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Abstract. Software product lines are defined in terms of feature sets that can
be orthogonally arranged, according to different design criteria, to constitute
dimensions in a design space. When feature sets are well-structured, it is pos-
sible to use Origami, a feature-oriented programming technique, to guide
feature modelling and composition. However, a considerable manual effort
still remains to maintain the consistency of multi-dimensional feature sets, as
feature implementations are parametrically interdependent. In this paper, we
present a code-generation technique that integrates frame technology and
Origami to address this problem. Our motivating example is the expression
problem, viewed as an instance of a two-dimensional feature set. 

1 Introduction

Software product lines are defined in terms of feature sets. Many techniques and meth-
odologies have been proposed to build product-line applications with different feature
models, representations, and generation techniques (e.g. [8]).

Sometimes features sets can be orthogonally arranged, according to different design cri-
teria, to constitute dimensions in a design space. We have developed AHEAD [4][5], a
methodology that models multi-dimensional feature sets as multi-dimensional matrices,
called Origami matrices. A matrix entry is a module that implements the “semantic in-
tersection” of orthogonal features. We have used Origami to synthesize large systems
(in excess of 250K Java LOC) in an algebraic, incremental, and scalable fashion [5]. Al-
though Origami greatly reduces the effort to build systems, a considerable manual effort
still remains to maintain the consistency of multi-dimensional feature sets, as their im-
plementations are parametrically interdependent. In this paper, we present a technique
that uses frame technology to capture such commonality with the goal of generating
portions of Origami matrix entries, therefore reducing the effort to maintain matrix con-
sistency. Doing so reveals a new class of design support tools for program development.

We illustrate our technique on a simple, yet fundamental, software design problem:
That of extending an application with new operations and new data types. To build on
common ground, we borrow an instance of this problem from programming languages
literature where it is referred to as the expression problem [18]. 



2 Running Example: The Expression Problem

Product-line methodologies use feature models to support extension (adding new fea-
tures to product-line applications), and selection (specifying feature combinations to
generate concrete member products). A typical extension scenario adds features to sup-
port a mix of new operations and data types. This scenario has been extensively studied
within the context of programming languages design, under the name of the expression
problem [18][7]. In this context, the primary focus is to achieve data type and operator
extensibility in a type-safe manner, without resorting to code modification or repetition,
and avoiding run-time type errors [17][9]. Though important issues by themselves, our
focus is different as we concentrate on the design and synthesis aspects of the expres-
sion problem: How can a set of features be modelled in an extensible manner, so that
adding new data types and operations, and generating software products with them are
simple tasks? 

As our concrete example, we adapt Torgersen's expression problem [17]. The goal is to
define data types to represent expressions of the following language:

Exp :: = Add | Lit
Add :: = Exp "+" Exp
Lit :: = <non-negative integers>

Associated with this grammar is an operation called ToString that computes the
string value of an expression. For example, the expression 2+3 can be represented as a
three-node tree with an Add data type node as the root and two Lit data type nodes as
leaves. The operation ToString, applied to this tree, produces the string “2+3”. 

This application can be extended by adding new data types. To support negation of ex-
pressions requires the following grammar extension:

Exp :: = ... | Neg
Neg :: = "-" Exp

where ... denotes the previous right-hand side of Exp. The application can also be
extended by adding new operations, such as Eval, a function that evaluates expres-
sions and returns their numeric value. Applying the operation Eval to the tree of ex-
pression 2+3 yields 5 as result.

A natural representation of the expression problem is a two-dimensional matrix
[18][7][9]. Consider the original grammar with expression data types Lit and Add.
Supporting operation ToString for them can be represented as a 2×1 matrix in Figure
1a where the horizontal dimension specifies the set of operations, while the vertical di-
mension specifies the set of data types that implement them. Each matrix entry defines
a module whose code implements the operation given by the column for the data type
given by the row.1

1. The Exp type actually is present in this example; it is implicitly contained within the
Lit row. We will make it explicit in a row later.



As a naming convention throughout the paper, we identify matrix entries by using the
first letters of the row and the column. For example, the entry at the intersection of row
Add and column ToString is named at.

