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Abstract. We discuss the need for a common sensor network protocol,
and present a preliminary design of such a protocol.
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1 An Hourglass Protocol Architecture

In this section, we present an hourglass protocol architecture for sensor
networks. We adopt this architecture in this proposal. It is important to
note that this architecture is still in its early stages of development and so
it is subject to further reviews and tuning as our work proceeds forward.

Before we present our protocol architecture, we first need to explain
the structure of a sensor network that we assume as we develop this
architecture. We assume that a sensor network consists of one gateway
and at most 255 sensors. The gateway of a sensor network acts both as
a central controler of the (at most 255) sensors in its network and as a
gateway that connects its sensor network with other sensor networks or
the rest of the Internet. Notice that a gateway can be the gateway for more
than one sensor network. In this case, sensors that belong to different
networks can not communicate directly. Rather they can communicate
only via their common gateway.

Each sensor is a small computer that has a sensing board and an
antenna, and it can communicate with other sensors in its network or
with its gateway in a wireless fashion by broadcasting messages over radio
frequency. Each sensor in a network has a unique identifier in the range
1..255. Identifier 0 in a sensor network is reserved for the gateway of that
network.

The maximum number, 255, of sensors in a network needs some ex-
planation. First, many applications (such as sensing in the home) requires
a small number of sensors. For each such application, it is enough to in-
stall one network. Second, for an application that needs a large number
of sensors, two or more networks, that share the same gateway or have
different gateways, can be installed. Third, as discussed below, the differ-
ent sensors in a network need to stay in close synchronization with one
another, for example the clocks of these sensors need to stay reasonably
close. This can be accomplished easily if the number of sensors in the
network is relatively small.

The sensors in a network are not required to be identical. In fact,
they may have different capacities and may be manufactured by different
manufacturers. This flexibility necessitates that all sensors, regardless of
their capacities or their manufacturers, are provided with a common pro-
tocol that allows the sensors to communicate with one another. We refer
to this common protocol as the Sensor network Protocol or SP for short.
To be exact, a sensor may have many protocols that perform different
functions (such as message routing, clock synchronization, security, and



different sensing applications), but all these protocols reside on top of SP.
Thus, the protocol stack in a sensor has the shape of an hourglass whose
bottle-neck is SP.

It is important to note that SP is used only to support the communi-
cations between different sensors or between the sensors and the gateway
in the same sensor network. The communications between different gate-
ways (that belong to different sensor networks) or between a gateway and
Internet clients and servers is supported by the Internet Protocol IP.

In several ways, the thought of SP evokes IP. Nevertheless, SP per-
forms three functions that are different from those performed by IP. First,
SP supports special routing patterns that are more appropriate for a sen-
sor network, whereas IP supports general unicast and multicast routing
patterns that are more appropriate for the Internet. Second, SP allows
sensors to publicize and harmoniously reset their internal states so that
any loss of synchronization between sensors in the same network can be
detected and corrected as early as possible. This function is not supported
by IP. Third, SP provides security, against message insertion and replay,
in almost every message. This function is not provided by IP. We are now
ready to present our current design of SP in more detail. (As mentioned
above, this is an early design that needs to go through several revisions
and tuning stages, before it evolves into a final design.)

2 The SP Header

Like IP, SP defines a header that needs to be attached to every message
before this message is sent within a sensor network. The SP header of a
message m consists of 10 bytes divided over nine fields. The fields of the
SP header of a message m are specified as follows.

1. ID of a Sensor Network (1 Byte): This field specifies the least ordered
byte in the ID of the sensor network in which message m is origi-
nated. We expect that the full ID of a sensor network consists of 4-5
bytes and that all sensors in a network and the gateway of the net-
work know the ID of the network. Only the least ordered byte of the
network ID is used to specify the sensor network in message m in or-
der to keep the SP header short. (In computing the digest of message
m in field 8 below, the full ID of the network is used instead of field 1.)

2. Routing Mode (2 Bits): This field defines the routing mode that needs
to be used in routing message m. To fill this field, a choice is to be
made from among three possible routing modes:



(a) Unicast: Message m is originated at some sensor in the network
and it needs to be routed over the current routing tree towards
the gateway of the network.

(b) Broadcast: Message m is originated at the gateway of the network
and it needs to be routed over the current routing tree towards
every sensor in the network.

(c) Flooding: Message m is originated at some sensor or at the gate-
way of the network and it needs to be routed to every sensor or
the gateway that is within a specified time-to-live hops from the
originator of m. The value of the time-to-live is specified by the
originator of m in the (next) Routing Information field of the SP
header.

Note that the Routing Mode field has two bits and so a fourth rout-
ing mode can be added to these three routing modes. For the time
being, we leave this fourth routing mode to be identified in the future.

. Routing Information (1 Byte): This field contains some information
needed to route message m based on the previous Routing Mode field
in the SP header. There are three cases to consider:

(a) Routing Mode of m is “unicast”: In this case, the Routing Infor-
mation is the parent, in the current routing tree, of the sensor that
just sent m.

(b) Routing Mode of m is “broadcast”: In this case, the Routing In-
formation is the sensor that just sent m.

(c) Routing Mode of m is “flooding”: In this case, the Routing Infor-
mation is the remaining time-to-live of message m.

