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Abstract

Flood is a communication primitive that can be initiated
by the base station of a sensor network to send a copy of
some message to every sensor in the network. When a flood
of some message is initiated, the message is forwarded by
every sensor that receives the message until the sensors de-
cide not to forward the message any more. This uncontroled
flood can cause the forwarded messages to collide with one
another, with the result that many sensors in the network
do not receive any copy of the flooded message. In this pa-
per, we present a family of flood protocols, called the dis-
ciplined flood protocols, that aim to reduce or prevent most
message collisions that occur in a regular flood protocol.
We show by simulation that whereas a regular flood proto-
col can cause a flooded message to reach between 60% and
80% of all sensors in the network, a disciplined flood proto-
col can cause a flooded message to reach between 88% and
99% of all sensors in the network.

1. Introduction

Flood is a communication primitive that can be used by
the base station of a sensor network to send a copy of a data
message to every sensor in the network. The execution of a
flood starts by the base station sending a copy of the data
message to everyone of its neighboring sensors. Whenever
a sensor receives a data message, it keeps a copy of the mes-
sage and forwards the message to everyone of its neighbor-
ing sensors and the cycle repeats.

To limit the (potentially indefinite) forwarding of a
flooded data message within a sensor network, the mes-
sage is augmented with a fieldh whose value is in a
range0::hmax. When the base station sends the data mes-
sage for the first time, fieldh in the message has the

base station

v

u

v’

w

Figure 1. A sensor network

valuehmax. Whenever a sensor receives a data(h) mes-
sage, whereh � 1, then the sensor forwards the mes-
sage as a data(h�1) message. Whenever a sensor receives a
data(0) message, then the sensor does not forward the mes-
sage any further.

Flood has several significant uses in sensor networks. In
one use, the base station of a sensor network needs to re-
set the network, and it uses flood to send a reset message to
every sensor in the network requesting that each sensor re-
sets itself upon receiving the message. In a second use, the
base station needs to pass some data message to some (not
necessarily all) sensors in the network. In this case, the base
station uses flood to send the data message to all the sen-
sors in the network, but name in the message those sensors
that should find the message relevant.

Unfortunately, flood can cause severe problems in sensor
networks.

i. Collisions within a Single Flood:Consider the sensor
network in Figure 1. If the base station in this net-
work initiates a flood by sending a data(1) message,
then each of the two neighboring sensors,v andv0, of
the base station receives the message and forwards it as
a data(0) message. Because the two data(0) messages
are forwarded (byv andv0) at the same time, they col-
lide and sensorw never gets a copy of the flooded data



base station

v w w’ w’’u

Figure 2. A sensor network

message.

ii. Collisions of Consecutive Floods:If the base station
of a sensor network initiates one flood and shortly af-
ter initiates another flood, some forwarded messages
from these two floods can “collide” with one another
causing many sensors in the network not to receive the
message of either flood, or (even worse) not to receive
the messages of both floods.

iii. Redundant Forwarding:Consider the sensor network
in Figure 2. If the base station in this network initi-
ates a flood by sending a data(3) message, then

sensorv forwards a data(2) message,
sensorw forwards a data(1) message,
sensorw0 forwards a data(0) message, and
sensorw00 forwards no message.

Unfortunately sensorv also receives the data(1) mes-
sage that is forwarded by sensorw and redundantly
forwards it as a data(0) message. Thus, both sensorsv
andw redundantly receive the message one time each,
and sensorv redundantly forwards the message one
more time.

A common method to recognize redundantly forwarded
messages is to attach a sequence number to each flood mes-
sage as in [4], [3]. In a sensor network, these sequence num-
bers should cover a small range, since sensors have limited
memory and bandwidth. In this case, a sensor may fail to
distinguish new messages from redundantly forwarded mes-
sages, if some flood messages are lost.

