
Lock-free Serializable Transactions

Jeff Napper Lorenzo Alvisi
jmn@cs.utexas.edu lorenzo@cs.utexas.edu

Laboratory for Advanced Systems Research
Department of Computer Science
The University of Texas at Austin

Abstract

Software transactional memory (STM) provides access to shared data with trans-
actional properties. Existing STM use linearizability as their correctness criterion,
although serializability allows more freedom in reordering the operations of com-
mittable transactions. Serializable transactions thus provide for more concurrency
than linearizable transactions. Specifically, serializability allows read operations
to increase concurrency with multiple versions of data. We present the first se-
rializable, lock-free software transactional memory. Our STM supports dynamic
transactions, provides early failure indication, requires a single interface for both
read-only and read-write transactions, keeps multiple versions of objects, and al-
lows for disjoint-access parallelism—while our implementation relies only on ex-
isting lock-free data structures. We prove the lock-free progress guarantee of our
STM, and that the set of committed transactions is one-copy serializable (serializ-
able while appearing to have only one copy of the data).

1 Introduction

Transactions are the most widely used abstraction for supporting robust computation over mul-
tiple, concurrent shared objects. The atomicity property provides the illusion that all operations
within a transaction occur simultaneously. Transactions either commit or abort so that all their
corresponding operations are, respectively, visible or not to other transactions. The durability
property prevents committed transactions from becoming aborted (and vice-versa). Consis-
tency among concurrent transactions is defined by the correctness criterion of the transactional
system—serializability [16] is one typical criterion. In transactional database systems, serial-
izability is guaranteed by mutual-exclusion locks. Locks have many notorious disadvantages;
their use is prone to deadlock and suffers from priority inversion. Further, the concurrency
available using locks is directly proportional to the granularity of the locks—finer granularity
yields more concurrency, but at the cost of higher complexity. Finally, most locking systems
cannot tolerate the failure of a thread holding a lock.

1

Nonblocking data structures have been proposed to provide robust management of concur-
rency without relying on locks. Wait-free data structures [7] guarantee progress without requir-
ing any bounds on the relative speed of threads, even allowing threads to halt. Wait-freedom has
been difficult to implement efficiently in practice, giving rise to weaker notions of robustness.
A lock-free data structure guarantees only the system as a whole makes progress, allowing star-
vation but not livelock [7]; obstruction-free structures guarantee progress only in the absence of
contention, allowing both starvation and livelock [8].

Software transactional memory (STM) [18] combines the benefits of a transactional in-
terface with the robustness of nonblocking data structures.1 All current STM implementa-
tions [5, 9, 3] provide linearizability [10] as the correctness criterion. Linearizability requires
that for any two events e1 and e2, if e1 completes (receives a response) before e2 begins (invokes
the operation), then e1 precedes e2 in any linearizable ordering of events. This correctness cri-
terion “can be viewed as a special case of strict serializability where transactions are restricted
to consist of a single operation applied to a single object” [10].

It is questionable, however, whether linearizability is the appropriate correctness criterion
when transactions include multiple operations on multiple objects. While linearizability pro-
vides a high degree of concurrency for individual objects, extending linearizability to transac-
tions containing operations on multiple objects requires the transactions to appear to take effect
instantaneously, or in “one-at-a-time” order [9]. Transactions must then operate simultaneously
on the most recently written versions of all objects. To ensure this in existing STM, transactions
acquire ownership (albeit using no physical locks) of all objects they operate upon; unfortu-
nately, this limits the degree of concurrency achievable under linearizability.

To increase the opportunity for concurrent execution of transactions, we focus in this paper
on STM that provide serializable, rather than linearizable, executions. Because serializability
does not impose a real-time ordering on committed transactions, transactions need not acquire
ownership of all objects simultaneously. For example, a read-only transaction may serialize
using previously written versions, which is not possible in a linearizable system where the real-
time ordering of events requires operations to access the most recently written version of data.

The main contribution of this paper presents the first serializable, lock-free STM. Our STM
has several desirable properties. It supports dynamic transactions; that is, it does not require
the set of objects accessed by a transaction to be known in advance. Early failure indication is
provided in some cases, enabling a thread to quickly assess whether a transaction will be forced
to abort. The single read and write object interface suffices for all transactions, rather than
requiring a special interface for read-only transactions. Transactions on disjoint sets of objects
do not require mutual helping, thereby achieving disjoint-access parallelism [12]. Finally, our
STM keeps multiple versions of objects to increase concurrency, specifically enforcing one-
copy serializability.

In the rest of this document, we describe our algorithm. The next section puts the paper
in context with related work. In Sections 3 and 4, we present our system model and give an
overview of our algorithm. In Section 5 we discuss briefly our assumptions for Sections 6
to 8, where we prove that i) the set of committed transactions is serializable, ii) the algorithm

1See [14] for a nice survey of software transactional memory systems.

2

terminates, and iii) the algorithm is lock-free, in that a correct thread can always guarantee
some new transaction will eventually commit. For simplicity, our proofs rely on a wait-free
implementation of object histories—we relax this requirement in Section 9, where we show
that a lock-free implementation of object histories is sufficient to guarantee both the safety and
liveness of our STM. The paper ends with conclusions in Section 10.

2 Related Work

Shavit and Touitou propose the first example of nonblocking software transactional memory [18].
Their STM is lock-free, but requires strong memory synchronization primitives and static trans-
actions: a transaction must declare before executing the set of objects on which it will oper-
ate. Building on their work, Herlihy, et al., present dynamic software transactional memory
(DSTM) [9]. DSTM allows transactions to dynamically determine the sequence of objects for
operations, but it also relaxes the progress guarantee to obstruction freedom, which provides
absolute progress guarantees only in the absence of contention. Fraser [3] combines the best
characteristics of these earlier works by proposing an object-based STM that provides dynamic,
lock-free transactions [3].

Our STM provides the same properties as Fraser’s (it is object-based and supports dynamic
lock-free transactions) but departs from all existing STM in choosing serializability, rather that
linearizability, as its correctness criterion. Linearizability may appear a preferable option, since
serializability is known to be an inherently blocking property [10]—a transaction may be forced
to wait or abort because of the operation of another transaction. In contrast, linearizability, when
applied to operations that affect a single object, is nonblocking—a total operation may always
complete successfully. However, linearizable multi-object transactions are also blocking. For
example, consider an execution in which transactions T1 and T2 i) attempt to enqueue object x
to queues Q1 and Q2, respectively, and ii) attempt to dequeue x from the other queue. Though
each queue is individually linearizable, whether T1 successfully dequeues x from Q2 depends
upon whether T2 dequeues x. There is no linearizable ordering of T1 and T2 that allows both
transactions to successfully dequeue x from the other queue. In fact, as we have argued in the
Introduction, serializability provides greater concurrency than linearizability in transactional
systems where transactions span multiple objects.

Lock-free transactional objects have been extensively studied in real-time environments [1,
17]. These objects typically provide timeliness guarantees in an environment where threads
have priorities and preemption is constrained by those priorities, simplifying shared data syn-
chronization. Our work assumes a different computational model wherein threads do not have
priorities and no bounds are placed on the relative speed of two threads.

Transactional monitors [19] have been proposed as an alternative to traditional monitors in
Java. While Java monitors regulate access to shared data using mutual exclusion, transactional
monitors do so using lightweight transactions. Transactional monitors provide serializability,
but do not address nonblocking access—for example, a thread is not allowed to halt inside a
monitor. We also guarantee serializability, but we ensure nonblocking access to shared data;
for example, threads may halt arbitrarily in our model without preventing the progress of other
threads.

3

Conditional critical regions (CCR) [11] are an elegant approach to manage shared data.
Recent work [4, 5] has explored implementing non-blocking access to shared data using an
obstruction-free, multi-word compare-and-swap primitive, while providing programmers with
the familiar CCR interface. Since this interface is independent of the mechanism used to regu-
late access to shared data, we believe that our approach could also be used underneath a CCR
interface.

Finally, our system is similar to optimistic concurrency control [13] in that it does not use
locks to regulate which transactions should be executing concurrently, but rather may resort to
aborting transactions to enforce serializability. However, while in optimistic concurrency con-
trol locks are used to enforce serializability at commit time, our system guarantees serializability
without locks while providing progress guarantees.

3 System Model

Our system models a pool of cooperating threads that operate on shared data. We assume
resource limitations so that only a finite number of threads exist in the system at any time,
though new threads may be created at any time. Data shared between threads is represented
as a set of objects that support read and write operations. Threads may run simultaneously
(as on a multi-processor), and we assume no bounds on the relative speed between threads. A
thread may fail by halting or be arbitrarily delayed (for example, by a page fault); a thread that
does not halt is considered correct. We assume shared data is modified by threads only within
transactions and that the Compare-And-Swap (CAS) primitive may be used to operate on shared
data. CAS atomically and conditionally modifies a shared memory location (see Figure 1) and
has been shown by Herlihy [7] to be sufficient to achieve nonblocking synchronization. We
assume that a correct thread may complete a CAS operation in a finite number of steps, though
the CAS may fail if the expected value is not present.

A transaction is an ordered sequence of read and/or write operations on a set of objects. The
objects need not be declared at the beginning of the transaction, but may be determined dynam-
ically. Read and write operations on different objects may be interleaved within a transaction.
After all operations are complete, a thread either attempts to commit or abort the transaction, so
that all operations are either visible or not, respectively. We do not address nested transactions
(that is, a single thread does not interleave or nest operations of different transactions). Trans-
actions may span multiple threads provided only one thread attempts to commit the transaction,
though in this paper we will consider the thread that attempts to commit the transaction also
responsible for executing the transaction. For ease of exposition, we consider all threads con-
currently to execute transactions in sequence where only operations belonging to transactions
performed by different threads may be interleaved. We assume any transaction executed in iso-
lation transforms the state of the system from a correct state to another correct state, so that if
transactions occur sequentially, safety is preserved. Informally, we require for correctness that
there exist a sequential execution of the set of committed transactions (that may have executed
concurrently) such that each operation returns the same value in both executions (that is, view
serializability [16]).

Transactions are uniquely identified. A thread p executes the transaction Ti from the set

4

T of all possible transactions on the set O of all possible objects. Until a transaction commits
or aborts, it is considered undecided (Ti ∈ U); whereas a decided transaction is either aborted
(Ti ∈ A) or committed (Ti ∈ C).

We take special care in allowing read-only transactions to proceed concurrently with writes.
Borrowing from multiversion databases, we keep several versions of an object so that reads
can proceed in parallel as new versions are written. Maintaining multiple versions allows reads
to use past versions, permitting read-only transactions to commit concurrently with read/write
transactions.

