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Abstract

An Information Extraction (IE) system analyses a set of doents with the aim of identifying certain
types of entities and relations between them. Most IE systigat separate potential extractions as
independent. However, in many cases, considering inflleebeaveen different candidate extractions
could improve overall accuracy. For example, phrase répesiinside a documentare usually associated
with the same entity type, the same being true for acronyrdstasir corresponding long form. One of
our goals in this thesis is to show how these and potentitiigraypes of correlations can be captured by
a particular type of undirected probabilistic graphicaldab Inference and learning using this graphical
model allows for “collective information extraction” in aay that exploits the mutual influence between
possible extractions. Preliminary experiments on leaytinextract named entities from biomedical and
newspaper text demonstrate the advantages of our approach.

The benefit of doing collective classification comes howetercost: in the general case, exact infer-
ence in the resulting graphical model has an exponential tiomplexity. The standard solution, which
is also the one that we used in our initial work, is to resorapproximate inference. In this proposal
we show that by considering only a selected subset of mutflakinces between candidate extractions,
exact inference can be done in linear time. Consequenthod term goal is to run comparative exper-
iments that would help us choose between the two approaeRkast inference with a restricted subset
of mutual influences or approximate inference with the fetlaf influences.

The set of issues that we intend to investigate in future vieitkvo fold. One direction refers to
applying the already developed framework to other natarajliage tasks that may benefit from the same
types of influences, such as word sense disambiguation atdfespeech tagging. Another direction
concerns the design of a sufficiently general frameworkwlmatld allow a seamless integration of cues
from a variety of knowledge sources. We contemplate usingdesources such as external dictionaries,
or web statistics on discriminative textual patterns. W ahtend to alleviate the modeling problems
due to the intrinsic local nature of entity features by ekpig syntactic information. All these generic
features will be input to a feature selection algorithm tst tn the end we obtain a model which is both
compact and accurate.
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1 Introduction

Information Extraction (IE) is an important task in natuleguage processing, with many practical appli-
cations. It involves analyzing text documents, identifyparticular types of entities, relations or events, and
populating database slots with information about them. gideomponent of an IE system is that of named
entity recognition - the task of locating references to gpetypes of items in natural-language text. Since
IE systems are difficult and time-consuming to constructstmecent research has focused on empirical
techniques that automatically construct information aotiors by training on supervised corpora (Cardie,
1997, Califf, 1999). Traditionally, IE systems have beairted to recognize names of people, organiza-
tions and locations (MUC (Grishman, 1995), CoNLL (Tjong K8ang & De Meulder, 2003)). Recently,
substantial resources have been allocated for automwgticdtacting information from biomedical corpora,
which has naturally led to the need of locating biologicaljevant entity types, such as genes, proteins,
or diseases. The wide variety of names used in the biomddmalture, coupled with their lack of formal
structure, have made the IE problem especially difficultis Fias further motivated the search for methods
which are able to efficiently use any type of task-relevardviledge. One particular type of knowledge
which is especially useful for recognizing biological ¢iet refers to correlations between the labels of
repeated phrases inside a document, as well as betweerymsr@amd their corresponding long form. In
both cases, the mentioned phrases tend to have the sanydamit For example, Figure 1 shows part of
an abstract from Medline, an online database of biomeditiales. In this abstract, the protein referenced
by 'rpL22 is first introduced by its long namebosomal protein L22’ followed by the short namigplL22’
between parentheses. The presence of the \postdin’ is a very good indicator that the entire phragms-
somal protein L22is a protein name. AlsopL22’ is an acronym ofribosomal protein L22which increases
the likelihood that it too is a protein name. The same nape2’ occurs later in the abstract in contexts
which do not indicate so clearly the entity type, however &g ase the fact that repetitions of the same
name tend to have the same type inside the same document.

The control of human ribosomal protein L22 ( rpL22 ) to enter into the
nucleolus and its ability to be assenbled into the ribosone is

regul ated by its sequence . The nuclear inport of rpL22 depends on
a classical nuclear localization signal of four |ysines at positions
13 - 16 . RpL22 nornmally enters the nucleolus via a conpul sory
sequence of KKYLKK ( | - domamin , positions 88 - 93 ) ... Once it

reaches the nucleolus , the question of whether rpL22 is assenbl ed
into the ri bosone depends upon the presence of the N - domain .

Figure 1: Medline abstract with all protein names emphaksize

It is not always the case that repeated phrases have the abhaieFigure 2 shows an example, where
the first occurrence 0éNOS’ is a protein name, while its second occurrence is not a protine by itself,
because it is included in another protein naeMOS interaction protein’ Constraining repeated words like
'eNOS’ to have the same label (i.e. eitherside orOutside a protein name) does not solve the problem
either, as shown in Figure 2, where both tokarigic’ and’oxide’ are first tagged a®utside, and then
Inside a protein name. In Section 3.5.2 we show how to caph@edrrelations between the labels of
repeated phrases so that all the exceptions above are takeactount.

The capitalization pattern of the name itself is anothefulsedicator, nevertheless it is not sufficient by
itself, as similar patterns are also used for other typesadddical entities such as cell types or aminoacids
(see Figure 3). Therefore, correlations between the latfalepeated phrases, or between acronyms and



Production of nitric oxide ( NO) in endothelial cells is regul ated
by direct interactions of endothelial nitric oxide synthase( eNOS) with
ef fector proteins such as Ca2+ - calmodulin. Here we have used the
yeast two - hybrid systemand identified a novel 34 kDa protein ,
termed NOSIP ( eNOS interaction protein ) , which avidly binds to the
carboxyl terminal region of the eNOS oxygenase donain .

Figure 2: Medline abstract with all protein names emphasize

their long form can provide additional useful informatio@ur intuition is that a method that could use
this kind of information would show an increase in performanespecially when doing extraction from
biomedical literature, where phenomena like repetitiams @cronyms are pervasive.

The 5' upstreamregion ( -448 /| -443 ) of the human dipeptidyl peptidase IV
gene pronoter containing a consensus E - box ( CACGTG) was shown to
bi nd upstream stimul atory factor using nuclear extracts from nouse

( 3T3 ) fibroblasts and the human intestinal and hepatic epithelial
cell lines Caco - 2 and Hep& .

Figure 3: Medline abstract with all protein names emphasize

In this proposal, we describe how this type of documenttémewledge can be captured using Re-
lational Markov Networks (RMNSs) (Taskar, Abbeel, & Koll2002), a version of undirected graphical
models which have already been successfully used to imphevelassification of hyper-linked web pages.
While other types of graphical models, such as Conditioredd®m Fields (CRFs) (Lafferty, McCallum,
& Pereira, 2001), have modeled the entity recognition taskree of token classification, we take the dif-
ferent approach where candidate phrases in a documentaasifidd according to the desired set of entity
types. We then show how this phrase classification appraaglitdtes the modeling of correlations among
labels of candidate entities, with the additional strergftbhrase based features such as the actual text of
the candidate entity, its capitalization pattern, or samiy with dictionary entries. Experimental results
show that by factoring in global label correlations, thefpenance of the phrase classification approach is
significantly improved.