When a new data type is added, the change is reflected by adding a new row to the ma-
trix and implementing the operations specified by the columns. When data types are ex-
tended with Neg, for example, the matrix is modified as shown in Figure 1b. Further-
more, adding a new operation modifies the matrix by adding a new column and imple-
menting the operation on the data types specified by the rows. The result of adding
operation Eval is shown in Figure 1c. 

This arrangement of rows and columns, illustrated in Figure 1d, is the key to two-di-
mensional extensibility. On one hand, adding a new data type entails creating a new row
and filling its corresponding column entries while, on the other hand, adding a new op-
eration implies creating a new column and filling the corresponding rows. Feature sets
that can be arranged as matrices of two or more dimensions are multi-dimensional. 

Within a product-line, a software designer should be able to select exactly those features
required for an application. In our example, this means specifying desired rows and col-
umns in a feature matrix. Consider an application that contains ToString and Eval
operations for Lit and Neg data types. The selection of these features forms regions
in the matrix, as illustrated in Figure 1e. These regions are then projected, as shown in
Figure 1f, to form a matrix for the target application. The question now is, how can this
matrix representation of the expression problem be translated into a program?

3 Feature Oriented Programming and AHEAD

Feature Oriented Programming (FOP) is the study of feature modularity in product-
lines [15]. AHEAD (Algebraic Hierarchical Equations for Application Design) is an ap-
proach to FOP that is based on step-wise refinement [6]. AHEAD arranges sets of or-
thogonal features in structures called Origami matrices [4], which makes this approach
a natural fit for the expression problem. 

The central idea of AHEAD is to divide features in two categories: 

Figure 1. Matrix representation of Expression Problem
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• Constants that are base programs. For example,
f // program with feature f
g // program with feature g

• Refinements are functions which receive a program as input, add features to it,
and produce a new program as output. For example,

i(x) // adds feature i to program x
j(x) // adds feature j to program x

A multi-featured application is an equation that is a named expression. Different equa-
tions define a family of applications, such as:

app1 = i•f // app1 has features i and f
app2 = j•g // app2 has features j and g
app3 = i•j•f // app3 has features i, j, f

where •  denotes function composition. Thus, the features of an application can be de-
termined by inspecting its equation.

An AHEAD model or domain model is a set of constants and functions. The set of all
equations that can be composed from the elements of the model defines a product-line,
where each equation defines one of its members.

Implementation. A constant feature is a set of Java classes and interfaces. An example
is feature C in Figure 2a, which encapsulates interface I and class A that implements I.
The set notation in Figure 2 denotes encapsulation. 

A function feature is a set of refinements of classes and interfaces that can add fields,
methods, constructors, method refinements and constructor refinements. A function
feature can also add new classes and interfaces that can be subsequently refined or ex-
tended. An example is feature R in Figure 2b, which contains a refinement to class A
that adds field y and method b, and also adds class B. AHEAD tools use a language,

Figure 2. Constants, Functions, and Composition
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called Jak [4][5], that is a superset of Java. One of its keywords is the modifier refines
which distinguishes normal classes and interfaces from their refinements.

The composition of R and C, denoted by R • C, is Figure 2c. R•C yields a new set formed
with interface I, class A with members from the base class (field x, methods m and p)
plus A’s refinement members (field y and method b), and class B.

3.1 Implementing the Expression Problem with AHEAD

In Section 2 we saw how the expression problem can be represented as a two-dimen-
sional matrix and how our concrete example can be depicted as shown in Figure 1c. To
represent multi-dimensional designs, AHEAD uses Origami matrices [4] whose entries
are AHEAD constants and functions. Figure 3 illustrates an implementation of the ex-
pression problem in an Origami matrix. Note that the structure, rows and columns, of
the solution is the same as that of Figure 1c.

Consider entry lt, in row Lit and column ToString, in Figure 3. This entry is a
constant feature with two members: Interface Exp that declares method toString(),
and class Lit with a value field, a constructor, and method toString() to imple-
ment Exp. Extending Lit with Eval operation requires: refining interface Exp to add
the signature of method eval(), and refining class Lit to add its implementation.
These refinements are implemented by the function feature shown in entry le of Figure
3.

