BAR Fault Tolerance for Cooperative Services
Extended Technical Report TR-05-10

Jean-Philippe Martin, Amitanand S. Aiyer, Lorenzo Alvisi,

Allen Clement, Michael Dahlin, and Carl Porth
University of Texas at Austin - Dept. of Computer Science

ABSTRACT _This paper describes a ger)eral app_ro_ach to constru_cting cooper-
. . . . ative services that span multiple administrative domains (MADs).
Thls.paper describes ageneral approac_h to const'ructmg cooperat_lv In a cooperative service, nodes collaborate to provide some service
services that span multiple administrative domains. In such envi- o+ penefits each node, but there is no central authority that con-
ronments,_ proto_cols must tole_re}te b(Byzantlne_ ber_]awom_/hen trols the nodes’ actions. Examples of such services include Internet

bquen, m!gcor)flgured, or ma|ICIOUS‘n0deS arbltrgrlly deviate from routing [21, 59], wireless mesh routing [33], file distribution [14],
their specification andational behaviorswhen selfish nodes de- archival storage [38], or cooperative backup [5, 16, 31]. AsIMA
viate from their specification to increase their local benefit. The distributed systems t;ecome more commonplac’e dleveloping a solid
paper makes three contributions: (1) Itintroduces the BAR (Byzan- ¢,,nqation for constructing this class of services becomes increas-
tine, Altruistic, Rational) model as a foundation for reasoning about ingly important

cooperative services; (2) It proposes a generql three-leveitece There currently exists no satisfactory way to model MAD ser-
ture to reduce the complexity of building services under the BAR ;oo | these systems, the classical dichotomy between correct

model; a_nd (3) It describ'es an implementation of B,AR'B’ the first and faulty nodes [56] becomes inadequate. Nodes in MAD systems
cooperative backup service to tolerate both Byzantine users and any, ., gepart from protocols for two distinct reasons. First, as in tra-
unbounded number of rational users. At the core of BAR-B is an ditional systems, nodes may beokenand arbitrarily deviate from

asynchronous replicated state machine that provides the custom- protocol because of component failure, misconfiguration, ggcur

ary safety and liveness guarantees despite nodes exhibiting bOthbompromise or malicious intent. Second, nodes maselfishand
Byzantine and rational behaviors. Our prototype provides accept- alter the protocol in order to increase their utility [1, 27]. Byzan-

ab_le performance for our application: our BAR-tolerant state ma- tine Fault Tolerance (BFT) [10, 30, 36] handles the first class of
chine executes 15 requests per second, and our BAR-B backup S€lYeviations well. However, the Byzantine model classifies all devi-

vice can back up 100 MB of data in under 4 minutes. ations as faults and requires a bound on the number of faults in the
system; this bound is not tenable in MAD systems wiakr@odes

Categories and Subject Descriptors may benefit from selfish behavior and be motivated to deviate from
C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Dis- the protocol. Models that only account for selfish behavior [59]
tributed Systems handle the second class of deviations, but may be vulnerable to ar-

bitrary disruptions if even a single node is broken and deviates from
expected rational behavior.

General Terms Given the potential for nodes to develop arbitrarily subtle tactics,

ALGORITHMS, RELIABILITY it is not sufficient to verify experimentally that a protocol tolerates
a collection of attacks identified by the protocol’s creator. Instead,
Keywords just as for authentication systems [8] or Byzantine-tolerant proto-

cols [30], it is necessary to design protocols tpatvably meet
their goals, no matter what strategies nodes may concoct within the
scope of the adversary model.

To allow construction of such protocols, we define a model that
1. INTRODUCTION captures the essential aspects of MADs. The Byzantine-Altruistic-
Rational (BAR) model accommodates three classes of ndelas.
tional [59] nodes participate in the system to gain some net benefit
and can depart from a proposed program in order to increase their
net benefitByzanting10, 30, 36] nodes can depart arbitrarily from
a proposed program whether it benefits them or not. Finally, BAR

Game theory, Byzantine fault tolerance, Reliable systems, Peer to
Peer

This work was supported in part by NSF award CNS 0509338 anid NS
CyberTrust award 0430510. Lorenzo Alvisi was also suppokg an

Alfred P. Sloan Fellowhip. accommodates the presenceatifuistic [45] nodes that execute
Permission to make digital or hard copies of all or part of thizkfor a proposed program even if the rational choice is to deviate. A
personal or classroom use is granted without fee providatidbpies are protocol is BAR Tolerant (BART) if it provably provides to its non-
not made or distributed for profit or commercial advantage aatidbpies Byzantine participants a set of desired safety and liveness proper-

bear this notice and the full citation on the first page. Toyosierwise, to ties. In this paper, we focus on BART protocols that do not depend
republish, to pg/St on fservers or to redistribute to listgies prior specific 1, 10 ayistence of altruistic nodes in the system: we assume that at
permission and/or a fee. n— . .

SOSP'050ctober 23-26, 2005, Brighton, United Kingdom. most =2 of the nodes in the system are Byzantine and that every

Copyright 2005 ACM 1-59593-079-5/05/0015.00.

non-Byzantine node is rational. function must account for a node’s costs (e.g., computation cycles,
A key question is whether useful systems can be built under the storage, network bandwidth, overhead associated with sending and
BAR model. To answer this question, we develop a general three- receiving messages, power consumption, or threat of financied san
level architecture for BART services. The bottom level implements tions [31]) and benefits (e.g., access to remote storage [38, 5, 16,
a small set of key abstractions (e.g., state machine replication and31], network capacity [33], or computational cycles [57]) for par-
terminating reliable broadcast) that simplify implementing and rea- ticipating in a system.
soning about BART distributed services. The middle level parti- Byzantinenodes may deviate arbitrarily from the suggested pro-
tions and assigns work to individual nodes. Finally, the top level tocol for any reason. They may be broken (e.g., misconfigured,
implements the application-specific aspects of BART services (e.g., compromised, malfunctioning, or misprogrammed) or may just be
verifying that responses to requests conform to application seman-optimizing for an unknown utility function that differs from the
tics.) utility function used by rational nodes—for instance, ascribing value
We use this architecture to construct BAR-B, a BART coopera- to harm inflicted on the system or its users.
tive backup service. BAR-B is targeted at environments—such as Under BAR, the goal is to provide guarantees similar to those
a group of students in a dorm, home machines for researchers in arom Byzantine fault tolerance to “all rational and altruistic nodes”
group, or machines donated to non-profit organizations [32]—that, as opposed to “all correct nodes.” We distinguish two classes of
by supporting a notion of identity that is “expensive” to obtain, protocols that meet this goal.
avoid the Sybil attack [18]. We do not target open membership

peer-to-peer systems. e Incentive-Compatible Byzantine Fault Tolerant (IC-BFT) pro-

We find that our architecture makes the design of BAR-B eas- tocols: A protocol is IC-BFT if it guarantees the specified set
ier to derive, implement, and comprehend. Compared to previous of safety and liveness properties and if itis in the best interest
peer to peer backup architectures [15, 16, 31], BAR-B has devera of all rational nodes to follow the protocol exactly.

advantages: it is unique in tolerating both rational and Byzantine _ o)
peers, it provides deterministic retrieval guarantees, and it does not ~ ® Byzantine Altruistic Rational Tolerant (BART) protocols: A

require peers to exchange storage symmetrically. Perhaps most im- protocol is BART if it guarantees the specified set of safety
portantly, we find that using a layereded architecture simplifies the and liveness properties in the presence of all rational devia-
task of proving safety and liveness properties. tions from the protocol.

We also show that our approach is practical: our prototype BART
state machine executes batches of 15 requests per second and o# IC-BFT protocol thus must define the optimal strategy for a
BAR-B prototype can back up 100 MB of data to 10 nodes in under rational node. In a BART protocol a rational node may exploit local
4 minutes while guaranteeing data recovery despite the failure of 3 Optimizations not specified in the protocol without endangering the
nodes. global guarantees. Note that IC-BFT protocols are a subset of the

In this paper we make three main contributions. First, we for- BART protocols.
malize a model for reasoning about systems in the presence of both
Byzantine and rational behavior. Second, we introduce a general3, SYSTEM MODEL
architecture and identify a set of design principles which, together,
make it possible to build and reason about BART systems. Third,
we describe the implementation of BAR-B, a cooperative backup
system within the BAR model. A key component of our system is
a BART protocol for state machine replication that relies on syn-
chrony assumptions only for liveness.

The rest of this paper is organized as follows. In Sections 2 and 3
we formally present the BAR model and our system model. In Sec-
tion 4, we describe our overall 3-level architecture, and the next
three sections present our implementation of each of the levels:
our asynchronous BART state machine, our techniques for work
assignment, and our BAR-B application. Section 8 evaluates the
prototype and Section 9 discusses related work.

Although we seek to develop a general framework for construct-
ing a range of cooperative services, our approach is guided by a
specific problem in a specific set of environments. In particular, we
are building a cooperative backup system for three user communi-
ties: 30 co-workers who cooperatively back up their personal home
machines, 500 students in a dormitory who cooperatively back up
their personal machines, and 50 nonprofit organizations that eeceiv
free or low-cost refurbished PCs [32].

We assume that a trusted authority controls which nodes may
enter the system, that each such member has a unique identity cor-
responding to a cryptographic public key, that each member can
determine whether a public key belongs to a specific member, and
that no set of nodes has the computational power to subvert the stan-
dard cryptographic assumptions associated with public key signa-
2. BAR MODEL tures [50] and secure hashing [46]. These assumptions are reason

To model a MAD environment we must account for three im- able for our target environments—a volunteer distributes a list of
portant factors: (a) no node is guaranteed to follow the suggestedkeys to coworkers; a university’s electronic ID system maps iden-
protocol, (b) the actions of most nodes are guided by self interest [1, tities to dormitory residents; the refurbisher installs the key infor-
27], and (c) some nodes may be categorically broken [10, 30, 36]. mation on machines before they are distributed to non-profits—and

The Byzantine Altruistic Rational (BAR) model addresses these facilitate the design of BART systems in three ways. First, they
considerations by classifying nodes into three categories. provide justification for our assumption that the number of Byzan-

Altruistic nodes follow the suggested protocol exactly. Altruis- tine nodes in the system can be bounded. Second, they give rational
tic nodes may reflect the existence of Good Samaritans and “seednodes an incentive to consider the long-term consequences of their
nodes” in real systems. Intuitively, altruistic nodes correspond to actions, making it easier to apply internal sanctions (e.g. denial of
correct nodesn the fault-tolerance literature. service or data deletion) against mishehaving nodes. Third, they

Rational nodes are self-interested and seek to maximize their allow us to tie system identities to real world entities, so that exter-
benefit according to a known utility function. Rational nodes will nal sanctions (e.g. social disgrace, monetary fines, or contractual
deviate from the suggested protocol if and only if doing so in- penalty) may be applied against the owners of nodes that misbe-
creases their net utility from participating in the system. The utility have. Support for external sanctions increases the flexibility of our

protocols, but our protocols do not require the use of external sanc-

tions for safety or liveness.
We have different timing assumptions for BAR-B and for the
underlying BART replicated state machine. BAR-B relies on syn-

actions, a rational node assumes that the maximum numbg) (
of Byzantine nodes are present in the system and that they will act
in the way that minimizes’s utility.

Byzantine nodesWe assume a Byzantine fault model for Byzan-

chrony to guarantee both its liveness and safety properties—datatine nodes [10, 30, 36] and a strong adversary. Byzantine nodes can
trusted to BAR-B is guaranteed to be retrievable only until the lease exhibit arbitrary behavior. For example, they can crash, lose data,

associated with it expires. Conversely, the underlying BART state alter data, and send incorrect protocol messages. Furthermore, we
machine is safe even in an asynchronous system, though liveness isssume an adversary who can coordinate Byzantine nodes in arbi-

only guaranteed during periods of synchrony.
To ensure liveness under the BAR model, we make two addi-
tional timing assumptions. First, we give nodes an incentive to stay

trary ways. Finally, we assume that at mé§t3 of the nodes in the
system are Byzantine.

as synchronized as possible through a “penance” mechanism (dis4, SYSTEM ARCHITECTURE

cussed in Section 5.1.3) that penalizes untimely nodes. For this
mechanism to be acceptable, nodes’ clocks must be sufficiently
synchronized that these penalties do not outweigh the benefits of

participating in the system. Second, we assume that if nodesl
b are non-Byzantine andsends a request at time, b's response
will reacha by timet + max_response_time. This assumption
allows us to bound the state that non-Byzantine nodes maintain in
order to answer late requests and thereby allows rational nodes t
ensure that the benefits of participation outweigh the costs.
In order to complete our model, we must also make specific as-
sumptions on the rational and Byzantine nodes in the system.
Rational nodes.We make four technical assumptions about ra-

tional nodes. First, we assume that rational nodes receive a long-

term benefit from participating in the protocol. Second, we assume

that rational nodes are conservative when computing the impact of

Byzantine nodes on their utility. Third, we assume that if a proto-
col provides a Nash equilibrium, then all rational nodes will follow
it [34] ! .Finally, we assume that rational nodes do not collude—

colluding nodes are classified as Byzantine. Relaxing these as-

sumptions is future work.

Rational nodes will only participate in a cooperative system if
they receive a net benefit from their participation. In practice, this
requires that the long-term benefit (e.g. reliable backup) of partici-
pation is sufficient to offset the costs (e.g. storage, bandwidth, com-
putation) of participating in the system; otherwise rational nodes
will refuse to participate, compromising liveness.

Rational nodes want to reduce their cost without relinquishing
the benefits that come from participating in the protocol. We as-
sume a simple model in which nodes’ utilities are affected by the
work that must be done but not by the order in which work is per-
formed or by who requests the work. These two variants can be
handled by hiding the relevant factors (contents of the request or
identity of the sender, respectively) until after nodes commit to ex-

ecuting the request. We assume that rational nodes deviate from

the protocol only if they receive a net benefit from doing so—in
a tie, they continue to follow the protocol. This assumption ap-

pears reasonable, given that deviating from the protocol requires
some effort. Furthermore, we assume that rational nodes abide by

the promptness principleif they gain no benefit from delaying the

sending of a message, they send the message as soon as they hal

idle cycles and bandwidth available. This assumption recognizes
that idle resources are perishable.

Rational nodes are conservative when estimating the potential
impact of Byzantine nodes on their utility: we assume that for

each rational node, the benefits of the service greatly outweighs

the costs, and therefore any increase in the risk of service failure

is unacceptable. So, when computing the expected outcome of its

!Because the protocol can be regarded as coming from an external

authority, some prefer to regard such an equilibrium a®m@e-
lated equilibrium[4], which is a generalization of Nash equilib-
rium. This view would not change our analysis.

This section provides an overview of our design. The sections
that follow describe each level of our design in more detail.

4.1 3-Level Architecture

We propose a three-level architecture for building BART ser-
vices (Figure 1). The layered design simplifies the analysis and
construction of systems by isolating and addressing classes of mis-

%ehavior at appropriate levels of abstraction.

Architecture Prototype

Level 3: Application BAR-B Backup

Authoritative
Time

Periodic
Work

Guaranteed

Level 2: Work Assignment Response

Replicated State Machine

Level 1: Primitives

Message Queue

Figure 1: System architecture

Level 1, thebasic primitivedevel, provides IC-BFT versions of
key abstractions (e.g. Terminating Reliable Broadcast (TRB) [30]
and Replicated State Machine (RSM) [10, 29, 55]) for constructing
reliable distributed services. The BART RSM gives us the abstrac-
tion of a correct (e.qg., reliable and altruistic) node.

Level 2,work assignmentallows us to build a system in which
work can be assigned to specific nodes instead of executed by all
replicas in the RSM. The assignment is done through atiney-
anteed Respongmotocol that generates either a verifiable match
between a request and the corresponding response or a verifiable
proof that a node failed to respond to a request. The assignment
protocol enables efficient replication for our backup application,
and the protocol itself is optimized to use the RSM as little as pos-
sible.

Level 3, theapplicationlevel, implements a desired service using
the levels underneath. Our architecture defines a contract between
the application and the two lower, application-independent levels.
The lower levels provide reliable communication and authoritative
request-response bindings, while the application is responsible for
(reoviding a net benefit and defining legal request-response pairs.

