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Abstract

An Information Extraction (IE) system analyses a set of documents with the aim of identifying certain
types of entities and relations between them. Most IE systems treat separate potential extractions as
independent. However, in many cases, considering influences between different candidate extractions
could improve overall accuracy. For example, phrase repetitions inside a document are usually associated
with the same entity type, the same being true for acronyms and their corresponding long form. One of
our goals in this thesis is to show how these and potentially other types of correlations can be captured by
a particular type of undirected probabilistic graphical model. Inference and learning using this graphical
model allows for “collective information extraction” in a way that exploits the mutual influence between
possible extractions. Preliminary experiments on learning to extract named entities from biomedical and
newspaper text demonstrate the advantages of our approach.

The benefit of doing collective classification comes howeverat a cost: in the general case, exact infer-
ence in the resulting graphical model has an exponential time complexity. The standard solution, which
is also the one that we used in our initial work, is to resort toapproximate inference. In this proposal
we show that by considering only a selected subset of mutual influences between candidate extractions,
exact inference can be done in linear time. Consequently, a short term goal is to run comparative exper-
iments that would help us choose between the two approaches:exact inference with a restricted subset
of mutual influences or approximate inference with the full set of influences.

The set of issues that we intend to investigate in future workis two fold. One direction refers to
applying the already developed framework to other natural language tasks that may benefit from the same
types of influences, such as word sense disambiguation and part-of-speech tagging. Another direction
concerns the design of a sufficiently general framework thatwould allow a seamless integration of cues
from a variety of knowledge sources. We contemplate using generic sources such as external dictionaries,
or web statistics on discriminative textual patterns. We also intend to alleviate the modeling problems
due to the intrinsic local nature of entity features by exploiting syntactic information. All these generic
features will be input to a feature selection algorithm, so that in the end we obtain a model which is both
compact and accurate.



Contents

1 Introduction 4

2 Background and Related Work 6
2.1 Phrase Classification Approaches . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 7

2.1.1 Rapier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7
2.1.2 SRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.2 Token Classification Approaches . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 8
2.2.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 8
2.2.2 Discriminative Models . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 10
2.2.3 Maximum Entropy Models . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 10
2.2.4 Conditional Random Fields . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 12

2.3 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 13
2.4 Relational Markov Networks . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 14

3 Completed Research 16
3.1 Candidate Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 16
3.2 Entity Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 17
3.3 The RMN Framework for Entity Recognition . . . . . . . . . . . . .. . . . . . . . . . . . 17
3.4 Local Clique Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 19
3.5 Global Clique Templates . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 20

3.5.1 The Overlap Template . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 21
3.5.2 The Repeat Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 21
3.5.3 The Acronym Template . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 22

3.6 Inference in Factor Graphs . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 23
3.7 Learning Potentials in Factor Graphs . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 24
3.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 25

4 Current Research 28
4.1 Local models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 29

4.1.1 Exact, linear time inference . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 29
4.1.2 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 31
4.1.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 33

5 Proposed Work 34
5.1 Restricted global models . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 34

5.1.1 Exact, linear time inference . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 35
5.1.2 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 35

5.2 Collective classification for WSD and POS tagging . . . . . .. . . . . . . . . . . . . . . . 36
5.3 Using the web to improve information extraction . . . . . . .. . . . . . . . . . . . . . . . 37
5.4 Flexible use of external dictionaries . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 38
5.5 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 39
5.6 Relation extraction and syntactic information . . . . . . .. . . . . . . . . . . . . . . . . . 40

6 Conclusion 41

2



References 42

3



1 Introduction

Information Extraction (IE) is an important task in naturallanguage processing, with many practical appli-
cations. It involves analyzing text documents, identifying particular types of entities, relations or events, and
populating database slots with information about them. A basic component of an IE system is that of named
entity recognition - the task of locating references to specific types of items in natural-language text. Since
IE systems are difficult and time-consuming to construct, most recent research has focused on empirical
techniques that automatically construct information extractors by training on supervised corpora (Cardie,
1997; Califf, 1999). Traditionally, IE systems have been trained to recognize names of people, organiza-
tions and locations (MUC (Grishman, 1995), CoNLL (Tjong KimSang & De Meulder, 2003)). Recently,
substantial resources have been allocated for automatically extracting information from biomedical corpora,
which has naturally led to the need of locating biologicallyrelevant entity types, such as genes, proteins,
or diseases. The wide variety of names used in the biomedicalliterature, coupled with their lack of formal
structure, have made the IE problem especially difficult. This has further motivated the search for methods
which are able to efficiently use any type of task-relevant knowledge. One particular type of knowledge
which is especially useful for recognizing biological entities refers to correlations between the labels of
repeated phrases inside a document, as well as between acronyms and their corresponding long form. In
both cases, the mentioned phrases tend to have the same entity label. For example, Figure 1 shows part of
an abstract from Medline, an online database of biomedical articles. In this abstract, the protein referenced
by ’rpL22’ is first introduced by its long name’ribosomal protein L22’, followed by the short name’rpL22’
between parentheses. The presence of the word’protein’ is a very good indicator that the entire phrase’ribo-
somal protein L22’is a protein name. Also,’rpL22’ is an acronym of’ribosomal protein L22’which increases
the likelihood that it too is a protein name. The same name’rpL22’ occurs later in the abstract in contexts
which do not indicate so clearly the entity type, however we can use the fact that repetitions of the same
name tend to have the same type inside the same document.

The control of human ribosomal protein L22 ( rpL22 ) to enter into the
nucleolus and its ability to be assembled into the ribosome is
regulated by its sequence . The nuclear import of rpL22 depends on
a classical nuclear localization signal of four lysines at positions
13 - 16 . RpL22 normally enters the nucleolus via a compulsory
sequence of KKYLKK ( I - domain , positions 88 - 93 ) ... Once it
reaches the nucleolus , the question of whether rpL22 is assembled
into the ribosome depends upon the presence of the N - domain .

Figure 1: Medline abstract with all protein names emphasized.

It is not always the case that repeated phrases have the same label. Figure 2 shows an example, where
the first occurrence of’eNOS’ is a protein name, while its second occurrence is not a protein name by itself,
because it is included in another protein name’eNOS interaction protein’. Constraining repeated words like
’eNOS’ to have the same label (i.e. eitherInside orOutside a protein name) does not solve the problem
either, as shown in Figure 2, where both tokens’nitric’ and ’oxide’ are first tagged asOutside, and then
Inside a protein name. In Section 3.5.2 we show how to capture the correlations between the labels of
repeated phrases so that all the exceptions above are taken into account.

The capitalization pattern of the name itself is another useful indicator, nevertheless it is not sufficient by
itself, as similar patterns are also used for other types of biological entities such as cell types or aminoacids
(see Figure 3). Therefore, correlations between the labelsof repeated phrases, or between acronyms and
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Production of nitric oxide ( NO ) in endothelial cells is regulated
by direct interactions of endothelial nitric oxide synthase ( eNOS ) with
effector proteins such as Ca2+ – calmodulin . Here we have used the
yeast two - hybrid system and identified a novel 34 kDa protein ,
termed NOSIP ( eNOS interaction protein ) , which avidly binds to the
carboxyl terminal region of the eNOS oxygenase domain .