Figure 3. A solution to the Expression Problem with AHEAD
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Now consider entry at, in row Add and column ToString, in the same figure. This
entry is a feature that defines class Add, with two operand expressions, a constructor,
and method toString() to implement Exp. Extending Add with the eval() oper-
ation is accomplished by feature ae. The data type and Eval extension of Neg is im-
plemented in a similar way to that of Add as illustrated in row Neg of Figure 3.

The question now is: How are the selected features of an application composed? To il-
lustrate how this process works, recall the problem of creating an application that sup-
ports operations ToString and Eval for Lit and Neg data types, as described in
Section 2. 

We start with the matrix in Figure 4a that shows the regions formed by the selected ap-
plication features. The first step is to project those regions to a new matrix as depicted
in Figure 4b. This Origami matrix, by analogy to the similarly named Japanese art of
paper folding, is composed by folding along rows and columns. For example, Figure 4c
shows the result of folding columns Eval and ToString to form a composite column
Eval•ToString. When columns are folded, corresponding entries in each row are
composed. Thus, the expression le •  lt is synthesized for the Lit row and expression
ne •  nt is produced for the Neg row in the composite column. Once columns are fold-
ed, we compose the corresponding rows to form a composite row (Neg•Lit in Figure
4d). Alternatively, we could have composed rows first, and then the resulting columns.
Although different expressions would result, these expressions would be semantically
equivalent [6][1].

Composition ends with a 1×1 matrix (Figure 4d). The entry defines the AHEAD ex-
pression that can synthesize our application:

LitNegApp = ne • nt • le • lt

Note that folding column and row features must follow an order that satisfies the do-
main design rules of the product family. For example, the folding of columns in order
ToString•Eval is not valid since features in column Eval refine those in column
ToString. How design rules are expressed in AHEAD is not relevant for this paper,
interested readers are referred to [3]. The details of matrix implementation, composi-
tion, folding, and generation are also not critical; for further details see [6][1].

Figure 4. Matrix folding and composition
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4 Framing Origami

In the previous section, we saw a direct implementation of the expression problem with
Origami. There, program refinements consist of adding a new method definition to an
interface and its implementation to a class. However, it is often the case that more com-
plex class and interface collaborations exist between features. As an example, we
present a second implementation of the expression problem and use this implementa-
tion later as the basis to illustrate our generation technique.

4.1 A Visitor Implementation

Design patterns are well-known programming protocols that capture complex collabo-
rations between objects of different classes and interfaces. The Visitor design pattern
specifies an operation on a family of data types by encapsulating the operation's imple-
mentation within a separate visitor class [10]. The connection between the visitor class
and the data type classes is specified by defining two sets of methods:

• The visitor class of each operation defines visit methods, one for each data type.
Each method is a type-specific implementation of the visitor’s operation. 

• Each visited data type implements an accept method for a type of visitor class.
These methods call the corresponding visit methods of the accepted visitor object,
usually passing a self-reference as an argument.

Figure 5 illustrates an implementation of this approach for classes Lit and Add with
operation ToString. It works as follows:

• Class ToStringV implements operation ToString. It contains visit methods
for classes Lit and Add that define the operation for the two data types.

• Classes Lit and Add each declare an accept method with a parameter of type
ToStringV. These methods respectively call visitLit and visitAdd, with a self-
reference (this).

Previous work [17][18][12] has shown that visitors do not solve the expression problem
because they have the following failings:

• Extending the set of data types requires the modification of the visitor classes to
add methods to visit the new data types.

• Supporting new operations with different parameter lists or return types (like
Eval that returns an int value), requires the modification of the data types to
add accept methods tailored for those operations.

The value of Origami is evident because it allows refinement of existing visitor classes
and data types with visit and accept methods, and it supports the incremental inclusion
of new visitors and data types. The detailed Origami implementation that we present
now uses a variation of the visitor pattern, where the visit methods call a method in the
data types to perform the operation instead of performing it themselves.

To provide more flexibility in our design we modify the Origami matrix of Section 2 in
two ways:



• We add row Base to put the Exp interface that we factor from row Lit. We use
this row to add the visitor classes and the refinements that they make to this inter-
face.   