In this paper, we present a family of flood protocols
where the above three problems do not occur. We refer to
the protocols in this family as disciplined flood protocols.A
disciplined flood protocol has the following important fea-
tures or properties:

i. Few Collisions within a Single Flood:When a sensoru receives a data(h) message and checks thath � 1
(which means thatu needs to forward the message),
thenu selects a random time period, called the for-
warding period, and forwards the message only at the
end of that period. (Recall thatu forwards the message
as a data(h� 1) message.)

ii. No Collisions of Consecutive Floods:After the base
station initiates a flood by sending a data(hmax) mes-
sage, it abstains from initiating a second flood for a
long enough time period until it is certain that the sen-
sors in the network are no longer forwarding data mes-

sages that belong to the first flood. In this paper, we re-
fer to the time period between two consecutive floods
as the flood period, and compute a lower bound on the
flood period that can be used in our disciplined flood
protocols.

iii. No Redundant Forwarding:When a sensoru receives
a data(h) message and decides that it needs to for-
ward the message as a data(h � 1) message after a
random forwarding period,u computes a time period
called the deafness period. Ifu receives any data(h0)
message during the computed deafness period,u con-
cludes that the data(h0) message belongs to the same
flood as that of the earlier data(h) message, and dis-
cards the data(h’) message without keeping a copy of
it and without forwarding it.

Several flood protocols have been proposed to reduce the
redundantly forwarded messages in a flood based on prob-
ability, location, or neighbor information [4], [5], [6], [7].
Unlike these protocols, our disciplined flood protocols con-
trol the activities within a single flood or across consecutive
floods in order to satisfy the above three properties.

2. A Model of Sensor Networks

In this section, we present a formal model of the execu-
tion of a sensor network. We use this model to specify the
disciplined flood protocol in the next section. We also use
this model to verify this protocol in Section 4, and to de-
velop our simulation in Section 5.

Thetopologyof a sensor network is a directed graph that
satisfies the following two conditions. First, each node in
the topology represents a distinct sensor in the sensor net-
work. Second, each directed edge (u; v) from nodeu to
nodev in the topology indicates that every message that is
sent by sensoru can be received by sensorv (provided that
neither sensorv nor any “neighboring sensor” ofv sends
a message at the same time when sensoru sends its mes-
sage).

If the topology of a sensor network has a directed edge
from a sensoru to a sensorv, thenu is called anin-neighbor
of v andv is called anout-neighborof u. (Note that a sen-
sor can be both an in-neighbor and an out-neighbor of an-
other sensor in the sensor network.)

As an example, Figure 3 shows the topology of a sen-
sor network. This network has six sensors, and sensoru in
this network has three out-neighbors, namely sensorsv, v0,
andv00. Thus, if sensoru sends a message, then this mes-
sage can be received simultaneously by the three sensorsv,
andv0, andv00. Note that sensoru is both an in-neighbor
and out-neighbor of sensorv0 in this network.

We assume that during the execution of a sensor network,
the real-time passes through discrete instants: instant 1,in-
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Figure 3. Topology of a sensor network

stant 2, instant 3, and so on. The time periods between con-
secutive instants are equal. The different activities thatcon-
stitute the execution of a sensor network occur only at the
time instants, and not in the time periods between the in-
stants. We refer to the time period between two consecutive
instants as atime unit. (The value of a time unit is not crit-
ical to our current presentation of a sensor network model,
but we estimate that the value of the time unit is around 100
milliseconds.)

At a time instantt, the time-out of a sensoru may expire
causingu to execute its timeout action. Executing the time-
out action of sensoru causesu to update its own local vari-
ables and to send at most one message. It may also causeu to execute the statement “timeout-after<expression>”
which causes the time-out ofu to expire (again) afterk time
units, wherek is the value of<expression> at instantt. The
timeout action of sensoru is of the following form:

timeout-expires ->
<update local variables of u>;
<send at most one message>;
<may execute timeout-after <expression>>

To keep track of its time-out, each sensoru has an im-
plicit variable named “timer.u”. At each time instant, vari-
able timer.u is either “present” or “not-present”. Moreover,
if variable timer.u is present at an instantt, then it has a pos-
itive integer value att. Otherwise, it is not-present and has
no value att.

If sensor u executes a statement “timeout-after<expression>” at instantt, then timer.u is present att + 1
and its value att + 1 is the value of<expression> at in-
stantt.

If timer.u is present and its value isk, wherek > 1, at in-
stantt, then timer.u is present and its value isk�1 at instantt+ 1.

If timer.u is present and its value is 1 att, then sensoru
executes its timeout action att and timer.u is not-present att+1 unlessu executes “timeout-after<expression> as part
of its timeout action.