4.2 Principles of Operation

Accountability lies at the heart of our approach to constructing
BART services: if nodes are accountable for their behavior, then ra-
tional peers have an incentive to behave correctly. Strong identities
and restricted membership make it possible to enforce meaningful
internal and external disincentives. But that is only part of the solu-
tion. How should a system detect and react to incorrect behavior?
The simplest kind of misbehavior to detect and punish occurs
when a set of messages constitute a self-contained cryptographic
Proof Of Misbehavior (POM) by a node. For example, if a node
first signs a promise to store a file with a particular cryptographic

hash and then responds to a request to read the file with a signed Limit non-determinism. Non-determinism offers nodes the choice
message that contains the wrong data, the two messages amount tof multiple behaviors. Although each of these behaviors is legal
a signed confession by the node that it is faulty and should be pun-under different circumstances, given the specific state of each node
ished. This “aggressively Byzantine” behavior is easy to address, one of the behaviors is preferred by the protocol. Self-interested
and a number of systems have done so [11, 41]. nodes can hide behind non-determinism to shirk work: they can
Two other “passive-aggressive” behaviors are more problematic. disregard the preferred behavior and adopt a less costly one that
First, a node may decline to send a message that it should send. Thether nodes cannot definitively identify as illegal. In ourimplemen-
receiver is in a position to accuse the node of wrongdoing, but it be- tation of BAR primitives we carefully limit the choices available to
comes a case of “he said/she said"—it is difficult for any third party a node. For example, we base our state machine on terminating
to decide whether an accusation of inaction is legitimate or it has reliable broadcast (TRB) rather than consensus [24], because the
been unjustly leveled by a self-interested or faulty node. Second, aformer protocol, by allowing fewer valid outcomes, gives rational
node may exploit non-determinism to provide incomplete informa- nodes fewer options from which to choose when deciding which
tion or take undesirable steps that interfere with the protocol’s oper- behavior maximizes their benefit.
ation but are difficult to conclusively prove wrong. For example, in Mitigate the effects of residual non-determinism.When non-
one step of an asynchronous replicated state machine protocol [10],determinism is unavoidable, two low-level techniques are often use-
a node normally transmits a signed copy of the request, but for live- ful. First, we employcost balancingvhen a node has a choice be-
ness itis permitted to transmit a signed timeout message instead. Infween multiple actions. The costs of the actions are engineered so
such a protocol, self-interested nodes may choose to send the timethat the protocol-preferred choice is ho more expensive than any
out message rather than transmit the request. This choice wouldother potentially legal choice. For instance, instead of sending a
inhibit progress, but it would be hard for another node to prove that list of nodes that are up-to-date, an IC-BFT protocol would send
a timeout message was inappropriate. bits with entries set to “1” for up-to-date nodes so that the sender
The implementation of Level 1 primitives addresses such chal- saves no network bandwidth by sending incomplete information.
lenges in three ways. First, nodaslaterally deny serviceo nodes Secondgencouraging timelinesaddresses the non-determinism in-
that fail to send expected messages. This low-level, local tit-for- herent in an asynchronous system by allowing nodes to judge uni-
tat technique provides incentives for cooperation without requiring laterally whether other nodes’ responses are early, on time, or late
a third party to judge which node is to blame. Second, the pro- and to inflict sanctions for untimely messages. Our techniques en-
tocol balances costso that when nodes have a choice between sure that (a) nodes have incentives neither to mete out unwarranted
two messages, there is no incentive to choose the “wrong” one. sanctions nor to forbear deserved punishments and that (b) the costs
Third, nodes camnilaterally impose extra workcalled penancg imposed by Byzantine nodes through spurious unilateral sanctions
when they judge that another node’s response is not timely. The are limited.
penance mechanism safeguards liveness by discouraging rational Enforce predictable communication patterns. We encourage
nodes from improperly exploiting timing-based non-determinism. nodes to participate at every step of the protocol instead of just at
Addressing the challenges of non-responsiveness and non-deterthe steps that bring them a direct benefit. Our protocol requires
minism in the two higher levels is much simpler. For Level 2 (work nodes to have participated in all past steps to be able to propose a
assignment), if a node fails to reply to a request issued via the un- command.
derlying state machine, then a quorum of nodes in the state machine ..
generates a proof of misbehavior against the node. And because2-1 ~Protocol Description
applications at Level 3 make use of reliable work assignment, each

request is bound to a reply or timeout. As a result of this binding, agree write show-quorum
the application protocol must merely be designed so that requests Sender
and responses include sufficient information for any node to judge M%%ﬁk

the validity of a request/response pair.

Instance 1 of TRB Instance .

5. LEVEL 1: BART STATE MACHINE Figure 2: Terminating Reliable Broadcast (TRB) phases.

At the core of fault-tolerant distributed services are a few funda-
mental primitives. For instance, state machine replication is an es- In this subsection, we first examine the high-level structure of the
sential building block for a range of highly available replicated ser- protocol. We then detail the low-level mechanisms used to enforce
vices [7] and quorum-based replication is the basis for fault-tolerant periodic communication and limit the effects of non-determinism.
distributed storage systems [37]. The purpose of the first level of Due to space constraints, we limit our discussion to the key differ-
our architecture is to implement fundamental primitives so that they ences between our protocol and traditional PBFT implementations.
continue to provide their customary guarantees within the BAR Appendix B
model. In this section, we present a BART asynchronous repli- Our BART replicated state machine protocol is based on PBFT [10].
cated state machine (RSM). Our protocol is based on PBFT [10], When a node wants the state machine to execute a command, the
with modifications motivated by the BAR model. These modifica- node proposes the command in a TRBtance Instances proceed
tions are based on four guiding principles. in sequence, with instandedeciding theith command to be exe-
Ensure long-term benefit to participants. Self-interested nodes cuted by the state machine. We differ from the PBFT protocol in
must gain long-term utility for participating in the system to be several key ways.
motivated to participate faithfully. Ultimately, these benefits must
stem from the higher level service, but as a hook for providing such 1. We use TRB instead of consensus. This choice is an appli-
benefits to all participants our RSM rotates the leadership role to cation of the principle of limiting non-determinism. In TRB,
guarantee that every node has the opportunity to submit proposals only the initialsendemay propose a value during a particu-
to the system. lar instance and an instance can terminate only in two ways:

all non-Byzantine nodes either adopt the value proposed by the broadcast is successful: in this case, the instance consists of a
the sender, or, if the sender is faulty or slow, a default value. single turn. If, on the other hand, nodes decide the message is late,
Conversely, in consensus a timeout caused by a slow or faulty they send a “set-turn” message to indicate that a new turn should
sender may allow a new leader to propose a different value start. Nodes other than the sender are selected round-robin for the
for that instance. We initially attempted to use a consensus leader role.

protocol as the engine of our state machine but found the If a collection of set-turn messages selects a new leader, the
restriction on who can propose in each instance useful for newly selected leader first performs a read: it queries all nodes
limiting the choices available to rational nodes. Without this for their observed value and waits for a quorum of responses. If
restriction, a new leader elected to terminate instanoay any node reports seeing teendeis proposal, then the new leader
prevent progress by selfishly trying to make the state machine attempts to broadcast that value. Otherwise, the new leader broad-
adopt its value rather than the sender’s (see Appendix C.4). casts the null valusenderTQ indicating that thesenderis sus-

By limiting the possible outcomes of instancelRB avoids pected of having failed. Once a value is delivered,ithe1st in-

this conflict of interest. stance starts with the nesénderin the sequence.

2. We use a round-robin leader selection policy to ensure that 5.1.1 Message queue
all nodes can benefit from their participation in the state ma-
chine. Traditional replicated state machines require a client
to send a command to a sender, who proposes the comman
to the state machine. But, a rational sender would have no in-
centive to act on a remote client’s wishes. So, for each TRB
instance we rotate the role sénderto the next node in the
system. Each participant thus has a periodic opportunity to
propose values to the state machine.

Message queues are the low-level mechanism we use to enforce
redictable communication pattern&ll communication takes place
hrough the message queue infrastructure.

Message queues implement a simple local retaliation policy: if
nodezx next expects a message from nage will ignore any com-
munication from—and delay any communication to—ngdtil
it receives the expected message. The message queue uséa by
regulate its communication withicontains entries for the messages
thatx intends to send tg, interleaved with “bubbles” correspond-
ing to messages thatexpects fromy. A bubble must be filled with
an appropriate message frajmbeforex can proceed to send the
messages in the queue beyond the bubble. To ensurg Heatds
the appropriate message, a predicate is associated with each bubble:
a message fror is allowed to fill a bubble only if it satisfies the
corresponding predicate—otherwise, it is discarded. The message
gueue exports three operatiosend andexpect (predicatg in-
sert in the queue, respectively, a message and a bulxlle;ver
removes the bubble closest to the head of the queue and returns the
corresponding message.

Message queues, combined with quorums of sizef — 1, pro-
vide the incentive for rational nodes to send all messages expected
in the protocol. If a given rational nodechooses not to send a mes-
sage to some nodg thens will ignore r in the future. In the worst
case forr, an additionalf Byzantine nodes in the system will not

Our TRB protocol provides four guarantees in an eventually syn- Communicate withr, preventing it from gathering a quorum during
chronous BAR environment in which the higher-level service pro- [tS Nextturn asender This situation would preventfrom gather-
vides net benefits to all participantermination every non-Byz- ing the quorum of responses required in a later step of the protocol,
antine process eventually delivers exactly one messakgree- stoppingr from_maklng progress and effectively excluding it from _
ment if a non-Byzantine process delivers a messagethen all the state machine. Because we assu.me.that the \{alue of the service
non-Byzantine processes eventually deliverIntegrity: if a non- greatly exceeds the cost of communication, a ratieralefers to
Byzantine process delivers, then the sender sent. Non-Trivi- send all expected messages to avoid any risk of losing access to the
ality: In periods of synchrony, if the sender is non-Byzantine and State machine.
sends a message, then the sender eventually delivers

The protocol provides safety (Agreement and Integrity) under 5.1.2 Balanced messages
an asynchronous model, but guarantees liveness (Termination and To apply the principle ofost balancindo the state machine pro-
Non-Triviality) only during periods of synchrony [24] when there tocol, we ensure that whenever the protocol provides a node with
exists a known bound\ on message delivery time. The require- the opportunity to choose which message to send next, the intended
ment that all rational participants realize a net benefit from the ser- message is never more expensive to send than the alternatives. For
vice is needed only to achieve liveness; rational nodes that do not€xample, after a timeout a node should send either the command
benefit from the service will not take any action on behalf of the issued by the sender for the instancesenderTQf no such com-
protocol, but they will not compromise the safety properties. mand was received. We construct tenderTQnessage to always

Figure 2 illustrates an execution of TRB in a period of synchrony be of the length of the largest possible command so that lying would
when no failures are present. Each TRBtanceis organized ina hot allow a node to save bandwidth.
series ofurns In each turn, some process is designatedehder.

Thesenderfor instance is the first leader for instanden the first 5.1.3 Penance

turn, thesenderattempts a three-phase-commit on a proposed value We implement a “penance” mechanism to encourage timeliness
(the phases are labeled agree, write, and show-quorum). If the othe in the state machine. In particular, although gremptness prin-
nodes receive the messages on time then they accept the value andple (Section 3) encourages nodes to promptly send any messages

3. We require at leastf + 2 nodes (rather thadf + 1) to toler-
ate f Byzantine nodes. The reason is subtle and, once again,
has to do with the desire to avoid a conflict of interest involv-
ing the sender node in a TRB instance. Suppose the sender
of instancei is slow, and, after sufficiently many nodes time
out ons, a new leader is elected to bring instante conclu-
sion. Every node but is interested in a timely conclusion of
instancei to ensurdts turn to propose a valus;, however,
is interested in ensuring thaterminates with the adoption
of s’s original value—rather than the default value—and to
this end can take steps that compromise liveness (see Ap-
pendix C.4). By using an extra node, we prevensfter
it has proposed its value, from participating in the steps re-
quired to complete instangeeliminating this potential con-
flict.

they are deterministically bound to send, we use penances to en- The state machine includes a mechanism to transform local sus-

courage good behavior when waiting may allow a rational node to picion against other nodes (as recorded in each nddel& st)

avoid sending a specific message. To implement the penance mechinto POMs. The POMs allow nodes to agree that someone mis-

anism, each node maintains@amimely vectothat tracks their per- behaved so that an appropriate global punishment may be applied.

ception of other nodes timeliness: a node is considered untimely if This mechanism also enables the use of quorums of smaller size

any timeout message electing a new leader arrives significantly ear-([”zifl rather thamm — f — 1), improving the availability of the

lier or later than expected according to the receiver’s local clock. state machine.

When a noder becomes the sender, it includes its untimely vec- When node: is the sender of an instance, it includesigsllistas

tor with the value it proposes. After agreeing on the proposal, all a bit vector with the value it proposes. Nodes monitorlihdliss

nodes except the send®tpecia penance messad®m each node they receive from others: if over time nodeappears on at least

indicted in the untimely vector. Because of the way message queuesf + 1 different senderddadlist, then the receivers of thelsadliss

handle expects, the untimely nodes must send the penance messagdso begin to considdr faulty: they addb to their ownbadlist,

to all non-sender nodes in order to continue using the system. discard the state associated witland refuse to communicate with
There are three important considerations to the penance mes+ in the future.

sage: (1) the size and form of the penance message are chosen so In addition to helping punish misbehaving nodes, bHasllist

that the expected benefit of sending late is less than the expectednechanism enables us to reduce the size of quorumsrreri— 1

penance cost, (2) the sender is excused from receiving penanceo [#]. Without badliss, quorums of sizes — f — 1 are re-

messages to prevent the sender from incurring additional costs forquired to provide an incentive for a non-Byzantine node to send

truthfully reporting a penance, and (3) the spurious work intro- all required messages to all recipients that expect the message: by

duced by Byzantine nodes through the penance mechanism is bounthiling to send messages to even one node, the sender jeopardizes

ed. its ability to propose new commands to the state machine because
) . the skipped node anfl Byzantine nodes could together prevent a
5.1.4 Timeouts and garbage collection quorum from forming. With quorums of siZe*+L1, a sender that

The system makes use of two timeouts for liveness: (1) a “set- skips a node does not risk losing the ability to form quorums for
turn” timeout to transfer leadership away from a slow leader and its proposed values; however, the badlist mechanism ensures that
(2) amaz_response_time timeout to garbage collect messages the sender faces the equally severe risk of being includefl-pri
gueued for extremely slow nodes. badlists from the skipped node ayiddyzantine nodes.

A sufficient number of set-turn timeout messages transfers lead- .
ership of an instance to the node lexicographically after the current 5.2 Proving IC-BFT
turn’s leader. The first turn of an instance uses a pre-specified tim To prove that a protocol is IC-BFT for a given model of rational
out, and this timeout is increased for each subsequent turn of thatnodes’ utility and beliefs, one must first prove that the protocol pro-
instance until the instance completes. Note that in every TRB in- vides the desired safety and liveness properties under the assump-
stance only the initial sender (the first leader of the instance) can tion that all non-Byzantine nodes follow the protocol. Second, one
propose a non-trivial value, so it is important that the initial time- must prove that it is in the best interest of all rational nodes to fol-
out be significantly larger than common-case network delays. Our low the protocol.

prototype uses 10 seconds for its initial set-turn timeout. Our rationality model is described in Section 3. We assume that
The timeout afternaz_response_time bounds local state inthe rational nodes will follow the protocol if they observe that it is a
presence of extremely slow nodes. In order to ensymedictable Nash equilibrium, so we must show that no node has a unilateral

communication patterrwe require all nodes to send all protocol incentive to deviate. We show this by enumerating all possible de-
messages. If noderemains silent for an extended period of time, viations.

it can force non-Byzantine nodeto retain an arbitrarily large set The simplest deviations are those that do not modify the mes-
of pending messages to If this state becomes too large, the cost sages that a node sends. In our state machine protocol, no such de-
of participating in the protocol will exceed the benefit, and rational viation increases the utility. We must then examine every message
nodes will withdraw from the system, endangering liveness even in that the node sends and show that there is no incentive to either (i)
periods of synchrony. The timeout allows a node to bound this state not send the message, (ii) send the message with different contents,

so that its benefits from the system exceed its éosts or (iii) send the message earlier or later than required. Also, we
In particular, ifa has been holding pending messagesbféor must show that nodes have no incentive to (iv) send any additional

more thanmax _response_time, thena (i) recordsb as faulty by message.

addingb to itsbadlist, (i) garbage collects all state associated with o o

b, and (jii) refuses further communication with THEOREM 1. The TRB protocol satisfies Termination, Agree-

It is undesirable for a non-Byzantine node to declare incorrectly Ment, Integrity and Non-Triviality.
a slow node to be faulty: doing so jeopardizes liveness and thus puts
at risk the net utility that nodes expect to gain from participating in
the system. Nodes therefore use an extremelylang_response
_time (e.g., 1 week in our prototype) that significantly exceeds the
expected worst-case network disconnection time between any pair
of nodes.