We assume for simplicity that each write operation on an object generates a complete copy
of the object,2 called a version. Since our system keeps multiple versions, the corresponding
version is noted in the operation. A read operation is denoted r j[xk] if transaction Tj reads
version xk of object x. A version is uniquely associated with the transaction that creates it,
implying version xk was written by Tk and the write creating it was wk[xk]. There is a total order,
called the history, to versions of an object such that for all versions x j and xk, either x j � xk or
xk � x j where � represents the history order.

A multiversion log (MV log) [2] provides the framework to determine whether a set of
concurrent transactions can be equivalent to a set of sequential transactions. An MV log is a
poset over the set of operations belonging to a set of transactions {T1, . . . ,Tn} that both respects
the local order of operations for each transaction, and orders any read operation r j[xi] by Tj of a
version of x written by Ti after the write operation wi[xi] by Ti that produced the version. In this
case Tj reads-from Ti.

A serial log is a totally ordered log respecting the local order of operations of a transaction
where transactions are executed in isolation—for any Ti and Tj either all operations of Ti precede
the operations of Tj or vice versa. We say that j < k if operation j precedes k in a serial
log. More formally, we define the serialization graph over MV log L, SG(L), to have vertices
T0, . . . ,Tn from C and edges Ti → Tj (where i 6= j) iff Tj reads-from Ti. We use Ti Tj to indicate
that there is a path in the graph SG(L) from Ti to Tj (and conversely Ti 6 Tj when there is no
such path). Bernstein and Goodman [2] show that if SG(L) is acyclic, then L is serializable
(SR)—equivalent to (that is, including the same operations as) some serial log.

Many multithreaded applications assume only one copy of each object. In a multiversion
system, however, the definition of serializability above is not sufficient to enforce executions
consistent with one-copy semantics. We then impose the stronger constraint that transactions
be one-copy serializable (1-SR), that is, equivalent to a one-serial log. In a one-serial log the
last write of x before any read operation r j[xi] is wi[xi]. A read thus always sees the latest write.
To show one-copy serializability, we define the multiversion serialization graph MVSG(L,�)
over the MV log L and a total order � of versions in the history of each object. The MVSG
is composed of the edges in the SG(L) (called reads-from edges) with the addition of two other
types of edges—for each rk[x j] and wi[xi] operation in L (Tk 6= Ti), we add a write-read edge
Ti → Tj if xi � x j, and a read-write edge Tk → Ti if x j � xi. In the MVSG(L,�) we thus

2This assumption allows a read to ignore earlier updates. Alternatively, each update could hold the abstract
operation to be performed on the object or the portion of the object that has changed, requiring a read to perform the
operations in the history to generate the relevant version of the object.

5

have either Ti → Tj → Tk or Tj → Tk → Ti for the operations rk[x j] and wi[xi], ensuring that no
other write operation (in this case, wi[xi]) is ordered between a write operation (w j[x j]) and the
corresponding read operation (rk[x j]). In [2], an MV log L is shown to be 1-SR iff there exists a
version order � such that MVSG(L,�) is acyclic.

We prove in Section 6 that our algorithm enforces an acyclic MVSG(L,�) where L is the
multiversion log over the set of committed transactions and � is the order imposed by the
object history. To simplify discussion, we call CMVSG the MVSG where L contains operations
only from the set of committed transactions (C), and DMVSG the MVSG where L’s operations
come only from the set of decided transactions (C ∪A). Finally, the PMVSG is the MVSG(L,�)
where L contains only operations from the set of committed and undecided transactions (C ∪
U). Thus, PMVSG ∩ DMVSG = CMVSG. As we will see, to achieve 1-SR executions, our
algorithm, before committing an undecided transaction Ti, check for cycles in the PMVSG
involving Ti and takes appropriate action to ensure that, upon commit, the CMVSG will be
acyclic.

4 Lock-Free Transactions

The data structures used by our algorithm are shown in Figure 1. The API for our software
transactional memory in Figure 3 provides methods to read, write, create, and destroy objects
and commit, abort, and validate3 transactions. We assume the methods in the API are called
on a particular transaction only by the thread that initiates the transaction. However, the helper
functions called by some of these methods (shown in Figure 4) can be invoked for a given
transaction by several different threads—we will discuss the helper functions and how they are
invoked shortly.

A thread p begins a transaction by calling begin-transaction, which returns a data struc-
ture representing the transaction. This data structure is private to p until p calls commit-trans-
action, allowing fast aborts. If p calls abort-transaction, the data structure never becomes
shared, and the transaction is aborted privately.

To read an object o, p calls read-object, which searches the history of o for the latest
version that does not create a cycle in the PMVSG. Our algorithm checks at read time that the
version being read does not create a cycle, but since objects are modified concurrently, that
version could still become part of a cycle. If a cycle is detected at commit time, transactions
are aborted to prevent the cycle from appearing in the CMVSG (see Section 6). Each version
stores in its reading transaction set (RTS) the identifiers of the transactions that have read that
particular version; for example, the identifier Ti is added to the RTS of xk during the attempt to
commit Ti if ri[xk] is in Ti.

To perform an update, p calls write-object. To reduce cache contention, this method
keeps all writes local until p calls commit-transaction. Whenever p calls create-object, it
must also call write-object to create the initial version of the object. The procedure destroy-
object marks an object for garbage collection during a transaction, although the object will be
considered garbage only if the corresponding transaction commits.

3Validation returns a boolean indicating whether the transaction will be required to abort because of conflicting
transactions.

6

// Global timestamp of transactions enqueued
int trans tstamp

// Transaction data
transaction Ti

int ts // Timestamp of enqueue
transaction status // 2 LSB indicate status
obj version * reads // List of versions read
obj version * writes // Cache of writes

// Data object
object x

obj version * history // Sequence of versions

// Version of object written by transaction
obj version xk

obj version * next // Next version in history
trans list * rts // Reading trans set
transaction * creator // Trans. writing xk
void * data // Object representation

// Compare-And-Swap (CAS) atomic primitive
procedure CAS(addr, expected value, new value)
1 atomic {
2 let old value := value of(addr)
3 if (old value = expected value)
4 value of(addr) := new value
5 return old value
6 }

Figure 1: Overview of data structures and primitives
used by our algorithm. The CAS synchronization
primitive can be implemented on all major modern ar-
chitectures.

0 34 15 9
T i T m

T i

reads writes

committed

reads writes

undecided

6y

x

−12 3y

T i Tk

Figure 2: Object histories and transactions. The his-
tory of an object (such as x or y) are stored as a list of
versions. Each version is annotated with transactions
that read the version (for example, Tm reads x = 0).
Transaction data is kept private to each thread until the
transaction has finished executing when the versions
written are then added to the object histories (as Tk
must still add yk where y = 6).

A thread attempts to commit a transaction by invoking commit-transaction. The algo-
rithm to commit a transaction T, i) adds any read operations to the objects’ histories to allow
later inspection of the PMVSG (Step 1), ii) adds any write operations to the corresponding his-
tories to determine the version order (Step 2), and iii) invokes help-commit-transaction.
After Step 2 we consider the transaction to be enqueued so that other threads may help commit
the transaction. The procedure help-commit-transaction i) checks for cycles in the PMVSG
(Step 1 & 2), ii) attempts to commit T using CAS if the observed PMVSG is acyclic (Step 3),
and iii) if the commit of T fails, recursively attempts to commit any transaction responsible
for aborting T (Step 4). Read-only transactions do not need a special API because they follow
the same procedure to commit as update transactions (with the obvious exception of Step 2 of
commit-transaction).

We say that a transaction Ti is committed if the CAS of the status of Ti to committed suc-
ceeds. Conversely, Ti is aborted if the CAS of the status of Ti to aborted succeeds. To allow
transactions to abort while guaranteeing progress, we save the id of the transaction responsible

7

// Record version written in private transaction data.
procedure write-object (Ti, xi)
1 xi.read set := /0

2 xi.creator := Ti
3 < add wi[xi] to Ti.writes >

// Read latest version of object that doesn’t create a
// cycle in PMVSG and record version in transaction.
procedure read-object (Ti, x) returns xk ∈ x.history

// Loop backwards through history for latest version.
1 foreach {xk : xk ∈ x.history: Tk ∈ C)}
2 if (is-readable (xk , trans tstamp, Ti))
3 < add ri[xk] to Ti.reads >
4 return xk

// Using CAS, advance global timestamp of objects,
// obj tstamp, when a new object is created. The CAS
// ensures x.ts is greater than obj tstamp was at the
// time the create-object method was invoked.
procedure create-object () returns x ∈ O
1 < Create and init. object data structure x >
2 return x

// Mark object for garbage collection.
procedure destroy-object ()
1 < Mark object for garbage collection >

// Abort transaction by marking status. This trans’s
// operations will not be visible to any other trans.
procedure abort-transaction (Ti)
1 CAS (&(Ti.status), undecided,
2 aborted | mark-aborter(⊥))

// Assign a unique transaction number and initialize
// transaction data.
procedure begin-transaction () returns Ti ∈ T
1 < Create and init. transaction data structure Ti >
2 Ti.ts := ⊥
3 return Ti

// Check whether trans. is part of a cycle in PMVSG.
procedure validate-transaction (Ti) returns boolean
1 return Ti 6 Ti

// Use helper function to commit transaction.
procedure commit-transaction (Ti)

// Step 1. Add read operations
1 foreach {x : x ∈ O : ri[xk] ∈ Ti}
2 let L := wk[xk].read set
3 do
4 set-add-transaction (L, Ti)
5 until (Ti ∈ L)

// Step 2. Enqueue write operations
6 foreach {x : x ∈ O : wi[xi] ∈ Ti}
7 < append once wi[xi] to x.history >

// Step 3. Assign timestamp.
8 Ti.ts := trans tstamp
9 CAS (&(trans tstamp), Ti.ts, Ti.ts+1)

// Step 4. Try to commit transaction.
10 help-commit-transaction (Ti)

Figure 3: API procedures to read and write versions of objects and commit, abort, and validate transactions. The
&() operator returns the address of the argument as required by CAS.

for the abort (using the mark-aborter function, Figure 4) in the data structure that corresponds
to the aborted transaction. If a transaction Ti by thread pi is aborted by another thread p j at-
tempting to commit Tj, pi can identify p j by using get-aborter (see Figure 4) and can help
p j commit Tj. Helping ensures progress even if new threads perpetually abort pi’s transactions
and then promptly fail before ever successfully committing their own transactions.