If a sensoru executes its timeout action and sends a mes-
sage at instantt, then any sensorv, that is an out-neighbor
of u, receives a copy of the message at instantt, provided
that the following two conditions hold.

i. Sensorv does not send any message at instantt. (This
condition indicates that either sensorv does not exe-
cute its timeout action att, or it executes its timeout
action att but this execution of its timeout action does
not include sending a message.)

ii. Sensorv has no in-neighbor, other than sensoru, that
sends a message at instantt. (If v sends a message att or if an in-neighbor ofv, other thanu, sends a mes-
sage att, then this message is said tocollide with the
message sent byu at t with the net result thatv re-
ceives no message att.)

If a sensoru receives a message at time instantt, thenu executes its receiving action att. Executing the receiving
action of sensoru causesu to update its own local variables
and it may causeu to execute the statement “timeout-after<expression>” which causes the time-out ofu to expire af-
ter k time units, wherek is the value of<expression> at
instantt. The receiving action of sensoru is of the follow-
ing form:

rcv <msg> ->
<update local variables of u>;
<may execute timeout-after <expression>>

It follows from the above discussion that at a time in-
stant, a sensoru executes exactly one of the following:

i. u sends one message, but receives no message.

ii. u receives one message, but sends no message.

iii. u sends no message and receives no message.

In the next section, we specify the discipline flood proto-
col using the formal model of sensor protocols in this sec-
tion.

3. Disciplined Flood Protocol

Consider a network that hasn sensors. In this network,
sensor 0 is the base station and can initiate message floods
over the network. To initiate the flood of a message, sensor
0 sends a message of the form data(hmax), wherehmax is
the number of hops to be made by this data message in the
network.

Once sensor 0 broadcasts a message, it needs to wait
enough time until this message is no longer forwarded in
the network, before broadcasting a next message. The time
period that sensor 0 needs to wait after broadcasting a mes-
sage and before broadcasting a next message is called the
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Figure 4. Three states of a sensor

flood period. The flood period consists off time units. (A
lower bound on the value off is computed in the next sec-
tion.) Thus, after sensor 0 broadcasts a message, it sets its
timeout to expire afterf time units in order to broadcast a
next message.

A formal specification for sensor 0 is as follows.

sensor 0 {base station}

const hmax : integer, {max hop count}
f : integer {flood period}

begin
timeout-expires -> {generate new msg}

send data(hmax);
timeout-after f

end

Note that sensor 0 does not receive any messages.
When a sensor receives a data(h) message, the sensor ac-

cepts the message and forwards it as a data(h� 1) message,
providedh > 0. To reduce the probability of message col-
lision, any sensoru, that receives a message, chooses a ran-
dom period whose length is chosen uniformly from the do-
main 1..tmax, and sets its timeout to expire after the cho-
sen random period, so thatu can forward the received mes-
sage at the end of the random period. This random time pe-
riod is called theforwarding period.

Once sensoru accepts a received message and decides
that it needs to forward the message after a random forward-
ing period, sensoru discards all subsequently received mes-
sages during a time period, called thedeafness period, un-
til the same message is no longer forwarded in the network.
This way, sensoru is guaranteed not to accept or forward
the same message multiple times. The deafness period con-
sists ofd time units. (A lower bound on the value ofd is
computed in the next section.) At the end of the deafness
period, sensoru times-out and becomes ready to accept and
forward the next received message.

At each instant, a sensoru is in any of three states: an ac-
cepting state, a forwarding state and a deafness state. In the
accepting state,u is ready to accept and forward any data(h)

message it receives. In the forwarding state,u is waiting for
its forwarding period to finish, so that it can forward the last
data(h) message it has accepted. In the deafness state,u dis-
cards any data(h) message it receives. It stays in this state
for the duration of the deafness period (d time units). Fig-
ure 4 shows the three states of sensoru and the different
transitions between them. The cycle of an accepting state
followed by a forwarding state and then a deafness state (or
an accepting state followed by a deafness state) is repeated
over and over. Sensoru maintains a state variablest that
has three possible values 0, 1, and 2.st = 0 if u is in accepting state1 if u is in forwarding state2 if u is in deafness state

A formal specification for sensors1::n� 1 is as follows.