Figure 2: Medline abstract with all protein names emphasized.

their long form can provide additional useful information.Our intuition is that a method that could use
this kind of information would show an increase in performance, especially when doing extraction from
biomedical literature, where phenomena like repetitions and acronyms are pervasive.

The 5’ upstream region ( -448 / -443 ) of the human dipeptidyl peptidase IV
gene promoter containing a consensus E - box ( CACGTG ) was shown to
bind upstream stimulatory factor using nuclear extracts from mouse
( 3T3 ) fibroblasts and the human intestinal and hepatic epithelial
cell lines Caco - 2 and HepG2 .

Figure 3: Medline abstract with all protein names emphasized.

In this proposal, we describe how this type of document-level knowledge can be captured using Re-
lational Markov Networks (RMNs) (Taskar, Abbeel, & Koller,2002), a version of undirected graphical
models which have already been successfully used to improvethe classification of hyper-linked web pages.
While other types of graphical models, such as Conditional Random Fields (CRFs) (Lafferty, McCallum,
& Pereira, 2001), have modeled the entity recognition task as one of token classification, we take the dif-
ferent approach where candidate phrases in a document are classified according to the desired set of entity
types. We then show how this phrase classification approach facilitates the modeling of correlations among
labels of candidate entities, with the additional strengthof phrase based features such as the actual text of
the candidate entity, its capitalization pattern, or similarity with dictionary entries. Experimental results
show that by factoring in global label correlations, the performance of the phrase classification approach is
significantly improved.

In a typical application of CRFs, influences between the labels of consecutive tokens are the only cor-
relations considered. This leads to a sequence labeling scenario, in which inference can be done efficiently
using dynamic programming algorithms. Compared with CRFs,the increased representational power of
RMNs comes at a cost in the time complexity of the inference algorithms. In our initial work, we resorted to
approximate inference, based on an algorithm which has already exhibited competitive performance in other
applications (Murphy, Weiss, & Jordan, 1999). However, in subsequent work we have discovered that exact
inference for the phrase classification approach can be doneefficiently, if no correlations between different
candidate entities are to be considered. Moreover, by adding a carefully selected subset of document-level
correlations, the same exact inference algorithm can be updated so that its running time remains linear in the
number of candidate entities. We present how to select the correlations that are to be included in the model,
and prove the linear complexity of the inference algorithm when run on the resulting structure.

As short-term goals, we intend to compare the exact inference / limited set of correlations approach with
the original approach based on approximate inference / fullset of correlations. Another direction that might
lead to improved results is that of using a generalized version of the belief propagation algorithm, where
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messages are passed between sets of nodes, at additional computational cost (Yedidia, Freeman, & Weiss,
2000), or using alternative approximate-inference methods.

Long-term goals include:� Applying the same approach to other natural language tasks that may benefit from document-level
correlations. Two examples are word sense disambiguation (WSD) and part-of-speech (POS) tag-
ging. In WSD, the one sense per discourse hypothesis has beenpreviously used by Yarowsky in
(Yarowsky, 1995). The RMN framework however is able to incorporate this type of knowledge in a
more probabilistic, sound manner. As for the task of POS tagging, while the benefit of using corre-
lations between tags of repeated words is debatable if the tagger is trained and tested on documents
from the same corpora, given its already competitive performance, it has nevertheless the potential of
reducing the number of tagging errors on texts from different corpora.� Using features based on similarities with existing dictionary entries. Such features can be incorporated
in our phrase classification approach in a natural, straightforward manner.� The ”web as a corpus” is still an under-utilized idea. In thiscontext, textual patterns that disambiguate
the type of a candidate entity can be provided to a web search engine, so that statistics derived from
the number of returned hits may be used in order to increase the IE system’s performance.� Syntactic information has already been proved to increase the accuracy on the task of relation extrac-
tion. Besides designing an IE system for extracting relations specific to biomedical entities, we intend
to leverage entity recognition through the use of features derived from syntactic parses. Some of these
features have the benefit of encoding long-range dependencies which cannot be captured from a flat
representation of sentences.� The previous three goals can be seen as part of the effort to design a general framework that would
allow the use of information from various knowledge sourcesin order to increase the final IE system’s
performance. We intend to increase the robustness of this approach through the use of an efficient
feature selection algorithm.

2 Background and Related Work

The task of automatically constructing information extractors has received a lot of attention in the past
decade, and as such we observe a high diversity in the proposed approaches and the learning algorithms
used therein. Nevertheless, a careful analysis reveals that most of these systems can be classified into two
basic types of approaches:� Token Classification: Word tokens in a document are sequentially classified as being inside or out-

side of a given named entity. Named entities are extracted bydoing token classification and then
assembling maximally contiguous sequences of inside tokens.� Phrase Classification: Candidate phrases from a document are classified as to whether they are
instances of some entity types or not. This can be done by either learning a multi-class classifier, in
which case the number of classes is equal with the number of entity types plus one (for non-entity
phrases), or by separately learning sets of extraction patterns, one set of patterns for each of the entity
types.
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2.1 Phrase Classification Approaches

Relational learning has been one of the learning paradigms used in some of the early IE systems, such as
Rapier (Califf & Mooney, 1999) and SRV (Freitag, 1998). Bothsystems belong to the phrase classification
approach.

2.1.1 Rapier

In RAPIER, the IE task is defined in terms of filling the slots contained in a template. A template specifies a
particular type of event, such as joint ventures, corporateacquisitions, or job offerings. For example, a job
offering template contains slots for title, salary, area ofexpertise, OS platform required, or job location. The
training data consists of filled templates, one template perdocument. During testing, the IE system fills the
template slots with data extracted from the document.

For each template slot, a set of rules is learned in a bottom-up fashion, with each rule composed of
patterns that can make use of limited syntactic information. More exactly, the extraction rules consist of
three parts:

1. A pre-filler pattern that matches text immediately preceding the slot filler,

2. A pattern that matches the actual field, and

3. A post-filler pattern that matches the text immediately following the slot filler.

Each pattern is a sequence of pattern elements of one of two types: pattern itemsandpattern lists. A
pattern item matches exactly one word that satisfies its constraints. A pattern list has a maximum length N
and matches 0 to N words, each satisfying a set of constraints. Besides constraining on words and their part-
of-speech tags, Rapier can also incorporate semantic classinformation, such as that provided by WordNet
(Miller, 1991). Consequently, each constraint is represented as a disjunctive list of one or more words, tags
or WordNet synsets.

During testing, phrases are extracted by matching them against the set of rules learned for each slot.
For the template filling task, extracted phrases which are duplicated are ignored, however the system can
be easily modified to work in a named entity scenario, such that the output contains all extracted phrases,
duplicates included. Because each pattern is designed to match phrases, we can view Rapier as belonging
to the generic class of phrase classification approaches.