Because threads may help commit transactions that they have not initiated, different threads
may end up performing identical operations on the data structures that represent object histories.
Despite this, these data structures should ensure that an update is only added once. Fortunately,
it is easy to modify existing data structures, such as ordered lists [6] and FIFO-queues [15], to
return success if the update has already been added to the list or an error indication if it cannot
be determined (for example, if the list has been garbage collected possibly including the new
version).

To ensure that marking the aborted transaction occurs atomically with the successful abort,

8

// Help decide reachable transactions to ensure that
// CMVSG is acyclic.
procedure decide-mvsg-reachable (Tm)
1 let ts := Tm.ts
2 let obj tails := /0 // End of objects already seen

// Step 1: Get trans. reachable on objects Tm operates
3 let pmvsg trans := get-pmvsg-reachable (Tm, ts, obj tails)

// Step 2: Decide newly reachable transactions
4 foreach {Tj : Tj ∈ pmvsg trans : Tj ∈U}
5 help-decide-transaction (Tj , Tm)

// Step 3: Save committed reachable transactions.
6 let cmvsg trans := pmvsg trans ∩ C
7 let checked trans := /0 // Trans. already seen

// Step 4: Repeat for transitive edges from other objects
8 foreach {Ti : Ti ∈ (cmvsg trans − checked trans)}
9 checked trans ∪= {Ti}
10 pmvsg trans := get-pmvsg-reachable (Ti, ts, obj tails)

// Step 5: Decide newly reachable transactions
11 foreach {Tj : Tj ∈ pmvsg trans : Tj ∈U}
12 help-decide-transaction (Tj , Tm)

// Step 6: Save committed reachable transactions.
13 cmvsg trans ∪= pmvsg trans ∩ C

// Get all pmvsg-reachable nodes along single objects.
procedure get-pmvsg-reachable (Ti, ts, obj tails)

returns T pmvsg ⊂ T
1 let pmvsg trans := /0 // Direct edges
2 foreach {x : x ∈ O : (ri[xk] ∈ Ti)∨ (wi[xi] ∈ Ti)}

// Get version interval bound xtail for x
3 if (xtail /∈ obj tails)
4 let xtail := get-last-version (x)
5 obj tails ∪= {xtail}

// Add all edges on this object by operation.
6 if (ri[xk] ∈ Ti)

// Add read-write and reads-from (x j) edges
7 foreach {x j : x j ∈ x.history : (Tj.ts≤ ts)
8 ∧ (xk � x j) ∧ (x j 6= xi)
9 ∧ (x j �= xtail)}
10 pmvsg trans ∪= {Tj} ∪ get-readers (x j , ts)
11 if (wi[xi] ∈ Ti)

// Add reads-from (xi) edges
12 pmvsg trans ∪= get-readers (xi, ts)

// Add write-read and reads-from (x j) edges
13 foreach {x j : x j ∈ x.history : (Tj.ts≤ ts)
14 ∧ (xi � x j) ∧ (x j �= xtail)
15 ∧ (∃Tl | Tl ∈ T : rl [x j] ∈ Tl)}
16 pmvsg trans ∪= {Tj} ∪ get-readers (x j , ts)
17 return pmvsg trans

// Help commit transactions begun by any thread.
procedure help-commit-transaction(Ti)

// Step 1. Ensure there are no cycles with Ti in CMVSG.
1 if (Ti ∈U)
2 decide-mvsg-reachable (Ti)

// Step 2. Ensure there are no cycles from write-read edges.
3 foreach {Tj : Tj ∈ T : ri[x j] ∈ Ti}
4 if(¬ is-readable (Tj , Ti.ts, Ti))
5 help-decide-transaction (Ti, Ti)
6 return

// Step 3. Commit with Compare-and-Swap status.
7 CAS (&(Ti.status), undecided, committed)

// Step 4. Help aborter, as needed.
8 if (Ti ∈ A)
9 let Tj := get-aborter (Ti)

// Recurse only if new transaction
10 if (Tj 6= Ti)
11 help-commit-transaction (Tj)

// Help undecided transactions begun by any thread.
procedure help-decide-transaction(Ti, Th)
1 if (Ti ∈U)

// Help commit only earlier transactions.
2 if (Ti < Th)
3 help-commit-transaction (Ti)
4 else
5 CAS (&(Ti.status), undecided,
6 aborted | mark-aborter (Th))

// Get finite set of transactions that have read version xi
procedure get-readers (xi, ts) returns T r ⊂ T
1 return {Tj : Tj ∈ T : (r j[xi] ∈ Tj)∧ (Tj.ts≤ ts)}

// Return aligned pointer to transaction.
procedure mark-aborter (Th)
1 return &(Th)

// Return transaction pointer masked from status field.
procedure get-aborter (Ti) returns Tj ∈ T
1 return Tj : &(Tj) = < Ti.status with cleared 2 LSB >

// Return last committed version of object.
procedure get-last-version (x) returns xi ∈ x.hist
1 return xi : (xi ∈ Ti)∧ (Ti ∈ C)
2 : (∀x j | (x j ∈ x.hist)∧ (x j ∈ Tj)∧ (Tj ∈ C)
3 : x j �= xi)

Figure 4: Procedures to help commit transactions. Aborted transactions and those not enqueued are implicitly

ignored. The notation “∪= ” indicates assignment to the variable on the left-hand side, the variable’s value (before
assignment) unioned with the right-hand side. The boolean operator (xi �= x j) is equivalent to (xi � x j)∨(xi = x j).
The operation min at line 28 returns the earlier version of the pair according to the object history. If one version does
not exist (for example, xk if Ti did not read x), the other version is returned.

9

// Determine whether reading version creates a cycle.
procedure is-readable (Tm, ts, Th) returns boolean
1 let obj tails := /0

// Step 1. Add possible read-write
and reads-from (x j) edges

2 let cmvsg trans :=
3 get-cmvsg-reachable+ (Tm, ts, obj tails, Th)
4 let checked trans := /0 // Trans. already seen

// Step 2: Get transitive edges from other objects
5 foreach {Tj : Tj ∈ (cmvsg trans − checked trans)}
6 checked trans ∪= {Tj}
7 cmvsg trans ∪=
8 get-cmvsg-reachable+ (Tj , ts, obj tails, Th)

// Step 3: Check whether there is a cycle.
9 if (Tm ∈ cmvsg trans)
10 return false
11 return true

// Get all committed transactions with the addition of Th
// reachable along single object paths from Ti.
procedure get-cmvsg-reachable+ (Ti, ts, obj tails, Th)

returns T cmvsg+ ⊂ T
1 let cmvsg trans := /0 // Direct edges
2 foreach {x : x ∈ O : (ri[xk] ∈ Ti)∨ (wi[xi] ∈ Ti)}

// Get version interval bound xtail for x
3 if (xtail /∈ obj tails)
4 let xtail := get-last-version (x)
5 obj tails ∪= {xtail}

// Add all edges on this object by operation.
6 if (ri[xk] ∈ Ti)

// Step 1. Add read-write edges
7 foreach {x j : x j ∈ x.history : (Tj.ts≤ ts)
8 ∧ ((Tj ∈ C)∨ (Tj = Th))
9 ∧ (xk � x j) ∧ (x j 6= xi)
10 ∧ (x j �= xtail)}
11 cmvsg trans ∪= ({Tj}
12 ∪ get-readers (x j , ts))∩ (C ∪{Th})
13 if (wi[xi] ∈ Ti)

// Step 2. Add reads-from edges
14 cmvsg trans ∪=
15 get-readers (xi, ts) ∩ (C ∪{Th})

// Step 3. Add write-read edges
16 foreach {x j : x j ∈ x.history : (Tj.ts≤ ts)
17 ∧ ((Tj ∈ C)∨ (Tj = Th))
18 ∧ (xi � x j) ∧ (x j �= xtail)
19 ∧ (∃Tl | Tl ∈ (C ∪{Th}) : rl [x j] ∈ Tl)}
20 cmvsg trans ∪= ({Tj}
21 ∪ get-readers (x j , ts))∩ (C ∪{Th})
22 return cmvsg trans

Figure 5:

we use only the two least significant bits of the status field to show the committed, aborted, or
undecided status,4 while if the transaction is aborted, the rest of the bits represent an aligned
pointer to the transaction responsible for the abort—we are similar in this to others who have
used the least significant bits of pointers to mark, for example, the logical deletion of a member
from a list [6].

Threads help commit or abort transactions not only to guarantee progress, but also to pre-
vent cycles in the CMVSG, ensuring one-copy serializability. We prevent such cycles despite
concurrent modifications of object histories in two steps. First, whenever p calls commit-
transaction(Ti) we let the undecided Ti add its operations to the object histories, making
them visible to other threads—this results in new edges being added to the PMVSG. Second,
we only attempt to commit an undecided, enqueued transaction after we can be sure that the

4If we may reasonably assume that 0 is an invalid pointer and that pointers are aligned, we can use a single bit.
If the status is 0, the transaction is undecided; 1 implies committed; any other value represents the pointer to the
aborting transaction.

10

CMVSG that would result from committing Ti is acyclic. The procedure responsible for en-
forcing this check is decide-mvsg-reachable, shown in Figure 4 and invoked in line 2 of
help-commit-transaction.

Intuitively, decide-mvsg-reachable should identify all transactions that are reachable
from Ti along a path of committed transactions. If Ti is reachable from itself, then it should
be aborted. Checking for the presence of such a cycle, however, presents a challenge. It is not
sufficient to check for the absence of a cycle involving Ti in the current CMVSG. That check
would cover only transactions that are already committed, while the cycle may involve transac-
tions that are going to commit concurrently with Ti—when we perform the check, the cycle may
not yet have appeared in the CMVSG. On the other hand, it is not necessary to require that the
PMVSG contain no cycles involving Ti as a precondition for committing Ti. If such a cycle is
detected in the PMVSG, the cycle may include undecided transactions other than Ti—to prevent
a cycle in the CMVSG it is sufficient to abort any one of these transactions.

The approach we use in decide-mvsg-reachable is to visit each enqueued transaction that
is reachable from Ti in the PMVSG along edges on a single object by building the set pmvsg -
trans (Step 1 of the function). The algorithm then saves the transactions that are committed in
the set cmvsg trans to search paths over multiple objects (Step 2 of the function). When an
undecided transaction is found, the algorithm attempts either to commit or to abort the transac-
tion (we are going to discuss the appropriate course of action in a moment). If in so doing we
return to Ti on a path that includes only committed transactions, then to guarantee an acyclic
CMVSG, we abort Ti. Finally, the outer loop of the function performs a breadth-first search
for transactions transitively reachable from Ti by iterating the previous process over committed
transactions saved in the set cmvsg trans.