sensor 1..n-1

const hmax : integer, {max hop count}
tmax : integer, {max frwrding period}
d : integer {deafness period}

var st : 0..2, {state, init. 0}
h,hlast : 0..hmax, {rcvd,last hop cnt}
t : 1..tmax {forwarding period}

begin
timeout-expires ->

if st!=1 -> st := 0
[] st=1 -> send data(hlast);

st := 2;
timeout-after d+1

fi

[] rcv data(h) ->
if st=0 -> {accept msg}

if h>0 -> st := 1;
hlast := h-1;
t := random;
timeout-after t

[] h=0 -> st := 2;
timeout-after d+1

fi
[] st>0 -> skip
fi

end

4. Protocol Analysis

In this section, we estimate the deafness period and the
flood period of the above disciplined protocol, and analyze
the behavior of this protocol.

Theorem 1 : (The Deafness Period Theorem)d � hmax � tmax
Proof: When sensor 0 broadcasts a data(hmax) message at
times, an out-neighboru of sensor 0 receives it ats and can
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choose the maximum possible valuetmax for the forward-
ing period. At times+ tmax, u sends it as a data(hmax-1)
message. Similarly, an out-neighboru0 of sensoru receives
it at s+ tmax and can choosetmax for the forwarding pe-
riod. At time s + 2 � tmax, u0 sends it as a data(hmax-
2) message. This forwarding process continues until this
message makeshmax + 1 hops (i.e.h = 0). Therefore,
some sensoru can receive the last data(0) message at times + hmax � tmax in the worst case. Based on this obser-
vation, the maximum time period a sensoru can receive the
same message again, afteru receives the message for the
first time, is less than or equal tohmax � tmax. The deaf-
ness period needs be at leasthmax � tmax to guarantee
that sensoru does not accept and forward the same message
again. 2
Theorem 2 : (The Flood Period Theorem)f � hmax � tmax+ d+ 1
Proof When sensor 0 broadcasts a message at times,
some sensoru can receive the last data(0) message at times+hmax�tmax in the worst case. Thenu stays in the deaf-
ness state ford time units, and finallyu becomes ready to
accept a next message ats+ hmax � tmax+ d+ 1. Thus,
the maximum time period from the time sensor 0 sends a
message and to the time sensoru becomes ready to accept
the next message ishmax � tmax + d + 1. The flood pe-
riod needs to be at leasthmax � tmax + d + 1 to guar-
antee that no forwarded messages from two floods collide
with one anther, and every sensor is ready to accept a mes-
sage when sensor 0 broadcasts a new message. 2

To analyze the protocol, we use the minimum possible
values for the flood periodf and the deafness periodd, from
Theorem 1 and 2, as follows:d = hmax � tmaxf = 2 � hmax � tmax+ 1

Adopting these values ofd andf , it is straightforward
to show that the disciplined flood protocol satisfies the fol-
lowing three properties discussed in Section 1: (i) Few col-
lisions within a single flood. (ii) No collisions of consecu-
tive floods. (iii) No redundant forwarding.

Note that in this protocol, if a sensor receives a message
in an accepting state, then the message is new and the sen-
sor accepts it. Moreover, sensor 0 broadcasts a new mes-
sage only when every sensor in the network is in an accept-
ing state. Therefore, the sensor does not discard any new
message, if the sensor receives it.

5. Protocol Simulation

We have developed a simulator that can simulate the ex-
ecution of a regular flood protocol and the execution of our
disciplined flood protocol. In this simulator, a network is anN �N grid whereN is the number of sensors in each side
of the grid. This simulator allows us to configure the param-
eters of a protocol such astmax andhmax.

(i−1,j−1)

(i+1,j)

(i,j−1)

(i−1,j)

(i,j+1)

(i,j)

(i+1,j+1)

(i+1,j−1)

(i−1,j+1)

(a) A dense network

(i,j+1)

(i,j) (i+1,j)

(i,j−1)

(i−1,j)

(b) A scarce network

Figure 5. Topology

For the purpose of simulation, sensor 0 is (0,0) which is
located at the left-bottom conner in a grid, and the follow-
ing two types of a topology were used.� A topology for a dense network: Each sensor (i,j) in

a grid generally has eight (in- and out-) neighbors
(i+1,j), (i+1,j+1), (i,j+1), (i-1,j+1), (i-1,j), (i-1,j-1), (i,j-
1), and (i+1,j-1) as Figure 5(a).� A topology for a scarce network: Each sensor (i,j) in
a grid generally four (in- and out-) neighbors (i+1,j),
(i,j+1), (i-1,j), and (i,j-1) as Figure 5(b).