THEOREM 2. No node has a unilateral incentive to deviate from
the protocol. [ncentive compatibility

The full proofs appear in (Appendix B). To illustrate the
methodology, we show some of the lemmas involved in verifying
the incentive-compatibility of the sending of the “set-turn” time-
out message. The incentive for sending the message at all and not
sending it twice are discussed in more general lemmas, not shown
here.

5.1.5 Global punishment

2An alternative for bounding state that we are exploring as future
work is to provide an incentive compatible variation of the garbage

collection and checkpoint recovery protocol described by Castro -EMMA 1. No rational noder benefits from delaying sending
and Liskov [10]. the “set-turn” message.

LEMMA 2. No rational noder benefits from sending the “set- above situation, it ensures that a lack of responsedan only be

turn” message early. the result of uncooperative behavior bywho can then be safely
punished.
The proof for the first lemma relies on the penance protocol de-
scribed in the previous section. The second lemma deals with early
!) o) Response _TESPONSE
time-outs. This deviation may cause the sender’s proposal to be p
. . . . from b received
ignored, andsenderTOto be decided instead. By construction, Request

from a

senderTGs at least as large as a resend of the sender's command,
so no bandwidth is saved. Nodes other than the sender have no
stake in which command is decided because they cannot unilater-
ally prevent the sender’'s command from executing—at most, they ReDIVS

can delay it. The sender itself could have an interest in manip- Ep%’roﬁqmamary
ulating the outcome by sending “set-turn” messages early or late,
which is why in our protocol the sender is not allowed to send these
messages.

time out

Figure 3: Basic Guaranteed Response protocol

Figure 3 shows the state transition diagram for a correct witness
node running the Guaranteed Response protocol. The basic idea
is that nodex never sends work requests directlybtdout instead

The “set-turn” message contains no information other than the goes throggh the Witnegs node. The witness is then in a position to
answer withNoResponsi# necessary.

turn number, so a malformed message reduces to either a nonsen®) . . .
More precisely, client starts by sendinRequesto the witness,

sical message, a resend, or an early send. SRR .
who is initially in theemptystate.Requestontains the name of the
. intended recipient), as well as the workw that must be performed
6. LEVEL 2: PARTITIONING WORK by it, and causes the witness to transition to statgiest received
Our second level partitions work to reduce the replication over- The witness storeRequestand forwards a copy of it tb. If b is
head required by cooperative applications. Even though state ma-correct, it will send a signe®Responséo the witness, causing it
chine replication technically suffices to support a backup service to enter stateesponse receivedresponseontains the answer to
directly, the overhead of such an approach would be unreasonablea’s request together with a summary of the request to which
each replica would have to process each command and maintain aesponding. The witness then discaRiquestforwardsResponse
full copy of the program state. In a cooperative backup service with to a, and keeps a copy desponseintil it receives froma a Re-
100 participants, 100 MB of data backed up would consume 10 GB plySummarycontaining a summary dresponse If node b does
of disk space. Conversely, by assigning work to individual nodes, not answeRequeswithin a predetermineehax_response_time,
we can make use of arithmetic codes to provide low-overhead fault- then the witness transitions to stéitee outand senddloResponse
tolerant storage. toa. This message is signed and contains a summary of the request.
We introduce three protocols for work assignment. Gugran- Again, nodez must sendReplySummargthis time with a summary
teed Respong@otocol ensures that every request is answered, pos- of NoRespongereturning the witness to tremptystate.
sibly with a message indicating that the work was not done inina The state of the withess node includes a copy of the last message
timely fashion. ThdPeriodic Workprotocol ensures that clients pe- sent. This state allows the witness to resend messages that were
riodically answer implicit requests required by an application. The lost, which in turn allows our protocol to handle nodes that come
Message Bindingrotocol binds messages to an authoritative time. and go. Nodes cannot stay away for too long, however, because
We first describe these protocols using the abstraction of a trustedour backup application requires that nodes answer within:_re-
altruistic node, which we call thwitness node Then we show sponse_time.
how the witness node can be implemented on our replicated state . .
machine in an incentive-compatible manner. 6.1.1 Implementing the witness node
For large systems, using a single replicated state machine to im- The incentive-compatible replicated state machine allows us to
plement the witness node becomes impractical. To allow our cur- implement the abstraction of a correct witness node on top of a col-
rent system to span more than a few dozen nodes, large systemsection of BAR nodes. We must be careful to maintain incentive
should be partioned into disjoint state machines of 10-30 nodes compatibility: our state machine only provides incentive for com-
each. For applications in which nodes must all be able to work munication with members of the state machine, not outsiders, so
together, these state machines should be able to communicate witmodesa andb must be part of the replicated state machine. There-
each other [2, 49]. There are BAR-specific challenges related to fore communication with the witness node is not by actual message
communication between state machines. We believe these chal-sending: when the Guaranteed Response protocol talks of a node

LeEmMA 3. No rational noder benefits from sending a mal-
formed “set-turn” message.

lenges are surmountable, but leave them for future work. sending to the witness, this translates to the node submitting a com-
mand to the RSM. Whenever the protocol talks of the witness send-
6.1 Guaranteed Response ing to a node, no actual sending is necessary: since every node in

The Guaranteed Response protocol gives rational nodes an in-the RSM has a copy of the witness state, the RSM replica running
centive to respond to requests. The protocol is necessary becausen the destination node passes the message to the local code that
direct communication does not suffice when nodes can behave ra-handles it.

tionally. Consider an example where some nad®nds a request TheNoResponsmessage is a special case for two reasons. First,
to another nodé and gets no answer. Nodemay well complain the “timeout” decision must be made deterministically. We ac-
aboutb, but because cannot prove thai received and ignored its ~ complish this by having the state machine maintain a deterministic
request, it would be unwise to punishbased om’s complaint. RSM time that is a function of recent values of the local clocks of

The Guaranteed Response protocol eliminates all ambiguity: in the all nodes (see Appendix E.4) for details). The RSM replica run-

ning on nodex is responsible for submitting a “timeout” command
to the RSM when the deterministic RSM time indicates that the
response is late. Second, the abstraction of a single, si§oBe-
sponsanessage from the witness nodeutis actually implemented

by havinga receive a signed message frgim+ 1 RSM replicas.
After nodes transition to théme outstate, these signatures are
gathered by replica, which uses the message queue primitive de-
scribed in Section 5.1.1 texpect a signature from every other
replica. The other replicas therefore know, when entetimg out

witness. If the target does not answer then the protocol proceeds
as in the unoptimized case, withsending the full request to the
witness.

The threat in this case is the vowbitloes not answer’s request
directly, thena will ask b to answer to the witness node, a costlier
operation forb. Key to the threat is the fact that it is credible. By
sending its vowu has forfeited its right to utilize that slot until it
sends the full request or supplies a reply frérthat matches the
vow. A rational targeb knows that if it does not answerdirectly,

thata is ready for their signature message and the message queughena will send the request through the withess node—and this is

mechanism gives them an incentive to send the signature. @nce
has enough signatures to forllaResponsmessage, it passes the
message to the local codeaathat handles it.

Provided that the application provides sufficient sanctions for

nodes that cause MoResponsehe following theorem holds (see
Appendix E.

THEOREM 3. If the witness node enters thequest received
state for some work to rational nodeb, thenb will executew.

6.1.2 State limiting

enough to motivaté to answel’s direct request.

6.3 The Periodic Work Protocol

Cooperative systems may include maintenance tasks that need
to be performed periodically, for example auditing nodes’ storage
records. However, there may be no incentive for any individual
node to initiate such maintenance work. Under the Periodic Work
protocol, the witness node checks that this periodic work is done.
The existence of this check, in turn, means that rational nodes will
perform these tasks.

In the case of the RSM witness, the Periodic Work protocol ini-

The witness node, naturally, can communicate with more than tializes the system with the expectation that, with a certain fre-
one node at a time. It runs several instances of the protocol high- quency, each node will provide the witness with an application-

lighted above, and each instance (which we callad) is reserved
for a particular node.

specified response type indicating its completion of a periodic task.
If a node does not supply the expeckeplySummarythe witness

We limit the overhead associated with Guaranteed Response bynode can either unilaterally deny its services to the offending node

limiting the number of slots available to a node. Limiting the num-

ber of slots accomplishes three purposes: (1) it applies a limit to the
memory overhead of running the Guaranteed Response protocol,
(2) it limits the rate at which requests are inserted into the system,

and (3) it forces nodes to acknowledge responses to requests.

6.2 Optimization through Credible Threats

or generate a POM to be handled by the application.

6.4 Authoritative Time Service

In applications where time has meaning, authoritatively binding
messages to time is a potentially important action. Abthorita-
tive Time Serviceerves two purposes. First, it maintains an author-
itative time that is recent, nondecreasing, and identical at all state

The Guaranteed Response protocols allows data to be replicatednachine nodes. Second, it binds messages to times according to
only where necessary. However, requests and responses are stillhat time. In particular, our Guaranteed Response protocol relies
sent to every node that is part of the replicated state machine and,on this time when generatinjoResponsefor non-participating
because backup requests contain the data being backed up, they camodes, and BAR-B relies on the message-time binding to identify
be large. We therefore optimize our protocol so that in the common certain classes of misbehavior.

case nodes can communicate directly.

In order to maintain the time, each proposal to the state machine

To get the benefits of the Guaranteed Response protocol withoutis required to contain a local timestamp generated by the proposer.
requiring all requests and replies to go through the RSM, we lever- The authoritative time is computed by taking the maximum of the
age the game-theory notion of credible threats [17]. In the game of median of the timestamps of tl¢ + 1 most recent decisions and
chicken [12], a credible threat against rational players would be to the previous authoritative time; when “no decision” is decided, then

visibly rip off the steering wheel and throw it out the window [35].

the time for that decision is defined to be the previous authoritative

In our case, the credible threat takes a somewhat less spectaculatime. In order to bind a message to a time, nadeibmits the mes-

form.

internal
time out

ReplySummary
from a

Figure 4: Guaranteed Response protocol with fast path

We optimize the Guaranteed Response protocol by addiagta
path The new protocol is shown in Figure 4 with the fast path
in bold. Instead of sending its request to the witness node, aode
now only sends it ¥owwith a summary of its request. The witness
supplies the vow to the targétifi our example). Targdtsends an
ack to nodea, anda sends the full request directly to Target
b then replies ta:, who forwards summary of the response to the

sage to theMessage Binding Protocaind proposes BindingRe-
guestto the RSM. The nodes in the RSM then send signature
binding the message to the current authoritative time.

7. LEVEL 3: THE APPLICATION

In our architecture, BART applications must discharge each of
the following four responsibilities in order to take advantage of
lower-level abstractions.

1. Provide rational nodes with a long-term benefit for partici-
pating in the system.

2. Assign work to nodes in a fault tolerant manner.

3. Determine if the contents of a request or response constitute
a Proof of Misbehavior (POM) under the application seman-
tics.

4. Sanction nodes that have provably misbehaved.

It is much simpler to design an application under these require- the Storelnfocorrespond to the hash and size, respectively, of the
ments than under the lower-level concerns discussed in Sections 5chunk being stored. ThprevSizefield is the size of the file be-

and 6. The replicated state machine of the first level provides the ing replaced—the owner’s quota is charged foux(size, prev-
abstraction of a correct node, which is useful in implementing sanc- Siz§ until maz_response_time expires. Theimeis a real-time
tions. Reliable work assignment is taken care of by level two prim- stamp used to calculate when the storage lease will expire; if it is
itives, so the application can focus on defining the legal requeststoo far into the future, a storer can generate a POM via the time
and responses over the system’s data. As a result, the reader willservice described in the previous section. There are three possible
notice that the following discussion is considerably simpler than responses to a store request: (adReceiptcontaining theStore-

that in earlier sections: it focuses on structuring the messages solnfo and time-stamped and signed by the storer, (Bj@eReject

that incorrect responses act as proofs of misbehavior and not oncontaining theStorelnfoand aProofthat is stamped and signed by

encouraging nodes to respond or on balancing costs. the storer, and (c) anything else. $toreRejectan return proof
To illustrate how an application addresses these issues, this secthat the storer is full in the form of a list @torelnforecords, each
tion examines BAR-B, a MAD cooperative backup system. signed and stamped by its respective sender and holding an active
. lease, and such that the total size of 8terelnforecords plus the
7.1 BAR-B Overview request'sStorelnfosize exceed the node’s quota. When the owner

BAR-B is a cooperative backup system in which nodes commit issues &torelnforequest or receives a response, the owner adds
to participating in the system’s state machine and contributing an it to its record of utilization of the system, known as @e/nList
amount of storage to the system in exchange for an equal amountAny other response constitutes a POM against the storer—either
of space on other nodes. Under normal circumstances (see Sec(d) the response itself is a POM generated by the work allocation
tion 7.2 for recovery), nodes interact with BAR-B through three level (e.g., NoResponse) or (b) the response is inappropriateefor th
operations: store, retrieve, and audit. To store a backup file, the request and thus a signed confession.
owner compresses it, splits it into smaller pieces (chunks), encrypts Retrieve. A BAR-B retrieve request consists of tiReceiptfor
the chunks, and then sends them to different nodes (storers) for stor the chunk to be returned. The three possible responses to a retrieve
age on the system. The storers respond with signed receipts. Thgequest are: (a) RetrieveConfirntontaining theReceiptand the
owner keeps the receipts and the storers keep the Storelnfos (pargorresponding chunk stamped and signed by the storer, j®-a
of the store request) as their record of participation in the system. trieveDenycontaining theReceiptand aProof stamped and signed
When the owner needs to retrieve a file, it sends a retrieve request tddy the storer, and (c) anything else. If the responseRetieve-
each node holding a relevant chunk. The retrieve request containsPeny, then the thé>roof must show either (aReceipthas expired
the receipt, so the storer has three options: (i) return the chunk, (i) (0) theReceiptas been superseded by a more re&oteRequest
show that the chunk’s storage lease duration has expired, or (jii) from the sam@wner to the same:hunklId, or (c) the storer is in
show a more recent Storelnfo for the same chunk. Any other re- the process of recovering its data (see below). Any other response
sponse would indicate that the storer prematurely discarded dataconstitutes a POM against the storer—either (a) the response itself
entrusted to it and should be punished. is a POM generated by the work allocation level (e.g., NoResponse)

These receipts constitute audit records. Nodes periodically ex- or (b) the response is inappropriate for the request and thus a signed
change audit records in order to verify that some node is not using confession.
more space in the system than its quota allows (both in terms of ~Audit. An audit takes place in three phases. First the auditing
total storage and number of chunks). BAR-B allows each node to hode selects a node to audit. The auditing node then requests both
store a limited number of chunks, thereby binding both the state the OwnListand StoreListfrom the auditee. After retrieving the

maintained in the system and the cost of performing audits. two lists, the auditing node requests the/nListand StoreListfor
f nodes chosen at random in the system. The collection of lists
7.1.1 Arithmetic coding are cross-checked for inconsistencies; any inconsistencies iresult

To toleratef faults using less storage than required by full repli- & POM against the offending node. AwnListandStoreListare
cation, nodes erasure code [51] files withian f out oz encoding inconsistent if eReceiptindicated on one should be present but is
and store the resulting chunks on different peers. For example, in a0t on the other. Audits are potentially expensive operations, and
10-node system witlf = 2, a node must contribute 1.3GB of local rational nodes would avoid performing them if possible. We avoid
storage to back up 1GB of data. Keeping this ratio reasonable is 1S problem by leveraging the Periodic Work protocol described
crucial to motivate self-interested nodes to participate. in Section 6.1. The RSM-implementedtness nodgeriodically

In practice, many files are small. Since there is both a limit on the €XPECtS the results from a recent audit—either a POM or a complete

number of chunks and some per-chunk overhead, it is beneficial to S€t 0fOwnList andStoreLiss.
keep chunks reasonably large. The BAR-B user interface therefore]]
aggregates small files together before uploading the aggregate to7.1.3 Time constraints

BAR-B as a single backup file. The primary purpose of a backup system is to provide retrieval
following a catastrophic disk or user failure. The utility of a backup
7.1.2 Request-response pattern program is greatly reduced if the retrieval guarantee is “eventual

The responsibility of Level 2 is to structure messages carefully so recovery” rather than “recovery within timeg’ In order to guar-
that an incorrect response to a request constitutes a POM against thantee a concrete recovery window, BAR-B assumes that all non-
sender of the response. The work assignment primitive in Section 6 Byzantine nodes will respond to a request withiaxz_response-
provably binds requests either to responses or to NoResponse if thetime . Any node that fails to do so is considered faulty; a POM
target fails to respond. Every message in the BAR-B protocol is against such a node can be acquired by issuing a request through
stamped with a unique sequence number and signed by the sendeithe work allocation primitive.