We can now go back to the problem of deciding what the thread p that initiated transaction
Ti should do when, as it visits the transactions reachable from Ti in the PMVSG, it finds an
undecided transaction, Tj. It is tempting, in the interest of ensuring progress, to always have p
try to commit Tj. Unfortunately, helping to commit all undecided transactions reachable in the
PMVSG does not work. Suppose two transactions Ti and Tj by threads pi and p j respectively,
both add updates to the histories of objects x and y in the opposite order—without loss of gener-
ality, consider x j � xi and yi � y j. Thread pi may then help commit Tj as Ti → Tj from object
y, while p j helps to commit Ti because Tj → Ti from object x. Clearly, one of the transactions
must abort to guarantee no cycles in the CMVSG.

To choose in general which transaction to abort, we introduce a total order on undecided
transactions, called the transaction priority order (TPO).5 We say that Ti < Tj (or that Ti has
higher priority than Tj) iff Ti precedes Tj in the transaction priority order; further, we define
the distance between Ti and Tj as the number of transactions Tk such that Ti < Tk < Tj. We
require two properties of our total order: first, it must have a minimum; and second, the distance
between any two transactions must be finite. A simple way to achieve both properties is to order
transactions according to a timestamp—ties can be broken using the id of the thread that intiates
the transaction so that timestamps need not be unique across threads.

5A similar order is required in other STM. For example, in FSTM [3] the address of objects is used as a total
order to prevent the cycle described.

11

Note that the TPO is not used to determine the order in which transactions will eventually
commit—transactions with higher priority may well commit after transactions with lower pri-
ority. Rather, the TPO is used to determine the fate of any undecided, enqueued transactions
Tj that a thread p encounters as it checks the PMVSG for cycles involving Ti, the transaction
that p is trying to commit. Specifically, p will attempt to commit only those Tj that have higher
priority than Ti; the rest, p will attempt to abort. The two properties of the TPO ensure that any
recursion that may be triggered while applying this policy will terminate.

5 A Prelude to the Proofs

In the following sections we show that our algorithm is both lock-free and commits only a
one-copy serializable set of transactions. Our proofs depend on three assumptions.

First, we assume that all correct threads attempt to commit a transaction infinitely often.
This commit assumption eliminates the trivial condition in which a correct thread aborts all
attempted transactions.

Second , we assume that the FIFO queue implementing object histories provides a wait-free
insert operation. We use this assumption only to simplify our initial presentation of the proofs;
in Section 9 we will relax this assumption and discuss an implementation of our algorithm that
relies only on lock-free FIFO queues.

Third, we assume that a thread can acquire read access to the lists of versions that represents
each object’s history and, within each version, to the reading transaction set—even while these
structures are concurrently updated. We call this the prefix-read assumption—specifically, it
implies that (i) it is possible to determine xtail in finite time in get-last-version (Figure 4)
and that (ii) the function get-readers terminates and returns a finite set of transactions. Both
requirements can be met using existing algorithms: it is easy to determine xtail from the tail of an
unmodified implementation of Michael and Scott FIFO queue [15]; furthermore, the RTS can
be implemented using the ordered list of Harris [6] with only slight modifications. In particular,
during any operation on the list we set a pointer6 to the item currently at the end of the list. This
guarantees that when get-readers begins, the end of the list can be determined even though
new items may be added to the list during the execution of get-readers.

As a shorthand in the proofs, we use hct as an abbreviation of help-commit-transaction
and dmr as an abbreviation of decide-mvsg-reachable. As before, transactions are ordered
Ti < Tj according to the TPO, which has a minimum and a finite distance between any two
transactions. Again, we say that a transaction Ti is enqueued if the corresponding timestamp
has been assigned (Ti.ts 6=⊥).

Finally, our proofs ignore all transactions that are explicitly aborted by a thread through
abort-transaction. It is safe to do so because the operations performed by these transactions
are invisible to all other transactions—to become visible, the operations need to be enqueued,
and operations are enqueued only as a consequence of executing commit-transaction.

6This is similar to the tail pointer update in Michael and Scott’s FIFO queue algorithm [15].

12

6 One-Copy Serializability

We prove the algorithm is one-copy serializable by showing there are no cycles in the CMVSG—
the MVSG(L,�) where L is the MV log over the set C of committed transactions, and � is the
order in which versions appear in the history.

Lemma 1.1 If the function invocation hct(Ti) terminates, Ti is decided.

Proof. If hct(Ti) terminates, the Compare-And-Swap on the status of Ti in step 2 of the algo-
rithm must have completed. Either the CAS succeeds, in which case the status of Ti is commit-
ted; or the CAS fails, implying that the status of Ti must not have been undecided when CAS
was invoked—that is, Ti was already aborted or committed. In either case, Ti is decided when
hct(Ti) terminates.

Lemma 1.2. Let Tj be an enqueued transaction that reads a version xi and with a timestamp no
later than timestamp ts. An invocation of get-readers(xi, ts) then returns a set containing Tj.

Proof. The Lemma is direct from the definition of the function in Figure 4 and the prefix-read
assumption.

The next lemmas hold that the algorithm correctly tracks the necessary paths in PMVSG
to ensure that the CMVSG is acyclic. We will only consider paths in the PMVSG containing
enqueued transactions; that is, transactions that have all of their operations enqueued. The
lemma allows us to later assume that if a transaction Ti is committed, there were no cycles
in the PMVSG containing Ti during the execution of hct(Ti). We will then argue that some
transaction in the cycle must have been able to detect the cycle before committing, allowing us
to derive a contradiction if a cycle is created.

Lemma 1.3. Consider an invocation of gpr(Ti, ts, obj tails). Let Tj be such that i) there exists,
when gpr is invoked, a path Ti Tj in the PMVSG where ii) all the edges in the path correspond
to operations on some object x, and iii) all transactions in the path have timestamps no later than
ts. Further, iv) the version xk operated upon by Tj is no later than xtail if xtail ∈ obj tails. Then,
the set returned by gpr contains Tj.

Proof. Since the outer loop of gpr is over every object on which Ti operates, we consider only
the execution of the loop over the object x on which the path Ti Tj is defined.

Consider the shortest path between Ti and Tj. If the operation of Tj responsible for the last
edge in that path is a write, then the path is of length one, since in that case the edge is either
read-write or write-read by definition. Transaction Tj is added to pmvsg trans for the former
type of edge at line 9 where the guard of the loop holds because i) xk � x j by definition of the
read-write edge, ii) Tj.ts ≤ ts by condition (iii) of the Lemma, and similarly iii) x j �= xtail

7 by
condition (iv) of the Lemma. On the last point, we also note that since Tj is enqueued before gpr
is invoked, then the version operated upon by Tj must be enqueued before get-last-version

7The boolean operator (xi �= x j) is equivalent to (xi � x j)∨ (xi = x j).

13

determines the tail of x.hist if xtail /∈ obj tails. The loop is reached during the iteration because
ri[x j] exists (at line 6) by definition of the read-write edge Ti → Tj.

If the edge is write-read, Tj is added to pmvsg trans at line 15. The loop is reached again
because wi[xi] exists by definition of the write-read edge Ti → Tj. The loop guard holds in this
case for reasons identical to those for the read-write edge. Additionally, by condition (i) of
the Lemma there exists a read of x j by some transaction that satisfies the loop guard at line 14
before gpr is invoked.

Suppose instead Tj’s operation is a read. If Tj reads the version written by Ti, then there
exists a direct reads-from edge between Ti and Tj. In this case, Tj is added to pmvsg trans at
line 11 when Tj is returned by get-readers. Transaction Tj is enqueued by condition (i) of
the Lemma, and Tj.ts ≤ ts by condition (iii), allowing us to apply Lemma 1.2 to show that Tj is
returned by get-readers.

If instead Tj reads some version xk after the version read or written by Ti, then by definition
there exists a reads-from edge between Tk and Tj and an edge Ti → Tk that is either a read-write
or write-read edge, depending on whether the operation of Ti is, respectively, a read or a write.
Transaction Tk is added to pmvsg trans at line 9 or 15, as argued above with a slight change: in
this case the version operated upon by Tj is xk. The inequality xk �= xtail holds by condition
(iv) of the Lemma or by condition (i)—that Tj is already enqueued, depending upon whether
xtail ∈ obj tails or not, respectively. As in the case of the direct reads-from edge, get-readers
will return Tj (again by conditions (i) and (iii)) when Tk is added, proving that Tj is also added
to pmvsg trans.

Lemma 1.4. Consider an invocation of gcr+(Ti, ts, obj tails, Th). Let Tj be such that i) there
exists, when gcr+ is invoked, a path Ti Tj in the PMVSG where ii) all the edges in the path
correspond to operations on some object x, iii) all transactions in the path have timestamps no
later than ts, and iv) all operations defining edges in the path belong to transactions in the set
(C ∪{Th}). Further, v) the version xk operated upon by Tj is no later than xtail if xtail ∈ obj tails.
Then, the set returned by gcr+ contains Tj.

Proof. The proof is similar to that of Lemma 1.3 with a modification for the extra condition
(iv). The extra assumption given in (iv) is necessary because the definition of gcr+ is similar to
that of gpr except that all operations defining edges belong to transactions in the set (C ∪{Th})
by construction, as given by condition (iv).

Lemma 1.5. Suppose i) Tm Tj in PMVSG (Tj not necessarily distinct from Tm) at the time
dmr(Tm, ob) is executed by a correct thread, and ii) Tm has the latest timestamp of any transaction
in the path. If iii) the transactions in the path (possibly excluding Tm) are eventually committed,
then Tj is a member of pmvsg trans during an execution of Step 2 or 5 of dmr by the thread.

Proof. By induction on the length of the path Tm Tj. The base case is a single edge Tm → Tj.
By Lemma 1.3, Tj must be added to pmvsg trans when initialized at Step 1 of the procedure,
implying Tj is a member of pmvsg trans during Step 2. The conditions for applying Lemma 1.3
are discharged as follows: i) Tm → Tj in PMVSG before dmr is invoked, ii) every edge is defined

14

over a single object; iii) Tm is assumed to have the latest timestamp in the path; and iv) obj tails
is empty for this invocation of gpr.

The induction step of our proof assumes Tk is added to pmvsg trans for any path Tm Tk
of length up to n where all transactions (possibly excluding Tm) are enqueued and eventually
committed. We prove that extending the path to Tm Tk → Tj requires Tj to be added to
pmvsg trans before Step 5. Note that Lemma 1.3 can be applied as above if the path Tm Tj

is over a single object using the argument of the base case where condition (ii) holds instead by
construction of the path. In this case Tj would still be added at Step 1 of dmr. We now focus on
paths over multiple objects where Tj is not added at Step 1.