2.1.2 SRV

SRV (Freitag, 1998) too is based on a relational learning procedure. Like FOIL (Quinlan, 1990), it proceeds
in a top-down fashion, starting with the entire set of examples - all negative examples and any positive
examples not covered by already induced rules. At each step it greedily adds predicates, trying to cover as
many positive, and as few negative examples as possible. There is a set of predefined predicate templates
including tests on the length of the candidate entity or tests on features of tokens inside the candidate phrases.
Token features are predefined too and come in two categories:� simplefeatures such as the word, its capitalization pattern, binary features testing whether the token

is a punctuation sign, or a number.� two relational features - the previous and the next tokens.
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As with any phrase classification approach, SRV needs to address the issue of searching through a
typically huge negative examples set. The authors do this byhandling negative examples implicitly, on a
token-by-token basis – examples are indexed based on the tokens they contain. Because a token is generally
shared by many candidate phrases, this leads to a more tractable search method.

2.2 Token Classification Approaches

2.2.1 Hidden Markov Models

Another class of approaches to learning IE systems is based on Hidden Markov Models (HMMs) (Rabiner,
1989). HMMs have been successfully used for speech recognition before becoming a model of choice for
other natural language tasks such as POS tagging or named entity recognition. An HMM can be defined
as the stochastic version of a finite state automaton. Thus, there is a set of states (hidden), with transitions
between them. Given a state, there is a probability distribution over all possible transitions from that state.
Symbols can be generated from any state, one symbol at a time,based on a symbol emission distribution.
In a typical application of HMMs, a sequence of symbols is given, together with an HMM that is assumed
to have produced it. The generative process by which the HMM produces a string of symbols starts by
choosing a distinguished state (referred to as a starting state), then transitioning to another state according
the the corresponding transition probability. This process of transitioning from one state to another continues
until it reaches another distinguished state (referred to as the final state). Each time a transition is made from
a state, a symbol is generated according to that state’s symbol emission probability distribution. Graphically,
an unrolled HMM can be represented as a directed graph, as in Figure 4. In this and all subsequent figures,
theX symbols are used to denote observations, whileY symbols refer to hidden variables (states or labels).

Y1 Y2 Y Y Y3 n−1 n

1X X2 X3 Xn−1 Xn

.  .  .

.  .  .

Y0

Figure 4: Unrolling an HMM as a directed graphical model

One of the questions that an HMM inference algorithm is usually required to answer is what is the
sequence of states that is most likely to have generated a given sequence of symbols. For example, in the
case of POS tagging, each state corresponds to a POS tag, whereas symbols correspond to words. Given
a particular sentence, the POS tagging is defined as the most likely sequence of states that generated the
sentence.

HMMs are particularly attractive as they have a solid mathematical foundation, and the associated infer-
ence problem can be solved in time linear with the number of observed symbols using dynamic programming
(the Viterbi algorithm). During learning, if the data is fully observable (e.g. labeled training data), the HMM
parameters are simply set to their maximum likelihood estimates. If the data is only partially observable i.e.
the states are hidden, the Baum-Welch algorithm, an instantiation of the more general Expectation Maxi-
mization (EM) algorithm (Dempster, Laird, & Rubin, 1977), can be used to find a set of parameters such
that the likelihood function is locally optimized.

8



IE systems based on HMMs belong naturally to the category of token classification approaches. The
most likely path through the Markov model leads to a tagging of the input symbols, and consequently
entities are extracted by assembling maximal contiguous sequences of words which are tagged with the
same entity tag.

There exist numerous IE systems based on HMMs, and with them awhole diversity of augmentations
to the basic model was introduced in order to better address various aspects of the task, such as the need for
adequate representational power, or how to deal with sparsity due to insufficient training data.

Nymble. Nymble (Bikel, Schwartz, & Weischedel, 1999) is one of the earliest learning systems for
named entity recognition based on HMMs. It consists of an ergodic model with one state for each entity
type, together with an additional state for tokens outside any entity. Inside each name-class state, words are
generated based on a statistical bigram language model. Thegeneration of name-classes (states) and words
proceeds in three steps, which are repeated until the entireword sequence is observed.

1. Select a name-class, conditioning on the previous name-class and the previous word.

2. Generate the first word from inside that name-class, by conditioning on the current and previous
name-classes.

3. Generate subsequent words inside the current name-class, where each word is conditioned on its
immediate predecessor.

In this model, words are generally assimilated with orderedpairs of words and word featureshw; fi,
where features belong to a predefined set of features, similar with those used in the SRV system. This further
exacerbates the problem of insufficient training data for estimating the model parameters. Consequently, the
authors rely on a multi-level back-off scheme, with weightsfor each level of back-off set based on an
empirical formula.

HMMs and Shrinkage. A different approach is proposed in (Freitag & McCallum, 1999), where a
separate HMM is created for each of the extraction fields. Thestates in each HMMs are either background
or target states. Prefix and suffix states are distinguished from other background states in order to account for
distributional peculiarities in the case of tokens occurring before or after the target field. Similarly, because
certain tokens tend to occur at the beginning or end of the fragment, the target state is expanded into an array
of parallel paths of varying length. The problem of data sparsity is alleviated through the use of ”shrinkage”,
a statistical technique which combines parameter estimates from data-sparse states of a complex model with
estimates from data-rich states of a simpler model. The method relies on a hierarchy that represents expected
similarity between parameter estimates, with the estimates of the complex model at the leaves. In the case of
shrinkage for HMM, subsets of states having similar word emission distributions are connected to a common
parent. Internal nodes in turn can share a common parent, thus encoding weaker similarities between the
corresponding groups of states. Word emission probabilities associated with states high in the hierarchy
become simpler than those for states below, with the top of each hierarchy corresponding to the uniform
distribution. The ”shrinkage-based ” parameter estimate is defined as a linear interpolation of the estimates
in all distributions from the leaf to the root. The corresponding mixture weights are optimized by running
EM on a held out dataset.

HMMs and Structure Learning. The two recently discussed HMM-based systems start with a prede-
fined model structure, and learning is used only in estimating the model parameters. For tasks in which the
entities to be extracted are densely represented inside a document, as is the case with headers and research
paper references, a single HMM containing states for all entity types may be more appropriate. Variability in
the relative ordering of the fields can be captured in the model by allowing the same field to be represented
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by more than one state. Learning the structure of such a modelis the focus of the approach described in
(Seymore, McCallum, & Rosenfeld, 1999).