Store. A BAR-B store request consists of two components, the ~ We utilize leases to bound the duration of store requests on the
chunk being stored and a tuglehunkld, owner, storer, hash, size, system. In BAR-B, evenitorelnfoexpires 30 days after the re-
prevSize, timegalled theStorelnfo The hashand sizefields of quest is issued by the owner. If the owner needs to keep the chunk

in the system for more than 30 days, the owner must renew the be done by a series of linked entities under a “persistently Byzan-
chunk by sending an addition&toreRequedbefore the current tine” node’s control. A possible addition to the two factors would
lease expires. Otherwise, the storer is free to discard the data. Abe to require identity; to contributel.1? times the storage of iden-
lease expires when thuthoritative Time Servicgescribed in Sec- tity 7o but give it no corresponding increase in quota; this measure
tion 6.4 indicates a date 30 days after tineefield of a StoreInfo is not strictly necessary, but it would further discourage nodes from
The introduction of these timing assumptions and lease durations needlessly changing identities.

allows BAR-B to (a) provide stronger guarantees with respect to A natural concern in our model is to ensure that nodes respond
recovery time and (b) limit the amount of “dead” storage in the truthfully to the RECOVER message. A node might send only a
system. These two factors aid in increasing the overall utility of the subset of the list of chunks it is storing, in the hope of deleting

system, making it more attractive for rational nodes. the unlisted chunks to save disk space. This would be against the
) best interest of a rational node, however, because the recovering
7.1.4 Sanctions node might not have lost all of its receipts. In that case, a signed

Various components of the BAR-B system, from the primitives incomplete answer along with the receipts that should have been
in sections 5 and 6 to the mechanisms described earlier in this seclisted form a POM against the node.
tion, generate POMs against specific nodes. These POMs convict
node of misbehavior and require that the node be punished appro?7'3 Guarantees
priately; without appropriate punishment, nodes may find it in their _ The BAR-B system provides the following guarantees under BAR-
interest to misbehave. B’s coarse synchrony assumptions. (i) Data stored on BAR-B can
We leverage the Periodic Work protocol to force each node to be retrieved within the lease period. (ii)) No POM can be gathered
submit periodically to the state machine either a POM it has gener- 2gainst a node that does not deviate from the protocol. (iii) No

ated, or a special NoPOM (which, to obey the cost balancing prin- Node can store more than its quota on BAR-B without risking be-
ciple, is no cheaper than a POM). ing caught. (iv) If a node with at least one unused linked-identity

For simplicity, BAR-B handles all POMs in the same fashion: Ccrashes and loses its disk, it is guaranteed a window of time during
whenever a POM is submitted to the state machine, the POM is Which it can rejoin the system and recover all data it has stored.
distributed to all nodes and each node evicts the guilty party. Note
that the POM provides a basis for more sophisticated strategies in-8. EVALUATION
cluding suspending a node’s store and retrieve rights pending ad- |, this section we evaluate our replicated state machine and BAR-B

ministrative intervention, increasing the storage a node must con- prototype. Our microbenchmarks show that our RSM prototype
tribute (without increasing its quota) or releasing the POM to an ¢an perform about 15 operations a second, an adequate level of

administrative entity for external disciplinary action. performance for our application’s requirements. We then evaluate
the performance of the BAR-B application. We find that our non-
7.2 Recovery optimized BAR-B prototype can back up 100 MB of data to 10

Since we are dealing with a backup system, nodes that lose theirnodes in under 4 minutes and guarantee that the data are recover-
local state must still be able to make use of the system. Our ap- able despite the failure of 3 nodes.
proach (1) allows such a node to assume a new identity to access .
its old state and (2) restricts this ability to prevent rational nodes 8-1 EXperimental Setup
from shirking work and to limit damage by Byzantine nodes. Except where noted, experiments run on Pentium-IV machines

A node only needs a few things to be able to recover: the list with 2.4 Ghz processors, 1 GB of memory, and Debian Linux 3.0.
of its peers, its membership certificate, and its key pairs. The These are shared machines, connected through 100 Mbps ethernet.
user saves this information to a safe place when installing the pro- The Emulab [63] experiments were run on Pentium-Ill machines
gram. Initially we give each node a fixed seriedioked identities with 850 Mhz processors, 256 Mb of RAM, and Red Hat Linux 9.
i0 ... imaz. A key pair is associated with each identity. After a Our prototypes are implemented using Java 1.4. We set the initial
node using identity;_, crashes and loses data, it uses a new iden- TRB network timeout to 10 seconds. The maximum response time
tity ¢; and sends a RECOVER message to every other node. Inand lease duration are set to a week and a month respectively, but
response, these node send the list;&f chunks that they are stor- our experiments do not rely on these values. Each node is allocated
ing. From this list, the recovering node can then retrieve its backup 40 slots in the Guaranteed Response Protocol. Unless otherwise
data as needed. noted, we do not introduce failures in our experiments. We use

Any node that receives a message from idenit{l) assigns all the BouncyCastle cryptographic library and Onion Networks’ FEC
message queue bubble obligations of any preceding linked identity library for erasure coding.

(ix, k < j) toij, (2) grants retrieve rights to for any data with .

a valid lease b]y'k, (3) initiates a fixed gracgperiod during which 8.2 Micro-benchmarks

RECOVERINGs considered a valid response f9yto any retrieve We use micro-benchmarks to evaluate our replicated state ma-
request, and (4) evicig from the system. The node also notes that chine prototype. The main questions we try to answer are (a) whether
the data it entrusted tf). is gone, and therefore starts refreshing our RSM is practical, (b) whether our RSM scales to a reasonable
its backup data. The erasure coding scheme ensures that the fulhumber of nodes, and (c) whether our RSM handles intentionally
backup is recoverable despite the loss of the chunks storégd on slow nodes well.

Two factors prevent a rational node from exploiting linked iden- Figure 5 shows the average speed of TRB operations for systems
tities to avoid punishment. First, each node has a small number of of 5 to 23 nodes. Each trial measures the average duration over 30
identities (e.g., 3 initially plus 1 every two years) and cannot re- TRB operations with 4 KB proposals. We run each configuration
cover its data after all have been used; using a linked identity thus 10 times and show the median value as well asltifé and90""
reduces the future utility of the system. Second, a new linked iden- percentiles. We run the experiment twice: once wfith= 1 and
tity is responsible for the messages of previous identities, so nodesonce with the maximaf tolerated given the number of nodes. The
cannot avoid work. The first factor also limits the damage that can chart shows that TRB completes in less than 60 ms for 5 nodes

300 T T T
max f
f=1
250
. 400 |~
é 200 b ﬂ Post-computation
2 as0 |- Pre-computation .
P
150
= 300 |-
(]
j=2]
<
g 100 - 250 |-
< w
©
50 E 200 |
[
0 1 1 1 1 150 |-
0 5 10 15 20 25
Number of nodes 100 |~
Figure 5: RSM performance as nodes are added 50 |- .
0
250 i
Fied, Ulnlucky T T T Store Retrieve Recover
Round-Robin ---x---
0 Fixed, Lucky - Figure 7: Operation time for 100 MB
z
o 150 - 200 |- Store
g Retrieve
2 1 Recover
g 100 | Data stored
x = 150 |
2
B
50 P = S
=K - K- =X ﬁ
K== K- K- X °
X=X S
0 k. e oe e e e e oM N M NN K - K TI)\
0 5 10 15 20 25 o
£
=

TRB number

Figure 6: Impact of rotating leadership

4/10 7110 10/10

or 175 ms for 23 nodes, a level of performance that is sufficient
for our application due to (a) the relatively modest response time
demands of backup and (b) the ability to batch multiple application
commands in each TRB instance to improve throughput [10]. The
graph also shows that performance is hardly affected by the choiceyalue of the fast path optimization, and (c) the cost of performing
of f and is reasonable for the range of sizes we chose. Eventually,system audits.
however a Ial’ge Cooperative service should be Spllt into multlple Figure 7 shows the time required to perform our basic system
state machines as proposed in Section 6. operations for 100 MB of data on a system with 11 nodes. A node
Our performance is inferior to protocols that are not designed can place data on the system at the rate of 100 MB in 219 seconds,
for the BAR model. PBFT [10] requires only 15 ms per consen- and retrieve it in 90 seconds. Recovery of the data after a local disk
sus on less powerful hardware than ours. Part of the difference isfajlure completes in just under six minutes. Recover is slower than
explained by our language choice, but the main factor is the fact the hasic retrieve operation because it performs additional tasks—
that our IC-BFT RSM requires the properties of digital signatures, fetching StoreLis$ from all nodes and reconstructing and storing
so we cannot rely on the faster MAC primitives. Note that (just |ocal BAR-B metadata.
as in PBFT) to maximize application throughput, nodes can submit Figure 8 shows the performance of our system under a range of
multiple commands in a batch for each TRB operation. encoding parameters when storing a 20 MB file on a system with
Figure 6 shows the relative impact of two leader election policies 11 nodes. Each group of bars represents a choice of encoding pa-
in the presence of failures. Our protocol rotates the role of sender rameters. As the ratio gets closer to one, the total amount of stored
between instances of TRB. A PBFT-like protocol instead rotates data stored on the system (indicated by the line) diminishes and the
the sender only when the current sender is determined to be faultyperformance of the system increases. Storing a 20 MB file when
or untimely. When the sender is timely and non-Byzantine, the encoded at 7 out of 10 (7/10) transmits approximately 31 MB of
state machine proceeds at full speed for either protocol, without encoded data at 0.67 MB/s. The corresponding retrieve operation
timing out (cf. “Fixed, Lucky"). However, a Byzantine sender can operates at 1.2 MB/s. Overall, the additional cost required for uti-
proceed slowly—just fast enough to avoid triggering a time-out (cf. |izing 7/10 encoding as compared to 10/10 is modest.

Figure 8: Operation time for 20MB at various encodings

“Fixed, Unlucky”). Our sender rotation (cf. “Round-Robin”) limits Figure 9 shows the effects of loading the system with multiple
the worst case damage imposed by a slow node. nodes storing or retrieving at the same time. The experiment itself

records the time required when the specified number of nodes each
8.3 BAR-B y iy

store or retrieve of a single 20 MB file using the 7/10 encoding.
Our BAR-B experiments are designed to determine the follow- When all nodes are active each node sees a modest reduction in
ing: (a) whether the performance of BAR-B is adequate, (b) the throughput (from 0.67 MB/s to 0.54 MB/s) but the aggregate sys-

1 storer
60 [~ 3 storer
] 6 storer 35
9 storer
11 storer
20 |+ 20
o
o 25 I
£ -
£ . 15 =
2 20fF 2
Q o
= £
F 10 5 ©
'_
10 |-
Store Retrieve 5
I 5 |-
Figure 9: Concurrent operations
0 o
Slow Fast SlowFast
900
Store Figure 11: Impact of the fast path optimization
= Retrieve
800 —
Recover
35 —— T T T T T —
Direct Send —+—
700 |- Direct Receive ---x--- ~
30 F RSMsend ------ ",X 4
RSM Receive o L
600 [~ X
e Br v i
— é . -
L 500 £ 20f A E
e H -
£ g X
= 400 - g 15t p -
= X
g .
300 [~ < 10t x E
,‘X/
5 i
200 |- < .
0 T e WA Il ,wm»—l&' ;’E"""'m:
100 |~ 0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Chunks on the system
100Mbps ~ 25Mbps 10Mbps 5Mbps Figure 12: Cost of audit as capacity grows

Figure 10: Operation under different network conditions through the RSM is constant, but the RSM bandwidth consumed

during an audit increases as the duration of the audit increases be-
cause the RSM completes additional (empty) instances. 38 MB of
traffic is necessary for audit when the system stores 44000 chunks,
which corresponds to up to 40 GB of storage or about 28 GB of
backup files encoded at 7/10.

tem throughput grows to 5.86 MB/s.

To this point, we have shown experiments run on a 100 Mbps
LAN. Figure 10 shows the time required to store, recover, and
retrieve a 20 MB file on Emulab machines with connections of
100 Mbps, 25 Mbps, 10 Mbps, and 5 Mbps, and round-trip latenc
of 26ms? At band\F/)vidths of EO Mbps andp5 Mbps, the net\F/)vork beY 9. RELATED WORK
comes a limiting factor and performance falls with network band- ~ Our work brings together Byzantine fault-tolerance and game
width. The baseline 100 Mbps store is slower than that found in theory.

Figure 8 due to the higher latency and slower machines on the Em- Byzantine agreement [30] and Byzantine fault tolerant state ma-
ulab site. chine replication have been studied in both theoretical and prac-
Figure 11 illustrates the effect of the “fast path” (Section 6.2) op- tical settings [6, 9, 26, 48, 55]. Our work is clearly indebted to

timization on time and bandwidth. In each pair, the first bar shows a recent research [2, 10, 36, 52, 64] that has shown how BFT can be
measurement of the unoptimized system, and the second bar showsgractical in distributed systems that fall under a single administra-
the version with the fast path. For a 2 MB file encoded at 7/10, the tive domain—indeed, Castro and Liskov’s BFT state machine [10]
fast path cut the duration of the store operation by 40% and reducedis the starting point for our IC-BFT state machine. Our work ad-
the traffic by a factor of five. Larger files would see even greater dresses the new challenges that arise in MAD distributed systems,
relative improvement. where the BFT safety requirement that fewer than one third of the

Figure 12 shows the bandwidth required to perform an audit of nodes deviate from the assigned protocol can be easily violated.
an 11 node system. The bandwidth required is plotted against the Game theory [25] has a long history in the economics litera-
number of chunks stored on the system. The “Direct Send/Re- ture [4, 28, 40] and has recently become of general interest in com-
ceive” bandwidth lines correspond to the exchangewfmList puter science [3, 20, 22, 23, 44, 47, 61]. Protocol and system de-
and StoreLiss. The number and size of requests and replies sent signers have used game theoretic concepts to model behaviors in

a variety of settings including routing [21, 58, 59], multicast [42], The authors would like to thank Alfredo Di Tillio and Peter Stone
and wireless network [61]. Common across these works is the as-for help with the subtleties of game theory and the whole LASR
sumption thagll nodes behave rationally—the presence of a single group for interesting conversations and help with early drafts.
Byzantine node may lead to a violation of the guarantees that these

system intend to provide. 12. REFERENCES

Shneidman et al. [59, 60] recognize the need for a model that - .
: : ; - _ [1] E. Adar and B. Huberman. Free riding on gnutella. Technical
includes both Byzantine and rational nodes, but their protocols ad report, Xerox PARC. Aug. 2000,

dress only the latter. Nielson et al [43] identify different rational)
attacks and discuss high-level strategies that can be used to addresd2] A- Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and

them.