By the induction hypothesis, Tk is added to pmvsg trans before Step 2 or 5, so the correct
thread that invoked dmr will either find Tk committed or will invoke hdt(Tk, Tm). In hdt, either
hct(Tk) is invoked, resulting in Tk being decided by Lemma 1.1, or CAS is called in an attempt
to abort Tk. The CAS if successful, would abort Tk, which contradicts our assumption that
Tk ∈ C . Hence, if the CAS is called, Tk must already be decided. In either case, when hdt
returns Tk is decided; further, Tk must be committed by the induction hypothesis. At Step 3 or 6
then, Tk is added to cmvsg trans, and eventually the correct thread will execute an iteration of
the loop at Step 4 over Tk.8

The edge Tk → Tj is defined over some object y where by assumption the corresponding
operations are already enqueued before dmr executes. During the iteration of Step 4 over Tk, at
line 10 gpr will return Tj to be added to pmvsg trans using the same reasoning as the base case.
We again apply Lemma 1.3 to show that Tj will be added to pmvsg trans where the conditions
of the Lemma are discharged as in the base case with the exception of the last. The set obj tails
is initially empty—xtail must be determined during some execution of gpr. The operations of
Tj are enqueued before dmr, and thus gpr, is executed so that the version of y operated upon by
Tj can be no later than the tail of y.hist determined during gpr.

Lemma 1.6. Let i) Ti be a transaction that reads version xm. Suppose ii) Tm Tj in MVSG(C ∪
{Ti}, �) (Tj not necessarily distinct from Tm) at the time is-readable(Tm, ts, Ti) is executed
by a correct thread, and iii) the timestamp of every transaction in the path is no later than ts.
Then, Tj is a member of pmvsg trans during Step 3 of the procedure.

Proof. We prove the lemma by induction on the length of the path Tm Tj in the PMVSG.
The base case is the single edge Tm → Tj. Suppose conditions (i) through (iv) of the Lemma are
met. By Lemma 1.4, Tj must be returned by gcr+ at Step 1 of is-readable. The conditions of
Lemma 1.4 are discharged as follows, i) condition (ii) of this Lemma implies Tm → Tj before
gcr+ is invoked; ii) the edge Tm → Tj is defined over a single object; iii) condition (iii) of this
Lemma is the same; iv) ; and v) xtail is initially the empty set. The thread must then execute Step
2 at least once because cmvsg trans is nonempty, containing at least Tj, while checked trans is
initially empty. During the iteration of Step 2, Tj must be a member of cmvsg trans when Step
3 is reached, as transactions are never removed from the set.

8We show later that gpr returns a finite set so that cmvsg trans grows finitely at each iteration of Step 4.

15

For the induction hypothesis, we assume that the Lemma holds for the path Tm Tk of
length n and proceed to show that it also holds for the extended path Tm Tk → Tj. By the
induction hypothesis Tk will be added to cmvsg trans, and eventually the thread will execute
an iteration of Step 2 over Tk.9 During this iteration, we again apply Lemma 1.4 to show that
gcr+(Tk, ts, obj tails, Ti) will return Tj. The conditions of the Lemma are met as follows, i) the
path Tm Tj exists by condition (ii) of this Lemma before gcr+ is invoked; ii) the edge Tk → Tj

is defined over a single object; iii) condition (iii) of this Lemma is the same; and iv) since Tj

is enqueued (assigned a timestamp) before the function is invoked, the object version operated
upon by Tj is enqueued before is-readable is invoked, and thus appears in the history no later
than the current tail of the object. Transaction Tj will then be a member of cmvsg trans during
the execution of Step 3 that follows the invocation of gcr+.

We now prove that the algorithm commits only 1-SR transactions.

Theorem 1. The set of committed transactions is one-serializable.

Proof. We prove the Theorem by showing that the CMVSG is acyclic [2] using a proof by
contradiction.

Suppose, by way of contradiction, that such a cycle existed in the CMVSG. Since each
transaction in the cycle is committed, each is assigned a timestamp. Transaction timestamps are
totally ordered. Let transaction Tl have the latest timestamp of the transactions whose opera-
tion(s) defines an edge(s) in the cycle. A write-read edge Ti → Tj is defined by an read operation
rl[x j] if xi � x j. Note that the reading transaction is not an endvertex of the edge, though the
read operation is required to define the edge, allowing a cycle to be created without the read-
ing transaction. We first show that the cycle cannot contain Tl; that is, if Tl does not create a
write-read edge, there can be no cycle.

Consider the invocation of dmr(Tl , ob) from hct(Tl) in which Tl is committed (that is, the
CAS at Step 3 succeeds)—note that at this time, Tl is still undecided. Further, all transactions
that, once committed, will generate the cycle in the CMVSG have already enqueued their opera-
tions before hct(Tl) is invoked since a timestamp is only assigned after all of the corresponding
transaction’s operations are enqueued, and Tl has the latest timestamp. The cycle containing Tl ,
therefore, is already present in the PMVSG at the invocation of dmr(Tl , ob). By Lemma 1.5, Tl ,
which by construction has the latest timestamp in the cycle, must be a member of pmvsg trans
during Step 2 or 5 of the procedure. In either case, the thread executes hdt(Tl , Tl) since Tl is
not committed until dmr returns. For this invocation of hdt, Th and Ti both represent Tl , forcing
execution of the CAS to abort transaction Tl that is still undecided. Hence, assuming a cycle of
committed transactions including Tl implies that Tl is aborted, providing a contradiction.

Suppose instead that a read rl[x j] by Tl creates a write-read edge Ti → Tj in the cycle in the
CMVSG. For the edge to appear in the CMVSG, Tl must be committed. Again, consider the
execution of hct(Tl , ob) by the thread that successfully commits Tl in Step 3 of hct. In Step 2,

9The foreach loop can execute over the set in order by TPO, ensuring that each transaction is eventually consid-
ered.

16

for each version read by Tl , the thread invokes is-readable on the version; we focus on the
invocation is-readable(Tj, Tl.ts, Tl). We apply Lemma 1.6 to show that Tj must be a member
of cmvsg trans during the execution of Step 3 so that the invocation of is-readable must return
false. The conditions of Lemma 1.6 are discharged as follows, i) Tl reads x j by construction;
ii) all operations defining the cycle at this point belong to transactions in the set (C ∪{Tl}) by
assumption and are enqueued before hct(Tl) is invoked because Tl has the latest timestamp, and
timestamps are only assigned after all operations of the corresponding transaction are enqueued;
and iii) Tl has the latest timestamp of the transactions with operations defining the cycle by
construction. Since is-readable(Tj, Tl.ts, Tl) returns false, the thread executes the CAS
following. By construction Tl is not yet decided—indeed, not yet committed—until Step 3 of
hct. Hence, the CAS will succeed, aborting Tl and providing the contradiction.

7 Termination

In Theorem 2 we prove termination for an invocation of commit-transaction. In Section 5,
we assumed that the object histories were implemented using wait-free queues and that a lock-
free ordered list implemented the reading transaction set. We argue here that the insert operation
in the reading transaction set also has wait-free access guarantees although it is implemented
using a lock-free ordered list—simply retrying the operation until success is sufficient. We con-
sider only insertions to the list as transactions are never removed.10 The lock-free ordered list
of Harris [6] can represent the reading transaction set. The order of insertion is unimportant for
the set property, so we order transactions in the list by transaction priority order. In the list an
insertion of Ti then fails or starves only due to a concurrent insertion of Tj where Tj < Ti. The
transaction priority order provides a finite distance between Ti and the minimum in the order,
bounding the number of failed attempts to insert Ti at that distance. Hence, if retried contin-
uously as in the loop in lines 3–5 of commit-transaction, every insert operation eventually
succeeds.

Given that they perform effectively wait-free operations (by design or assumption), Steps 1
and 2 of commit-transaction are guaranteed to complete for any correct thread, leaving us to
show that Step 3 completes to show termination. The CAS terminates by assumption. Finally,
we note that an invocation of hct will clearly terminate if i) the invocation of dmr in Step 1
terminates; ii) the invocation of is-readable and hdt in Step 2 terminate; and iii) the recursive
invocation of hct in Step 4 terminates. Again, the CAS in Step 3 terminates by assumption, and
the get-aborter procedure clearly terminates from Figure 4. We discharge the assumptions in
order. First, we prove that gpr terminates and use that lemma to show dmr terminates provided
invocations of hdt (and thus recursive invocations of hct) terminate. Second, we show similarly
that is-readable terminates. Finally, we prove that hct itself terminates.

Lemma 2.1. An invocation of gpr(Ti, ts, obj tails) by a correct thread p terminates and returns
a set containing transactions Tj such that Tj.ts ≤ ts.

10The entire set of reading transactions may be garbage collected when the version is no longer needed, rather
than incrementally removing members from the set.

17

Proof. The procedure terminates if all of the loops within it terminate because the functions
get-readers and get-last-version terminate by the prefix-read assumption. The main loop
(lines 2–16) iterates over the finite set of objects on which Ti operates. Within each of its
iterations two more loops are executed, at lines 7–10 and 13–16, over the finite set of versions
that precede xtail in the history of x. The main loop thus terminates because all the loops it
contains are over finite sets.

Transaction Tj added to the set pmvsg trans at lines 10 and 16 is required to have a times-
tamp no later than ts by the loop guards (lines 7 and 13, respectively). The transactions returned
by get-readers and added to pmvsg trans at lines 10 and 16 all have timestamps no later than
ts according to the definition of get-readers.

Given that an invocation of gpr terminates, the following lemma easily shows that dmr
terminates.

Lemma 2.2. An invocation of dmr(Tm) terminates provided invocations of hdt terminate.

Proof. We first note that cmvsg trans is created by invocations of gpr with the same timestamp
ts. Since these invocations return only a finite set of transactions with timestamps no later than ts
by Lemma 2.1, the set cmvsg trans is bounded in size. Timestamps are assigned such that only
concurrent transactions obtain the same timestamp, and transactions that begin after another
commits must have a later timestamp.

The procedure terminates because the function invocations of gpr terminate by Lemma 2.1
and hdt by assumption. Further, the loops in Step 1 and 4 (lines 4–5 and 11–12, respectively)
are over the finite set of transactions returned by gpr. The loop in Step 4 (lines 8–13) is over
the set of transactions cmvsg trans previously shown to be finite.

In order to show is-readable terminates for a correct thread, we first argue that gcr+ (like
gpr) terminates.