2.2.2 Discriminative Models

We have already distinguished between IE approaches based on token classificationand approaches based
onphrase classification. Another useful dichotomy, orthogonal to the previous one,is that ofgenerativevs.
discriminativemodels. All HMM models reviewed here are generative in the sense that they try to model
both the observation and hidden state sequences. However, in most application of HMMs, the observations
are given, the task being that of ”decoding” the hidden statesequence. Therefore, a major drawback of
generative models is that modeling effort is spent on observations, instead of being focused entirely on de-
scribing the state sequence. The attempt to model the observations while keeping the inference tractable
has led to theoutput independence assumption, which stipulates that the current observation, given the cur-
rent state, is independent of previous observations. Usually, in text applications, observations correspond
to words, and consequently the output independence assumption is not fair enough. The mismatch between
model assumptions and data becomes even more pronounced if overlapping features, such as word capital-
ization and part-of-speech, are added as observations. Another inadequacy (McCallum, Freitag, & Pereira,
2000) is due to the way parameters are estimated. In an HMM, parameters are set to maximize the likelihood
of the observation sequence, while the task is that of predicting the state sequence given the observations.
All these mismatches and limitations are eliminated in discriminative approaches, in which the conditional
probability of state sequences given the observations liesat the core at the model.

2.2.3 Maximum Entropy Models

The Maximum Entropy (MaxEnt) (Berger, Della Pietra, & DellaPietra, 1996) principle has been widely
used to create discriminative probabilistic models for natural language tasks. The classification problem
is viewed in terms of a random process that produces an outputvalue y from a finite setY , based on
the contextual informationx, a member of a finite setX. In a token classification scenario, this means
associating a tagy to each text token, whereas the contextx is derived from the text centered at the current
token position. In maximum entropy modeling we are looking for a probability distributionp(yjx) that
satisfies a set of constraintsCi 2 C derived from a collection of user specified featuresfi(x; y) 2 F . Each
feature is expressed as a binary function based on the context x at the current token position and its proposed
classificationy. For example, a useful feature in tagging for named entity recognition is the capitalization
of the token to be classified, and it can be expressed as follows:fi(x; y) = � 1 if current token is capitalized &y = Inside;0 otherwise:

The constraintCi associated with a feature functionfi is expressed simply by imposing that the expected
value offi under the target distributionp(yjx) be the same as the expected value offi under the empirical
distribution ~p(x; y) (derived from the training data):Ci !Xx;y ~p(x; y)fi(x; y) =Xx;y ~p(x)p(yjx)fi(x; y)

Out of a potentially infinite number of probability distributions p(yjx) satisfying a particular set of
constraints, the maximum entropy principle dictates that we select the most ”uniform” distribution, where
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a formal measure for the ”uniformity” of a distribution is given by the information theoretic notion of
conditional entropy (Cover & Thomas, 1991):H(Y jX) = �Xx;y ~p(x)p(yjx) log p(yjx)

Based on the concept of duality from constrained optimization, it can be shown that the distributionp(yjx) satisfying the constraintsCi, and which also minimizes the conditional entropyH(Y jX), is a mem-
ber of the exponential family: p(yjx) = 1Z(x)exp Xi �ifi(x; y)!
whereZ(x) = Py exp (Pi �ifi(x; y)) is a normalizing constant. An additional compelling justification
for the maximum entropy principle is that the resulting distribution is also the model which, among all
log-linear models of the above form, maximizes the likelihood of the parameters given the training sample.

In (Ratnaparkhi, 1996), the authors describe a maximum entropy approach to part-of-speech tagging in
which they introduce a feature templatefha; bi which relates the tags of two consecutive tokens:fha; bi(xt; yt; yt�1) = � 1 if yt�1 = a & yt = b;0 otherwise:

They also define a similar feature template relating the tagsof three consecutive tokens. Computing
the highest probability label for each token, from left to right, does not necessarily lead to the most likely
sequence of tags. To alleviate this, the authors use a beam search procedure, in which they consider tokens
from left to right, keeping at each position the five sequences of tags concentrating the most probability
mass. A more rigorous approach, which was later used in maximum entropy models for named entity
recognition (Chieu & Ng, 2003), is to use a Viterbi-like algorithm for decoding, which guarantees finding
the most likely labeling of the entire sequence of words.

Maximum Entropy Markov Models. This new type of features, relating tags in consecutive positions,
suggests a class of maximum entropy models in which binary features may include a test on the class of the
previous token, besides conditioning on the observed inputcontext and the mandatory test on the class of
the current token. Each such feature is uniquely identifiable by a conditiong on the observed inputxt and
the possible instantiationsa andb for the current and previous tags,yt andyt�1, as follows:fhg; a; bi(xt; yt; yt�1) = � 1 if g(xt) = 1 & yt�1 = a & yt = b;0 otherwise:

One ”extreme” case is that when for any given input featureg, for each valid combinations of tagsha; bi,
the above defined compound featurefhg; a; bi is included in the model. This is a maximum entropy model
in which the same set of input featuresg is associated with transitions between any two hidden states a andb. It can be shown that this type of model is in fact equivalent with a Maximum Entropy Markov Model
(MEMM) (McCallum et al., 2000), which means that the same generic system that is currently used for
learning a MaxEnt model, can also be used for learning an MEMMmodel by simply providing it with the
appropriate set of features.

An MEMM (McCallum et al., 2000) creates an maximum entropy model for each state in the model.
Thus, for a given states0, the framework learns an exponential model corresponding to the probability of
transitioning to another states from s0, given the observation sequenceo, i.e. p(sjs0; o). Consequently, if
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Y1 Y2 Y Y Y3 n−1 n

1X X2 X3 Xn−1 Xn

.  .  .

.  .  .

Y0

Figure 5: Unrolling an MEMM as a directed graphical model

the set of states isS, the MEMM will contain jSj exponential models. Finding the most likely sequence of
states in this context can be done efficiently using a Viterbi-like algorithm. The procedure for learning the
parameters is the same as in the MaxEnt case i.e. using Improved Iterative Scaling (Della Pietra, Della Pietra,
& Lafferty, 1997) or a gradient based method (the likelihoodfunction is concave, and the gradient is simply
the difference between observed and expected feature counts).

2.2.4 Conditional Random Fields

A fundamental problem with MEMMs and other discriminative Markov models based on directed graphical
models is that they are biased toward states with few successor states. This is the ”label bias problem”
(Lafferty et al., 2001), which in a more general form stipulates that states with low entropy next-state dis-
tributions will take little notice of observations. The maximum entropy model from (Ratnaparkhi, 1996) is
subject to this problem too, as some of the features it uses are indirectly associated with transitions (they
contain conditions on labels of consecutive tokens). The reason for this behavior stems from the fact that
the same probability mass is allocated for modeling the labeling decision at each position in the sequence.
A principled solution to this problem is that of ConditionalRandom Fields (Lafferty et al., 2001), where a
single probability distribution is learned, one that models the joint probability of a label sequence given a
sequence of observations. Informally, this can be viewed asa finite state model with unnormalized transition
probabilities. Therefore, some transitions may contribute more than others to the overall score, depending
on the corresponding observations.

Y1 Y2 Y Y Y3 n−1 n.  .  .

.  .  .