In a typical application of CRFs, influences between theltab&consecutive tokens are the only cor-
relations considered. This leads to a sequence labelimgagogin which inference can be done efficiently
using dynamic programming algorithms. Compared with CRRs,increased representational power of
RMNSs comes at a cost in the time complexity of the inferenger@hms. In our initial work, we resorted to
approximate inference, based on an algorithm which haaajrexhibited competitive performance in other
applications (Murphy, Weiss, & Jordan, 1999). Howeveruhsequent work we have discovered that exact
inference for the phrase classification approach can be elingently, if no correlations between different
candidate entities are to be considered. Moreover, by gdaicarefully selected subset of document-level
correlations, the same exact inference algorithm can batagdo that its running time remains linear in the
number of candidate entities. We present how to select threlations that are to be included in the model,
and prove the linear complexity of the inference algorithitew run on the resulting structure.

As short-term goals, we intend to compare the exact inferéhmited set of correlations approach with
the original approach based on approximate inference $éulbf correlations. Another direction that might
lead to improved results is that of using a generalized oersf the belief propagation algorithm, where



messages are passed between sets of nodes, at additioqmltabamal cost (Yedidia, Freeman, & Weiss,
2000), or using alternative approximate-inference method
Long-term goals include:

e Applying the same approach to other natural language tasitanay benefit from document-level
correlations. Two examples are word sense disambiguatd®D) and part-of-speech (POS) tag-
ging. In WSD, the one sense per discourse hypothesis haspveeiously used by Yarowsky in
(Yarowsky, 1995). The RMN framework however is able to impmrate this type of knowledge in a
more probabilistic, sound manner. As for the task of POSitaggvhile the benefit of using corre-
lations between tags of repeated words is debatable if Huetas trained and tested on documents
from the same corpora, given its already competitive paréorce, it has nevertheless the potential of
reducing the number of tagging errors on texts from diffesempora.

e Using features based on similarities with existing diciignentries. Such features can be incorporated
in our phrase classification approach in a natural, strimglérd manner.

e The "web as a corpus” is still an under-utilized idea. In tostext, textual patterns that disambiguate
the type of a candidate entity can be provided to a web seaigine so that statistics derived from
the number of returned hits may be used in order to increaskthystem’s performance.

e Syntactic information has already been proved to incrdasad¢curacy on the task of relation extrac-
tion. Besides designing an IE system for extracting refatigpecific to biomedical entities, we intend
to leverage entity recognition through the use of featuegiveld from syntactic parses. Some of these
features have the benefit of encoding long-range deperetendiich cannot be captured from a flat
representation of sentences.

e The previous three goals can be seen as part of the effortsigrda general framework that would
allow the use of information from various knowledge sourocesrder to increase the final IE system’s
performance. We intend to increase the robustness of tipiaph through the use of an efficient
feature selection algorithm.

2 Background and Related Work

The task of automatically constructing information extoas has received a lot of attention in the past
decade, and as such we observe a high diversity in the pro@mg®oaches and the learning algorithms
used therein. Nevertheless, a careful analysis revedisrbst of these systems can be classified into two
basic types of approaches:

¢ Token Classification Word tokens in a document are sequentially classified awliaside or out-
side of a given named entity. Named entities are extracteddiyg token classification and then
assembling maximally contiguous sequences of inside token

e Phrase Classification Candidate phrases from a document are classified as to evhitiby are
instances of some entity types or not. This can be done bgrditarning a multi-class classifier, in
which case the number of classes is equal with the numbertity ¢ypes plus one (for non-entity
phrases), or by separately learning sets of extractioeneattone set of patterns for each of the entity

types.



2.1 Phrase Classification Approaches

Relational learning has been one of the learning paradiged in some of the early IE systems, such as
Rapier (Califf & Mooney, 1999) and SRV (Freitag, 1998). Bsttstems belong to the phrase classification
approach.

2.1.1 Rapier

In RAPIER, the IE task is defined in terms of filling the slots contained template. A template specifies a
particular type of event, such as joint ventures, corpoaatguisitions, or job offerings. For example, a job
offering template contains slots for title, salary, areaxgertise, OS platform required, or job location. The
training data consists of filled templates, one templatedpeument. During testing, the IE system fills the
template slots with data extracted from the document.

For each template slot, a set of rules is learned in a bottprfashion, with each rule composed of
patterns that can make use of limited syntactic informatidore exactly, the extraction rules consist of
three parts:

1. A pre-filler pattern that matches text immediately préngdhe slot filler,
2. A pattern that matches the actual field, and
3. A post-filler pattern that matches the text immediatelijofing the slot filler.

Each pattern is a sequence of pattern elements of one of pes:tgattern itemsandpattern lists A
pattern item matches exactly one word that satisfies itsti@nts. A pattern list has a maximum length N
and matches 0 to N words, each satisfying a set of constrddetsides constraining on words and their part-
of-speech tags, Rapier can also incorporate semanticiof@ssation, such as that provided by WordNet
(Miller, 1991). Consequently, each constraint is represgas a disjunctive list of one or more words, tags
or WordNet synsets.

During testing, phrases are extracted by matching themrmsigtie set of rules learned for each slot.
For the template filling task, extracted phrases which amichted are ignored, however the system can
be easily modified to work in a named entity scenario, suchthii@output contains all extracted phrases,
duplicates included. Because each pattern is designedtthmphrases, we can view Rapier as belonging
to the generic class of phrase classification approaches.

212 SRV

SRV (Freitag, 1998) too is based on a relational learninggutare. Like FOIL (Quinlan, 1990), it proceeds
in a top-down fashion, starting with the entire set of exarap! all negative examples and any positive
examples not covered by already induced rules. At each stgpeadily adds predicates, trying to cover as
many positive, and as few negative examples as possiblee Tha set of predefined predicate templates
including tests on the length of the candidate entity ostestfeatures of tokens inside the candidate phrases.
Token features are predefined too and come in two categories:

e simplefeatures such as the word, its capitalization pattern,rpifeatures testing whether the token
is a punctuation sign, or a number.

¢ two relational features - the previous and the next tokens.



As with any phrase classification approach, SRV needs toeaddhe issue of searching through a
typically huge negative examples set. The authors do thisamglling negative examples implicitly, on a
token-by-token basis — examples are indexed based on thesdkey contain. Because a token is generally
shared by many candidate phrases, this leads to a morebleastmrch method.