Lemma 2.3. An invocation of gcr+(Ti, ts, obj tails, Th) by a correct thread p terminates and
returns a set containing transactions Tj such that Tj.ts ≤ ts.

Proof. The proof of termination of gcr+ is similar to that of Lemma 2.1. The loop guards of
gcr+ are simply more restrictive than those of gpr, requiring that operations belong to the set
(C ∪{Th}) rather than the set of enqueued transactions.

Using the previous lemma, we can show termination for is-readable. Since is-readable
does not recursively invoke hct, the proof requires no extra assumptions.

Lemma 2.4. An invocation of is-readable(Tm, ts, Tj) terminates.

Proof. The set cmvsg trans created during is-readable contains only transactions with times-
tamps no later than ts by Lemma 2.3. This set is bounded because timestamps are assigned such
that only concurrent transactions obtain the same timestamp, and transactions that begin after
another commits must have a later timestamp. Hence, the procedure terminates because the

18

loop in Step 2 (lines 5–10) is over the finite cmvsg trans, and the invocations of gcr+ terminate
according to Lemma 2.3.

We now show that hct itself terminates.

Lemma 2.5. An invocation of hct(Ti) by a correct thread terminates.

Proof. We first show that for any recursive invocation of hct(Tk) from hct(Tm) (possibly indi-
rectly through hdt(Tk, Tm) from dmr(Tm) (lines 5 and 12) from hct(Tm) (line 2)), Tk < Tm. The
order property holds for the recursive invocation of hct from hdt once we substitute Tk for Ti

and Tm for Th in the guard on line 2.
Consider now the recursive invocation of hct(Tj) from hct(Ti) at line 11 of hct(Ti), and

substitute Tm for Ti and Tk for Tj. The guard at line 10 requires Tk 6= Tm; further, the function
get-aborter(Tm) (line 9) returns the transaction Tk, implying Tm.status was set by a CAS
with mark-aborter(Tk) during hdt(Tm, Tk). The guard at line 2 of hdt requires Tm ≥ Tk.
Remembering that the guard of hct required Tk 6= Tm implies Tk < Tm for any invocation of
hct(Tk) from hct(Tm). The recursive invocations of hct are thus only upon transactions earlier
in the TPO as argued above. We defined TPO to have a minimum transaction and a finite
distance between any two transactions, ensuring that the number of recursive invocations of
hct is bounded.

We have shown that recursive invocations of hct will terminate provided hct terminates
without recursion. The function hct will terminate without recursion if each function invocation
terminates since the loop in Step 2 is over the finite set of operations in Ti. The invocation
of dmr terminates according to Lemma 2.2 while the invocation of is-readable terminates
by Lemma 2.4. The procedure hdt and get-aborter both clearly terminate by inspection,
although hdt executes CAS. As in Step 3 of hct, CAS terminates by definition.

Now we prove our general termination theorem.

Theorem 2. An invocation of commit-transaction(Ti) by a correct thread will terminate in a
finite number of steps.

Proof. Step 1 terminates if reading transaction sets are implemented with a lock-free list ordered
by transaction priority order. Eventually every transaction will be added to the list on retry
given the assumptions of the transaction priority order. By assumption for this proof, wait-
free queues are used to implement object histories, providing termination for Step 2. Step 3
terminates by the definition of the CAS primitive. The invocation of commit-transaction(Ti)
then terminates because hct(Ti) terminates in Step 3 by Lemma 2.5.

8 Lock-Freedom

To prove the protocol lock-free, we show that in a finite number of steps some new (that is,
previously uncommitted) transaction will commit provided there is at least one correct thread.
We build on Theorem 2, which states that the invocation of hct terminates for some correct

19

thread p. By the commit assumption, a correct thread p will infinitely often attempt to commit
a new transaction, ensuring that a sequence of transactions are attempted. The following lemma
holds that there exists an infinite sequence T p of transactions where hct(Ti) is invoked and Ti

is decided for each transaction Ti in the sequence provided there is at least one correct thread.

Lemma 3.1. If there is at least one correct thread, there exists an infinite sequence of decided
transactions T p such that for each transaction Ti in the sequence, some correct thread executes
hct(Ti).

Proof. We consider the sequence of transactions T p such that a single correct thread p invokes
commit-transaction(Ti) for each transaction Ti in the sequence. The commit assumption
holds that p will always attempt a new transaction by calling commit-transaction. The ex-
ecution of commit-transaction(Ti) terminates by Theorem 2, implying the sequence T p is
infinite. Further, during the execution of commit-transaction(Ti) p invokes hct(Ti) at Step 3,
and since p is correct Ti is decided by Lemma 1.1.

Note that the lemma refers only to decided transactions—lock freedom requires us to show
that from T p there exists an infinite sequence of committed transactions. We show that for
each transaction Ti in the sequence, we can find a committed transaction Tc such that Tc could
not have been committed before Ti began, ensuring that we can generate an infinite sequence
of committed transactions from T p. Towards this goal, we define two subsets over T p: (i)
helped(Ti) ≡ {Th | hct(Th) was recursively called during the execution of hct(Ti)} and (ii)
benefactors(Ti)≡ {Tp | hct(Ti) was recursively called during the execution of hct(Tp) }. In-
formally, helped(Ti) includes the transactions that Ti helped towards a decision, while benefactors(Ti)
includes the transactions that Ti was helped by. We will use the set helped(Ti) to help find a
committed transaction, but we first bound the number of benefactors for a single transaction.

Lemma 3.2. For any decided transaction Ti, benefactors(Ti) is finite.

Proof. We restrict our attention to recursive invocations of hct(Ti), because the only transaction
to join benefactors(Ti) from a non-recursive invocation of hct(Ti) (in commit-transac-
tion(Ti)) is Ti itself. A thread invokes hct in two different places in the algorithm.

The invocation in hdt requires Ti ∈ U. By the Lemma Ti is eventually decided, ensuring
that only concurrent invocations of hdt(Ti, Th) will find Ti ∈U. Hence, the finite bound on the
number of threads ensures that only a finite number of threads will help Ti by invoking hdt.

The procedure hct(Ti) may also be recursively invoked during Step 3 of hct(Tk), for some
transaction Tk, if get-aborter(Tk) = Ti where Tk 6= Ti. The function get-aborter returns Ti

set by mark-aborter(Ti) executed in hdt(Tk, Ti),11 possibly by another thread. The procedure
hdt(Tk, Ti) is in turn invoked by threads only from dmr(Ti) if Tk 6= Ti.

The execution of dmr(Ti) eventually terminates by Lemma 2.5, implying that only a finite
number of transactions Tk may be aborted for any invocation of dmr(Ti). Further, dmr(Ti) is

11Transactions aborted from abort-transaction are not enqueued, and thus can safely be ignored. Their oper-
ations remain private and unreachable in the PMVSG.

20

invoked only from hct(Ti) when Ti is undecided, implying, as above, a finite bound on the in-
vocations of dmr(Ti) by any thread. Hence, only a finite number of transactions may recursively
invoke hct(Ti) from hct(Tk).

The following lemma is useful towards proving properties of the composition of helped(Ti)
for any decided transaction Ti:

Lemma 3.3. Suppose Tj is a member of the set returned by gpr(Ti, ts, obj tails), then Ti 6= Tj

and Ti Tj.

Proof. The procedure gpr returns the set pmvsg trans built during execution of the procedure.
The set is initially empty, and transactions are added at lines 9, 11, and 15. We show that the
lemma holds at each addition to pmvsg trans.

At line 9, the loop guard maintains both that Tj 6= Ti and Tj has a read-write edge Ti → Tj.
According to Lemma 1.2, get-readers(Tj) returns only transactions Tk such that Tj Tk. By
the definition of get-readers only Tk with edges defined on the object x j are returned. Since
Ti does not read x j, Ti is not returned by get-readers. Hence, the lemma holds for transactions
added at line 9.

A transaction Tj added to pmvsg trans at line 11 must have read the version xi written by Ti

by Lemma 1.2, which excludes Ti by definition and ensures Ti → Tj by a reads-from edge.
For any transaction Tj at line 15, Ti 6= Tj and Ti → Tj along a write-read edge by construction

of the loop guard. Further, as at line 9, by the definition of get-readers only Tk with paths
Tj Tk defined on the object x j are returned. In this case, we infer Ti does not read x j because
xi � x j, and xi is enqueued only after Ti reads a version of x. The version xk read by Ti must be
before xi such that xk � xi � x j. Hence, the lemma also holds for transactions added at line 15,
completing our discussion of the makeup of pmvsg trans.

Lemma 3.4. Suppose Tj is a member of the set returned by gcr+(Ti, ts, obj tails, Th), then
Ti 6= Tj, Ti Tj and Ti ∈ (C ∪{Th}).

Proof. The procedure gcr+ returns the set cmvsg trans built during execution of the procedure.
The set is initially empty, and transactions are added at lines 11–12, 14–15, and 20–21. Each
addition ensures the last claim of the lemma: Ti ∈ (C ∪{Th}). We show that the other claims of
the lemma hold at each addition to cmvsg trans.

At lines 11–12, the loop guard maintains both that Tj 6= Ti and Tj has a read-write edge
Ti → Tj. According to Lemma 1.2, get-readers(Tj) returns only transactions Tk such that
Tj Tk. By the definition of get-readers only Tk with edges defined on the object x j are
returned. Since Ti does not read x j, Ti is not returned by get-readers. Hence, the lemma holds
for transactions added at lines 11–12.

A transaction Tj added to cmvsg trans at lines 14–15 must have read the version xi written
by Ti by Lemma 1.2, which excludes Ti by definition and ensures Ti → Tj by a reads-from edge.

For any transaction Tj at lines 20–21, Ti 6= Tj and Ti → Tj along a write-read edge by con-
struction of the loop guard. Further, as at lines 11–12, by the definition of get-readers only
Tk with paths Tj Tk defined on the object x j are returned. In this case, we infer Ti does not

21

read x j because xi � x j, and xi is enqueued only after Ti reads a committed version of x. The
committed version xk read by Ti must be before xi such that xk � xi � x j. Hence, the lemma
also holds for transactions added at lines 20–21, completing our discussion of the makeup of
cmvsg trans.

The final lemma allows us to assert that if Ti is the earliest transaction in helped(Tp) and
is not committed, then there exists a committed transaction Tj that cannot be decided before Ti

begins, providing a bound on the number of transactions that can fulfill the role of Tj.

Lemma 3.5. Consider an execution of hct(Tp) that terminates, and let Ti be the earliest trans-
action in helped(Tp) according to the transaction priority order. Either Ti eventually commits,
or if Ti is not aborted during Step 2 of hct(Ti), there is a committed transaction Tj such that
Ti Tj in the PMVSG, and Tj commits after Ti begins execution.