To our knowledge, Eliaz’s notion df Fault-Tolerant Nash Equi- R. Wattenhofer. Farsite: Federated, available, and reliable
librium (k-FTNE) [19] is the only previous attempt to formally storage for an incompletely trusted environmenttin
model games that include both rational and Byzantine agents. Eliaz's OSDI Dec 2002.
model is more general than the one we assume—for our Nash equi- [3] A. Akella, S. Seshan, R. Karp, S. Shenker, and

librium, a rational node that is considering deviating from the pro- C. Papadimitriou. Selfish behavior and stability of the

tocol assumes that Byzantine nodes will perform the actions that internet: a game-theoretic analysis of tcpPirc.

are most damaging to it; to achieve equilibrium, Eliaz requires that SIGCOMM pages 117-130. ACM Press, 2002.

rational players have no incentive to deviatgardlessof the ac- [4] R.J. Aumann. Subjectivity and correlation in randomized

tions of the Byzantine players. Eliaz’s problem domain differs from strategiesJournal of Mathematical Economic$(1):67-96,

ours: it targets auctions with human participants and provides no 1974.

example of howk-FTNE may be used to build cooperative com- [5] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pStore: A

puter services with Byzantine and rational nodes. secure peer-to-peer backup system. Technical Memo
Rigorous design for incentive compatible systems has largely MIT-LCS-TM-632, Massachusetts Institute of Technology

been restricted to theoretical work. Practical systems for tolerating Laboratory for Computer Science, October 2002.

rational behavior [13, 16] commonly rely on informal reasoning. [6] G. Bracha and S. Toueg. Asynchronous consensus and

Bittorrent [13] uses a tit-for-tat strategy to build a Pareto efficient broadcast protocold. ACM 32(4):824—-840, 1985.

mechanism for content distribution. However Shneidman demon- [7] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault

strates that the algorithm is not actually incentive compatible [60]. tolerance ACM Trans. Comput. Sysii4(1):80-107, 1996.

Other systems use audits [41] or witnesses [39] to discourage ra- [g] M. Burrows, M. Abadi, and R. Needham. A Logic of
tional nodes from deviating from their assigned task, but they do Authentication. IPACM Trans. Comput. Syspages 18-36,
not specify an incentive compatible or Byzantine tolerant mech- Feb. 1990.

anism for implementing audits or witnessing. Using BART state [9] R. Canetti and T. Rabin. Optimal Asynchronous Byzantine
machines to implement a reliable witness from self-interested or Agreement. Technical Report 92-15, TR 92-15, Dept. of

Byzantine nodes is one of the contributions of this paper. Computer Science, Hebrew University, 1992

Cooperative storage and backup systems have been studied exe; o1 B Lf kov. Practical B L 'f It tol
tensively in the literature [2, 5, 15, 16, 31, 49, 53]. The backup sys- "0} o dcss.f;%t?vnedre'co\'fer;‘ngifet"ﬁ: Comut Syat e
tems proposed in [5, 15] rely on the assumption that all non-faulty 20(4):398—461, 2002 ’ ' ’
nodes behave correctly. Samsara [16] and Lillibridge et al. [31] in- [11] J Chése B Ct’wn Y.Fu S. Schwab, and A. Vahdat. Sharp:

troduce a set of incentives to influence rational nodes, but they do . .
not bound the damage Byzantine nodes can inflict to stored data. An architecture for secure resource peeringS@SF 2003.

An additional limitation of Samsara is its reliance on random spot- 121 The game of chicken.
checks to verify that a node is storing data it has promised under http://www.gametheory.net/
which if a nodeo fails such a spot check, the system probabilis- Dictionary/Games/GameofChicken.html.
tically deleteso’s data. This increases the likelihood that a node [13] B. Cohen. The bittorrent home page. http://bittorrent.com.
will be unable to retrieve its files precisely when they are needed [14] B. Cohen. Incentives build robustness in bittorrentfoc.
most. Conversely, we guarantee that a node can recover its data for ~ 2nd IPTP$2003.
a period of time, even if it suffers a total disk failure. This property [15] L. Cox and B. Noble. Pastiche: Making backup cheap and
seems useful in a backup system. easy. InProc. 5th OSD| Dec 2002.
[16] L. P. Cox and B. D. Noble. Samsara: honor among thieves in

peer-to-peer storage. Proc. 19th SOSPpages 120-132,

10. CONCLUSIONS 2003.

. .) [17] A. K. Dixit and S. SkeathGames of StrategyV. W. Norton
This paper describes a general approach to constructing coopera- & Company, 1999.

tive services spanning MADs in the context of a cooperative backup :
system. The three primary contributions of this paper are (1) the in- [18] .;.SI?;._ZDGO(;Jcse;:{n';t;?_\slgﬁggt?gg.zFi'roc. 1stIPTPSpages

troduction of the BAR (Byzantine, Altruistic, and Rational) model, [19] K. Eliaz. Fault tolerant implementatioReview of Economic
(2) a general architecture for building services in the BAR model, Studies 69:589-610, Aug 2002,

and (3) an application of this general architecture to build BAR-B,) S .

the first cooperative backup service to tolerate both Byzantine users20] J- Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing

and an unbounded number of rational users. the cost of multicast transmissiords.Comput. Syst. S¢i.
63(1):21-41, 2001.

[21] J. Feigenbaum, R. Sami, and S. Shenker. Mechanism design

f li ing. InProc. 2 POD 11-20. ACM
11. ACKNOWLEDGMENTS o o InProe: 231 PODC pages 11-20. AC

[22] J. Feigenbaum and S. Shenker. Distributed algorithmic
mechanism design: Recent results and future directions. In
Proc. 6th DIALM pages 1-13. ACM Press, New York, 2002.

[23] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica.
Free-riding and whitewashing in peer-to-peer systems. In
Proc. PINS pages 228-236. ACM Press, 2004.

[24] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty proces#\CM
32(2):374-382, 1985.

[25] D. Fudenberg and J. Tirol&ame theoryMIT Press, Aug.
1991.

[26] J. Garay and Y. Moses. Fully Polynomial Byzantine
Agreement fom >3t Processors i+ 1 RoundsSIAM J. of
Computing 27(1), 1998.

[27] K. P. Gummadi, R. J. Dunn, S. Saroio, S. D. Gribbl, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload.Pnoc. 19th SOSP
2003.

[28] J. Harsanyi. A general theory of rational behavior in game
situations Econometrica34(3):613—634, Jul. 1966.

[29] L. Lamport. The part-time parliamermACM Trans. Comput.
Syst, 16(2):133-169, 1998.

[30] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problemACM Trans. Program. Lang. Syst.
4(3):382—-401, 1982.

[31] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative internet backup schemedJBENIX
ATC, june 2003.

[32] M. Loney. Charity gives 40,000 pcs a fresh staiNET
News.comFebruary 4 2005.
http://news.com.com/Charity+gives+403421.html.

[33] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Sustaining cooperation in multi-hop wireless networks. In
NSDI, May 2005.

[34] G.J. Mailath. Do people play Nash equilibrium? lessons
from evolutionary game theoryournal of Economic
Literature, 36 (September 1998), 1347-137498.

[35] D. Malhotra. Making threats crediblblegotiation 8(3),

Mar. 2005.

[36] D. Malkhi and M. Reiter. Byzantine quorum systems.
Distributed Computing 11/4€ages 203—-213, 1998.

[37] D. Malkhi and M. Reiter. Secure and scalable replication in
Phalanx. IProc. 17th SRDSOct 1998.

[38] P. Maniatis, D. S. H. Rosenthal, M. Roussopoulos, M. Baker,
T. Giuli, and Y. Muliadi. Preserving peer replicas by
rate-limited sampled voting. IRroc. 19th SOSPpages
44-59. ACM Press, 2003.

[39] N. H. Minsky and V. Ungureanu. Law-governed interaction:
a coordination and control mechanism for heterogeneous
distributed system#CM Trans. Softw. Eng. Methodol.
9(3):273-305, 2000.

[40] J. Nash. Non-cooperative gam&$ie Annals of
Mathematics54:286—295, Sept 1951.

[41] T. W. Ngan, D. Wallach, and P. Druschel. Enforcing fair
sharing of peer-to-peer resourcesPimc. 2nd IPTPS2003.

[42] T.-W. Ngan, D. S. Wallach, and P. Druschel.
Incentives-compatible peer-to-peer multicast2id
Workshop on Economics of Peer-to-Peer Syst@0@4.

[43] S.J. Nielson, S. A. Crosby, and D. S. Wallach. A taxonomy
of rational attacks. IiProc. 4th IPTPSFeb. 2005.

[44] N. Nisanb and A. Ronenc. Algorithmic mechanism design.
Games and Economic Behavi®5:166—196, April 2001.

[45] N. Ntarmos and P. Triantafillou. Aesop: Altruism-endowed
self organizing peers. IRroc. 2nd DBISP2PAugust 2004.

[46] N. I. of Standards and Technology. Secure hash standard.
Technical report, U.S. Department of Commerce, August
2002.

[47] C. Papadimitriou. Algorithms, games, and the internet. In
Proc. 33rd STOCpages 749-753. ACM Press, 2001.

[48] M. Reiter. The Rampart toolkit for building high-integrity
services. IrDagstuhl Seminar on Dist. Sypages 99-110,
1994.

[49] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: The oceanstore prototypeFAST,

2003.

[50] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems
(reprint). Commun. ACM26(1):96-99, 1983.

[51] L. Rizzo. Effective erasure codes for reliable computer
communication protocolSIGCOMM Comput. Commun.
Rev, 27(2):24-36, 1997.

[52] R. Rodrigues, M. Castro, and B. Liskov. BASE: using
abstraction to improve fault tolerance.Pnoc. 18th SOSP
pages 15-28. ACM Press, Oct. 2001.

[53] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. In Proc. 18th SOSPpages 188—201. ACM Press,
2001.

[54] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. Tcp
congestion control with a misbehaving receN&iGCOMM
Comput. Commun. Re29(5):71-78, 1999.

[55] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: a tutorflM Comput. Sury.
22(4):299-319, Sept. 1990.

[56] F. B. SchneideDistributed ComputingEditor: Sape
Mullender), chapter ZWhat Good are Models and What
Models are Good?'pages 17-26. ACM Press, second
edition, 1993.

[57] "seti@home”. http://setiathome.ssl.berkeley.edu/.

[58] J. Shneidman and D. Parkes. Rationality and self-interest in
peer to peer networks. Rroc. 2nd IPTPS2003.

[59] J. Shneidman and D. C. Parkes. Specification faithfulness in
networks with rational nodes. Froc. 23rd PODC pages
88-97. ACM Press, 2004.

[60] J. Shneidman, D. C. Parkes, and L. Massoulie. Faithfulness
in internet algorithms. IfProc. PINS Portland, USA, 2004.

[61] V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. R.
Rao. Cooperation in wireless ad hoc networks. In
INFOCOM, 2003.

[62] A.Venkataramani, R. Kokku, and M. Dahlin. Tcp nice: A

mechanism for background transfersAroceedings of the

2002 USENIX Operating Systems Design and

Implementation (OSDI) conferendeec 2002.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An

integrated experimental environment for distributed systems

and networks. IfProc. 5th OSDJ pages 255-270, Boston,

MA, Dec. 2002. USENIX Association.

[64] J.Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. Rroc. 19th SOSPpages

[63]

253-267. ACM Press, Oct. 2003.

APPENDIX
A. COMMUNICATION PRELIMINARIES

Communication in the BAR model is handled through a col-
lection of special mechanisms. At the core of these mechanisms
is a BART channel which handles message resends on unreliable
links in an incentive compatible manner. The second component of
these mechanisms is the message queue infrastructure. The mes-
sage queue infrastructure enforces a tit-for-tat communication pol-

icy between nodes. Under this policy nade/ill send messages to
nodeb only as long a$ has previously sent appropriate messages to
a. This tit-for-tat policy is important in implementing predictable
communication patterns in our protocols.

A.1 BART channel

We instrument a bidirectional BART channel between two nodes
as a pair of modified one way TCP connectidndhe underlying
network is unreliable — messages may be dropped or reordered
We assume that the higher level protocols using the channel pro-
vide some benefit to rational nodevhena successfully delivers a
message to non-Byzantine nadde

Unreliable networks are subject to message loss and reordering
We address the problem of message loss by constructing a variatior
of a one way TCP connection. We address issues associated with
reordering through consideration of well formed messages.

A.1.1 One way channel

Unreliable networks are subject to message loss and reordering
In this section we address the issue of message loss and a TCP
based resend policy.

TCP employs a resend policy based on local timeouts [62]. The
policy itself is straightforward and easy to understand. Each mes-
sagem sent by node to nodeb must be explicitly acknowledged.

In a bidirectional TCP connection, the acknowledgement can be
included in the next message sent frbmo a. As long asz has not
received some message; 1 from b, a resendsn; everyround-
trip-time time period. Similarlyp resendsn;1 everyround-trip-
timetime period until receivingn;2 from a. Sincem;;1 serves
as the acknowledgementto; andm,. acknowledgesn,1, ra-
tional nodeb can save work by not resending; ;1 and instead re-
lying on nodea to resend messages as appropriate. Unfortunately
a follows similar reasoning and does not reseng resulting in
the resend mechanism failing entirely.

We address the above issue by restricting our attention to one
way TCP connections. This restriction allows us to make a clear
demarcation between the sender and acker on the connection and
we can state by fiat that the sender is responsible for resending

run on nodea to send messages té:
mcount := 0; // message sequence number
queue :=0; // FIFO set of pending messages
curr = null; // message currently being sent
enabled := true; //flag indicating whether messages skobe sent

on timeout:
sendcurr);

on reviackm):
if curr = m then
disable timer;
curr = nextMessage();
send gurr);

send(nsg):
if enabled then
curr = msg,
send msg over network;
start timer;

reliable—send (msg):
m = (msg, mcount + +);
queue.appendfsg);
if curr = null then
curr = nextMessage();
send gurr);

nextMessage () :
if queue.empty() then
wait for queue.hasElement();
return queue.removeFirst();

disable ():
enabled := false;

enable () :
enabled := true;

run on nodeb to receive messages from:
next := 0; // sequence number of next message to receive
enabled := true; /1 flag indicating whether acks should bent

on rev((msg,i)):
m = (msg,i);
if next > i then
discard m;
return;
if next =i V next =i — 1 A enabled then
send ack,, over network;
if next =i then
next = i+ 1;
if next < i then
disable ()
processfnsg);

disable ():
enabled := false;

enable () :
enabled := true;

processtnsg):
Il pass message to higher level protocol
/1 call rcv of higher level

messages. Since the sender receives benefit when the message is

received by a non-Byzantine node, the sender has sufficient-incen
tive to continue sending as long as he believes the acker is non-
Byzantine.

The TCP Daytona optimistic ack attack [54] exposes a flaw in
allowing ackers to send ack messages which are not bound to the
message being acknowledged. In the original optimistic TCP Day-
tona attack, a client aggressively acks packets in order to increase
the TCP window and induce the sender into devoting an unfair
amount of bandwidth to that client. In the context of a BAR con-
nection, a rational client could proactively generate ack messages

%In a one way TCP connection, exactly one node sends data and
the other node only sends acknowledgement for data received.