Y0

X1 X2 X3 Xn−1 Xn

Figure 6: Unrolling a CRF as an undirected graphical model

Inference in CRFs can be done efficiently by accommodating the corresponding forward-backward or
Viterbi algorithms used for HMMs (Rabiner, 1989). Learningthe CRFs parameters can be cast as an op-
timization problem – the likelihood function is concave, thus a global maximum can be found efficiently
using standard procedures, such as Improved Iterative Scaling (Della Pietra et al., 1997), or gradient based
methods.
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We have started the list of token classification approaches with HMM models, which are generative and
can be represented as directed graphical models. We have argued that conditional models are more appro-
priate for the tagging task, one of their benefits being that they allow for arbitrary, potentially overlapping
features over the observation sequence. Consequently, we have described Maximum Entropy models, a class
of conditional models which we have further shown that it subsumes Maximum Entropy Markov Models, a
particular type of conditional Markov models. Although these conditional models offer increased represen-
tational power when compared with HMMs (their generative counterpart), they are all plagued by the ”label
bias problem”. This is particularly troublesome, as the problem does not occur with HMMs. The solution
came in the form of Conditional Random Fields, a type of undirected graphical models especially suited
for labeling sequences, which overcomes the label bias problem by modeling the joint probability over the
entire label sequence given the observation sequence. In the next sections we describe a generic type of
undirected graphical models called Relational Markov Networks (RMNs) (Taskar et al., 2002) which can
model more general types of label correlations, and are consequently a suitable framework for our initial
approach to ”collective information extraction”.

2.3 Markov Random Fields

Graphical models offer an intuitive representation of conditional independence between domain variables.
They come in two main flavors:� Directed Models – well suited to represent temporal and causal relationships (Bayesian Networks,

Neural Networks, HMMs)� Undirected Models– appropriate for representing statistical correlations between variables (Markov
Networks such as CRFs, RMNs, Boltzman Machines)

Markov Random Fields (Markov Networks) are a special class of undirected graphical models. Below
is their definition, based on the following notation:� V = a set of vertices used to denote random variables� G = (V;E) an undirected graph� N(v) = the set of neighbors of vertexv 2 V
Definition 1 V is said to be a Markov Random Field with respect toG if for any vertex, its value depends
only on its neighbors i.e.P (VijV � Vi) = P (VijN(Vi)), 8Vi 2 V

For the discriminative version, assumeX is the set of observed variables, andY is the set of hidden
variables, such thatV = X [ Y .

Definition 2 V is said to be a Conditional Markov Random Field with respect toG if P (YijX;Y � Yi) =P (YijX;N(Yi)), 8Yi 2 Y
Markov Random Fields characterize the underlying undirected graphical model via a local property,

namely the Markov assumption. On the other hand, Gibbs Random Fields, which are going to be defined
next, use a global property to characterize the corresponding graphical model. The corresponding notation
follows below:
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� V = a set of vertices which stand for random variables� G = (V;E) an undirected graph� C(G) = the set of cliques inG� V
 = the set of vertices in a clique
 2 C� � = f�
 : V
 ! R+; 
 2 C(G)g a set ofclique potentials

Definition 3 V is said to be a Gibbs Random Field with respect toG if P (V ) = 1Z P
2C(G) �
(V
), whereZ is a normalization constant.

Thus, a Gibbs Random Field is specified numerically by associating potentials with cliques in the graph.
A clique potential is a function on the set of possible configurations of the clique, that associates a positive
number with each configuration. The joint probability distribution over all vertices in the graph is obtained
by taking a product over the clique potentials.

For the discriminative version, assumeX is the set of observed variables, andY is the set of hidden
variables, such thatV = X [ Y , and similarly, for every clique
 2 C(G), let V
 = X
 [ Y
.
Definition 4 V is said to be a Conditional Gibbs Random Field with respect toG if P (Y jX) =1Z(X)P
2C(G) �
(X
; Y
), whereZ(X) is a normalization constant.

Therefore, whereas a Markov Random Field is an undirected graphical model characterized by a local
property, a Gibbs Random Field is an undirected graphical model constrained by a global property e.g.
the Gibbs distribution. The following theorem stipulates that the two types of graphical models are in fact
equivalent.

Theorem 1 (Hammersley & Clifford, 1971)V is a (conditional) MRF with respect toG if and only ifV is
a (conditional) GRF with respect toG.

Consequently, one can create a Markov Random Field by specifying an underlying probability distribu-
tion that factorizes into potentials over all maximal cliques in the graph.

2.4 Relational Markov Networks

Relational Markov Networks (Taskar et al., 2002) are conditional Markov random fields augmented with a
set ofclique templates. A clique template specifies which vertices are to be connected in a clique, associating
the same clique potential with all cliques that it creates inthe graph. Thus, a clique template provides at
the same time a procedure for creating edges in the graph, anda mechanism for tying parameters (clique
potentials) in the model.

In (Taskar et al., 2002), the RMN framework was introduced inorder to model correlations between the
class labels of hyperlinked web pages – pages which are hyperlinked tend to have the same label. The clique
template responsible for this type of correlations is detailed below:� Clique Creation Add an edge (a 2-node clique) between the labels of any two hyperlinked web pages.� Clique Potentials To all edges created by this template, associate the same potential function�. If

the number of possible class labels isN , then� can be specified as anN � N table of positive real
values i.e.� : f1; 2; :::; Ng � f1; 2; :::; Ng ! R+.
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Figure 7 shows a sample RMN, where the above clique template creates eight edges between the labelsY
of hyperlinked web pagesX. The same potential� is associated with all these edges. Other clique templates
are responsible for creating edges between each labelYi and the corresponding local context features inXi.

Y 1

X 1

Y 3

������

��

�
�
�
�

Y 2 Y4

Y 6

Y 5

Y 7X 2

X 3

X 5

X 7

X 6

φφ
φ

φ

φ φ φ
X 4

φ

Figure 7: An RMN unrolled, with cliques between hyperlinkedweb pages.

The CRFs, as previously illustrated in Figure 6, are therefore a particular type of RMNs, in which clique
templates create 3-node cliques between any two consecutive labels,Yt�1 andYt, and their corresponding
contextual featuresXt.

Given a set of potentials, doing inference with RMNs may refer to two things:

1. Computing the marginal probabilities for all hidden variables, or a proper subset of them.

2. Computing the most probable assignment of values to all hidden variables in the model.

For tree-structured models, the belief propagation algorithm (Pearl, 1988) computes the marginals over
all hidden variables in time linear with the number of nodes and edges in the underlying graph. For graphs
with cycles, however, exact inference algorithms, such as the join-tree algorithm, have a running time expo-
nential in the size of the largest clique in the triangulatedgraph. An alternative to exact inference is to do
approximate inference using loopy belief propagation, which has shown reasonable performance in many
practical applications (Murphy et al., 1999).