• We factor definition of data type classes, with their fields and constructors, into a
new column Cons, and we place the implementation of operation ToString in
its own column. 

The new matrix with the code of the Cons column is shown in Figure 6.

4.2 Commonalities and Variabilities in Matrix Entries

Origami imposes a highly structured design on operations and data types, so that they
are composable and one can reason about matrix designs and foldings. By imposing a
structured design, we expect some uniformities in matrix entries. We can take advan-
tage of the commonalities and variabilities that they exhibit to generate code for por-
tions of the matrix by using frame technology [2]. A frame is a template that contains
code fragments and a set of commands. These commands generate code particular to a
variant, usually according to one or more parameters, in a process called frame instan-
tiation [2][19][11]. For our two-dimensional Origami model, we define frames to cap-
ture commonalities and we define parameters to represent variations. 

Figure 5. Visitor implementation of expression problem

class ToStringV {
public String visitLit(Lit lit) {  

return String.valueOf(lit.value));  }

public String visitAdd(Add add) {
return add.left.accept(this) + "+" 

+ add.right.accept(this);
}

}

interface Exp {
String accept(ToStringV v);

} 

class Lit implements Exp {
public int value;
Lit(int v) { value = v; }
public String accept(ToStringV v) { 

return v.visitLit(this);  }
} 

class Add implements Exp {
public Exp left, right;
Add(Exp l, Exp r) { left = l; right = r; }
public String accept(ToStringV v) {  

return v.visitAdd(this);  }
}



4.2.1 Column analysis 

In this section we study how entries vary along the columns. We observe that the code
of column Cons does not present any significant similarities, which gives no room for
frame derivation, so we focus on the operation columns ToString and Eval.

Starting with the Base row in Figure 6, consider the bt and be entries whose code is
shown in Figure 7a and Figure 7b respectively. Both contain an empty visitor class and
an Exp interface refinement.

A careful examination of their visitor classes reveals they are identical except for the
class names, underlined in the figure. This suggests that a frame for the visitor class can
be defined that is parameterized by the visitor name. Further commonality can also be
identified in their refinements of the Exp interface. The code of each refinement is the

Figure 6. New matrix with code for Cons column
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 public class ToStringV { }

 refines interface Exp {
  String accept (ToStringV v);
  String toString () ;
 }

 public class EvalV { }

 refines interface Exp {
  int accept (EvalV v) ;
  int eval () ;
 }

Figure 7. Framing Base row operations
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same, except they vary in the visitor class name, the return type of the operation, and
name of the operation method. These variations are also underlined. This suggests a
frame for Exp refinements that can be parameterized along these three variations.

Frame parameters are defined by variables for which we follow the convention of using
all capital letters, for example VARIABLE, to identify a frame variable, and ${VAR-
IABLE} to refer to the value of a variable.

We can parameterize the variations of entries bt and be with three variables as follows:

• VISITOR: represents the name of the visitor class.

• RETURN: represents the return type of the operation.

• METHOD: represents the name of the operation method. 

These variables represent properties of an Origami column, and as such are called col-
umn variables. Their values are listed in Figure 7c. Using appropriate values for the var-
iables, matrix entries bt and be can be constructed by instantiating the frames shown
in Figure 7d and Figure 7e.

Continuing with our analysis of operation columns ToString and Eval, we now
consider entries lt, le, at, ae, nt, and ne in Figure 6. Each of these entries contains
two refinements: one for the visitor class, and one for the row data type. As they all have
the same structure, we can pick entries of any row to study how they vary along the col-
umns. For example, compare entries at and ae in Figure 8a and Figure 8b.We notice
that they vary according to the three column variables previously identified (VISITOR,
RETURN, and METHOD), whose values on both entries are underlined in the text. But
they also have one more variation. This is the entry-specific code that implements the
operation method for their data type, shown in italics in the figure. We call the code that
is unique to an entry essential code. We use variable OPERATION to express this var-
iability. 

