability of the approach with a concrete example: the computation of
the symmetric rank-k update (SYRK) operation. This operation is supported by the BLAS and is important
in higher-level operations like the Cholesky factorization and the formation of the normal equations in linear
least-squares problems. For that example, impressive performance is reported on an Intel Itanium2 (R)
Symmetric Multiprocessor (SMP).

The paper is organized as follows: In Section 2 we discuss the SYRK operation, four algorithmic variants
for computing it, and the implementation of those algorithms using FLAME/C. The parallelization of the re-
sulting implementations using OpenMP and task queues is discussed in Section 3. An additional algorithmic
variant is presented in Section 4. The parallelization of that fifth variant requires partial results, computed
by different tasks in the task queue, to be summed. Performance attained by the different implementations
is presented in Section 5. Concluding remarks are given in the final section.

2 A Concrete Example

Consider the computation C := AAT + C where C is symmetric and hence only the lower triangular part of
C is stored and updated. This operation is known as a symmetric rank-k update (SYRK).
In the FLAME approach to deriving algorithms, matrices are partitioned into regions:

Crr | *) (Ar)
C— and A —
(CpL | CBr Ap
where the thick lines indicate how far into the matrices the computation has reached. It is assumed that
Cryr is square so that both Cry and Cpr are symmetric. Here the '+’ symbol indicates the symmetric part
of C' that is not stored. R
We will let C' denote the original contents of C' so that upon completion C' should contain C' = AAT +C,

which is called the postcondition. It describes the state of the variables upon completion of the computation.
Substituting the partitioned matrices into the postcondition yields

(CTL *)_(AT><AT>T+ Crr | «
CBL CBR - AB AB OBL OBR
ATA%+CA'TL | *

ApAL + CpL | ApAL +Cpr |’

(1)

This shows that m(C7y) should equal m(Ar) and that €' should be partitioned as is C', where m(X) denotes
the row dimension of matrix X.

The idea now is that (1) tells us all computations that must be performed in terms of the different
submatrices of C' and A. What we want to determine is the state of matrix C' at the top of a loop that
computes the result C = AAT + C. This state is referred to as the loop-invariant. If the loop computes
the result, not all computation that is required has already been performed. This suggests the states given
in Fig. 1 as states that can be maintained as loop-invariants at the top of a loop: they are partial results
towards the final result.

What is important here is that for each loop-invariant there is a corresponding algorithmic variant: Loop-
invariant £ in Fig. 1 yields the algorithmic Variant & in Fig. 2, in which so-called blocked algorithms are given
that in the loop-body update various submatrices of matrix C'. An unblocked algorithm can be created by
taking m(C11) = m(A;) = 1, in which case the updates in the body of the loop become simpler operations

Loop-invariant
1 (Crr *) . ATA% + OTL *
Cpr | Csr) CBrL CBr
(CTL *) ATA% + éTL *
2 =
Csr | CBr ApAL +CpL | CBr
(Crp | > Crr *
3 =
Csr | UBr Cer | ApAL + CBr
A (Crr * > B Crr *
Cpr | Csr)\ ApAL+Cpr | AsAL + Car

Figure 1: Loop-invariants for computing SYRK.

like the matrix-vector product and inner-product. In each of the loop-bodies there is the computation of a
SYRK operation with smaller submatrices of A and C.

Having the ability to derive correct algorithms solves only part of the problem since translating those
algorithms to code ordinarily required delicate indexing into arrays, which exposes opportunities for the
introduction of errors. We now illustrate how appropriately defined APIs overcome this problem. In Fig. 3,
we show an example of FLAME/C code corresponding to Variant 1 in Fig. 2. To understand the code, it
suffices to know that C and A are descriptors for the matrices C' and A, respectively. The various routines
facilitate the creation of views into the data described by C and A. Think of a variable like CTL as a fancy
pointer into the array C'. Furthermore, the calls to FLA_Gemm and FLA_Syrk perform the same operations
as the BLAS calls DGEMM (matrix-matrix multiplication) and dsyrk (symmetric rank-k update). What is
most striking about this code is the absence of intricate indexing and absense of a loop control with a single
variable.