Note that in most sensor networks, sensors are densely de-
ployed. So we used the topology for a dense network in
most simulations.

The performance of a flood protocol can be measured by
the following three metrics:

i. Reach: The percentage of sensors that receive a mes-
sage sent by sensor 0.

ii. Frequency: The inverse of the length of the flood pe-
riod which indicates how often sensor 0 can initiate the
flooding of a new message.

iii. Latency: The average time it takes for a sensor to re-
ceive a message, after sensor 0 sends the message.

We ran simulations of a regular flood protocol and the
disciplined flood protocol described in Section 3 in a 10*10
grid. Each simulation result in figures and tables represents
the average value over 100 simulations. Note that in the
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Figure 6. Reach of Regular Flood and of Dis-
ciplined Flood

dense network, the value ofhmax needs to be at least 8,
so that a message broadcasted by sensor 0 can reach all sen-
sors in the grid, while in the scarce network, the value ofhmax needs to be at least 17.

We studied the following scenarios for a regular flood,
where a sensor forwards a message whenever it receives the
message, until the message makes its maximum hops, in the
dense network.� When each sensor forwards a message at the next time

unit from the instant that the sensor receives the mes-
sage, the simulation result shows that only around 60%
sensors in the network receive the flood message.� When each sensor chooses a random forwarding pe-
riod from the domain1::tmax, wheretmax = 10,
and waits for the forwarding period before sending a
received message, the reach of the protocol can be in-
creased up to 80% whenhmax = 10. Note that the
total number of messages sent by sensors in the net-
work is increased ashmax is increased.� When sensor 0 broadcasts a second message (at time
25) shortly after it broadcasts the first message (at time
0), the reach of the second flood is very lower (31-
38%) than that of the first flood (58-78%). The reason
is because the forwarded messages for the second flood
are collided with the forwarded messages for the first
flood. Specially, if all forwarded messages for the sec-
ond flood are collided in the first few hops, the reach
of the second flood becomes very low.

Figure 6 shows the reach of the regular flood and of the
disciplined flood whentmax = 10 in the dense network. In
the regular flood, there is no detection of redundant forward-
ing, and so a message sent by a sensor for the first time can
be collided with the redundantly forwarded messages. On
the other hand, the disciplined flood has no redundant for-
warding. Thus, the reach of the disciplined flood is higher
than that of the regular flood.
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Figure 7. Reach of Disciplined Flood in a
dense network vs. tmax
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Figure 8. Reach of Disciplined Flood in a
scarce network vs. tmax
Figure 7 shows the relationship between the value oftmax and the reach of the disciplined flood protocol in the

dense network, whentmax =5 and 10. Figure 8 shows the
relationship between the value oftmax and the reach of
the disciplined flood protocol in the scarce network, whentmax =5 and 10. In both networks, iftmax is 10 time units
or more, thentmax no longer affects the reach of the pro-
tocol any more in both networks.

In addition, the relationship between the value ofhmax
and the reach of the protocol can be observed from Fig-
ures 7 and 8 as follows: In the dense network, ashmax is
increased, the reach of the protocol is increased, since the
probability of message collision is high in the dense net-
work, so additional few hops the message makes can in-
crease the reach. On the other hand, in the scarce network,hmax does not affect the reach of the protocol, since the
probability of message collision is low.

Next we discuss the effect oftmax andhmax on the
frequency and latency of the disciplined flood protocol in
the dense network. Table 1 shows the flood period of the
protocol over varioustmax andhmax values. Astmax
andhmax are increased, the flood period is increased, i.e.
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Figure 9. Latency of Disciplined Flood in a
dense network

the frequency of the protocol is decreased. Thus, to have a
high frequency, the protocol needs to have smalltmax andhmax values.

tmax hmax=8 hmax=9 hmax=10
5 81 91 101
10 161 181 201

Table 1. The flood period (in time units)

Figure 9 shows the effect oftmax andhmax on the la-
tency of the disciplined flood protocol whentmax =5 and
10, andhmax =8 and 9 in the dense network. The latency
of the protocol is increased linearly astmax is increased,
but the latency does not depend onhmax. Thus, to have a
low latency, the protocol needs to have a smalltmax value,
regardless of the value ofhmax.