Proof. The invocation of hct(Ti) implied by the definition of helped terminates because hct(Tp)
terminates, which by Lemma 1.1 requires Ti to be decided. Lemma 3.5 trivially holds if Ti is
committed; we consider the case where Ti is aborted. We first argue that Ti will not be aborted
as a result of some thread executing hdt(Ti, Tk)—in other words, Ti may only be aborted during
an execution of hdt(Ti, Ti).

For contradiction, we assume Ti is aborted during some execution of hdt(Ti, Tk). The suc-
cessful abort implies get-aborter(Ti) = Tk. Some thread must then invoke hct(Tk) during
Step 4 of the execution of hct(Ti)—implying Tk ∈ helped(Tp)—since Ti 6= Tk by construction.
By the proof of Lemma 2.5, the invocation of hct(Tk) from hct(Ti) requires Tk < Ti, contradict-
ing our assumption that Ti is the earliest transaction by the transaction priority order in the set
helped(Tp).

We have established that, if Ti is aborted, it occurs during the execution of hdt(Ti, Ti).
Consider the execution of hdt by the thread that successfully aborts Ti. The lemma excludes
hdt from being invoked at Step 2 of hct(Ti). The procedure hdt is thus invoked from dmr(Ti),
implying there is a cycle Ti Ti since hdt is invoked only on members of pmvsg trans. The
set pmvsg trans is created by invocations of gpr over members of cmvsg trans and Ti. The set
cmvsg trans is initialized by invoking gpr(Ti, ts, obj tails). By Lemma 3.3, the transactions
returned by gpr are reachable from the argument so that any member of the sets pmvsg trans
and cmvsg trans are transitively reachable from Ti—the initial argument.

Reflexive edges are not defined in the PMVSG, implying some transaction Tj (Tj 6= Ti)
belongs to the cycle containing Ti. Further, Lemma 3.3 implies that Ti is added to pmvsg trans
during an iteration of the loop over Tj in Step 4 since gpr cannot return Ti at Step 1. The loop
guard states that transaction Tj must be a member of cmvsg trans, and members of cmvsg trans
are committed by construction (see lines 6 & 13). Hence, if Ti is not aborted during Step 2 of
hct(Ti), there is a committed transaction Tj such that Ti Tj.

We have shown that some reachable, committed Tj exists. It remains to show that some
transaction in the cycle does not commit until after Ti begins. Note that all transactions in the
cycle other than Ti are members of cmvsg trans and are thus committed by construction. We
proceed by contradiction. Assume all transactions in the cycle (except Tj) commit before Ti

begins.

22

procedure find-committed-transaction(Tp) returns T ∈ C
1 let Ti := < earliest trans. in helped (Tp) >
2 if (Ti ∈ C)
3 return Ti
4 else if (Ti aborted during Step 2 of hct)
5 return Tj ∈ C : (∃Tm | ri[xm] ∈ Ti)∧ (Tm Tj)∧ (Tj decided after Ti begins)
6 else // Ti aborted from dmr
7 return Tj ∈ C : (Ti Tj)∧ (Tj decided after Ti begins)

Figure 6: The definition of fct that converts an infinite sequence of attempted (and decided) transactions to an
infinite sequence of committed transactions.

Consider the first edge Tj → Tk in the cycle. It is easy to see that this edge can be neither
a reads-from nor a write-read edge. These edges require the existence of a version x j in the
history of some object x, created by Tj, that either coincides with or precedes the version read
by Tk. If Tk is committed before Tj begins, x j cannot exist while Tk executes, making such edges
impossible.

The only edge left to consider is a read-write edge. For every read r j[xl] of some object
x during the execution of Tj, is-readable(Tl , trans tstamp, Tj) returned true. We derive a
contradiction using Lemma 1.4 to show that during the execution of is-readable(Tl , trans -
tstamp, Tj), transaction Tl , where r j[xl] defines the edge Tj → Tk in the cycle, will be returned by
some invocation of gcr+ in Step 2. Thus, the procedure will return false at line 10. During the
execution of is-readable, the conditions of Lemma 1.4 are met during our informal proof by
induction as follows: (i) all transactions in the path are committed before Tj begins execution
so that the path exists; (ii) all timestamps of committed transactions are no later than the current
global trans stamp; (iv) by construction all transactions in the path are committed except for Tj;
and (v) all committed operations are enqueued before the tail is determined. Condition (ii) is
met when we apply the Lemma repeatedly to each edge in the cycle. The first transaction in the
cycle from Tj is returned at Step 1 according to Lemma 1.4 and is added to cmvsg trans. Further
transactions (including Tj) are likewise returned and added to cmvsg trans in Step 2 as gcr+ is
in turn invoked on the previous transaction in the path. Since Tj is added to cmvsg trans, the
procedure returns false at line 10 in contradiction to the execution of Tj where all reads return
true. Our assumption that all transactions are committed before Tj begins must be false so that
Lemma 1.4 is not applicable to all edges in the cycle. One of the transactions in the cycle must
have committed after Tj began execution.

We prove the protocol is lock-free by showing that our protocol guarantees an infinite se-
quence of transactions will commit (provided there is at least one correct thread).

Theorem 3. There exists an infinite sequence of committed transactions T c provided there is at
least one correct thread.

Proof. By Lemma 3.1, there exists an infinite sequence T p of decided transactions such that
for each transaction Ti in the sequence, hct(Ti) is executed by some correct thread.

23

We generate from T p a (possibly disjoint) sequence of committed transactions T c by apply-
ing to T p the procedure find-committed-transaction (abbreviated fct) shown in Figure 6.
According to the definition of fct, only committed transactions are returned.

Transactions Ti returned at line 3 and Tj returned at line 7 exist by Lemma 3.5. A transac-
tion that maps to Ti ∈ T c because of line 3 must belong to benefactors(Ti)—by Lemma 3.2,
benefactors(Ti) is finite. A transaction that maps to Tj ∈ T c because of line 7 is instead a
benefactor of Ti such that Ti Tj. As Ti must have begun before Tj commits, there exists only
a finite number of such Ti corresponding to the transaction Tj returned. By Lemma 3.2, the
number of transactions in benefactors(Ti) is finite for each such Ti.

Transaction Tj is returned at line 5 if Ti is aborted during Step 2 of hct because is-read-
able(Tm, ts, Ti) returns false for some transaction Tm such that ri[xm] ∈ Ti. We first use the
definition of is-readable and Lemma 3.4 to show that Tj as defined in fct exists. The set
cmvsg trans contains only transactions returned by invocations of gcr+ on other elements of
cmvsg trans and Tm. By Lemma 3.4, any transaction returned by gcr+ is reachable from the
argument. Hence, all members of cmvsg trans are (transitively) reachable from Tm. Since all
members of cmvsg trans are committed by construction, it then suffices to show that Tm is not
added to cmvsg trans at Step 1 to show that some transaction Tj exists in Step 2 on which gcr+
is invoked when Tm is added to cmvsg trans. Lemma 3.4 states precisely that gcr+(Tm, ts, Ti) at
Step 1 cannot return Tm. As a member of cmvsg trans Tj is thus both committed and reachable
from Tm in the PMVSG.

It remains to be shown that Tj is decided after Ti begins. Note that Tj is returned at line 5
if Ti is aborted during Step 2 of hct because is-readable(Tm, ts, Ti) returns false; whereas,
is-readable(Tm, ts′, Ti) (ts′ ≤ ts) returned true when Ti performed the read operation ri[xm].
Hence, during the execution of Ti there was no such transaction Tj that caused is-readable to
return false. Timestamps are assigned before a transaction is committed, and ts′ was the global
trans tstamp at the time of the read, ensuring that no transaction that was decided before Ti

began could meet the properties required of Tj. Yet, Tj exists as argued above, implying that
Tj must have been committed after Ti began. As before, there are only a finite number of such
Tj for each Ti so that the transaction Tj in T c returned at line 5 can only be mapped by a finite
number of transactions in T p.

9 Optimizations

The assumption of a wait-free queue implementation to manage objects’ histories is problem-
atic. Though it does not simplify greatly the consistency problem of providing 1-SR transac-
tions, wait-free queues are required to guarantee termination. Wait-freedom is an expensive
nonblocking access property. With some modifications, lock-free FIFO queues can maintain
the lock-free progress guarantee, as shown in Figure 4.

A lock-free FIFO queue can provide the total order of versions in an object’s history. We
consider only enqueue operations and leave dequeue operations to discussions of garbage col-
lection. A successful enqueue obviously poses no difficulties, but as stated in Section 4, the
enqueue must occur only once during concurrent thread operations. On the other hand, a failure

24

// Commit transaction using lock-free data structures.
procedure commit-transaction-lf(Ti)

// Step 1. Enqueue read operations
1 foreach {x : x ∈ O : ri[xk] ∈ Ti}
2 let L := wk[xk].read list
3 do
4 list-insert-operation (L, Ti)
5 until (Ti ∈ L)

// Step 2. Enqueue write operations
6 let S := < Ti > // LIFO queue containing Ti
7 while (S not empty)
8 let Tj := top of S
9 let Tq := help-enqueue-transaction (Tj)
10 if (Tq 6= Tj)
11 push(S, Tq)
12 if (∃Tk | Tk ∈ S : Tk .ts 6=⊥)
13 < pop stack until Tk removed >
14 help-commit-transaction (Tk)

// Help transaction to enqueue operations
procedure help-enqueue-transaction(Tm)
1 foreach {x : x ∈ O : wi[xi] ∈ Ti}
2 let Q := x.hist

// enqueue returns transaction corresponding to
// successful enqueue.

3 let Tq := enqueue (Q, wi[xi])
4 if (Tq 6= Ti)
5 return Tq

// Assign timestamp to transaction
6 CAS (&(Ti.ts), ⊥, trans tstamp)
7 CAS (&(trans tstamp), Ti.ts, Ti.ts+1)

Figure 7: Procedures to commit a transaction using a lock-free data structures. The transaction read list is imple-
mented by a lock-free ordered list. Object histories use a modified lock-free queue. Step 2 of commit-transaction
needs to be modified to use the lock-free data structures, while Step 3 is removed entirely.

to enqueue a version occurs when another version is successfully enqueued instead. To use
a lock-free instead of wait-free queue for histories, we guarantee that the enqueue operation
terminates (not succeeds). The queue should return the successful competing transaction as an
error code on failure, allowing our algorithm to act on the successful enqueue, rather than suffer
possible infinite retries within the enqueue function. Hence, we would like a lock-free FIFO
queue where the enqueue operation always terminates and returns the transaction correspond-
ing to a successfully enqueued version. Error indication is then obtained by simply comparing
the return value to the requested enqueue version.