3 OpenFLAME := FLAME/C + (OpenMP + Task Queues)

The strength of FLAME code is that it hides intricate indexing. For OpenMP Standard 2.0, however,
this strength is a weakness: inherently current OpenMP directives require loop indices in order to express
parallelism in the execution of loops and/or explicit critical-region blocks for atomically updating a loop
variable. Fortunately, a feature, task queues, is proposed for OpenMP Standard 3.0. It is this feature that
allows a large number of algorithms to be easily parallelized when implemented with the FLAME API.

3.1 Task queues

Conceptually, the Workqueuing Model forms a queue for distributing tasks. Two workqueuing pragmas,
taskq and task, formx a queue and units of work (tasks) for parallel execution, respectively. A single thread
executes the taskq block, enqueuing tasks within the task block. Other threads dequeue tasks and execute
them in parallel.

3.2 Application to SYRK

In Fig. 4 we show how the while loop in Fig. 3 can be annotated with OpenMP directives to create parallel
tasks via the task queue mechanism. In Fig. 4:

Algorithm: C := SYRK_BLK_VAR1_2(A, C)
C C' A
Partition C — (IL B) ,A— (z)

Cpr | CBr Ap
where Crpp is 0 X 0, A7 has 0 rows

while m(Crr) < m(C) do
Determine block size b
Repartition
Coo | Co1 | Coz

C C A —_—
(CTL CTR) —+ | Cio | Cu1 | Ci2 |, (AT) = A
BL BR Cao | Co1 | C22 B Az

where C711 is bx b, A; has b rows

Variant 1:
Cro 1= A1AT + Cyo
C11 = A1AT +Cny

Variant 2:
Co1 = A2 AT + Cny
Ci1 = A1AT +Cny

Continue with

Coo | Co1 | Coz Ao
(gTL gTR) | Cio | Cu1 | Ci2 |, (j:T) — | A
BL BR Ca0 | C21 | C22 B Az

endwhile

Algorithm: C' := SYRK_BLK_VAR3_4(A, C)
.. Crr | Crr) (A)
Partition C — | =————t— A —
(Cpr | CBr /'’ Ap
where Cppr is 0 x 0, Ap has 0 rows

while m(Cpr) < m(C) do
Determine block size b
Repartition

Coo | Co1 | Coz Ao
(gTL gTR) — Cio | C11 | C12 |, (:T) — Ay
BL BR Cao | C21 | C22 B Az

where Ci1 is bx b, A1 has b rows

Variant 3:
Co1 1= A2 AT + Coy
Cr1 1= A1AT +Cna

Variant 4:
Cip := AlAg + C1o
Cr1 = A1AT + Cny

Continue with

C C C A

Cre | Cra 00 01 02 Ar Ao
6] Con — Cio | C11 | C12 |, oy — 1
BL Cao | Co1 | C22 Ao

endwhile

Figure 2: Blocked algorithms for computing C' := AAT + C. The top algorithm implements Variants 1 and
2, corresponding to Loop-invariants 1 and 2 in Fig. 1. The bottom algorithm implements Variants 3 and 4,
corresponding to Loop-invariants 3 and 4 in Fig. 1. The top algorithm sweeps through C from the top-left
to the bottom-right, while the bottom algorithm traverses the matrix in the opposite direction.

#include "FLAME.h"

int Syrk_blk_vari(FLA_Obj C, FLA_Obj A, int nb_alg)

{

FLA_Obj CTL, CTR, coo, co1i, co2,
CBL, CBR, ci0, C11, C12,
Cc20, C21, C22;
FLA_Obj AT, A0,
AB, A1,
A2;
int b;

FLA_Part_2x2(C, &CTL, &CTR,

&CBL, &CBR, 0, 0, FLA_TL);
FLA_Part_2x1(A, &AT,
&AB, 0, FLA_TOP);

while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){
b = min(FLA_Obj_length(CBR), nb_alg);

FLA_Repart_2x2_to_3x3(CTL, /#x/ CTR, &C00, /**/ &CO1, &C02,
[Hxkkkkkkkkkokk/ [dkkkkkokkkkkkkkkkkkkkk [
&C10, /**/ &C11, &C12,
CBL, /**/ CBR, &C20, /**x/ &C21, &C22,
b, b, FLA_BR);