2.2 Token Classification Approaches
2.2.1 Hidden Markov Models

Another class of approaches to learning IE systems is basétidden Markov Models (HMMs) (Rabiner,
1989). HMMs have been successfully used for speech recogiiefore becoming a model of choice for
other natural language tasks such as POS tagging or namgdrenbgnition. An HMM can be defined
as the stochastic version of a finite state automaton. Thase is a set of states (hidden), with transitions
between them. Given a state, there is a probability didicbwver all possible transitions from that state.
Symbols can be generated from any state, one symbol at aliemed on a symbol emission distribution.
In a typical application of HMMs, a sequence of symbols igivtogether with an HMM that is assumed
to have produced it. The generative process by which the HMddluzes a string of symbols starts by
choosing a distinguished state (referred to as a startaig)sthen transitioning to another state according
the the corresponding transition probability. This precgitransitioning from one state to another continues
until it reaches another distinguished state (referred thafinal state). Each time a transition is made from
a state, a symbol is generated according to that state’sayanbission probability distribution. Graphically,
an unrolled HMM can be represented as a directed graph, aguneM4. In this and all subsequent figures,
the X symbols are used to denote observations, whikymbols refer to hidden variables (states or labels).

Yo Yy Yo Y3 Yo-1 Yy
O O o = O O
xl ><2 X3 xn—l xn

Figure 4: Unrolling an HMM as a directed graphical model

One of the questions that an HMM inference algorithm is Ugu&dquired to answer is what is the
sequence of states that is most likely to have generatedea gequence of symbols. For example, in the
case of POS tagging, each state corresponds to a POS tagastsymbols correspond to words. Given
a particular sentence, the POS tagging is defined as the tkelst $equence of states that generated the
sentence.

HMMs are particularly attractive as they have a solid matral foundation, and the associated infer-
ence problem can be solved in time linear with the number sépked symbols using dynamic programming
(the Viterbi algorithm). During learning, if the data isffubbservable (e.g. labeled training data), the HMM
parameters are simply set to their maximum likelihood estiés. If the data is only partially observable i.e.
the states are hidden, the Baum-Welch algorithm, an inatet of the more general Expectation Maxi-
mization (EM) algorithm (Dempster, Laird, & Rubin, 1977grcbe used to find a set of parameters such
that the likelihood function is locally optimized.



IE systems based on HMMs belong naturally to the categorpkd#rt classification approaches. The
most likely path through the Markov model leads to a taggihghe input symbols, and consequently
entities are extracted by assembling maximal contiguogsiesees of words which are tagged with the
same entity tag.

There exist numerous IE systems based on HMMs, and with thesmoée diversity of augmentations
to the basic model was introduced in order to better addmssus aspects of the task, such as the need for
adequate representational power, or how to deal with gpafse to insufficient training data.

Nymble. Nymble (Bikel, Schwartz, & Weischedel, 1999) is one of theiest learning systems for
named entity recognition based on HMMs. It consists of amdirgmodel with one state for each entity
type, together with an additional state for tokens outsitieemtity. Inside each name-class state, words are
generated based on a statistical bigram language modehéreration of name-classes (states) and words
proceeds in three steps, which are repeated until the evdire sequence is observed.

1. Select a name-class, conditioning on the previous ndass-and the previous word.

2. Generate the first word from inside that name-class, bylitoning on the current and previous
name-classes.

3. Generate subsequent words inside the current name-alasse each word is conditioned on its
immediate predecessor.

In this model, words are generally assimilated with ordgrenls of words and word featurés, f),
where features belong to a predefined set of features, siwitlathose used in the SRV system. This further
exacerbates the problem of insufficient training data formeging the model parameters. Consequently, the
authors rely on a multi-level back-off scheme, with weigfiis each level of back-off set based on an
empirical formula.

HMMs and Shrinkage. A different approach is proposed in (Freitag & McCallum, 299where a
separate HMM is created for each of the extraction fields. skates in each HMMs are either background
or target states. Prefix and suffix states are distinguisioed dther background states in order to account for
distributional peculiarities in the case of tokens ocagtbefore or after the target field. Similarly, because
certain tokens tend to occur at the beginning or end of thigriemt, the target state is expanded into an array
of parallel paths of varying length. The problem of data sipars alleviated through the use of "shrinkage”,
a statistical technique which combines parameter estgriedm data-sparse states of a complex model with
estimates from data-rich states of a simpler model. Theodattlies on a hierarchy that represents expected
similarity between parameter estimates, with the estisaftéhe complex model at the leaves. In the case of
shrinkage for HMM, subsets of states having similar wordssion distributions are connected to a common
parent. Internal nodes in turn can share a common parer#t etteoding weaker similarities between the
corresponding groups of states. Word emission probadsiliissociated with states high in the hierarchy
become simpler than those for states below, with the top cifi &éerarchy corresponding to the uniform
distribution. The "shrinkage-based ” parameter estimatieiined as a linear interpolation of the estimates
in all distributions from the leaf to the root. The corresgiog mixture weights are optimized by running
EM on a held out dataset.

HMMs and Structure Learning. The two recently discussed HMM-based systems start witkedegsr
fined model structure, and learning is used only in estirgatie model parameters. For tasks in which the
entities to be extracted are densely represented insideuarcnt, as is the case with headers and research
paper references, a single HMM containing states for aiyetyppes may be more appropriate. Variability in
the relative ordering of the fields can be captured in the inpgallowing the same field to be represented
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by more than one state. Learning the structure of such a medeé focus of the approach described in
(Seymore, McCallum, & Rosenfeld, 1999).

2.2.2 Discriminative Models

We have already distinguished between IE approaches bageden classificatiomnd approaches based
on phrase classificationAnother useful dichotomy, orthogonal to the previous as#jat ofgenerativevs.
discriminativemodels. All HMM models reviewed here are generative in thesedhat they try to model
both the observation and hidden state sequences. Howeveagst application of HMMs, the observations
are given, the task being that of "decoding” the hidden statguence. Therefore, a major drawback of
generative models is that modeling effort is spent on olagienms, instead of being focused entirely on de-
scribing the state sequence. The attempt to model the cltgsrs while keeping the inference tractable
has led to theutput independence assumptiavhich stipulates that the current observation, given tire ¢
rent state, is independent of previous observations. Usumltext applications, observations correspond
to words, and consequently the output independence assumniptnot fair enough. The mismatch between
model assumptions and data becomes even more pronounceatidgaping features, such as word capital-
ization and part-of-speech, are added as observationghé&nimadequacy (McCallum, Freitag, & Pereira,
2000) is due to the way parameters are estimated. In an HMidnpzters are set to maximize the likelihood
of the observation sequence, while the task is that of ptiedithe state sequence given the observations.
All these mismatches and limitations are eliminated inrhsinative approaches, in which the conditional
probability of state sequences given the observationatidze core at the model.