Figure 8. Comparing Add along columns ToString and Eval

refines class ToStringV {
public String visitAdd (Add add) {

return add.toString () ;
}

}

refines class Add implements Exp {
public String accept(ToStringV v){

return v.visitAdd (this) ;
}
public String toString () { 
return left.toString() + "+" + 

right.toString( ) ; 
}

}

refines class EvalV {
public int visitAdd (Add add) {

return add.eval () ;
} 

}

refines class Add implements Exp {
public int accept (EvalV v) {

return v.visitAdd (this) ;
}
public int eval () { 

return left.eval () + right.eval () ; 
}

}  

(a) (b)

at ae



4.2.2 Row analysis

Just as the entries of a row have commonalities that can be factored into frames and pa-
rameterized by column variables, there are commonalities in column entries that can be
factored into frames and parameterized by row variables. Consider entry at in Figure
9a and compare it with entry nt in Figure 9b. Both contain a refinement of their visitor
class that differ in the name of the data type used in the method’s argument type and as
suffix of the name of the visit method, and the argument of the method. The two entries
also contain a refinement of their data type class that differ, not surprisingly, in their
names. These variations are underlined in the figure.

These findings suggest two new frames: a refinement for the visitor class, and a refine-
ment for the data type. These frames can be parameterized with the following variables:

• DATA: for the name of the data type.

• PARAMETER: for the name of the parameter of the visit method.

The information represented by these variables, changing according to the row of the
matrix, is illustrated in Figure 10a.

Using appropriate values for the variables, all entries in columns ToString and Eval
in Figure 6 can be constructed by instantiating the frames shown in Figure 10b and Fig-
ure 10c.

To summarize, the code encapsulated within an Origami entry can be synthesized by
frames that are parameterized by column variables, row variables, and essential code
variables.

4.3 Concrete Frame Implementation

To illustrate an implementation, we use a frame technology that emphasizes textual
substitution; for more complex problems, a more sophisticated technology may be nec-
essary [11][19].

Figure 9. Comparing ToString along rows Add and Neg 

refines class ToStringV {
public String visitNeg (Neg neg){
return neg.toString () ;

}
}

refines class Neg implements Exp {
public String accept (ToString v){

return v.visitNeg (this) ;
}
public String toString() { 
return "-(" +  expression.toString() + ")" ;

}
}

(a) (b)

at nt
refines class ToStringV {
public String visitAdd (Add add) {
return add.toString () ;

}
}

refines class Add implements Exp {
public String accept(ToStringV v){
return v.visitAdd (this) ;

}
public String toString () { 

return left.toString() + "+" + 
right.toString( ) ;

}
}



4.3.1 Frame Model

Our frame model consists of four directories described below.

Frames directory. The core of our model is a frames directory that contains one file
for each of the four frames defined in Figure 7 and Figure 10. We follow the convention
that frame files have extension.frame and that the base name indicates the file to be
generated. For example, the file name Exp.frame contains the frame specification il-
lustrated in Figure 7e and, when instantiated, that frame generates a file named
Exp.jak. Since our model generates only Jak files, there is no need to specify alter-
native extensions.

One interesting aspect of our technique is that frame instantiation can also be applied to
the file names themselves. For example, the frame shown in Figure 7d is placed in a file
named ${VISITOR}.frame. When this frame is instantiated, the generated base file
name will be the value of the VISITOR variable. Similarly, the frame in Figure 10c is
placed into a file named ${DATA}.frame which, when instantiated, generates a re-
finement class for a data type.

However, a complicating factor arises when applying frame instantiation to generate
file names. Suppose there are two or more distinct frames that can generate the same
file name — how can the appropriate frame be selected? This occurs for the generated
visitor classes in our model. For the Base row, the frame in Figure 7d must generate a
base visitor class while, for the remaining rows, the frame in Figure 10b must generate
a refinement of the visitor class. It is not possible for both frames to have the same file
name.

Our solution is to define an additional column variable, REFVISITOR, that is assigned
the same value as VISITOR. The frame in Figure 10b is then placed into a file name
${REFVISITOR}.frame, while the frame in Figure 7d is in file ${VISI-
TOR}.frame.