Whentmax andhmax have the large values, the flood
period of the disciplined flood protocol becomes very long.
(If tmax = 10 andhmax = 10, sensor 0 needs to wait
for 20 seconds to broadcast a new message, assuming that a
time unit is 100 milliseconds.) The flood period is computed
to guarantee that no collisions of two consecutive floods
happen, and every sensor is ready to accept a message when
sensor 0 broadcasts a new message. In practical setting, a
sensor chooses its forwarding period at random from the
domain1::tmax. Therefore, most sensors in the network
likely receive the flooded messages withinhmax� tmax=2
time units, instead ofhmax � tmax computed in Theorem
2. Moreover, the flood of a message is affected by the topol-
ogy of a network, and a flood message can be forwarded
faster in some types of network topologies. Thus, one may
use the half of the flood period, without significant perfor-
mance degrading of the protocol. However, in this case, the
protocol cannot guarantee that no collisions of two consecu-
tive floods happen, and a sensor may fail to distinguish new

messages from redundantly forwarded messages.
In the next section, we develop another version of the

disciplined flood protocol in which one bit sequence num-
ber is added to each flood message. This allows us to dou-
ble the frequency of the protocol, i.e. to reduce the flood pe-
riod by a factor of two.

6. Multi-Flood Protocol

In this section, we discuss a second flood protocol where
one bit sequence number of 0 and 1 is attached to each flood
message and used to distinguish new messages from re-
dundantly forwarded messages, unlike the disciplined flood
protocol in Section 3. This new protocol is called the multi-
flood protocol.

In the disciplined flood protocol, after a message broad-
casted by sensor 0 makes the last hop, no message is for-
warded in the network, and every sensor stays either in a
deafness state or in an accepting state until the end of the
flood period. This observation suggests one way to reduce
the flood period as follows: Sensor 0 initiates the flooding
of a new message if the previous message is no longer for-
warded in the network, without waiting that all sensors fin-
ish their deafness periods (for the previous message). How-
ever, when sensor 0 broadcasts the new message, many sen-
sors might be still in the deafness period and discard the re-
ceived message that is new. To recognize the new message,
each flood message is of the form:

data(h,s)
where fields is the sequence number of this message. The
sequence number of any message only has two possible val-
ues 0 and 1.

When sensor 0 broadcasts a message, the message fields is assigned the toggled sequence number of the last mes-
sage. (That is, if the last message has a sequence number 0,
then this message has a sequence number 1, and vice versa.)
If a sensor is in a deafness period for the message whose se-
quence number is 0, and receives a data(h; 1) message, then
it concludes that the flooding of the previous message with
sequence number 0 is done, and this data(h; 1) message is a
new message. Similarly, if the sensor is in a deafness period
for the message whose sequence number is 1, and receives
a data(h; 0) message, then it concludes that the flooding of
the previous message with sequence number 1 is done, and
this data(h; 0) message is a new message.

Once sensor 0 broadcasts a message, sensor 0 needs to
wait for the multi-flood period which is the flood period
of this protocol. The multi-flood period consists ofm time
units. (The value ofm can be the half off time units in Sec-
tion 3. A lower bound on the value ofm is computed later
in this section.) Thus, after sensor 0 broadcasts a message,
it sets its timeout to expire afterm time units to broadcast a
next message.
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A formal specification for sensor 0 is as follows.

sensor 0 {base station}

const hmax : integer, {max hop count}
m : integer {multi-flood period}

var slast : 0..1 {last seq num}
begin

timeout-expires -> {generate new msg}
slast := (slast+1) mod 2;
send data(hmax,slast);
timeout-after m

end

When a sensoru receives a data(h; s) message, if sensoru is in an accepting state, it accepts the message, regardless
of the sequence number of the message, and forwards it as
a data(h�1,s) message providedh > 0. If sensoru is in a
deafness state, there are two cases to consider.

i. The sequence number of the last accepted message is
different from s: In this case,u concludes that this
message is a new message. Thus,u accepts the mes-
sage, and forwards it providedh > 0.

ii. The sequence number of the last accepted message is
the same ass: In this case,u concludes that this mes-
sage belongs to the same flood as that of the last ac-
cepted message. Thus, sensoru discards the message.