Figure 13: BAR one way channel

to prevent the sender from resending dropped messages. We ad-101 run on nodea to coordinate communication witf:
102 sendChannel // one way channel for sends

dress this issue in the same fashion as [54], by introducing a nonce| 1z rcvChannel // one way channel for receives

104 queues /1 collection of message queues

Our nonce consists of a hash of the message being acknowledged| o:
In summary, we construct a one way connection between two | 106 sendesg):

)) A i 107 sendChannel.reliablesend(msg)
nodes in which one node is designated the sender. Messages sentios
over the connection receive a unique non-decreasing SEQUENEE NUM 150 2 e queue expectingrsg
ber. The sender is responsible for inserting new messages onto the 17; R abledena ()
connection and resending the message until it receives an approprir 112 E'Sfm. processieg)
ate ack from the acker; message should be sent only after the 115 if mq. completed () then

116 queues.remove(mq)

receipt ofack.,,_,. Acks are uniquely tied to a specific message | 117 »
through a nonce consisting of the hash of the message being act 1o "*&istet i,
knowledged. This mechanism is sufficient to provide the following | 120

. 121 disable ():
guarantees if neither node behaves in a Byzantine fashion: 122 sendChannel . disable ()
123 rcvChannel. disable ()
. i 124
o m; will never be sent beforeck,,,_, e enable()
. 126 sendChannel.enable ()
o ackn,; will never be sent before; 127 rcvChannel . enable ()
X 128
e m; will never be sent aftem; 1 129 disableSend ():
130 sendChannel. disable ()
e ackm; will never be sent aftetickn,, Figure 14: Bidirectional BAR channel

The resend policy is successful as long as both nodes are non-
Byzantine and the sender receives sufficient benefit from deliyerin
messagen to a non-Byzantine node. the underlying one way channels, while facilitating the coordina-
Messages received out of order are considered to be malformedtion between messages sentdgndb.
and are |mmed|ate|y dropped_ The pseudocode for one way chan- In addition to thesendand rece|Vemeth0dS, the two way chan-
nels can be found in Figure 13. As long as non-Byzantine node N€l €xports operations to associate message queues with the chan-
a believes nodeé to be non-Byzantine, the higher level protocols Nel (register(), removef)and disable communication to a node that
provide sufficient benefit ta for having its message receivedlyy IS considered faulty by higher levels of the protocengble(), dis-
and rational nodes believe that if nok has arrived byound-trip- able(), disableSendy)

timefrom a non-Byzantine node then a message has been dropped .
the following theorems hold: A.2 Message queue infrastructure

The message queue implements, in an incentive-compatible man-
THEOREM 4. If a is the sender, thea will resendm;; if a does ner, a reliable channel with a simple local retaliation policy of “If
not receiveack,,, within round-trip-time. you don't talk to me, then | won't talk to you”. The pseudocode
implementing this policy is shown in Figure 15.
Our description of the message queue is built over the BART
two-way-channetiescribed in Figure 14 and focuses on the imple-
mentation of a tit-for-tat policy.

PROOF Itis assumed that believes to be non-Byzantine, im-
plying thata believesb will follow the protocol directly. It is also
assumed that believes the lack of response byndicates a mes-
sage has been dropped. Sinceeceives sufficient benefit whén
receives the messagewill resend. [A.3 Message queue tit-for-tat

If we say that two nodes; andb, communicate through mes-
sage queuthat means that both nodes have an instance of the mes-
sage queue object (it's not a distributed object). The mostimportant
methods of this object follow.

THEOREM 5. If a is the acker and receives; from b for the
first time or at least round-trip-time after the last time; was re-
ceived, ther will sendack.,,; to b.

PROOF By assumptior considers to be non-Byzantine, s
will stop sendingm; only upon receivingick.,, from a. Sincea
incurs cost from processing;, itis in a’s best interest fob to stop e expect(predicate)
sendingn;. If the receipt ofm; marks the first time: receivedn;, « receive(predicate)
thena must sendick,,, in order to stoph from resending. If the

e send(message)

receipt ofm; is at leastound-trip-timeafter the previous receipt of The first two calls return immediately. The message queue will
m;, thena considers it likely that a message has been dropped andsend the messages passed to the send() method, but only after it
again must resengck.,, to stopb from resendingn; indefinitely. has received messages that are expected (indicated through the ex-
In both casesq incurs less cost by sendingk.,, and stopping pect() function). The receive(predicate) function extracts the mes-
from resendingn,. [sage which was previously expected and received. Consider for

example some hypothetical protocol in which two nodes answer
In addition to providing the above properties, the one way chan- each others queries. The protocol for nagl@sing message queue
nel can be unilaterally disabled to save on future costs when the mg, could be similar to the pseudocode below.
node at the other end is believed to be Byzantine.
ng. send(" QUERY: 1+1=?")
A.1.2 Two way channel my. expect (nmsg that starts with REPLY)
In order to allow nodes andb to both send and receive mes- nsg : = ny.receive(nsg that starts with REPLY)
sages to each other, we must construct a bidirectional channel. Wen. expect (nsg that starts wi th QUERY)
build our BART bidirectional channels from two one way chan- qry := ny.receive(nsg that starts w th QUERY)
nels. Pseudocode for the bidirectional channel is shown in Fig- answer : = conput e_answer (qry)
ure 14. The bidirectional channel provides the same guarantees asy. send(" REPLY: "+answer)

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

class messagaueue:

public messagequeue(destination):

ready=1

dest=destination

readySet = new HashSet()
successors = new Set();

queue = new Queue();
channel[destination].register (this)

public send(msg):

queue.enqueue (msg)

public expect(predicate):

queue.enqueue(predicate)

public msg receive(predicate):
msg =L
while (msg ==_1)

msg = readySet.get(predicate)

readySet.remove(msg);
return msg

public link (nextQueue):

successors.add (nextQueue)
if (lis—really—done): nextQueue.ready—

public done():

queue.enqueue ("done™”)
check-send ()

joinGroup (agroup):

assert(agroup ==null)
group := agroup
agroup.onestarted ()

public leaveGroup(): // needs to be atomic

if (lis—really—done && group != null)
group .onedone ()
group := null

public is—enabled():

return true iff ((ready-0)
and (group==null or group.previousGroup == null or
group.previousGroup.pending==0))

public is—done():

return is-really—done

public process(msg)

wait until is—enabled ()

predicate := queue.getFirstMatchingExpect(msg)
if (predicate == null) return
if (predicate != queue.top() | islnconsistent(msg)):

channel[msg.sender]. disableSend ()
queue.remove (predicate)
readySet.add (predicate , msg)
check-send ()

protected checksend():

if (lis—enabled()) return
while (queue.top() instanceof message
or queue.top()=="done"):
X := queue.dequeue ()
if (x=="done"):
really—done ()
else:
channel[x.receiver].send(x)

protected reallydone():

is—really—done := true

foreach successor in successors
successor.ready++

if (group!=null):
group.onedone ()

public unlink (nextQueue):

if (successors.contains (nextQueue) && Liseally—done)
nextQueue.ready++
successors.remove (nextQueue)

protected static boolean islnconsistent(msg):
Il check to see if the current message along with some poesly

/I received messages reveal that the sender has

/1 deviated from the protocol.

/1 return true if the received messages cannot be sent
I/ by a node following the protocol;

/1 return false otherwise

class group:

public link (nextGroup):

assert(nextGroup.previousGroup==null)
nextGroup.previousGroup := this

public onedone(peer):

pending- —

public onestarted (peer):

pending++

Figure 15: Message queues

The message queue mechanism ensures that if nddes not
answer the first query, then it will not get an answer froeither.

This mechanism is implemented by putting both the messages to
be sent and the predicates to check incoming messages on a sin-
gle queue (Figure 15, lines 212 and 215). Predicates are removed
when the corresponding message is received (line 256), and out-
going messages are only sent when there is no predicate ahead of
them in the queue (functiotheck-send()ines 260-268).

A.4 Message queue linking

The message queue offers the ability to link several message
gueues together so they behave like a single, longer message queue.
Our protocol uses this function so that different threads communi-
cating with the same peer can have their own message queue (thus
imposing a known order of these messages even though the thread
execution may be interleaved).

To link message queuesandb, one uses the following call:
a.link(d) (line 224). The messages on quéueill not be sent until
the last message imwas sent. The function done() is used to in-
dicate when message queuends. The message queue will report
that it is done as soon as it has sent all the messages and satisfied
all the expects before “done”. Consider the following example:

ngl. | i nk(ng2)

ngl. send(" QUERY: 1+1=7?")

ngl. expect (nsg that starts with REPLY)
nmsg : = ngl.receive()

ngl. done()

ng2. expect (nsg that starts with QUERY)
gry := ng2.receive()

answer := conpute_answer(qry)

ng2. send(" REPLY: "+answer)

In the example above, the two message queugkandmgq?2 are
linked to provide the same functionality as the previous example.
In addition, the function mql.is-done() can be called to determine
whether the answer to the “1+1” query was received.

A.5 Message queue groups

Linking message queues does not fundamentally change the way
they work. But the grouping we describe here does, because it
allows a message queue to be blocked wg#ileralother message
queues are done.

We introduce a new object, the Group. It has a single method,
link(), that links groups together. Message queues can join a group
by calling joinGroup(group). If groupgandh are linked by calling
g.link(h), then the message queues that are part of ghowiti not
send messages to the network until all message queues that are part
of groupg are done (done is defined exactly the same as for linking
between message queues).

This functionality is implemented through the Group class (lines
290-300), the function joinGroup (line 232) and the function is-
enabled (line 242). Intuitively, the purpose of group linking is to
provide a higher-level tit-for-tat policy, where we can think of each
message queue as a transaction or a remote procedure call: group
linking ensures that other nodes cannot participate in new trans-
actions unless they have completed all the transactions that were
initiated in the previous group.

A.6 Message queue sets

Fault-tolerant protocols often use quorum-based communication,
in which nodes communicate with more than one node at a time. In
order to provide quorum-style communication primitives, we intro-
ducemessage queue setlese objects contain a message queue for

301 instance-ctor(ins):
302 for every peer p:
303 create messge queue group instancel[ins][p]
304 if (ins>0):
305 instance[ins-1][p].link (instance[ins][p])
306 for t in 0 .. (n-1):
307 turn—ctor (t)
308 notification—ctor ()
309
310 instance-run():
311 call instance-ctor() for the next instance
312 call turn—run(0) on a new thread
313 notification—run()
314
315 notification—ctor () :
316 create message queue set MQS to all
317 create message queue set MQE to all
318 MQS. joinGroup (instance[ins])
319 MQE. joinGroup (instance[ins])
320 MQE. expect (decidednv, @, b) from all
321 MQE. receive (decidednv, a, 17) from all
322 on receiving (decidedw,a},b}) from j:
323 for each messag&ueue mq toj in MQ[t]:
t > min{turn(aj), turn(decision)}
324 if mg has not sent or received a message:
325 mq.leaveGroup ()
326
327 notification—run():
328 I/l ensure that everyone forwards the decision messge
329 wait until
330 we receive (decidedhv, @, E) through MQE:
331 then decidegwv, @, b)
332 if (!'sender):
333 MQE. expect (untimely-penance) of size
334 untimely[j}xpenance from each j != sender
335 MQE. receive (untimely-penance) of size
336 untimely[jlxpenance from each j != sender
337 MQE. done ()
338
339 decide v, d,b):
340 if (decided !'=_1):
341 if (turn(decided)< turn(a)):
342 MQ[turn (&)].link (MQS)
343 MQ[turn (decided)]. unlink (MQS)
344 decided := @uv,a,b)
345 return
346 MQ[turn (&)].link (MQS)
347 decided := Qu,a,b)
348 NQS.send(decidedxv,&',E) to all
349 if((nv!= 1) and (not sender)): // we decided on the sender’s va|
350 MQS. send (untimely-penance) of size
351 nv.untimely[ilkpenance to all but the sender
352 if (sender and proposed value was decided):
353 untimely[j] = 0 for all j
354 MQS. done ()
355 call instancerun() for next instance

Figure 16: IC-BFT TRB, instance level functions

each other node in the system, and allow grouped communication

using the following commands.

e sendfnessage) to nodes
e expectpredicate) from nodes
e receiveQuorumfredicate)

The first two functions simply delegate to the underlying mes-
sage queues. The third function calls receiveficate) on all

401
402
403
404
405

406
407
408
409
410
411
412
213
214
415
416
17
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

458
message queues and returns as soonas a quorum of message queugs,

have delivered an answer.
For convenience, we also define

e link(MessageQueueSet)
e unlink (MessageQueueSet)

These functions link and unlink the corresponding message queues

(to same peer) with each other.

B. TERMINATING RELIABLE BROADCAST

Each node in the RSM participates in a series of TRB instances,

to decide on the operations to be executed on the RSM.

Each TRB instance has a distinguished sender node, which pro-

460
461
462
463

turn—ctor (t):
if myLeaderTurn(t)

message queue set MQ[t] = set of message queues to all het sende
else
message queue set MQ[t] = set consisting of message queue

the leader (to sender if t==0)
MQ[t].joinGroup (instance[ins])
it (t>0):
MQ[t—1].link (MQ[t])
if myLeaderTurn(t):
expect-election (t)

turn—run(t):
Il sender participates only in the first turn
if (sender and t> 0):
return
if (t>0) and (decided=2): turn—ctor (t+(n—1))
if (myLeaderTurn(t)): turpleader(t)
else:
if (decided ==L or decided.turn>=1t): turn—follower(t)
MQ[t]. done ()

turn—leader (t):
if (not sender)
start timer timeout: if it fires then
call turn—run(t+1) on a new thread

if (t>0):
pol := receive-election(t)

else
pol := L
proposal := (value ,untimely[])

if (pol=="done™): return

(nv,i,g) := leaderthree—phase-commit(t, proposal)

MQ[t].send (ack) to all
stop timer timeout

if (showsChosen)): decide (uv, @, b)

turn—follower (t):

start timer timeout: if it fires then
call turn—run(t+1) on a new thread
send-election (t)

follower—three—phase-commit(t)

MT[t]. expect(ack) from leader

ack := MQ[t].receive(ack) from leader

stop timer timeout

if timer timeout fired more thanavg.latency + window ago:
untimely [leade+of(t)] ++

leaderof(t):
/1 determine which node is leader for a given turn
if (t==0): return 0
else: return ((+1)%(n—1))+1

latest @, t):

If all T € 7 have r_j.@a == L then

return SF
else

return r;.val for T € 7 with the Ialeslrj.a

showsChoseri) :
return true if there’'s a quorum who accepted the value

mylLeaderTurn(t):
return (id == leade+of(t))

poses a command to be executed. Nodes are chosen to be the sender

in a round-robin fashion, so that each node can benefit from having

its operations executed by the RSM.