. Originator Identifier (1 Byte): This field stores the identifier of the
sensor or gateway that originated message m.

. Originator Distance (6 Bits): This field contains the number of hops
that message m has made so far. When m is sent by its originator,
the Originator Distance field in the SP header of m is 1. Each sen-
sor that later forwards message m increments by one the value of its
Originator Distance field before it forwards m. This field in the SP
header of message m can be used by any sensor that receives m in
two ways. First, the receiving sensor can use this field in comparing
the (next) Originator Time field in the SP header of m with its own
clock to decide whether m is a fresh (and not an old or replay) mes-
sage. Second, the receiving sensor can use this field to keep track of



its shortest distance, in number of hops, from every other sensor in
the network. This information can be used in routing future messages.

6. Originator Time (2 Bytes): This field stores the clock value of the
originator of message m at the instant when m is originated. This
field, along with the previous Originator Distance field, are used by
any sensor that receives m to decide whether m is a fresh message
(and so needs to be processed further) or an old or replay message
(and so needs to be discarded).

7. Originator State (1 Byte): This field has a value in the range 0..255
that identifies the local state of the originator of message m at the
instant when m is originated. This field is used in resetting the local
states and times in a sensor network as follows. Periodically, the gate-
way of the sensor network broadcasts a message m, whose Originator
State field is 0 indicating that every sensor in the network should reset
its local state. When any sensor in the network receives this “reset”
message m, the sensor resets its local state and assigns its local clock
the value 0. This field can also have other uses in maintaining state and
time synchronization between neighboring sensors in a sensor network.

8. Message Digest (2 Bytes): This field in the SP header of a message m
contains the value of a message digest function applied to the concate-
nation of the following items: the “constant fields” in the SP header
of message m, the rest of message m, the secret key that is shared by
every sensor and the gateway in the network. This field is used by any
final destination that receives message m to decide whether m was
originated by a legitimate sensor or the gateway in the network (and
not inserted into the network by a foreign sensor that does not belong
to the network).

9. Next Protocol (1 Byte): This field defines the next protocol, after SP,

that message m needs to be forwarded to, when m reaches (any of)
its final destinations.

3 Future Work

Our work on reviewing, revising, and tuning SP continues. We divide our
future work into the following six tasks.



— Task 1. Designing a routing protocol that supports SP: In this task,
we design a protocol for maintaining a shortest-path routing tree from
every sensor to the gateway in the sensor network. The maintained
tree is used in routing unicast and broadcast messages. The protocol
for maintaining the routing tree is periodically initiated by the gate-
way in the network. It uses flooding messages so that each sensor in
the tree can compute its parent(s) in the new tree, in the case where
the new tree happens to be different from the current tree.

— Task 2. Designing a security protocol that supports SP: Each sensor
in the network has two security keys: one key that this sensor shares
with all other sensor and the gateway and another key that this sensor
shares only with the gateway. These keys need to be changed period-
ically. In this task, we design a protocol for periodically changing the
security keys in each sensor and the gateway.

— Task 3. Designing a synchronization maintenance protocol that sup-
ports SP: In this task, we design a protocol for performing two func-
tions: maintaining close synchronization between the local clocks and
local states of neighboring sensors in the network and periodically re-
setting the local clocks and local states of all sensors in the network.

— Task 4. Implementing and evaluating the performance of SP: In this
task, we implement SP and all its supporting protocols, that are de-
signed in Tasks 1 through 3 above. We also experiment with these
implementations and evaluate their performance in the sensor lab at
the University of Texas at Austin and the testbed at the Ohio- State
university.

— Task 5. Designing a translation between SP and IP: In this task, we
design a translation from SP to IP and vice versa. This translation
can be used by any gateway of a sensor network to transform one or
several SP messages that are generated in its network into a single IP
message that the gateway needs to forward over the Internet (either
to the gateway of another sensor network or to some Internet client or
server). This translation can also be used by the gateway of a sensor
network to transform an IP message that the gateway receives over
the Internet (either from the gateway of another sensor network or
from some Internet client or server) into one or several SP messages



that the gateway needs to forward to the sensors in its network.

— Task 6. Designing sensing transport protocols over SP: The routing,
security, and synchronization protocols designed in Tasks 1 through 3
above constitute the smallest set of protocols that are needed to sup-
port SP. We expect, nevertheless, that other (in particular transport)
protocols will be needed to support the different application protocols
in sensor networks. Some of these transport protocols, for instance,
can be invoked to reserve needed resources or guarantee quality of
service for the application protocols. We are planning on designing
these transport protocols in this task.

4 Related Work

Our effort to adopt an hourglass architecture for sensor network proto-
cols was inspired by the hourglass architecture for the Internet protocols
as discussed in [4] and [3]. Our current design of SP was inspired to a
large extent by the well-documented design of IP version 4 in [13] and IP
version 6 in [5]. Our plan to design a routing protocol that supports SP is
greatly influenced by the routing protocols in [15], [9], [16], [1], [8] and [2]
that were proposed earlier for ad-hoc networks. Our proposal to design
a security protocol that supports SP is motivated by the earlier security
protocol proposals in [11], [10], [17], [12]and [7]. Finally, our decision to
design a synchronization protocol that supports SP was inspired by the
two time synchronization protocols proposed in [6] and [14].
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