Note that sensoru cannot receive a new message whileu is
in a forwarding period. This is because sensor 0 can broad-
cast a new message only after the flooding of the previous
message is done.

A formal specification for sensors1::n� 1 is as follows.

sensor 1..n-1

const hmax : integer, {max hop count}
tmax : integer, {max waiting time}
d : integer {deafness period}

var st : 0..2, {state, init. 0}
h,hlast : 0..hmax, {rcvd,last hop cnt}
s,slast : 0..1, {rcvd,last seq num}
t : 1..tmax {forwarding time}

begin
timeout-expires ->

if st!=1 -> st := 0
[] st=1 ->

send data(hlast,slast);
st := 2;
timeout-after d+1

fi

[] rcv data(h,s) ->
if st=0 or (st>0 and s!=slast) ->

{accept msg}
slast := s;
if h>0 -> st := 1;

hlast := h-1;

t := random;
timeout-after t

[] h=0 -> st := 2;
timeout-after d+1

fi
[] st>0 and s=slast -> skip
fi

end

Theorem 3 (The Multi-Flood Period Theorem)m � hmax � tmax+ 1
Proof: When sensor 0 broadcasts a first message at times,
sensor 0 needs to wait until this message is no longer for-
warded in the network, before broadcasting a second mes-
sage with the toggled sequence number. The flood of the
first message is guaranteed to be done ats+hmax� tmax.
Therefore, the earliest time sensor 0 can broadcast the sec-
ond message iss + hmax � tmax+1. The multi-flood pe-
riod needs to be at leasthmax � tmax+1 to guarantee that
no forwarded messages from the two floods collide with one
another, and every sensor is ready to accept the second mes-
sage, when sensor 0 broadcasts it. 2

To analyze the protocol, we use the minimum possible
values for the multi-flood periodm and the deafness periodd, from Theorem 3 and 1, as follows:d = hmax � tmaxm = hmax � tmax+ 1

Adopting the above values ofd andm, it is straightfor-
ward to show that th mult-flood protocol satisfies the fol-
lowing three properties discussed in Section 1: (i) Few col-
lisions within a single flood. (ii) No collisions of consecu-
tive floods. (iii) No redundant forwarding.

Note that in this protocol, when a sensor receives a mes-
sage with sequence number 0, if the sensor is ready to ac-
cept a message with sequence number 0 (i.e. either in an ac-
cepting state, or in a deafness state with the sequence num-
ber of the last accepted message equal to 1), then the mes-
sage is new and the sensor accepts it. Moreover, sensor 0
broadcasts a new message with sequence number 0 only
when every sensor is ready to accept a message with se-
quence number 0. Therefore, the sensor does not discard
any new message with sequence number 0, if the sensor
receives it. Similarly, the sensor does not discard any new
message with sequence number 1, if the sensor receives it.

Table 2 shows the multi-flood period over varioustmax
andhmax values. The multi-flood period is reduced to the
half of the flood period of the disciplined flood protocol.
Note that the reach of the multi-flood protocol is the same
as that of the disciplined flood protocol, since sensor 0 initi-
ates the flooding of a next message, after the previous mes-
sage is no longer forwarded in the network as in the disci-
plined flood protocol.
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tmax hmax=8 hmax=9 hmax=10
5 41 46 51
10 81 91 101

Table 2. The multi-flood period (in time units)

As similar to the disciplined flood protocol, in practi-
cal setting, one may use the half of the multi-flood period,
without significant performance degrading of the protocol.
However, in this case, the protocol cannot guarantee that no
collisions of two consecutive floods happen, and a sensor
may fail to distinguish new messages from redundantly for-
warded messages.

7. Related Work

Several flood protocols have been proposed to reduce re-
dundantly forwarded messages in a flood [4], [5], [6], [7]. In
[3], various flood protocols were categorized based on how
a sensor decides whether it forwards a received message or
not. Probability, location information, or neighbor informa-
tion can be used to make this decision. Sun et al [5] also
investigate how the waiting time before forwarding a mes-
sage affects on the performance of flooding. Unlike these
protocols, our disciplined flood protocols control the activi-
ties within a single flood or across consecutive floods to re-
duce or prevent message collisions.