2.2.3 Maximum Entropy Models

The Maximum Entropy (MaxEnt) (Berger, Della Pietra, & Delietra, 1996) principle has been widely
used to create discriminative probabilistic models fourgtlanguage tasks. The classification problem
is viewed in terms of a random process that produces an ougpué y from a finite setY, based on
the contextual informatior:, a member of a finite seX. In a token classification scenario, this means
associating a tag to each text token, whereas the contexs derived from the text centered at the current
token position. In maximum entropy modeling we are lookiog & probability distributiorp(y|z) that
satisfies a set of constraint§ € C derived from a collection of user specified featufgs:, y) € F. Each
feature is expressed as a binary function based on the ¢anééxhe current token position and its proposed
classificationy. For example, a useful feature in tagging for named entitpgaition is the capitalization
of the token to be classified, and it can be expressed as fllow

fi(z,y) = 1 if current token is capitalized & = Inside,
WHY) = 0 otherwise

The constrainC; associated with a feature functighis expressed simply by imposing that the expected
value of f; under the target distributiop(y|z) be the same as the expected valug;ainder the empirical
distributionp(z, y) (derived from the training data):

Ci =Y bz, y)filz,y) = ZP p(ylz)fi(z,y)

T,y

Out of a potentially infinite number of probability distritions p(y|z) satisfying a particular set of
constraints, the maximum entropy principle dictates thatselect the most "uniform” distribution, where
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a formal measure for the "uniformity” of a distribution isvgn by the information theoretic notion of
conditional entropy (Cover & Thomas, 1991):

H(Y|X) = Zp p(y|z) log p(y|z)

Based on the concept of duality from constrained optimizgtit can be shown that the distribution
p(y|z) satisfying the constraintS;, and which also minimizes the conditional entradyY | X ), is a mem-
ber of the exponential family:

pyls) = e (Z Aifxw,y))

whereZ(z) = >, exp (3 ; Aifi(z,y)) is a normalizing constant. An additional compelling justtion
for the maximum entropy principle is that the resulting rdigttion is also the model which, among all
log-linear models of the above form, maximizes the liketidl@mf the parameters given the training sample.

In (Ratnaparkhi, 1996), the authors describe a maximunopytapproach to part-of-speech tagging in
which they introduce a feature templatéz, b) which relates the tags of two consecutive tokens:

1 fyr1=a&y =9,
0 otherwise

fla,b)(ze, ys,y1-1) = {

They also define a similar feature template relating the tdghree consecutive tokens. Computing
the highest probability label for each token, from left tght, does not necessarily lead to the most likely
sequence of tags. To alleviate this, the authors use a beaohgerocedure, in which they consider tokens
from left to right, keeping at each position the five sequenaitags concentrating the most probability
mass. A more rigorous approach, which was later used in marirantropy models for named entity
recognition (Chieu & Ng, 2003), is to use a Viterbi-like aliflom for decoding, which guarantees finding
the most likely labeling of the entire sequence of words.

Maximum Entropy Markov Models. This new type of features, relating tags in consecutivetjoos,
suggests a class of maximum entropy models in which binatyifes may include a test on the class of the
previous token, besides conditioning on the observed iopotext and the mandatory test on the class of
the current token. Each such feature is uniquely identiidyl a conditiory on the observed input; and
the possible instantiationsandb for the current and previous tagg,andy; 1, as follows:

1 ifgley) =1& yp—1 =a & ys = b,
0 otherwise

f{g,a,b)(ze, yt,yt—1) = {

One "extreme” case is that when for any given input feagyffer each valid combinations of tags, b),
the above defined compound featytg, a, b) is included in the model. This is a maximum entropy model
in which the same set of input featurg¢ss associated with transitions between any two hiddensstedéed
b. It can be shown that this type of model is in fact equivaleithva Maximum Entropy Markov Model
(MEMM) (McCallum et al., 2000), which means that the sameegiensystem that is currently used for
learning a MaxEnt model, can also be used for learning an MENKbdel by simply providing it with the
appropriate set of features.

An MEMM (McCallum et al., 2000) creates an maximum entropydeldor each state in the model.
Thus, for a given state’, the framework learns an exponential model correspondirthe probability of
transitioning to another statefrom s’, given the observation sequenggi.e. p(s|s’,0). Consequently, if

11
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Figure 5: Unrolling an MEMM as a directed graphical model

the set of states iS, the MEMM will contain|.S| exponential models. Finding the most likely sequence of
states in this context can be done efficiently using a Vitékei algorithm. The procedure for learning the
parameters is the same as in the MaxEnt case i.e. using legpt@rative Scaling (Della Pietra, Della Pietra,
& Lafferty, 1997) or a gradient based method (the likelihdaaction is concave, and the gradient is simply
the difference between observed and expected featuresjount

2.2.4 Conditional Random Fields

A fundamental problem with MEMMs and other discriminativaov models based on directed graphical
models is that they are biased toward states with few suocesstes. This is the "label bias problem”
(Lafferty et al., 2001), which in a more general form stipetathat states with low entropy next-state dis-
tributions will take little notice of observations. The nimxm entropy model from (Ratnaparkhi, 1996) is
subject to this problem too, as some of the features it usesdirectly associated with transitions (they
contain conditions on labels of consecutive tokens). Thsae for this behavior stems from the fact that
the same probability mass is allocated for modeling thelilagpelecision at each position in the sequence.
A principled solution to this problem is that of ConditiorRhndom Fields (Lafferty et al., 2001), where a
single probability distribution is learned, one that madile joint probability of a label sequence given a
sequence of observations. Informally, this can be viewetfaste state model with unnormalized transition
probabilities. Therefore, some transitions may contgbubre than others to the overall score, depending
on the corresponding observations.