Learning with RMNs means computing the clique potential foreach potential template, given training
data where both the content attributes and the labels are observed. One alternative is to use a gradient
based method in a Maximum Likelihood (ML) or Maximum A Posteriori (MAP) setting. For the last type
of estimation, a “shrinkage” prior over the parameters is used, typically a zero-mean Gaussian. Because,
in both cases, the objective function is concave, the optimization procedure is guaranteed to find a global
maximum. An alternative learning method is to usestochastic gradient ascentin the form of a Voted
Perceptron (Collins, 2002). In this case, the objective function is calculated for a single instance at a time,
and its gradient is approximated with the features counts onthe Most Probable Explanation (MPE) labeling,
instead of computing the full feature count expectation. Nevertheless, inference is needed in both learning
scenarios, either for computing marginals over subsets of hidden variables, of for deriving the MPE labeling.

Viewed from the RMN perspective, CRFs are a special type of linear-chain undirected graphical mod-
els, and, as with any linear-chain or tree-structured graphical models, both exact inference and parameter
estimation can be solved efficiently.
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3 Completed Research

Of all IE systems mentioned in the previous section, that of (Seymore et al., 1999) is able to model influences
between various types of entities based on the order in whichthey occur in the document – in headers of
research papers, for example, the author’s name usually comes after the title. This type of order-based
correlations is captured by learning an HMM structure in which the same entity type may be associated with
multiple states in the model, while the set of transitions reflects the order in which various entity types occur
in the training data.

There have been some previous attempts to use global information from repetitions, acronyms, and
abbreviations during extraction. In (Chieu & Ng, 2003), a set of global features are used to improve a
Maximum-Entropy tagger; however, these features do not fully capture the mutual influence between the
labels of acronyms and their long forms, or between entity repetitions. In particular, they only allow earlier
extractions in a document to influence later ones and not vice-versa.

In this section we are going to introduce a collective approach to Information Extraction which will
allow the incorporation of arbitrary correlations betweenthe labels of potential extractions from the same
document. For this, we shall use the RMN framework to do extraction by phrase classification.

3.1 Candidate Entities

Doing phrase classification requires a set of phrases to start with. Throughout this document, we will use
the termscandidate entities, candidate extractions, or candidate phrasesto refer to the set of phrases that
are to be classified as being valid extractions or not. Considering as candidate entities all contiguous word
sequences from a document would lead to a quadratic number ofphrases, which would adversely affect the
time complexity of the extraction program. Various heuristics exist however which can significantly reduce
the size of the candidate set, and some of them are listed below:� H1: In general, named entities have limited length. Therefore,one simple way of creating the set of

candidate phrases is to compute the maximum length of all annotated entities in the training set, and
then consider as candidates all word sequences whose lengthis up to this maximum length. This is
also the approach followed in SRV (Freitag, 1998).� H2: In the task of extracting protein names from Medline abstracts, we noticed that, like most en-
tity names, almost all proteins in our data are base noun phrases or parts of them. Therefore, such
substrings are used to determine candidate entities. To avoid missing options, we adopt a very broad
definition of base noun phrase – a maximal contiguous sequence of tokens whose POS tags are fromf”JJ”, ”VBN”, ”VBG”, ”POS”, ”NN”, ”NNS”, ”NNP”, ”NNPS”, ”CD” , ”–” g, and whose last
word (the head) is tagged either as a noun, or a number. Candidate extractions then consist of base
NPs, together with all their contiguous subsequences headed by a noun or number.� H3: The CoNLL 2003 English corpus (Tjong Kim Sang & De Meulder, 2003) contains four types
of named entities: persons (PER), locations (LOC), organizations (ORG), and other (MISC). A more
appropriate heuristic in this case is to consider as candidates all sequences of proper names, potentially
interspersed with prepositions, commas, conjunctions or definite articles.

Table 1 below shows the candidate entities generated by H1 and H2 on a fragment from a Medline
abstract. Similarly, Table 2 shows candidate entities generated by H1 and H3 on a fragment from a CoNLL
document. Both H2 and H3 are strong heuristics, in the sense that they drastically reduce the number of
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candidate entities. In the next sections, we shall focus on the task of extracting protein names from Medline
abstracts.

“the control of humanribosomal protein L22 ( rpL22 ) “Æ theÆ the controlÆ the control ofÆ the control of humanÆ the control of
H1 human ribosomalÆ ... Æ ribosomalÆ ribosomal proteinÆ ribosomal protein L22Æ ribosomal protein L22 (Æ ribosomal protein L22 ( rpL22Æ ... Æ L22 Æ L22 ( ÆÆ L22 ( rpL22Æ L22 ( rpL22 )Æ ... Æ rpL22 Æ rpL22 )Æ ) Æ
H2 Æ controlÆ human ribosomal proteinÆ human ribosomal protein L22Æ ribosomal proteinÆ ribosomal protein L22 Æ protein L22Æ L22 Æ rpL22 Æ

Table 1: Candidate Extractions: Medline.

“ Israel gavePalestinianPresidentYasser Arafat permission on Thursday“Æ Israel Æ Israel gaveÆ Israel gave PalestinianÆ Israel gave Palestinian
H1 PresidentÆ ... Æ PalestinianÆ Palestinian PresidentÆ Palestinian President YasserÆ Palestinian President Yasser ArafatÆ ... Æ YasserÆ Yasser Arafat Æ President

Yasser Arafat permissionÆ ... Æ onÆ on ThursdayÆ ThursdayÆ
H3 Æ Israel Æ PalestinianÆ Palestinian PresidentÆ Palestinian President YasserÆ Palestinian President Yasser ArafatÆ PresidentÆ President YasserÆ President Yasser ArafatÆ YasserÆ Yasser Arafat Æ ArafatÆ

Table 2: Candidate Extractions: CoNLL.

3.2 Entity Features

The set of features associated with each candidate is based on the feature templates introduced in (Collins,
2002), used there for training a ranking algorithm on the extractions returned by a maximum-entropy tagger.
Many of these features use the concept ofword type, which allows a different form of token generalization
than POS tags. Theshort typeof a word is created by replacing any maximal contiguous sequences of
capital letters with ’A’, of lower-case letters with ’a’, and of digits with ’0’. For example, the wordTGF-1
would be mapped to typeA-0.

Consequently, each token positioni in a candidate extraction provides three types of information: the
word itselfwi, its POS tagti, and its short typesi. The full set of features types is listed in Table 3, where
we consider a generic candidate extraction as a sequence ofn+ 1 wordsw0w1:::wn.

Each feature template instantiates numerous features. Forexample, the candidate extraction’HDAC1
enzyme’has the head wordHD=enzyme, the short typeST=A0a, the prefixesPF=A0 andPF=A0 a, and
the suffixesSF=aandSF=A0 a. All other features depend on the left or right context of theentity. Feature
values that occur less than three times in the training data are filtered out.