Figure 17: IC-BFT TRB, turn level functions

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

517

518

519

520

521
522
523
524
525
526
527

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

send-election(t):
/1 send a message to elect the new leader
MQ[t].send ((settumn t);) to leaderof(t)

expect-election (t):
MQ[t]. expect ((set-turn t>j) from every j # 0

receive-election (t):
tyr 1= now()
for every nodej from which we do not receive the expected
set-turn message between, — window and ty + window:
untimely[j] 1= untimely[j] + 1
wait until:
pol = MQ[t].receiveQuorum ((set-turn t)]»)
we receive a quorunpol of messages from MQ[t]:
return pol,
or decidetuw, @, 5) is called and received at least one sdtirn
message from others:
MQ[t].send (junk), worth 3 messages, to all who have sehe
set—turn message.
MQ[t].expect (junk-ack), worth 3 messages,
the set-turn message.
MQ[t].receive (junk-ack), worth 3 messages, from all who have
sent the setturn message.

from all who have s

return "done”

leaderthree—phase—commit(t, proposal):

/1 1. read the old values
if(t>0)
MQ[t].send (read t, poly) to all except the sender
MQ[t].expectr]- = (read-ackt,1;al,a,pa,dd,ing)j from all j other than
the sender
wait until:

7 = MQ[t].receiveQuorum ((read-ack t, val, @, pa,dding>j)
we receive a quorun¥ of messages from MQ[t]:
or decide v, a, E) is called:
MQ[t].send (junk), worth 2 messages, to all
MQ[t].expect (junk-ack), worth 2 messages, from all
MQ[t].receive (junkack), worth 2 messages, from all
return "done”
/1 2. get the agreement vector
if(t>0)
nv = pad(latest{))
else
nv = pad(proposal))
s := hash@v)
MQ[t].send (agree t, nv, ¥) to all except sender
MQ[t]. expect (agree-ackt,s)i from all j
wait until :
a = NQ[I].receiveQuurum(agree»ackt,s)j)
we receive a quoruni of messages from MQ[t]:
or decideqv,a,b) is called:
MQ[t].send (junk) , worth 1 message, to all
MQ[t]. expect (junk-ack) , worth 1 message, from all
MQ[t].receive (junk-ack) , worth 1 message, from all
return "done”
/1 3. update the state of the acceptors
MQ[t].send (write, t, nv, @) to all except sender
NQ[t].expectb7 = (write-ack, t,maz_polj>j from all j
wait until :
b= MQ[t].receiveQuorum ((write-ack, t,maz.polj)j)
we receive a quorumb of messages from MQ[t]:
or decidequv, @, b) is called:
return "done”

while failed @, t) and waiting won't cause a penance:
wait for more answers from MQ[t], put them ib.
return (nv, @, b)

follower—three—phase-commit(t):
I := leaderof(t)
if (t>0):
MQ[t]. expect(read t, poly) or junk) from |
m := MQ[t].receive (read t, poly) or junk)) // start atomicl
if (mis junk):
Il verify the size of the junk is worth 3 messages
/1 wait for receiving the decided message on MQE from |
MQ[t].send (junk-ack), worth 3 messages.
return
maz.pol := max(maz.pol, pols)
MQ[t].send (read-ack t, m-val, m.a, padding); to |
MQ[t]. expect (agreg t, nv, ¥) or junk from | // end atomicl
m := MQ[t].receive (agree t, nv, ¥) or junk) // start atomic2
if (mis junk):
Il verify the size of the junk is worth 2 messages
/1 wait for receiving the decided message on MQE from |
MQ[t].send (junk-ack), worth 2 messages.
return
MQ[t].send (agree-ackt, hash(nwv)); to |
MQ[t]. expect (write, ¢, @) or junk from | // end atomic2
m := MQ[t].receive (write, t, @) or junk) // start atomic3
if (mis junk):
/1 verify the size of the junk is worth 1 message
/1 wait for receiving the decided message on MQE from |
MQ[t].send (junk-ack)
return
mp = maxz_pol
if t >=mp:
(mwal, mla) := (nv, @)
MQ[t].send (write-ack t, mp); to | // end atomic3

Figure 18: IC-BFT TRB, low level functions

Figures 16, 17 and 18 show the protocol for executing a single
instance of TRB. The TRB protocol, similar to the Paxos protocol,
proceeds turn-by-turn. In the first turn, tudnthe sender tries to
propose a value and write it to a quorum of nodes. If the sender is
unable to write the values by the timeout then the remaining nodes
start the next turn. For turns> 0, a leader (chosen in a round-
robin manner) tries to do a three-phase-write to complete the TRB
instance. Again, if the leader for tutrfails to complete the turn by
timeout, turnt 4+ 1 starts off and the leader for tutr4- 1 tries to
complete the instance.

The timeouts for successive turns in a instance increase expo-
nentially. Eventually, during a period of synchrony, a leader will
be able to complete the instance in the turn before the timeout fires
and will inform all other nodes about the decision.

Each node, on hearing about the decision, will (after checking
the proof) decide on the value and inform all other nodes about the
decision, if it has not already done so.

To ensure incentive-compatibility, we require incentives for nodes
to send the messages according to the protocol. The incentives for
sending and receiving the messages correctly is addressed by the
message queues.

For each instance, there is a message-queue between each pair
of nodes, for each turn. For every turn in an instance, there is a
message queue between each pair of fbdés message queue
to nodej (from say node) for turnt is represented (by nodgas
MQI[t][j]. The set of message queues (from say ndde all nodes,
in turnt, forms a message queue set and is represented (byihode
by MQIt].

In addition to having a message queue to every node per turn,
there are two additional message queues, between each pair of
nodes, used to send and expect the decision values. Every node
expects to hear the decision value from every other rjode the
message queue MQEJj], and sends the decision value to all the
other nodes on MQSJj].

If the sender’s value is decided upon, then nodes also send and
expect appropriate amount of penance-penalty on these message
queues.

Linking of message queues provides a mechanism to ensure that
a node can only make progress w.r.t another node, if it satisfies all
the expectations in the existing message queues. Specifically, the
message queues to nodes in a tuare linked to message queues
in turns> ¢, so that if a node has not fulfilled its obligation in turn
t, it will not receive messages for turnst.

The message queues MQE and MQS are not linked to any other
message queues in the instance, so a node can always hear about
the decision, for a particular instance, from other nodes.

Linking of message queues groups, across instances, provides
a way for long-term incentives. All message queues in a partic-
ular instance, to a node, form a message-queue-group. Message
queue groups are linked across instances, this ensures that if there
are any unfulfilled expects for a node in any message queue, that
has communicated in instanteghen the node will not receive any
messages for instancesl unless the expect is fulfilled.

B.1 Deviation detection

Once a rational node knows that a node is Byzantine it no
longer needs to send any message {onethoddisableSend()).
Nodes that visibly deviate from the protocol are considered to be
Byzantine.

“This is actually a overkill; due to the communication pattern fol-
lowed by the protocol, only the message queues communicating
with the leader will be used

Deviations such as sending out-of-order messages can be hanSpecifically, fort’ = t., WA{, — RAE,, which contradicts the
dled by the message queue itself (line 254). However, there canprevious deduction based on the read-ack message, thus exposing

be some application level detection that can be done.ifTheon-

sistent()method (in line 282) looks for any visible inconsistencies

that nodez’s misbehavior.

in the messages that are received. If the inconsistencies reveal 8C., TRB CORRECTNESS

node to deviating from the protocol, then the node is considered

Byzantine and ignored thereafter.

Example:

Let R} andW® denote the events when nodeeceives the read
and write messages for tum Also, let RAY and W A denote
the events when node sends the read-ack and write-ack for turn

t. We assume that the follower nodes immediately (atomically)

send responses to the read/agree/write messages. Thetfore,
and RA¢ can be imagined to be the same events. Simila#fy,
andW A¢ can also be considered the same events.

Note that a read-ack response, for tuyrcontains the vector
corresponding to the latest written value at tiRd{ (line 575).

B.1.1 Deductions from a write-ack

We say a write in turn is successful at node if nodea updates
its m_val with the value ofnv in response to the write message
in line 593. A write for turnt is successful at node if and only

if a has not responded to a read with a higher turn number, before

responding to the write (lines 574 and 592).
write_succeded(a,t) <= Vt': (t <t' = WA; — RA})

Any node that sees a write-ack message of the faimite —
ack, t, polt), caninfer that < t' = WA§ — RAY,.

B.1.2 Deductions from a read-ack

Now consider a node’s response to a read message. The protocol

specifies that the read-ack message semnt foyst include the vec-
tor @ from a successful write at with the highest turn seen so far.
If nodea responds with a read-ack for tutnwith a vectora which

is from turnto then, it must be that:

Vi’ write_succeded(a,t') AW Ay — RAY =t <t

B.1.3 Detecting a possible misbehavior

A =
Now we demonstrate how these semantic checks can help detect®cU"® hash assumption, it follows that-= o'.

additional deviations.
Suppose node responds to a read for tutp before it receives
a write for turnt,. The protocol specifies that the write for tumn

fail. If node a deviates from the protocol and makes the write for

t1 succeed at then the deviation can be detected.
Without loss of generality, assume thais the earliest turp> ¢1

to whicha has responded before sending the write-ack message for

turn t1. Therefore the vectof included in the read-ack message
for turn ¢, must be from a turmg such that, < #,°.

C.1 Proof technique

To prove that a protocol is IC-BFT for a given model of rational
nodes’ utility and beliefs, one must first prove that the protocol pro-
vides the desired safety and liveness properties under the assump-
tion that all non-Byzantine nodes follow the protocol. Second, one
must prove that it is in the best interest of all rational nodes to fol-
low the protocol.

We start by proving correctness assuming that all non-Byzantine
nodes follow the protocol.

C.2 Correctness assuming incentives

Here we assume that all non-Byzantine nodes follow the proto-
col.

DEFINITION 1. A valuev is said to beproposedn turn t, if a
leader sends a validgr ee message in turih with valuev.

DEFINITION 2. Avaluev is said to bechosenn turn ¢ if there
is a quorum@ such that all non-Byzantine nodesGhanswered the
wr i t e message fov in turn ¢ before receiving the ead message
from any later turnt’.

LEMMA 4. If two non-Byzantine nodes satisfy the expect for
a write message in turn with valuesv and v’ respectively, then
!
V==7.

PROOF Each write message has the formatite, ¢, nv, @, 7),
whereg consists of a quorum of answers of fornfagree-ack, s),
ands is the hash of the value

Since any two quorums intersect in a non-Byzantine node, and
such a node sends only oagree-ackmessage in a particular turn,
it follows that the sameagree-ackmessage is used in thievalue
for the write ofv andv’.

This requires that the hash foerandv’ be the same. Under the
U

LEMMA 5. If a value has been chosen in tuththen no other
value can be proposed in tuth, t' > ¢.

PROOF By contradiction. Let be the value chosen in tutn
andt’ > t be the earliest turn afteérin which some node proposed
a different valuey’.

If v has been chosen in turrit follows that all non-Byzantine
nodes in a quorur® have received a write message fobut have
not received a read message from any later turn.

Thus, on receiving the read-ack message, a rational node can For a value to be proposed in any tufr> 0, it needs to contain

deduce that
vt' : write_succeded(a,t') N WA] — RA7, = t' < tg

Specifically, fort’ =
W AY,.

However, on receiving the (successful writeratvrite-ack mes-
sage for turrt;, nodes can deduce that

t1, ~write_succeded(a,t1) V RA{, —

t1 <t' = WA{ — RA},

®It cannot be fromt; because: has not yet received the write for
turnt;. It cannot be from any turp- ¢; becauseé: is the earliest
turn > t; to whicha responds

read-acks from a quorum of nodes. Non-Byzantine nodes will re-
spond with an agree-ack only if the agree message is well formed,
i.e. the valuey’ that is proposed is consistent with the vedtahat

has been sent (in particuldatest (7, t') == v’ and every element

of 7 is a valid message).

Vector 7 contains signed values from a quorum of nogésand
cannot be modified. Since Q and Q’ intersect in at least one non-
Byzantine node, and the non-Byzantine node will send the vglue
it follows that there is at least one entrysitstating that value was
written in turnt.

Since entries i included in addition to the value and turn, all
non-L values in7, even if they are from a Byzantine node, must
have been proposed earlier.

Moreover,t’ is the earliest turn afterto propose a value other
thanv. So there cannot be any proposed valiie# v with a turn
numbert” > t in 7 received in turnt’.

Value v from turnt is therefore the value iA with the highest
turn number, andatest(7,t') will return v. Therefore the leader
in turnt’ must propose value. [J

LEMMA 6. Avaluev is chosen in turrt only if v was proposed
inturnt.

PROOF A non-Byzantine node acceptswai t e message only
after it accepted the correspondiagr ee message. Since all quo-
rums contain at least one non-Byzantine node, it follows that for
to be chosen at turhit must have been proposed at turn []

THEOREMG6 (SAFETY). If some non-Byzantine node decides
on a valuev in turn t then no non-Byzantine node will decide on a
value other than.

PrROOF A node decides on a valueonly after either seeing evi-
dence that the value was chosen. The previous two lemmas indicate
that at most one value may ever be chosenl

THEOREM7 (LIVENESS). Eventually every non-Byzantine node
decides.

PROOF Since the time-out delays increase exponentially, dur-
ing the synchronous period there will be some turn after which
every leader is guaranteed to have enough time to complete with-
out being interrupted by another leader election. Consider the first
such leader who is non-Byzantine. That leader will be able to write
a consensus value without interference, and it will have gathered
a quorum of acknowledgmentg)(that show that no other leader
was elected before the end of the write. That information allows
nodes to decide. Since the leader is non-Byzantine he sends it to
all and all non-Byzantine nodes decide, and report to the sender if
necessary. []

THEOREM 8. The protocol satisfies the conditions for TRB.
PROOF e Termination is guaranteed by Theorem 7.
e Agreement follows from Theorem 6 and Theorem 7

e Integrity is assured because a leader cannot propose any ar-
bitrary value. The expect in line 576 is satisfied only if the
proposed value has been written earlier, at isThe fact that
a leader cannot propose an arbitrary value hence follows by
induction on the turn number

¢ In a period of synchrony, if the sender is non-Byzantine then
no non-Byzantine node will time out on the sender because —
the time out values are larger than the known guaranteed de-
livery time A. It follows that the sender will be able to com-

set-turn:If a decision has not been reached earlier, then even-
tually the time out for the turn will fire and the non-Byzantine
node will send the set-turn message.

If a decision has been reached in an earlier turn, then it does
not matter if the node does not send the set-turn message be-
cause message queues after the decision turn, which have not
communicated, do not cause nodes to ignore the other node.

read/agree/write-acksThese messages are sent in response
to the read/agree/write messages and can be generated from
the corresponding messages locally. Therefore a non-Byzantine
will not get stuck in sending these messages.

junk/junk-ack: This can be generated locally, without wait-
ing for other nodes, therefore no correct node will get stuck
because of these messages.

untimely: Once a decision has been reached (which will hap-
pen eventually) this message can also be generated locally.

ack: This message can be generated locally, therefore no node
will get stuck not being able to send this message.

read: If the decision has been reached in an earlier turn, then
the node will eventually hear about the decision on MQE, and
can bail out by sending a junk message.

If the decision has not yet been reached, then eventually all
the non-Byzantine nodes will send the set-turn message to this
node, which will be sufficient to form a quorum and generate
the appropriate read message.

agree:|If the decision has been reached in an earlier turn, then
the node will eventually hear about the decision on MQE, and
can then bail out by sending a junk message.

If the decision has not yet been reached, then eventually all
the non-Byzantine nodes will send the read-ack messages to
this node, in response to the read message that it sent, which
will be sufficient to form a quorum and generate the appropri-
ate agree message.

write: If the decision has been reached in an earlier turn, then
the node will eventually hear about the decision on MQE, and
can then bail out by sending a junk message.

If the decision has not yet been reached, then eventually all
the non-Byzantine nodes will send the agree-ack messages
to this node, in response to the agree message that it sent,
which will be sufficient to form a quorum and generate the
appropriate write message.

THEOREM 9. Liveness across instances, assuming Incentive Com-

patibility: No non-Byzantine node will be ignored by another non-

plete the turn and get all non-Byzantine nodes to deliver the Byzantine node indefinitely.

message.

O

LEMMA 7. A non-Byzantine node will be eventually able to
satisfy the expect of every other non-Byzantine node, which could
cause the other node to ignore this node.

PROOF A non-Byzantine node only expects messages listed in
Table 1. For each of the messages listed, we argue that a non-
Byzantine node will eventually be able to send the message to fulfil
the expect of the other non-Byzantine nodes.

e decided: Every non-Byzantine node will eventually decide,
then it will send the decided message to all the other non-
Byzantine nodes.

PROOF A non-Byzantine node, following the protocol, will

only ignore another nodg

1. permanently:if j has revealed itself to be Byzantine by vis-
ibly deviating from the protocol (e.g. by sending messages
out-of-order or sending messages that do not satisfy the struc-
ture of the expect).

2. temporarily: as long as an expect is yet to be fulfilled.
Firstly, no non-Byzantine node will be considered Byzantine by

another non-Byzantine node, because the protocol only sends mes-
sages when the message is expected and the messages will be of
the required format.

Moreover, by Lemma 7 a non-Byzantine node will eventually

be able to satisfy the expect of all the other non-Byzantine nodes.

Hence a non-Byzantine node will not indefinitely ignore another not send send different| diff. time
non-Byzantine node for not fulfilling an expect] set-turn | Lemma 10 Lemma 16 Lemma 14
read Lemma 10 and 3§ Lemma 17 Lemma 31
C.3 Equilibrium and incentive compatibility read-ack | Lemma 10 and 3§ Lemma 18 | Lemma 34
Background. agree Lemma 10 and 3§ Lemma 21 Lemma 32
We now show that the protocol represents an equilibrium point. | @gree-ackl Lemma 10 and 3¢ Lemma 19 | Lemma 34
More specifically, it represents ldash equilibrium We start by write Lemma 10 and 36 Lemma22 | Lemma 33
introducing this concept and relating it to our domain. write-ack | Lemma 10 and 3§ Lemma 20 | Lemma 34
Nash Equilibira are a game theory concept. Game theory studies| decided | Lemma 10 Lemma23 | Lemma 24 and 25
“games” among rational players. In one-shot games, for example,| junk Lemma 10 and 3§ Lemma 28 Lemma 29
every playeri (we shall call them nodes from here on) simultane- | ack Lemma 10 Lemma 26 Lemma 27
ously picks somestrategyo;. The rules of the game determine a untimely | Lemma 10 Lemma 15 Lemma 15
utility « for each node, as a function of its strategy and the strategy
of the othern — 1 nodes. The utility for node can be written as Table 1: Map of deviation to lemma
the functionu; (oo, . . ., on—1), which we abbreviate;(o;, 0_;).