Yo Y1 Yo Y3 Y1 Y
xl x2 X3 xn—l xn

Figure 6: Unrolling a CRF as an undirected graphical model

Inference in CRFs can be done efficiently by accommodatiegctitresponding forward-backward or
Viterbi algorithms used for HMMs (Rabiner, 1989). Learnitng CRFs parameters can be cast as an op-
timization problem — the likelihood function is concaveusha global maximum can be found efficiently
using standard procedures, such as Improved lterativéin§d@lella Pietra et al., 1997), or gradient based
methods.
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We have started the list of token classification approachéskWM models, which are generative and
can be represented as directed graphical models. We havedatigat conditional models are more appro-
priate for the tagging task, one of their benefits being thay &llow for arbitrary, potentially overlapping
features over the observation sequence. Consequenthawealescribed Maximum Entropy models, a class
of conditional models which we have further shown that itssubes Maximum Entropy Markov Models, a
particular type of conditional Markov models. Although ¢keconditional models offer increased represen-
tational power when compared with HMMs (their generativarderpart), they are all plagued by the "label
bias problem”. This is particularly troublesome, as thebfgm does not occur with HMMs. The solution
came in the form of Conditional Random Fields, a type of wuded graphical models especially suited
for labeling sequences, which overcomes the label biadgmoby modeling the joint probability over the
entire label sequence given the observation sequence.elnetkt sections we describe a generic type of
undirected graphical models called Relational Markov Neks (RMNs) (Taskar et al., 2002) which can
model more general types of label correlations, and areetprently a suitable framework for our initial
approach to "collective information extraction”.

2.3 Markov Random Fields

Graphical models offer an intuitive representation of ¢bowdal independence between domain variables.
They come in two main flavors:

e Directed Models— well suited to represent temporal and causal relatiossfidayesian Networks,
Neural Networks, HMMSs)

¢ Undirected Models— appropriate for representing statistical correlatiogisvieen variables (Markov
Networks such as CRFs, RMNs, Boltzman Machines)

Markov Random Fields (Markov Networks) are a special cldssdirected graphical models. Below
is their definition, based on the following notation:

e V = a set of vertices used to denote random variables
e G = (V, E) an undirected graph

e N(v) = the set of neighbors of vertexc V

Definition 1 V is said to be a Markov Random Field with respectGaf for any vertex, its value depends
only on its neighbors i.eP(V;|V — V;) = P(V;|N(V;)),YV; € V

For the discriminative version, assumeis the set of observed variables, aridis the set of hidden
variables, suchthdl = X UY.

Definition 2 V is said to be a Conditional Markov Random Field with respedftif P(Y;|X,Y —Y;) =
P(Yi|X,N(Y;)),VY; € Y

Markov Random Fields characterize the underlying undeegraphical model via a local property,
namely the Markov assumption. On the other hand, Gibbs Rarfdelds, which are going to be defined
next, use a global property to characterize the correspgrgliaphical model. The corresponding notation
follows below:
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V = a set of vertices which stand for random variables

G = (V, E) an undirected graph

e C(G) = the set of cliques i+

e V. =the set of vertices in a cliquec C

o ¢ ={¢.: V. = Ry,c e C(G)} asetofclique potentials

Definition 3 V is said to be a Gibbs Random Field with respecGtd P(V) = + > cec(q) Pe(Ve), where
Z is a normalization constant.

Thus, a Gibbs Random Field is specified numerically by aaiagi potentials with cliques in the graph.
A cligue potential is a function on the set of possible configions of the clique, that associates a positive
number with each configuration. The joint probability diaition over all vertices in the graph is obtained
by taking a product over the clique potentials.

For the discriminative version, assumieis the set of observed variables, ayids the set of hidden
variables, such thdf = X U Y, and similarly, for every clique € C(G), letV, = X, UY..

Definition 4 V is said to be a Conditional Gibbs Random Field with respectGtaf P(Y|X) =

ﬁ > eec(a) Pe(Xe, Ye), whereZ(X) is a normalization constant.

Therefore, whereas a Markov Random Field is an undirectaghgeal model characterized by a local
property, a Gibbs Random Field is an undirected graphicadahoonstrained by a global property e.g.
the Gibbs distribution. The following theorem stipulathattthe two types of graphical models are in fact
equivalent.

Theorem 1 (Hammersley & Clifford, 1971y is a (conditional) MRF with respect t@ if and only if V' is
a (conditional) GRF with respect 1G.

Consequently, one can create a Markov Random Field by simegién underlying probability distribu-
tion that factorizes into potentials over all maximal ckgun the graph.

2.4 Relational Markov Networks

Relational Markov Networks (Taskar et al., 2002) are cood#tl Markov random fields augmented with a
set ofclique templatesA clique template specifies which vertices are to be comukicta clique, associating
the same clique potential with all cliques that it createthimgraph. Thus, a clique template provides at
the same time a procedure for creating edges in the grapha amechanism for tying parameters (clique
potentials) in the model.

In (Taskar et al., 2002), the RMN framework was introducedritter to model correlations between the
class labels of hyperlinked web pages — pages which are Iyt tend to have the same label. The clique
template responsible for this type of correlations is dietibelow:

e Cligue Creation Add an edge (a 2-node clique) between the labels of any twerligked web pages.

e Clique Potentials To all edges created by this template, associate the sarastbtfunctione. If
the number of possible class labelsNs then¢ can be specified as @i x N table of positive real
valuesi.eop: {1,2,...N} x {1,2,..., N} — R,.
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Figure 7 shows a sample RMN, where the above cliqgue templa#tes eight edges between the labels
of hyperlinked web pageX . The same potential is associated with all these edges. Other clique templates
are responsible for creating edges between each¥alzeld the corresponding local context featureXin

Figure 7: An RMN unrolled, with cliques between hyperlinkedb pages.

The CRFs, as previously illustrated in Figure 6, are theesfoparticular type of RMNSs, in which clique
templates create 3-node cliques between any two consedabels,Y; ; andY;, and their corresponding
contextual featureX;.

Given a set of potentials, doing inference with RMNs maymr&idwo things:

1. Computing the marginal probabilities for all hidden ahies, or a proper subset of them.
2. Computing the most probable assignment of values toddign variables in the model.

For tree-structured models, the belief propagation algari(Pearl, 1988) computes the marginals over
all hidden variables in time linear with the number of noded adges in the underlying graph. For graphs
with cycles, however, exact inference algorithms, suclhagdin-tree algorithm, have a running time expo-
nential in the size of the largest clique in the triangulageabh. An alternative to exact inference is to do
approximate inference using loopy belief propagation,clvthias shown reasonable performance in many
practical applications (Murphy et al., 1999).

Learning with RMNs means computing the clique potentialdach potential template, given training
data where both the content attributes and the labels aenaas One alternative is to use a gradient
based method in a Maximum Likelihood (ML) or Maximum A Pogier(MAP) setting. For the last type
of estimation, a “shrinkage” prior over the parameters sdygypically a zero-mean Gaussian. Because,
in both cases, the objective function is concave, the opétion procedure is guaranteed to find a global
maximum. An alternative learning method is to u&echastic gradient ascerm the form of a Voted
Perceptron (Collins, 2002). In this case, the objectivection is calculated for a single instance at a time,
and its gradient is approximated with the features counth®iMost Probable Explanation (MPE) labeling,
instead of computing the full feature count expectationvétheless, inference is needed in both learning
scenarios, either for computing marginals over subsetgldehn variables, of for deriving the MPE labeling.