3.3 The RMN Framework for Entity Recognition

Given a collection of documentsD, we associate with each documentd 2 D a set of candidate entitiesd:E,
in our case a restricted set of token sequences from the document (Section 3.1). Each entitye 2 d:E is
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Description Feature Template

Head Word w(n)
Text w(0) w(1) ::: w(n)
Short Type s(0) s(1) ::: s(n)
Bigram Left w(�1) w(0) w(�1) s(0)
(4 bigrams) s(�1) w(0) s(�1) s(0)
Bigram Right w(n) w(n+1) w(n) s(n+1)
(4 bigrams) s(n) w(n+1) s(n) s(n+1)
Trigram Left w(�2) w(�1) w(0) :::
(8 trigrams) s(�2) s(�1) s(0)
Trigram Right w(n) w(n+1) w(n+2) :::
(8 trigrams) s(n) s(n+1) s(n+2)
POS Left t(�1)
POS Right t(n+1)
Prefix s(0) s(0) s(1) :::
(n+1 prefixes) s(0) s(1) ::: s(n+1)
Suffix s(n) s(n�1) s(n) :::
(n+1 suffixes) s(0) s(1) ::: s(n+1)

Table 3: Feature Templates.

characterized by a predefined set of boolean attributese:F (Section 3.2), the same for all candidate entities.
One particular attribute ise:label which is set to 1 ife is considered a valid extraction, and 0 otherwise.
In this document model, labels are the only hidden variables, and the inference procedure will try to find a
most probable assignment of values to labels, given the current model parameters.

Each document is associated with an undirected graphical model, with nodes corresponding directly to
entity attributes, one node for each attribute of each candidate entity in the document. The set of edges is
created by matchingclique templatesagainst the entire set of entitiesd:E. A clique template is a procedure
that finds all subsets of entities satisfying a given constraint, after which, for each entity subset, it connects
a selected set of attribute nodes so that they form a clique.

Formally, there is a set of clique templatesC, with each template
 2 C specified by:

1. A matching operatorM
 for selecting subsets of entities,M
(E) � 2E
2. A selected set of featuresS
 = hX
; Y
i, the same for all subsets of entities returned by the matching

operator.X
 denotes the observed features, whileY
 refers to the hidden labels.

3. A clique potential�
 which gives the compatibility of each possible configuration of values for the
features inS
, s.t.�
(s) � 0;8s 2 S
.

Given a setE of nodes,M
(E) consists of subsets of entities whose attribute nodesS
 are to be con-
nected in a clique. In previous applications of RMNs, the selected subsets of entities for a given template
have the same size; however, some of our clique templates maymatch a variable number of entities. The
setS
 may contain the same attribute from different entities. Usually, for each entity in a matching set, its
label is included inS
. All these will be illustrated with examples in Sections 3.4and 3.5 where the clique
templates used in our model are described in detail.
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Depending on the number of hidden labels inY
, we define two categories of clique templates:� Local Templatesare all templates
 2 C for which jY
j = 1. They model the correlations between
an entity’s observed features and its label.� Global Templatesare all templates
 2 C for which jY
j > 1. They capture influences between
multiple entities from the same document.

After the graph model for a documentd has been completed with cliques from all templates, the proba-
bility distribution over the random field of hidden entity labelsd:Y given the observed featuresd:X is given
by the Gibbs distribution:P (d:Y jd:X) = 1Z(d:X) Y
2C YG2M
(d:E)�C(G:X
; G:Y
) (1)

whereZ(d:X) is the normalizing partition function:Z(d:X) =XY Y
2C YG2M
(d:E)�C(G:X
; G:Y
) (2)

3.4 Local Clique Templates

As described in the previous section, the role of local clique templates is to model correlations between an
entity’s observed features (see Table 3) and its label. If, after filtering, we are left withh distinct boolean
featuresfi, one way to model these correlations is to introduceh local (clique) templatesLT1; LT2; :::; LTh.
A templateLTi would then be defined as follows:

1. The matching operatorMi is set to match any single-entity setfeg.
2. The collection of attributesSi corresponding to a singleton entity setfeg is defined to beSi =hXi; Yii = hfe:fig; fe:labelgi. This amounts to introducing in the RMN graphh attribute nodes for

each candidate entity, which are to be connected by theh local templates to the corresponding entity
label node. The 2-node cliques created by allh templates around one entity are illustrated in Figure 8.

3. The potential�i associated with all 2-node cliques created by templateLTi would consist in a2 � 2
table (as bothe:fi ande:label have cardinality 2 – assuming only one entity type is to be extracted,
we need only two values for the label attribute).

...
ee

elabel

e
1 f  f  2 hf  

Figure 8: RMN generated by local templates.
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Each entity has the label node connected to its own set ofh binary feature nodes. This leads to an
excessive number of nodes in the model, most of which have value zero. The number of nodes can be
reduced if, for each entity, we include in the graphical model only those nodes for which the corresponding
feature variable has value 1. Consequently, the table associated with the local potential will be reduced from
4 to 2 values, specifying now the compatibility between thatfeature and the two possible values for the
entity label.

Factor Graphs. An alternative, useful representation for Markov random fields is provided by factor
graphs (Kschischang, Frey, & Loeliger, 2001). These are bipartite graphs which express how a global func-
tion of many variables (the probabilityP (d:Y jd:X) in Equation 1) factors into a product of local functions
(the potentials�C(G:X
; G:Y
) in Equation 1). Factor graphs subsume many different types of graphical
models, including Bayesian networks and Markov random fields. The sum/max-product algorithm used for
inference in factor graphs generalizes a wide variety of algorithms including the forward/backward algo-
rithm, the Viterbi algorithm, and Pearl’s belief propagation algorithm (Pearl, 1988). To obtain the factor
graph for a given Markov random field, we copy all original nodes from the MRF, referred henceforth as
variable nodes, and create apotential nodefor each instantiated clique potential. Each potential node is then
linked to all variable nodes from the associated clique.

In the case of local clique potentials, given that all feature nodes have value 1, we can eliminate them
from the equivalent factor graph representation. What is left then is a variable node for the entity label,
together with nodes for potential functions, one potentialnode for each entity feature whose value has been
observed to be 1. As an example, Figure 9 shows that part of thefactor graph which is generated around the
entity label for’HDAC1 enzyme’(with variable nodes figured as empty circles and potential nodes figured as
black squares).

elabel

φHD=enzyme

φPF=A0

φPF=A0_a

φSF=a

φSF=A0_a

...

Figure 9: Factor Graph for local templates.

Note that the factor graph above has an equivalent RMN graph consisting of a one-node clique only, on
which it is hard to visualize the various potentials involved. There are cases where different factor graphs
may yield the same underlying RMN graph, which makes the factor graph representation preferable.

3.5 Global Clique Templates

Global clique templates enable us to model hypothesized influences between entities from the same doc-
ument. They connect the label nodes of two or more entities, which, in the factor graph, translates into
potential nodes connected to at least two label nodes. In ourexperiments we use three global templates:

Overlap Template (OT): No two entity names overlap in the text i.e if the span of one entity is [s1; e1℄
and the span of another entity is[s2; e2℄, ands1 � s2, thene1 < s2.

Repeat Template (RT): If multiple entities in the same document are repetitions ofthe same name,
their labels tend to have the same value (i.e. most of them areprotein names, or most of them are not protein
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names). Later we discuss situations in which repetitions ofthe same protein name are not tagged as proteins,
and design an approach to handle this.