FLA_Repart_2x1_to_3x1(AT, &AO,
/% *%x *x/ /% %% %/
&A1,
AB, &A2, b, FLA_BOTTOM);
[m */

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A1, A0, ONE, C10);
FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, Ci1);

FLA_Cont_with_3x3_to_2x2(&CTL, /*x/ &CTR, CO00, CO1, /**/ CO2,
C10, C11, /*x/ C12,

[Fkkkkokkokokokokokokok /[okkokkok ok ok ok ok ok okok /

&CBL, /#x/ &CBR, (20, C21, /**/ C22,

FLA_TL);
FLA_Cont_with_3x1_to_2x1(&AT, A0,
A1,
/* x*x %/ /* x*x %/
&AB, A2, FLA_TOP);

Figure 3: FLAME/C code for a blocked implementation of Variant 1.

17 #pragma intel omp parallel taskq

18

19 while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){

20 b = min(FLA_Obj_length(CBR), nb_alg);

21

22 FLA_Repart_2x2_to_3x3(CTL, /**/ CTR, &%C00, /*x/ &CO1, &C02,
23 [FFRF KAk KRR [[k ok kR kR Kok kK ok ok Kok [
24 &C10, /**/ &Ci1, &C12,
25 CBL, /*x/ CBR, &C20, /*x/ &C21, &C22,
26 b, b, FLA_BR);

27 FLA_Repart_2x1_to_3x1(AT, &AO,

28 /% **x %/ /% %% %/

29 &A1,

30 AB, &A2, b, FLA_BOTTOM);
31 /K mm m e - */
32 #pragma intel omp task captureprivate(A0, A1, C10, Ci1)

33 {

34 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE, ONE, A0, A1, ONE, C10);
35 FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, ONE, A1, ONE, Ci1l);
36 } /* end task */

37 /= e e oo */
38 FLA_Cont_with_3x3_to_2x2(&CTL, /**/ &CTR, C00, CO1, /*x/ C02,
39 C10, C11, /*x/ C12,
40 [FFRRF AR KAk [[k dok Rk kKR Kok Rk ok ok [
41 &CBL, /**/ &CBR, (20, C21, /*x/ C22,
42 FLA_TL);

43 FLA_Cont_with_3x1_to_2x1(&AT, A0,

44 A1,

45 /% *x *x/ /% x%x x/

46 &AB, A2, FLA_TOP);
47 }

48 } /% end of taskq */

Figure 4: FLAME/C code with task queuing OpenMP directives for the code in Fig. 3.

e Line 17 creates the taskq block and forms a single-threaded taskqueue.

e Line 32 starts a section of code that defines a task to be added to the task queue. The descriptors AO,
A1, C10, and C11 change from iteration to iteration. They need to be private (local) variables and to
have value assigned (captured) from the taskq thread for use in the calls to FLA_Gemm and FLA_Syrk.

e Line 36 ends the scope of the task being added to the queue.
e Line 48 ends the scope of the taskq block. The threads are synchronized at that line.

Clearly, task queues provide a simple mechanism for directing the parallel execution in this code. Moreover,
without the task queue mechanism indices would have had to be reintroduced into the code, making it
substantially more complex and aesthetically less pleasing.

Especially for blocked algorithms, the cost of the indexing operations (FLA_Repart_. .. and FLA Cont_with_...)
is amortized over enough computation that the associated overhead is negligible. Thus it suffices to parallelize
the useful computation in the loop and not these indexing operations.

3.3 Options

In Fig. 4 the calls to FLA_Gemm and FLA_Syrk are independent and can, therefore, be executed in any order
and/or queued as separate tasks. One option is to split the single task in the loop-body of Fig. 4 into two

tasks:
#pragma intel omp task captureprivate(AO, Al, C10)

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
ONE, A1, AO, ONE, C10);
}
#pragma intel omp task captureprivate(Al, C11)
{
FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
ONE, A1, ONE, C11);
}

This creates twice the number of tasks for the task queue to schedule.