Figure 10. Framing operation entries
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refines class ${VISITOR} {
public ${RETURN} visit${DATA} (${DATA} ${PARAMETER}) {

return ${PARAMETER}.${METHOD} ( ) ;
}

}

refines class ${DATA} implements Exp {
public ${RETURN} accept (${VISITOR} v) {
return v.visit${DATA} (this) ;

}
public ${RETURN} ${METHOD}( ) { 
return ${OPERATION} ;

}
}
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Alternative solutions exist (e.g., supporting multiple frames directories or defining the
base visitor classes manually), but ours meets the immediate needs, while simultane-
ously demonstrating one solution to a more general problem.

Columns directory. It includes a set of files, one for each column, containing the value
assignments to all column variables. By convention, we use a file extension.def for
definitions files and we use the column names from Figure 6 as the base filenames. Each
file in the columns directory provides definitions for the column variables VISITOR,
RETURN and METHOD described in Section 4.2 as well as the column parameter RE-
FVISITOR described above. Figure 11 shows the contents of the definitions file To-
String.def.

Rows directory. Includes a set of definitions files, one for each row. The base file
names are taken from the row names in Figure 6 and each file provides definitions for
the row variables DATA and PARAMETER. Figure 11 shows the contents of the def-
initions file Add.def.

Entries directory. Contains subdirectories, one for each matrix entry. Their names fol-
low the naming convention row_column. These subdirectories contain constant files,
copied verbatim to the target matrix entry, and a definitions file with the same name of
the subdirectory. Each entry definitions file specifies the essential code definitions, for
our example, in the variable OPERATION. It also defines, via a generates state-
ment, the frames that must be instantiated in that entry. Figure 11 shows the contents of
the Add_ToString.def file.

Figure 11. Relationship between Frame Model and Origami Matrix 
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4.3.2 Frame instantiation. 

The purpose of our frame model is to generate the code for the Origami matrix shown
in Figure 6 and described in Section 4. Instantiation starts by determining the set of col-
umn names and the set of row names. This is done by examining the base names of the
definitions files in the columns directory and the rows directory, respectively. Then, for
every possible pairing of row name with column name, the following steps are taken:

• Create a symbol table with the parameter definitions taken from the correspond-
ing definitions files in the rows directory, the columns directory and the entries
directory. In our model, there is no possibility of conflicting parameter names
(e.g., a row variable and column variable with the same name). However, in gen-
eral, tools should provide conflict resolution, either by reporting conflicts as er-
rors or by overriding broader definitions with more specific ones.

• In each entry subdirectory: For each frame file specified in the generates
statement of the definitions file, instantiate that frame by textually substituting the
parameter definitions into both the frame file's name and the frame file's contents.
The result is then written into an entry-specific subdirectory of a target directory
specified via a command-line argument. The constant files of the entry’s subdi-
rectory are copied verbatim to the same subdirectory.

Once the code is generated into the target directory, it represents a standard Origami
model that can be composed as described in Section 3.

5 Evaluation

We implemented the example as described in the previous section to validate our ideas,
and also to understand better where our technique could be most practical. As the ex-
pression problem is small, we do not have a code base from which to extrapolate real-
istic quantitative benefits for our technique.

However, from our experience with large Origami-based generators, where synthesized
programs exceed the equivalent of 30K Java LOC, the key issue is code base consist-
ency. As we have seen with the expression problem, the code for matrix entries are par-
ametrically related. As the number of dimensions and the number of units per dimen-
sion grow, automated maintenance of these consistency relationships becomes impor-
tant.

For example, for us to manually create a new column or row in a matrix requires manual
modification that is both tedious and error-prone. Our research in program generation
suggests that we consider tool support to eliminate these common and rote activities.
The commonality and variability analysis that we have described is clearly part of any
tool support for solving the consistency maintenance problem.

Further, to make our technique practical — meaning that it can scale to much larger
code bases — requires frames to be produced automatically; the overhead in manually
creating frames and the infrastructure to provide code synthesis and consistency main-
tenance is otherwise too large to realize an overall benefit.



Tool support could be provided to extend a dimension under the guidance of a develop-
er. For example, the addition of a new column in a two-dimensional model could be
supported by extracting a pre-existing column as a prototype. Our hypothetical tool
could copy the prototype to the new column, while parametrically updating it and re-
moving entry-specific code. Similar support can be provided for the other dimensions
of a model. Thus, a consistent code template for a set of co-designed matrix entries can
be generated. Programmers would then complete these templates by specifying the val-
ues of essential code.