Acronym Template (AT): It is common convention that a protein is first introduced by its long name,
immediately followed by its short-form (acronym) in parentheses.

3.5.1 The Overlap Template

The definition of acandidate extractionfrom Section 3.1 leads to many overlapping entities. For example,
’glutathione S - transferase’is a base NP, and it generates five candidate extractions:’glutathione’, ’glutathione
S’, ’glutathione S - transferase’, ’S - transferase’, and’transferase’. If ’glutathione S - transferase’has label-value
1, the other four entities should all have label-value 0, because they overlap with it.

This type of constraint is enforced by the overlap template as follows:

1. TheMOT operator matches any two overlapping candidate entitiesfe1; e2g.
2. The set of attributesSOT selected by this template for two overlapping entitiesfe1; e2g is SOT =hXOT ; YOT i = h;; fe1:label; e2:labelgi. This translates in the factor graph into a potential node

connected to the two selected label nodes.

3. The potential function�OT is set so that at most one of the overlapping entities can havelabel-value
1, as illustrated in Table 4. �OT e1:label = 0 e1:label = 1e2:label = 0 1 1e2:label = 1 1 0

Table 4: Overlap Potential.

Continuing with the previous example, because’glutathione S’and ’S - transferase’are two overlapping
entities, the factor graph model will contain an overlap potential node connected to the label nodes of these
two entities.

An alternative solution for the overlap template is to create a potential node for each token position
that is covered by at least two candidate entities in the document, and connect it to their label nodes. The
difference in this case is that the potential node will be connected to a variable number of entity label nodes.
However this second approach has the advantage of creating fewer potential nodes in the document factor
graph, which results in faster inference.

3.5.2 The Repeat Template

We could specify the potential for the repeat template in a similar 2 � 2 table, this time leaving the table
entries to be learned, given that assigning the same label torepetitions is not a hard constraint. However we
can do better by noting that the vast majority of cases where arepeated protein name is not also tagged as a
protein happens when it is part of a larger phrase thatis tagged. For example,’HDAC1 enzyme’is a protein
name, therefore’HDAC1’ is not tagged in this phrase, even though it may have been tagged previously in the
abstract where it was not followed by’enzyme’. We need a potential that allows two entities with the same
text to have different labels if the entity with label-value0 is inside another entity with label-value 1. But a
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candidate entity may be inside more than one “including” entity, and the number of including entities may
vary from one candidate extraction to another. Using the example from Section 3.5.1, the candidate entity
’glutathione’ is included in two other entities:’glutathione S’and’glutathione S - transferase’.

In order to instantiate potentials over variable number of label nodes, we introduce alogical OR clique
templatethat matches a variable number of entities. When this template matches a subset of entitiese1; e2; :::; en, it will create an auxiliary OR entityeOR, with a single attributeeOR:label. The potential
function�OR is set so that it assigns a non-zero potential only wheneOR:label = e1:label_ e2:label _ :::_en:label. The cliques are only created as needed, e.g. when the auxiliary OR entity is required by repeat
and acronym clique templates.

Figure 10 shows the factor graph for a sample instantiation of the repeat template using the OR template.
Here,u andv represent two same-text entities,u1, u2, ... un are all entities that includeu, andv1, v2, ...,vm are entities that includev. To avoid clutter, all entities in this and subsequent factor graphs stand for
their corresponding label features. The potential function �RT can either be preset to prohibit unlikely label
configurations, or it can be learned to represent an appropriate soft constraint. In our experiments, it was
learned since this gave slightly better performance.

1 u2u v1 2v

φ φ
u u v v

or or

or or

RT
φ

un vm
... ...

Figure 10: Repeat Factor Graph.

Following the previous example, suppose that the phrase’glutathione’ occurs inside two base NPs in
the same document,’glutathione S - transferase’and’glutathione antioxidant system’. Then the first occurrence
of ’glutathione’ will be associated with the entityu, and correspondingly its including entities will beu1
= ’glutathione S’andu2 = ’glutathione S - transferase’. Similarly, the second occurrence of’glutathione’will
be associated with the entityv, while the including entities will bev1 = ’glutathione antioxidant’andv2 =
’glutathione antioxidant system’.

3.5.3 The Acronym Template

One approach to the acronym template would be to use an extantalgorithm for identifying acronyms and
their long forms in a document, and then define a potential function that would favor label configurations
in which both the acronym and its definition have the same label. One such algorithm is described in
(Schwartz & Hearst, 2003), achieving a precision of96% at a recall rate of82%. However, because this
algorithm would miss a significant number of acronyms, we have decided to implement a softer version as
follows: detect all situations in which a single word is enclosed between parentheses, such that the word
length is at least 2 and it begins with a letter. Letv denote the corresponding entity. Letu1, u2, ...,un be all
entities that end exactly before the open parenthesis. If this is a situation in whichv is an acronym, then one
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of the entitiesui is its corresponding long form. Consequently, we use a logical OR template to introduce
the auxiliary entityuOR, and connect it tov’s node label through an acronym potential�AT , as illustrated
in Figure 11.

1 u2u

φ
u v

or

or

un

...

φAT

Figure 11: Acronym Factor Graph.

For example, consider the phrase’the antioxidant superoxide dismutase - 1 ( SOD1 )’, where both’superoxide
dismutase - 1’and ’SOD1’ are tagged as proteins.’SOD1’ satisfies our criteria for acronyms, thus it will be
associated with the entityv in Figure 11. The candidate long forms areu1 = ’antioxidant superoxide dismutase
- 1’, u2 = ’superoxide dismutase - 1’, andu3 = ’dismutase - 1’.

3.6 Inference in Factor Graphs

There are two problems that need to be addressed when workingwith RMNs:

1. Inference: Usually, two types of quantities are needed from an RMN model:� The marginal distribution for a hidden variable, or for a subset of hidden variables in the graph-
ical model.� The most probable assignment of values to all hidden variables in the model.

2. Learning: As the structure of the RMN model is already defined by its clique templates, learning
refers to finding the clique potentials that maximize the likelihood over the training data. Inference
is usually performed multiple times during the learning algorithm, which means that an accurate, fast
inference procedure is doubly important.

In our setting, given the clique potentials, the inference step for the factor graph associated with a document
involves computing the most probable assignment of values to the hidden labels of all candidate entities:d:Y � = argmaxd:Y P (d:Y jd:X) (3)

whereP (d:Y jd:X) is defined as in Equation 1. A brute-force approach is excluded, since the number of
possible label configurations is exponential in the number of candidate entities. The sum-product algorithm
(Kschischang et al., 2001) is a message-passing algorithm that can be used for computing the marginal
distribution over the label variables in factor graphs without cycles, and with a minor change (replacing
the sum operator used for marginalization with a max operator) it can also be used for deriving the most
probable label assignment. In our case, in order to get an acyclic graph, we would have to use local templates
only. However, it has been observed that the algorithm oftenconverges in general factor graphs, and when
it converges, it gives a good approximation to the correct marginals. The algorithm works by altering the
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