Viewed from the RMN perspective, CRFs are a special typenefli-chain undirected graphical mod-
els, and, as with any linear-chain or tree-structured geaplmodels, both exact inference and parameter
estimation can be solved efficiently.
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3 Completed Research

Of all IE systems mentioned in the previous section, thaBef/more et al., 1999) is able to model influences
between various types of entities based on the order in wthigh occur in the document — in headers of
research papers, for example, the author's name usuallesafter the title. This type of order-based
correlations is captured by learning an HMM structure inchtthe same entity type may be associated with
multiple states in the model, while the set of transitiorflents the order in which various entity types occur
in the training data.

There have been some previous attempts to use global infionmi@om repetitions, acronyms, and
abbreviations during extraction. In (Chieu & Ng, 2003), & seglobal features are used to improve a
Maximum-Entropy tagger; however, these features do ndt Gdpture the mutual influence between the
labels of acronyms and their long forms, or between entpetidons. In particular, they only allow earlier
extractions in a document to influence later ones and notwecsa.

In this section we are going to introduce a collective apgino® Information Extraction which will
allow the incorporation of arbitrary correlations betweka labels of potential extractions from the same
document. For this, we shall use the RMN framework to do etitsa by phrase classification.

3.1 Candidate Entities

Doing phrase classification requires a set of phrases tovsiiér. Throughout this document, we will use

the termscandidate entitiescandidate extractionsor candidate phraseto refer to the set of phrases that
are to be classified as being valid extractions or not. Cenisig as candidate entities all contiguous word
sequences from a document would lead to a quadratic numiptrrages, which would adversely affect the
time complexity of the extraction program. Various heucsexist however which can significantly reduce
the size of the candidate set, and some of them are listed/belo

e H1: In general, named entities have limited length. Therefone, simple way of creating the set of
candidate phrases is to compute the maximum length of atitated entities in the training set, and
then consider as candidates all word sequences whose lisngphio this maximum length. This is
also the approach followed in SRV (Freitag, 1998).

e H2: In the task of extracting protein names from Medline absétawe noticed that, like most en-
tity names, almost all proteins in our data are base noursphrar parts of them. Therefore, such
substrings are used to determine candidate entities. Tid evgsing options, we adopt a very broad
definition of base noun phrase — a maximal contiguous sequafitokens whose POS tags are from
{"3J”, "VBN”, "VBG”, "POS”, "NN”, "NNS”, "NNP”, "NNPS”, "CD” , ="}, and whose last
word (the head) is tagged either as a noun, or a number. Caadidtractions then consist of base
NPs, together with all their contiguous subsequences kidagla noun or number.

e H3: The CoNLL 2003 English corpus (Tjong Kim Sang & De Meulderp2pcontains four types
of named entities: persons (PER), locations (LOC), orgdmins (ORG), and other (MISC). A more
appropriate heuristic in this case is to consider as catefiddl sequences of proper names, potentially
interspersed with prepositions, commas, conjunctionsbnite articles.

Table 1 below shows the candidate entities generated by HIH&non a fragment from a Medline
abstract. Similarly, Table 2 shows candidate entities gead by H1 and H3 on a fragment from a CoNLL
document. Both H2 and H3 are strong heuristics, in the sdraetey drastically reduce the number of
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candidate entities. In the next sections, we shall focufienask of extracting protein names from Medline
abstracts.

\ “the control of humarribosomal protein L22 (rpL22 ) “ |

o theo the controlo the control ofo the control of human the control of

H1 | human ribosomal ... o ribosomal ribosomal proteir ribosomal protein L22

o ribosomal protein L22 ¢ ribosomal protein L22 (rpL22 ... 0 L22 0 L22 (o
oL22 (rpL220 L22 (rpL22)o ...0orpL22 orpL22)o)o

H2 o controlo human ribosomal proteishuman ribosomal protein L22

o ribosomal proteir ribosomal protein L22 o protein L220 L22 o rpL22 o

Table 1: Candidate Extractions: Medline.

“Israel gavePalestinian Presidentyasser Arafat permission on Thursday" \

o Israel o Israel gave» Israel gave Palestinianlsrael gave Palestinian
H1 | President ... o Palestiniano Palestinian PresidentPalestinian President Yassgr
o Palestinian President Yasser Arafat. o Yassero Yasser Arafat o President
Yasser Arafat permission... o ono on Thursday Thursday
H3 o Israel o Palestiniano Palestinian PresidentPalestinian President Yasser
o Palestinian President Yasser Aradad®resident President Yasser
o President Yasser ArafatYassero Yasser Arafato Arafato

Table 2: Candidate Extractions: CoNLL.

3.2 Entity Features

The set of features associated with each candidate is basthe deature templates introduced in (Collins,
2002), used there for training a ranking algorithm on theasttons returned by a maximum-entropy tagger.
Many of these features use the concepivofd type which allows a different form of token generalization
than POS tags. Thshort typeof a word is created by replacing any maximal contiguous seces of
capital letters with 'A, of lower-case letters with 'a’, drof digits with '0’. For example, the wordiGF-1
would be mapped to typ&-0.

Consequently, each token positidim a candidate extraction provides three types of inforomatithe
word itselfw;, its POS tag;, and its short type;. The full set of features types is listed in Table 3, where
we consider a generic candidate extraction as a sequence dfwordswows ...wy,.

Each feature template instantiates numerous featuresexXaonple, the candidate extractittDAC1
enzyme’has the head wordiD=enzymethe short typesST=AQa, the prefixePF=A0 andPF=A0_a, and
the suffixesSF=aandSF=AQa. All other features depend on the left or right context of ¢in¢ity. Feature
values that occur less than three times in the training datéleered out.

3.3 The RMN Framework for Entity Recognition

Given a collection of documeni8, we associate with each documént D a set of candidate entitiesE,
in our case a restricted set of token sequences from the dodui8ection 3.1). Each entitzy € d.E is
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Description | Feature Template

Head Word W(n

Text W(p)-W(1)----W(p)

Short Type 8(0)-S(1)—---8(n)

Bigrgm Left W(—1)-W(0) W(—1)-5(0)
(4 blgram_s) 8(=1)-W(0) $(=1)-5(0)
Blgr_am Right W(n)-W(n+1) W(p)-S(n+1)
(4 bigrams) 8(n)-W(n+1) 8(n)-8(n+1)
Trigram Left W(_2)-W(_1)-W(p)

(8 trigrams) $(—2)-8(=1)-5(0)

Trigram Right W(n)-W(n+1)-W(n4+2)

(8 trigrams) 8(n)-5(n+1)-5(n+2)

POS Left t-1)

POS Right t(n—i—l)

Prefix S(0)  S(0)-5(1)

(n+1 prefixes)| s(g)-8(1)—--S(n+1)

Suffix S(n) S(n—1)-5(n)
(

(n+1 suffixes) | s(0)-8(1)—--S(n+1)

Table 3: Feature Templates.

characterized by a predefined set of boolean attribufggSection 3.2), the same for all candidate entities.
One particular attribute is.label which is set to 1 ife is considered a valid extraction, and 0 otherwise.
In this document model, labels are the only hidden varialzled the inference procedure will try to find a
most probable assignment of values to labels, given thecumodel parameters.