Gouda[1] developed the Abstract Protocol (AP) notation
to specify and verify network protocols in a high level, and
McGuire[2] developed the Timed Abstract Protocol nota-
tion based on AP notation, adding the ability to express the
temporal behavior. Our notation used to describe the dis-
ciplined flood protocols is also based on AP notation, but
this notation is to specify and verify the activities of sen-
sor network protocols. In [9], a formal specification, simi-
lar to TLA which is used for modeling concurrent system, is
used to specify a flood protocol. Using the formal specifica-
tion of the protocol, the author identifies the conditions that
make flooding unreliable and finally proves that flooding is
unreliable. Based on this formal model, Downeyet al de-
velop a simulator and evaluate the performance of flooding.
This simulator can adopt various models for radio, trans-
mission, media access control, etc, to achieve accuracy or
efficiency of the simulation.

Many simulation frameworks have been developed for
sensor networks such as TOSSIM[12], SensorSim[13],
Prowler[14], EmStar[17], VisualSense[15]. In gen-
eral, these simulation frameworks focus on the accurate and
detailed simulation of sensor network protocols, to eval-
uate the performance of the protocol implementations.
They also provide mechanisms to adopt various compo-
nents or models to their frameworks. However, we de-

veloped our simulator to evaluate the performance of the
protocol design itself and to verify the behavior of a proto-
col specified in our formal model.

EnvioTrack[11] provides a high-level programming ab-
straction for sensor network applications, specially track-
ing applications. Using this abstraction, a programmer can
easily implement a sensor network application, without de-
veloping lower level components such as group manage-
ment and routing. In [16], Volgyesiet al introduce an inter-
face modeling language to describe interface specifications
of components. This language can be used to verify the de-
sign and composition of components.

Ganesanet al [8] study the performance of a flood pro-
tocol based on experiment over 150 motes. They evaluate
the effect of each network layer such as physical and link,
medium access, and network and application layers on the
performance of the flood protocol.

8. Concluding Remarks

Flood is a communication primitive that can be initiated
by the base station of a sensor network to send a copy of
some message to every sensor in the network. When a flood
of some message is initiated, the message is forwarded by
every sensor that receives the message until the sensors de-
cide not to forward the message any more. This uncontroled
flood can cause the following three problems: (i) Collisions
within a single flood. (ii) Collisions of consecutive floods.
(iii) Redundant forwarding.

We presented a family of disciplined flood protocols,
that aim to prevent or reduce the above three problems. To
reduce collisions within a single flood, when a sensor re-
ceives a flood message, it waits for a random forwarding pe-
riod, before sending the received message. To prevent col-
lisions of consecutive floods, sensor 0 needs to wait for the
flood period after sensor 0 broadcasts a message and be-
fore it broadcasts a next message. At last, to prevent redun-
dant forwarding, once a sensor accepts and forwards a flood
message, the sensor restrains from accepting or forwarding
all received messages for the deafness period.

The simulation result showed that while a regular flood
protocol can cause a flooded message to reach between 60%
and 80% of all sensors in the network, our disciplined flood
protocol can cause a flooded message to reach between 88%
and 99% of all sensors in the network.

In the disciplined protocol, sensor 0 may need to wait for
a long time before broadcasting a next message to achieve a
high reach of flood. To increase the frequency of the proto-
col, we developed the multi-flood protocol that attaches one
bit sequence number to each flood message and uses it to
distinguish new messages from redundantly forwarded mes-
sages. This multi-flood protocol can reduce the flood period
by a factor of two.
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In our flood protocols, once a sensor receives a flood
message, the sensor does nothing but is waiting for a for-
warding period to finish or for a deafness period to finish.
Thus, the sensor can go to sleep during these periods to save
its energy.

When the disciplined flood protocol uses large values fortmax andhmax to achieve a high reach of flood, the la-
tency of the protocol becomes high. One way to reduce the
latency while having a high reach is as follows: When a sen-
sor has a message to forward, the sensor sends the message
more than one time. In this way, the protocol can achieve a
high reach of flood even when the value oftmax is small,
resulting in the low latency of the protocol.
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