We believe that the existing lock-free FIFO queue of Michael and Scott [15] can be modi-
fied as follows: i) if the enqueue operation succeeds (or has already succeeded), the transaction
whose operation was enqueued is returned; and ii) if the enqueue fails, the transaction corre-
sponding to the successful competing enqueue is returned. Michael and Scott’s queue requires
a simple modification to return the new tail if the CAS to append a new tail fails. Further, the
queue can be checked to determine whether the version is already enqueued.

The new commit-transaction algorithm, called commit-transaction-lf, using lock-
free queues appears in Figure 4 with modified Steps 2 and 3. Enqueueing a new version to
an object’s history uses a stack S to track transactions with successful enqueues. Transactions
in the stack are helped with the method help-enqueue-transaction (abbreviated het) to
guarantee that some transaction will enqueue all of its operations. The remaining functions
hct and dmr used to commit a transaction are unmodified. Note that without contention, the
modified algorithm behaves exactly as the original presented in Figure 4. Specifically, without

25

contention the invocation of het will return Ti and set the timestamp of Ti, ensuring that Ti is
removed from S at line 13 and the stack is emptied. At line 14, hct(Ti) will then be invoked.
Since the stack was cleared, the loop terminates, and the function ends. The modifications
apply only when het(Tj) returns a transaction Tq 6= Tj (where Tj = Ti initially); that is, when an
operation of Tj is not successfully added to a history during het.

The proof of one-copy serializability (Theorem 1) for the modified algorithm needs only
one change, though the proof applies only to committed transactions, which have the same
properties as before. The modified algorithm does not change the functions hct and dmr that
are used in the proof of 1-SR. Instead, several lemmas and the theorem itself implicitly assume
that a transaction with a timestamp is necessarily enqueued. This assumption still holds for the
modified algorithm because the guard at line 12 ensures that a timestamp is assigned to Ti before
invoking hct(Ti).

The proof of Theorem 2 no longer holds. The new algorithm for commit-transaction
is not guaranteed to terminate. Termination is not our concern (though it may be for some
applications); lock-freedom is our goal. Though we cannot use the proof of termination for
Lemma 3.1, Lemmas 2.1 through 2.5 still hold as neither dmr or hct have been modified. In
fact, Theorem 2 is the only proof that no longer holds from the previous Sections 6 through 8.

Without relying on termination, the following lemma holds that an infinite sequence of
transactions exists under the modified algorithm. The previous proof of lock-freedom in Theo-
rem 3 can be satisfied with the same definition of fct used in Figure 6 by replacing Lemma 3.1
with the following Lemma 4.1.

Lemma 4.1 requires a further assumption. Previously, it was sufficient to assume that at
any time there were only a finite number of threads in the system. We now assume a stronger
condition that we call the commit-rate assumption—the rate of new threads in the system is less
than the rate of commit of transactions. This assumption is easy to enforce by requiring new
threads to be created within a transaction. Relaxing the wait-free access guarantee of object
histories requires directly addressing the starvation that may occur while attempting to add a
version to an object history. By bounding the rate at which new threads are created, we prohibit
starvation due to an overwhelming number of new threads such that each thread successfully
enqueues a new operation but does not have a chance to help another thread.

Lemma 4.1. If there is at least one correct thread, under the modified algorithm of Figure 4
there exists an infinite sequence of decided transactions T p such that for each transaction Ti in
the sequence, some thread executes hct(Ti).

Proof. In this proof, we abbreviate commit-transaction-lf with ct-lf. We prove that in a
finite number of steps i) a thread will always invoke hct(Ti) for an undecided transaction Ti, and
ii) Ti will be decided.

Suppose that a correct thread p attempts to commit a transaction Tp. The function ct-lf
terminates when the stack S is empty, exiting the loop in Step 2 of the function. The stack
initially contains Tp, requiring Tp to be removed at line 13 to empty S. The following line of the
function then invokes hct(Tp) in this case. The commit assumption provides that p will attempt
to commit another transaction again in a finite number of steps. Hence, the lemma holds as

26

long as ct-lf terminates. In our modified algorithm, the execution of ct-lf(Tp) by a correct
thread p is not guaranteed to terminate. We show that if the function does not terminate, a new
transaction will always be decided by hct in a finite number of steps, considering the execution
of ct-lf(Tp) by p and provided no other thread commits a new transaction. If another thread
commits a transaction, the Lemma holds because hct must have been invoked to commit the
transaction.

During different iterations of the loop in Step 2, the stack S contains different sequences of
transactions Tp, . . . ,Tn. We prove that if another thread doesn’t commit a transaction, in a finite
number of steps some transaction Tk in the sequence will have a timestamp assigned, enabling
the guard at line 12. At the guard, S contains the sequence Tp, . . . ,Tk, . . . ,Tn (Tn not necessarily
distinct from Tk), and at line 14 thread p invokes hct(Tk), providing Tk ∈ T p. The execution
of hct(Tk) by p terminates in a finite number of steps (by Lemma 2.5) with Tk decided (by
Lemma 1.1).

We first show that Tk is not added to the stack after a timestamp is assigned (though Tk
may be concurrently added to several threads’ stacks in ct-lf), eventually generating a new
member of T p rather than trying repeatedly to commit the same set of transactions. When
the guard at line 12 is true, some Tk in the sequence Tp, . . . ,Tn is assigned a timestamp, and
at line 13 Tk, . . . ,Tn is then removed from the stack. Transaction Tk is assigned the timestamp
upon successful completion of het(Tk) after all of the operations of Tk are enqueued. Hence,
no further invocations of het by any thread will return Tk because an invocation of het(Ti) for
some Ti returns Tk only when an operation of Tk is enqueued concurrently.

Finally, it remains to be shown that the guard at line 12 becomes true—that some Ti in S is
assigned a timestamp—in a finite number of steps if ct-lf does not terminate, and some other
thread (besides p) does not commit a transaction. First, we argue that there is a bound on the
length of S, then use the bound to show that either a transaction commits (not necessarily in S)
or some transaction in S is assigned a timestamp. We note that transactions privately aborted can
never appear in S because their operations are not enqueued and thus cannot be returned by the
enqueue procedure. The guard at line 12 is false when Ti.ts =⊥ for every Ti in S. A transaction
cannot be decided until Ti.ts 6= ⊥ because the procedures hct and hdt required to commit or
abort transaction Ti are only invoked on enqueued transactions. Hence, all transactions in the
stack must be undecided. Since there are only a finite number of transactions that may be
undecided at any time, the stack cannot grow longer than the finite number of threads in the
system.

If the number of threads is fixed, then when S reaches its maximum length, het only returns
transactions already in S, implying another operation is enqueued for a transaction in S. Since
there are a finite number of operations belonging to transactions in S, eventually some trans-
action will have all of its operations enqueued and will be assigned a timestamp either by the
thread that successfully enqueues the last operation or by the correct thread p executing het(Tn)
on the last transaction Tn in S. Hence, in a finite number of steps the guard at line 12 is enabled
if the number of threads is fixed.

The number of threads is not fixed. The bound on the length of S thus may grow as the
number of threads are increased, although the commit-rate assumption holds that new threads

27

are created slower than transactions are committed. Hence, unless a new transaction commits
(increasing the number of committed transactions), the number of threads is fixed.

10 Conclusions

Serializability is a correctness criterion that allows for concurrent execution of transactions,
while ensuring the objects’ values are equivalent to some sequential execution of the trans-
actions. We have presented a one-copy serializable, lock-free software transactional memory
(STM) based on multiversion objects. Our algorithm concurrently executes and commits trans-
actions without mutual exclusion locks. Only existing lock-free data structures and atomic
primitives are required to implement the algorithm. Multiple versions allow read-only trans-
actions to read previous data values, increasing the likelihood that they will commit under
contention. Threads help commit transactions to provide progress and to ensure the one-copy
serializability property. The proof of 1-SR shows how helping transactions that are reachable
in the PMVSG guarantees one-copy serializability. The proof of lock-freedom instead shows
how helping transactions can provide lock-free progress, although some transactions might be
aborted to guarantee one-copy serializability. In the future, we intend to assess the performance
of our algorithm through an implementation.

References
[1] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-free shared objects. ACM

TOCS, 15(2):134–165, May 1997.

[2] P. A. Bernstein and N. Goodman. Multiversion concurrency control—theory and algorithms. ACM Trans.
Database Syst., 8(4):465–483, 1983.

[3] K. Fraser. Practical lock freedom. PhD thesis, Cambridge University Computer Laboratory, September 2003.

[4] T. Harris. Exceptions and side-effects in atomic blocks. In PODC Work. on Concurrency and Synch. in Java
Prog., July 2004.

[5] T. Harris and K. Fraser. Language support for lightweight transactions. ACM SIGPLAN Notices, 38(11):388–
402, 2003.

[6] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. LNCS, 2180:300–314, Oct 2001.

[7] M. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124–149, 1991.

[8] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues as an exam-
ple. In Proc. IEEE ICDCS, pages 522–529, 2003.

[9] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III. Software transactional memory for dynamic-sized data
structures. In Proc. ACM PODC, pages 92–101, July 2003.

[10] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3):463–492, 1990.

[11] C. Hoare and R. H. Perrott, editors. Towards a theory of parallel programming, volume 9 of Operating Systems
Techniques, pages 61–71. Academic Press, 1972.

[12] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong shared memory primitives. In
Proc. ACM PODC, pages 151–160. ACM Press, 1994.

[13] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Trans. Database Syst.,
6(2), June 1981.

28

[14] V. J. Marathe and M. L. Scott. A qualitative survey of modern software transactional memory systems. Tech-
nical Report TR 839, Department of Computer Science, University of Rochester, June 2004.

[15] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking concurrent queue
algorithms. In Proc. ACM PODC, pages 267–275, 1996.

[16] C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):631–653, 1979.

[17] F. Pizlo, M. Prochazka, S. Jagannathan, and J. Vitek. Transactional lock-free objects for real-time java. In
PODC Workshop on Concurrency and Synchronization in Java Programs, July 2004.

[18] N. Shavit and D. Touitou. Software transactional memory. In Proc. ACM PODC, pages 204–213, 1995.

[19] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors for concurrent objects. In Proc. ECOOP,
June 2004.

29

	Introduction
	Related Work
	System Model
	Lock-Free Transactions
	A Prelude to the Proofs
	One-Copy Serializability
	Termination
	Lock-Freedom
	Optimizations
	Conclusions