Each document is associated with an undirected graphicdemaith nodes corresponding directly to
entity attributes, one node for each attribute of each citeientity in the document. The set of edges is
created by matchinglique templateagainst the entire set of entitigdsE. A clique template is a procedure
that finds all subsets of entities satisfying a given consfrafter which, for each entity subset, it connects
a selected set of attribute nodes so that they form a clique.

Formally, there is a set of clique templat@swith each template € C specified by:

1. A matching operatah/, for selecting subsets of entities], (E) C 2¥

2. A selected set of featurek = (X, Y.), the same for all subsets of entities returned by the majchin
operator.X. denotes the observed features, whilgefers to the hidden labels.

3. A clique potentiaky. which gives the compatibility of each possible configunatad values for the
features inS, s.t. ¢.(s) > 0,Vs € S..

Given a setE of nodes,M.(E) consists of subsets of entities whose attribute nétiesre to be con-
nected in a clique. In previous applications of RMNs, theskld subsets of entities for a given template
have the same size; however, some of our clique templatesmasgh a variable number of entities. The
setS. may contain the same attribute from different entities. allgufor each entity in a matching set, its
label is included inS.. All these will be illustrated with examples in Sections ard 3.5 where the clique
templates used in our model are described in detail.
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Depending on the number of hidden labelginwe define two categories of clique templates:

e Local Templatesare all templates € C for which |Y;| = 1. They model the correlations between
an entity’s observed features and its label.

¢ Global Templatesare all templateg € C for which |Y;| > 1. They capture influences between
multiple entities from the same document.

After the graph model for a documedihas been completed with cliques from all templates, thegsrob
bility distribution over the random field of hidden entitypklsd.Y given the observed featurésX is given

by the Gibbs distribution:

1
P(d.Y|d.X) = 7% CEHCGEAHd'E) bc(G.X.,G.Y,) 1)

whereZ(d.X) is the normalizing partition function:

z@x)=>_ I II ¢c@GXx.,GY.) @)

Y c€C GEM.(d.E)

3.4 Local Cliqgue Templates

As described in the previous section, the role of local ditemplates is to model correlations between an
entity’s observed features (see Table 3) and its label.ftly diltering, we are left withk distinct boolean
featuresf;, one way to model these correlations is to introddecal (clique) template& Ty, LT, ..., LT},.

A templateLT; would then be defined as follows:

1. The matching operatav/; is set to match any single-entity Set}.

2. The collection of attributes; corresponding to a singleton entity sgt} is defined to beS; =
(Xi,Y;) = ({e-fi}, {e.label}). This amounts to introducing in the RMN graphattribute nodes for
each candidate entity, which are to be connected by tloeal templates to the corresponding entity
label node. The 2-node cliques created byiamplates around one entity are illustrated in Figure 8.

3. The potentialy; associated with all 2-node cliques created by templaiewould consist in 2 x 2
table (as botle. f; ande.label have cardinality 2 — assuming only one entity type is to beaektd,
we need only two values for the label attribute).

€/abel

Figure 8: RMN generated by local templates.
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Each entity has the label node connected to its own sét lmhary feature nodes. This leads to an
excessive number of nodes in the model, most of which hausevatro. The number of nodes can be
reduced if, for each entity, we include in the graphical maady those nodes for which the corresponding
feature variable has value 1. Consequently, the table ia¢sdavith the local potential will be reduced from
4 to 2 values, specifying now the compatibility between tlegtture and the two possible values for the
entity label.

Factor Graphs. An alternative, useful representation for Markov randortd§ies provided by factor
graphs (Kschischang, Frey, & Loeliger, 2001). These ararbitp graphs which express how a global func-
tion of many variables (the probabilit?(d.Y'|d.X) in Equation 1) factors into a product of local functions
(the potentialspc(G.X,, G.Y.) in Equation 1). Factor graphs subsume many different typesaphical
models, including Bayesian networks and Markov randomsdielthe sum/max-product algorithm used for
inference in factor graphs generalizes a wide variety obritlyms including the forward/backward algo-
rithm, the Viterbi algorithm, and Pearl’s belief propagatialgorithm (Pearl, 1988). To obtain the factor
graph for a given Markov random field, we copy all original eedrom the MRF, referred henceforth as
variable nodesand create potential noddor each instantiated clique potential. Each potentiakenedhen
linked to all variable nodes from the associated clique.

In the case of local clique potentials, given that all featnodes have value 1, we can eliminate them
from the equivalent factor graph representation. Whatfisthen is a variable node for the entity label,
together with nodes for potential functions, one potemt@ade for each entity feature whose value has been
observed to be 1. As an example, Figure 9 shows that part ¢d¢ka graph which is generated around the
entity label forHDAC1 enzyme’(with variable nodes figured as empty circles and potentides figured as
black squares).

€label

]

(pHD=enzyme (pPF=AO_a (pSF=AO_a
Per=no QPsF-a

Figure 9: Factor Graph for local templates.

Note that the factor graph above has an equivalent RMN grapsisting of a one-node clique only, on
which it is hard to visualize the various potentials invalvel' here are cases where different factor graphs
may vield the same underlying RMN graph, which makes thefagptaph representation preferable.

3.5 Global Cligue Templates

Global clique templates enable us to model hypothesizedeinfles between entities from the same doc-
ument. They connect the label nodes of two or more entitiggchy in the factor graph, translates into
potential nodes connected to at least two label nodes. Iexpariments we use three global templates:
Overlap Template (OT): No two entity names overlap in the text i.e if the span of onéers [sq, e ]
and the span of another entity[is, e3], ands; < sy, thene; < so.
Repeat Template (RT): If multiple entities in the same document are repetitionshef same name,
their labels tend to have the same value (i.e. most of therpratein names, or most of them are not protein
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names). Later we discuss situations in which repetitiote@fame protein name are not tagged as proteins,
and design an approach to handle this.

Acronym Template (AT): It is common convention that a protein is first introduced tsylong name,
immediately followed by its short-form (acronym) in parteeses.