Issues of identifying row and column (or more generally, dimensional) variables could
also be simplified by tool support. This could be done by allowing programmers to
highlight code fragments and to bind their values to particular dimensional variables.
Thus, when code is copied, a supporting tool could infer the new matrix coordinates
from the specific variables and substitute the appropriate parametric values.

In effect, we envision a class of tools comparable to language editors, which complete
code fragments and programmatic phrases as programmers enter their code. Such edi-
tors would understand the structure of the permitted code models and would automati-
cally complete parts of the program by inference, thereby relieving programmers of un-
necessary burdens. The tools that we envision would enforce necessary consistencies
across large designs. The underlying technology by which this would be achieved is the
frame technology that we have outlined in this paper.

6 Related Work

Related work is categorized as concrete or abstract. The concrete category contains the
two technologies that we have used: Frames technology [2][11][19] and the AHEAD
product line [4][5][6]. These technologies address, respectively, code generation and
composition, which we have combined to implement our multi-dimensional frame
model. A body of literature, some of which we have cited, exists to explain these tech-
nologies in depth. We refer the reader to this literature.

However, the abstract category of related work contains the primary concept that moti-
vated our work: Multi-dimensional separation of concerns. In general, separation of
concerns [13][14] is a motivating idea behind modularization and encapsulation in soft-
ware designs. Concerns can range from the purely technical (e.g., the support of sepa-
rate compilation and module replacement) through developmental (e.g., the support of
comprehensibility and independent development) to include system and behavioral
concerns (e.g., coupling and communication in distributed environments).

Early programming languages and disciplines addressed the purely technical concerns
of separate compilation and module re-assembly, but later software development trends
attended to increasingly higher-level concerns. Parnas, in two key papers [13][14],
specified the use of information hiding as a modularization criterion and he also dis-
cussed the dependence of modularization on the social or managerial support of a soft-
ware product. Object-oriented programming methodologies address concerns such as
these by directly supporting the modularization of functions with related data and by en-
couraging the encapsulation of object collaborations as patterns [10].



Tarr et alia[16] extends these trends by advocating the multi-dimensional separation of
concerns. The goal is to simultaneously separate overlapping concerns along multiple
dimensions — conceptually, dimensional separation can be viewed as a type of encap-
sulation. Once achieved, each dimension of concern can, ideally, be understood and ex-
tended with little impact on other dimensions. To achieve this goal, mechanisms must
be developed that support decomposition along these dimensions along with the subse-
quent composition into programs and product-line members.

We have described one such mechanism. Decomposition is explicated by the develop-
ment of a multi-dimensional frame model and composition is implemented by a tool
chain, comprising both frame instantiation and AHEAD composition, that generates a
product from a multi-dimensional frame model. 

7 Conclusions

Multi-dimensional feature sets provide a compact and highly-structured way to express
product-line designs as matrices. Structured designs introduce uniformities (and hence
consistency problems) into the code base, where the source code of matrix entries is
highly parametrically related. Eliminating the tedium of manually framing code com-
monalities and, more importantly, of maintaining the consistency of matrix entries is
both challenging and interesting.

In this paper, we explained how multi-dimensional feature sets have an elegant repre-
sentation as Origami matrices. We used the expression problem to illustrate the key is-
sues of commonality extraction and consistency maintenance. We showed how the par-
ametric relationships among matrix entries can be captured by frame technologies, and
how code synthesis and consistency maintenance could be realized. 

The contribution of this paper is to take the first step towards solving this problem in
the large. We demonstrated that its solution requires commonality and variability anal-
ysis, and that code synthesis can be realized by frame technologies. This, however, is
only the first step. Our work has shown that to large-scale application of these tech-
niques will require a class of program development tools to automate the development
of frames, to synthesize code templates for matrix entries, and to maintain consistency
constraints across matrix models. We believe the potential for such tools is significant,
for no other reason that a core problem in program generation is elegantly captured by
Origami matrices — that applications will always need to be extended by new data
types and operations, and tool support for creating and maintaining such designs is es-
sential.
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