A further observation is that the computations C1g := A; Al + Cyp and Cy; := A; AT + C1; (updating
the lower triangle only) cost about 2bn(Cio)n(A) and b*n(A) floating point arithmetic operations (flops),
respectively. Here n(X) indicates the column dimension of matrix X. Since n(Cio) grows linearly with each
iteration of the loop the number of flops required to update C7 increases propotionally. Thus is unfortunate,
since costly tasks at the end of a scheduling queue can create a large load imbalance.

One option to overcome this problem is to execute the loop in reverse order (in compiler terms: apply
a loop reversal transformation), since this would then create the more costly tasks first. Variants 4 and 3
in Fig. 2 execute the loops in Variants 1 and 2 in reverse, respectively. This illustrates the value of the
FLAME methodology which can systematically find algorithmic variants that have different strengths and
weaknesses. In fact, Variants 1 and 3 have the property that tasks become more costly as the loop proceeds
while Variants 2 and 4 generate progressively less costly tasks. What we will later see is that differences in
performance can be observed for different variants.

An alternative option is to create two loops (in compiler terms: apply a loop fission transformation),
replacing the single loop in Fig. 4 with two loops: the first for computing all the updates to C1p and the
second loop for computing the updates to Cy1:

#pragma intel omp parallel taskq

while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){
b = min(FLA_Obj_length(CBR), nb_alg);

FLA_Repart_2x2_to_3x3(
L...1

#pragma intel omp task captureprivate(AO, A1, C10)
{
FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
ONE, A1, AO, ONE, C10);
}
[...1]
} /* end of first while loop */

while (FLA_Obj_length(CTL) < FLA_Obj_length(C)){
b = min(FLA_Obj_length(CBR), nb_alg);

FLA_Repart_2x2_to_3x3(
[...1

#pragma intel omp task captureprivate(Al, C11)

{
FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
ONE, A1, ONE, C11);

[...1

} /* end of second while loop */
} /* end of taskq */

The updates to C7; require less work and are all equal in cost, allowing them to be used to balance the
workload among threads before the synchronization upon completion of the tasks.

3.4 An illustration of the benefits of different options

The expected differences in performance are illustrated for Variants 2 and 3 in Fig. 5. In that figure, we
report a simulation of the scheduling of tasks to four threads for the different options described above. The
matrices A and C are taken to be of dimension 1200 x 1200 and the block size b in Fig. 2 is taken to equal 104
(except possibly during the last iteration), which is a block size that we will use in our experimental section
as well. Each of the tasks is represented by a box that has a height that is proportional to the number of
flops performed by the task. The integers in the boxes indicate the order in which the tasks are queued in
the task queue. The tasks are scheduled to threads as they become idle. Recall that these variants perform
the same computations, but the loop is executed in reverse for Variant 3.

We see that Variant 2 in general performs better than Variant 3 since the costs of the tasks decrease
towards the end, allowing them to be more easily balanced among the threads before synchronization.
Splitting the task in the loop-body into two tasks improves the load-balance for Variant 2, but not for
Variant 3. Both variants benefit from splitting the loop into two loops, with the smaller tasks scheduled by
the second loop. These small tasks, generated by the second loop, will be executed by those threads that
complete their share of the tasks generated by the first loop early.

4 Summing Contributions from Tasks

From experience with parallelizing algorithms on distributed memory architectures [13, 8, 12], we (and
others) have concluded that there are two types of communications needed to support the parallelization of
operations like those in the BLAS and LAPACK: the first is data duplication where data are communicated
to different processors and followed by the execution of completely independent tasks on each processor. The
second involves the reduction of locally computed contributions to a global result. Typically the reduction
is in fact a summation of contributions (partial sums) from each processor.

The method for using OpenMP described so far supports the SMP equivalent of the first type of com-
munication: It defines separate tasks that update parts of matrices that do not overlap, using data that are
shared and may be accessed concurrently. In lieu of duplication, each separate task reads the same data, as
needed, from shared storage. In order to support independent tasks contributing to an update of the same
data via the task queue construct, it has to be possible to compute contributions independently using data
that are not shared, and to then reduce the results into a shared matrix or vector. We illustrate now how to
accommodate this via task queues by discussing a fifth variant for computing SYRK.