3.5.1 The Overlap Template

The definition of acandidate extractiorirom Section 3.1 leads to many overlapping entities. Fongla,
'glutathione S - transferasé$ a base NP, and it generates five candidate extractigiogthione’, 'glutathione
S’, 'glutathione S - transferas€'S - transferasg’and'transferase’ If 'glutathione S - transferaséias label-value
1, the other four entities should all have label-value Oglose they overlap with it.

This type of constraint is enforced by the overlap templatioHows:

1. TheMor operator matches any two overlapping candidate enfitieses }.

2. The set of attributeSor selected by this template for two overlapping entities, ez} is Sor =
(Xor,Yor) = (0,{e1.label,eq.label}). This translates in the factor graph into a potential node
connected to the two selected label nodes.

3. The potential functioor is set so that at most one of the overlapping entities can laget-value
1, as illustrated in Table 4.

[ Gor | exdabel = 0 | ey.dabel =1 |
es.label =0 1 1
es.label =1 1 0

Table 4: Overlap Potential.

Continuing with the previous example, becaugatathione S’and’S - transferaseare two overlapping
entities, the factor graph model will contain an overlapeptial node connected to the label nodes of these
two entities.

An alternative solution for the overlap template is to ceeatpotential node for each token position
that is covered by at least two candidate entities in the mh@eu, and connect it to their label nodes. The
difference in this case is that the potential node will benemred to a variable number of entity label nodes.
However this second approach has the advantage of creaiwegy potential nodes in the document factor
graph, which results in faster inference.

3.5.2 The Repeat Template

We could specify the potential for the repeat template imalar 2 x 2 table, this time leaving the table
entries to be learned, given that assigning the same labepéditions is not a hard constraint. However we
can do better by noting that the vast majority of cases wheep@ated protein name is not also tagged as a
protein happens when it is part of a larger phrase ithi@gged. For exampléiDAC1 enzyme’is a protein
name, therefortHDAC1’ is not tagged in this phrase, even though it may have beerdgggviously in the
abstract where it was not followed byhzyme’. We need a potential that allows two entities with the same
text to have different labels if the entity with label-valQés inside another entity with label-value 1. But a
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candidate entity may be inside more than one “includingitgrdnd the number of including entities may
vary from one candidate extraction to another. Using thengta from Section 3.5.1, the candidate entity
'glutathione’is included in two other entitiesglutathione S’and’glutathione S - transferase’

In order to instantiate potentials over variable numberabtl nodes, we introducelagical OR clique
templatethat matches a variable number of entities. When this teptesatches a subset of entities
e1, €2, ..., en, it Will create an auxiliary OR entitepr, with a single attributeepg.label. The potential
function ¢pr is set so that it assigns a non-zero potential only wheglabel = ey.label V es.label V ... V
en-label. The cliques are only created as needed, e.g. when theaayx@R entity is required by repeat
and acronym clique templates.

Figure 10 shows the factor graph for a sample instantiatidheorepeat template using the OR template.
Here,u andv represent two same-text entities,, us, ... u, are all entities that include, andvy, v, ...,
vy, are entities that include. To avoid clutter, all entities in this and subsequent fagraphs stand for
their corresponding label features. The potential fumcfig;- can either be preset to prohibit unlikely label
configurations, or it can be learned to represent an ap@tepsoft constraint. In our experiments, it was
learned since this gave slightly better performance.

RT
O
u uOr \ \6r
Qo @,
'K O ---O
u, U u, Vvqy Vo Vin

Figure 10: Repeat Factor Graph.

Following the previous example, suppose that the phigsethione’ occurs inside two base NPs in
the same documenitlutathione S - transferasend’glutathione antioxidant systemThen the first occurrence
of 'glutathione’ will be associated with the entity, and correspondingly its including entities will bg
= 'glutathione S’and uy = 'glutathione S - transferase’'Similarly, the second occurrence 'gfutathione’ will
be associated with the entity while the including entities will be; = 'glutathione antioxidantand v, =
'glutathione antioxidant system’

3.5.3 The Acronym Template

One approach to the acronym template would be to use an edggorithm for identifying acronyms and
their long forms in a document, and then define a potentiadtfan that would favor label configurations

in which both the acronym and its definition have the samel.lane such algorithm is described in
(Schwartz & Hearst, 2003), achieving a precisiorf6f at a recall rate 082%. However, because this
algorithm would miss a significant number of acronyms, weshdecided to implement a softer version as
follows: detect all situations in which a single word is ersgd between parentheses, such that the word
length is at least 2 and it begins with a letter. betenote the corresponding entity. Lat, us, ...,u, be all
entities that end exactly before the open parenthesisisifdla situation in whichv is an acronym, then one
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of the entitiesu; is its corresponding long form. Consequently, we use a &gk template to introduce
the auxiliary entityupr, and connect it t@’s node label through an acronym potentted T, as illustrated
in Figure 11.

NS
Uy, v
Qo
O
u, U, U,

Figure 11: Acronym Factor Graph.

For example, consider the phrage antioxidant superoxide dismutase - 1 (SOQWhere bothsuperoxide
dismutase - 1and’SOD1’ are tagged as proteinssOD1’ satisfies our criteria for acronyms, thus it will be
associated with the entityin Figure 11. The candidate long forms afe="antioxidant superoxide dismutase
- 1’, ug = 'superoxide dismutase - landug = 'dismutase - 1

3.6 Inference in Factor Graphs
There are two problems that need to be addressed when warikingRMNSs:
1. Inference: Usually, two types of quantities are needed from an RMN model

e The marginal distribution for a hidden variable, or for aseiof hidden variables in the graph-
ical model.

e The most probable assignment of values to all hidden vaasaibl the model.

2. Learning: As the structure of the RMN model is already defined by itsudigemplates, learning
refers to finding the clique potentials that maximize thelitkood over the training data. Inference

is usually performed multiple times during the learningoainm, which means that an accurate, fast
inference procedure is doubly important.

In our setting, given the clique potentials, the inferertep $or the factor graph associated with a document
involves computing the most probable assignment of valudset hidden labels of all candidate entities:

dY* =arg max P(d.Y|d.X) (3)

whereP(d.Y |d.X) is defined as in Equation 1. A brute-force approach is exdudimce the number of
possible label configurations is exponential in the numibeandidate entities. The sum-product algorithm
(Kschischang et al., 2001) is a message-passing algoritlamncan be used for computing the marginal
distribution over the label variables in factor graphs withcycles, and with a minor change (replacing
the sum operator used for marginalization with a max oper@tean also be used for deriving the most
probable label assignment. In our case, in order to get aliagyaph, we would have to use local templates
only. However, it has been observed that the algorithm aftewerges in general factor graphs, and when
it converges, it gives a good approximation to the correatgmals. The algorithm works by altering the
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