The Nash equilibrium is defined as follows [25]: . . o .
q [25] cost since it robs from an infinite number of beneficial instances

of TRB.
ui(oy,05;) > ui(s;,0-;) foralls; € S; Our assumptions are presented in the System model, Section 3.
In short, we assume that rational nodes gain a long-term benefit in
participating, we assume that they consider the worst-case outcome

a”_lfjoe}i?] rﬂ'r?é?eccsgaactsggst%aguﬁhﬁnsqziﬁowé observe that the strat- of their actions, and we assume that if they observe that the protocol
P ’ is a Nash equilibrium then they will follow the protocol.

egy represents which actions the node will take in response to events The simplest deviations are those that do not modify the mes-
it can observe. In other words, the strategy is the protocol that the sages that a node sends. In our state machine protocol, no such de-

r_lode follows. A game-th?oretlc game IS determined by a func_- viation increases the utility. We must then examine every message

“O.r.‘ that takes every node’s strategy as |npu_t and_outputs a resultlngthat the node sends and show that there is no incentive to either (i)

ﬁglclg ;g{lgwaghazgdﬁadlg,gﬂﬂﬁﬁzg';:]ee ér;‘,:grtr:ﬁr;’:;g'cbh F;L(::oc%(?s!t:a:nh d not send the message (ii) send the message with different contents,
y or (iii) send the message earlier or later than required. Also, we

benef'ts that the node expernences from running the prqtocol. we must show that nodes have no incentive to (iv) send any additional
define the cost precisely later in this section. The two differences message

between our setting and the traditional phrasing of the Nash equi- Our protocol also imposes the requirement that must be met in

e e o oy 0 IMementaton: () he penance s ager than e bt o
p y'sending a time-out message late

Second, Byzantine nodes may deviate arbitrarily from the protocol.

In a way similar to how an assignment of strategies to nodes can THEOREM10 (INCENTIVE COMPATIBILITY). No node has any
be said to be a Nash equilibrium for a given game if no player can ynjlateral incentive to deviate from the protocol.
improve its utility by unilaterally deviating from the assigned strat-
egy, we say that a given protocol is a Nash equilibrium if no rational In order to show that no deviation is beneficial, we systematically
node can improve its expected utility by unilaterally deviating from explore all deviations. Table 1 maps each deviation to the lemma
the assigned protocol. that shows that it is not beneficial. The concern of nodes sending

Proof technique. additional messages is covered by Lemmas 11 and 8.

To prove that the protocol is a Nash equilibrium, we show that
it is in every node’s best interest not to deviate from the proposed
protocol under the assumption that all other non-Byzantine nodes
follow the protocol. PROOF. If j is known to be Byzantine (for example because

Showing that something is in the best interest of a rational node is it was observed deviating from an incentive-compatible protocol),
dependent on what the node considers in its interest, but also of thethen sending messages to it does not affect the worst-case outcome.
node’s beliefs and knowledge. For example, a node that knows thatin particular, nodej can always opt to ignore any message from
a given nodex is Byzantine will see no incentive to send messages i. Therefore, there is nothing to be gained from the expense of
tox, whereas one that does not know who is Byzantine mustinsteadsending messagesjo [
consider the expected utility of sending a message to

A rational noder evaluates its utility: for a strategys by com- Lemma 8 is a natural consequence from the fact that nodes are
puting its worst-case expected outcome. The worst case is Com-rational and that they believe that some nodes may be Byzantine.
puted over the choices of which nodes are Byzantine, and what Naturally, in the worst case Byzantine nodes will not do something
Byzantine nodes do. The expectation is over network performance. 0 foolish as letting themselves be identified.

The outcome then includes the costs: sending and receiving mes- . . N .
sages and computing signatures, and the benefits are: having their LEMMA 9. Ifarational naderis bglng ignored by a non-Byzantine
own proposal accepted. Noaealso includes future effects of its nodea, thenr may not be able to write its value.

Wherego; is the strategy proposed to nofends; is the set of

LEMMA 8. Once a rational node knows that some other node
j is Byzantine; will not send any further messageto

actions, for example whether some node(s) now considerbe PROOF Sending a validurite message requires the message to
Byzantine (by setting the corresponding entrydaalist to true) or contain a quorum oégree-ackmessages ia. If the f Byzantine
whether nodes will ignore in the future (because theis Bubble nodes, along with the non-Byzantine naddo not send thagree-
function returnsirue). A change that would prevemtfrom par- ackmessage te, thenr can never gather a quorum afree-ack

ticipating in future instances of TRB is considered to have infinite to generate a write message. Hence cannot send any write message.

Moreover, if the sender does not send a validrite message, Starting the next turn earlier (or later, as the case may be) may in-
then no further leader will be able to read the value and the TRB fluence the outcome of TRB (toward eitheior the sender’s value),

will decide L. but that has no effect on the amount of work that nothas to per-
form (Lemma 13).
LEMMA 10. If a rational noder knows that not sending some All the messages for the current turn must be sent, so there is no
expected message to non-Byzantine node would causes to other benefit from starting a turn earlier.
ignorer, thenr has incentive to send the message. Delaying the start of turnmay save a node some effort, because

. . . it is possible that the delay allows the decided message to arrive, if
PROOF. If s ignoresr, thenr will not receive any messages he decision has been reached, so that there is no need to send the

from s. In the worst case (for), all f Byzantine nodes will also set-turn message anymore.
ignorer. Then, for instances whereis the sender, it will not be However, the recipient of set-turn expects that message at a given
able to gather the required — f — 1 answers to itaigree mes- time (and follows the protocol by hypothesis), so if the node sends
sage (sincg’ + 2 nodes will not be included: the sender itself, “set-turn” late it increases its chance of missing the window, thus
and thef faulty nodes). As- cannot gather enough messages 10 ajsing the expected cost through the penance mechanism. By re-
form awrite message, it will then be ignored by all non-Byzantine quirement (a), this expected cost is larger than the expected benefit

nodes. From then on, nodewill not be able to send its proposals from potentially not having to send “set-turn” and going through an
to anyone: it is effectively excluded from the state machine. Node gytra turn (potentially with valug). [

r would forgo participation in an infinite number of future benefi-

cial instances of TRB: no finite benefit from not sending the mes- LEMMA 15. Rational nodes have no incentive to omit or mod-
sagem may be worth this cost. Nodewill therefore make sure ify the untimely message.

to send all expected messages whose absence would cause other

non-Byzantine to ignore it. [J PrROOF The untimely message (computed in lines 446 and 512,
sent in line 350) is intended to inflict additional cost onto nodes

LEMMA 11. Rational nodes only send a messagéeo nodej that are believed to be untimely. Each node, other than the sender,

if 7 expects that message. expects this message every instance for the appropriate size. If the

message is not received, or is not of the appropriate size, then other
PROOF The queue protocol regards any node that sends a mes-nodes will ignore this node in future instances. Therefore rational
sage which is not the current expected message as a Byzantinenodes will not omit or modify the untimely message.]
node. Therefore a rational node will only send a messag®
a non-Byzantine node, if it is currently expected. LEMMA .16. There is nothing to be gained by sending a set-turn
Sending an unexpected messages to Byzantine nodes cannot imfessage with the wrong contents.

prove their worst-case behavior (if anything, it may help them drlvpT PROOF Since set-turn only contains a turn number and a signa-
the system to an even less pleasant state). Therefore, no ratio-

. ture, wrong contents would be equivalent to either sending twice to
nal node sends an unexpected message to anyone, Byzantine 9 .
not. [e message queue or sending a malformed message (Lemma 11),

or sending set-turn early (Lemma 14)]

LEMMA 12. No rational node (r is not the sender) can ensure LEMMA 17. There is no incentive to lie in the read request.
with certainty thatL will be delivered in a given instance of TRB.
)]) PROOF The format of the read request is entirely determined
PROOF. Nodes can influence the delivered value through their (jine 567), the only freedom being in the specific choice of which
actions. However, if Byzantine nodes were to follow the protocol, guorum of entries in the POL are filled. Since all POL entries have
then in a period of synchrony the sender will be able to communi- the same size, all choices result in a POL of the same total size
cate with a quorum of nodes and get its value delivered regardlessand hence the same cost. Since using a different valid POL has no

of the actions of- (in particular if does not send any message). jmpact on the protocol and does not reduce cost, there is no reason

1 will be delivered as the result ofs actions. [
LEMMA 18. There is no incentive to lie in the response to a
LEMMA 13. Rational nodes other than the sender have to do read message.
the same amount of total work if in a given instance of TRB the
decision isl instead of the sender's value. PrROOF There are only two different possible answers to a read
message: either the sender’s value,lorSince the sender’s value
ProOOF. If a sender’s proposal is not accepted, then the sender is signed and nodes cannot forge signatures, the only possible lie is
will propose it again next time. Lemma 12 indicates that if a sender to answerl when, in fact, one has received a value.
tries forever, the proposed value will be eventually delivered. More- This lie increases the likelihood df being delivered instead of
over, the size of the messages are padded so a rational node wilthe sender’s value, which has two consequences. First, it changes
incur the same cost in the instance, irrespective of what is being the amount of work that must be done in this turn. However, as we
decided. The total amount of work, therefore, is the sanié. argue in Lemma 13, nodes other than the sender expect to have to
do the same amount of work even if they try to increase the like-
LEMMA 14. There is nothing to be gained by sending the time- lihood of L being delivered. Second, it increases the size of the
out message earlier or later than the protocol calls for. messages that must be sent because taeswer has the same size
(in bytes) as the longest allowed proposal (requirement b). There-

PROOF The protocol requires non-leader nodes to send the time-foyre there is no benefit to lying in response to a read message.
out message for turh (“set-turn(t)”) as soon as they believe that

turnt started. The leader in tutmever sends “set-turn(t)”, and the LEMMA 19. There is no incentive to lie in the response to an
sender never sends set-turn messages either. agree message.

PROOF The answer to agree is entirely determined by the agree Once a decision has been reached, it has been reached. Waiting
message itself, so any deviation would be equivalent to not sendinglonger is not going to change the decision, or the cost of sending
a message that the leader expects. Lemma 10 shows that there is nthe decision messsage.

incentive to do that. (J However, by waiting longer, one could possibly hear that a de-
cision had been reached earlier, which could potentially help in
LEmMMA 20. There is no incentive for a rational nodeo lie in avoiding sending some extra messages for turns that have not yet
the response to a write message. communicated.

This, we argue, will not be the case because MQS is linked to
PROOF The only choice in the responserisax_pol, the latest MQ[decision.turn]. This ensures that the decision message will
leader that the node has received a message from. Since these mege sent only after all expects upto MQ[decision.turn] are satisfied.
sages are signed, the only possible lie for a rational node is to reply At this point, however, both the nodes have already communicated
with some POL it has received. upto turns decision.turn and therefore will not be able to remove
Since the size of the POL is constant, the only benefit of replying the expects for those turns even if they find out that a decision has
with an older POL is to influence the protocol. As we argued before been reached earlier]
(Lemma 13), only the sender has a stake in influencing the decision
and the sender does not receive write messages. LEMMA 25. There is no incentive for to send the decided
Remains the possibility that answering with a different POL will message early.
influence the number of turns that the protocol takes to complete
(that's a cost). Answering with the requester's POL instead of a ~ PROOF r is supposed to send the decided message to other
later one (if we received one) means that there is some chance thaflodes, as soon as they have fulfilled the obligations up to decided.turn.
the requester now thinks its proposal succeeded when, in fact, it!f 7 sends the decided message early, it gains nothing. On the con-
failed. But, doing so can exposeo be deviating from the protocol trary, it may stand to lose potential saving that it could have got if
and get ignored by other nodes, so a rational node will not send an Were to hear about an earlier decisior.]
older POL. [J
LEMMA 26. There is no incentive for to send a different ack
LEMMA 21. There is no incentive to send incorrect data in the Message.

agree message. PROOF The format of the ack message is fixed. Sending a ack

message with different content is equivalent to not sending the ack
message. From Lemma 10, it follows that a rational notias no
{motivation to skip sending the ack messagesl

PROOF The agree message (sent in line 542) include the turn
number, proposal, anfl. Changing the turn number would be
equivalent to not sending the agree message, which would resul
in hasBubble returningtrue (Lemma 10). The protocol does not
restrict which proposal the sender can send, other than the condi-
tion that it must include the untimely vector. Lemma 15 argues that

there is no incentive to send an incorrect untimely vector. Lead- proor The format and size of the ack message is fixed and will

ers that are not the sender have no choice in the proposal, as it is, change by waiting longer. Therefore a rational leaddras no
entirely determined by the contents ©find thelatest function. motivation to delay sending the ack messagil

The vector7 itself contains signed answers from other nodes, so
it cannot be tampered with, other than choosing which answersto | gmma 28. There is no incentive far to send a different junk

LEMMA 27. Thereis no incentive farto delay sending the ack
message.

include in7. These deviations are covered by Lemma 321 message.
LEMMA 22. There is no incentive for to send incorrect data PROOF. The junk message is allowed to be anything. Only the
in the write message. size and number of signatures for the junk message matters. More-

over, if the size and number of signatures are wrong, then the mes-

PROOF Sending a value that does not match the agreed-up hashsage will not help to fulfil the expect andwill get ignored. [
would cause everyone to consideByzantine. The vector8anda

are both constant-size and cannot influence the protocol other than LeEMMA 29. There is no incentive for to delay sending the
markingr as Byzantine, so there is no incentive to change them junk message.
either. [
PrROOF The format and size of the junk message is purely de-
LEMMA 23. There is no incentive for to send incorrect data pendent on whether it replaces which message and will not change
in the decided message. by waiting longer. Therefore a rational node has no motivation
to delay sending the junk message.]

PROOF That message contains information signed by others, so
it cannot be faked by. [LEmMA 30. There is no incentive for a rational leaderto

send a message in its leader turbefore the protocol indicates
LEMMA 24. There is no incentive for to delay sending the turnt should start.
decided message.
PROOF It may prevent the previous leader from succeeding.
PROOF. Every other node expects a decided messagefranal Leaders have no stake in the outcome, so all that preventing the
will not talk to = in future instances unless it receives the decided Other from succeeding achieves is potentially cause more set-turn
message. Further, since there is no hope of finding a cheaper de/messages to be sent.

cided message by waiting, a ratiomakill not wait in order to hear The sender cannot start early because the protocol says it should
from a start immediately. [

LEMMA 31. Thereis noincentive for a rational leadeto wait C.4 Enlightening examples

for more than a quorum of time-out messages before starting its The protocol in Figure 17 distinguishes between the sender and
leader duty. the leader: the sender proposes a value and, if it is not timely, a
) new leader is elected. This distinction may seem unnecessary, but

PROOF. That would allow the leader to go think message i, fact it is important that the sender not be involved in steps where

route instead of the normal three phase commit. We use the penancg may influence whether its value gets decided. This can occur in
mechanism to balance the cost$.] two places.

First, the sending of the “set-turn” messages. Suppose an exe-
cution in which the sender receives a POL from a later leader, and
then a write for the valug., indicating that the new leader did not
see any of the messages sent by the sender. The sender may then
have an incentive to send its “set-turn” message early to elect a new

from a situation in which it must prop’osb (because none O.f th_e leader, in the hope that the new leader may see one of the written
answers so far have seen the sender’s value) to one in which it can . 1ues and will attempt to write the sender's value insteadl.of

propose the sendc_ers_val_ue (because one of the answers includes it, Second, the answer to “read” requests. In the same scenario as

cf. thelatest fgnctpn in line 453)—_0r the other way around. described above, if the sender receives a writelfdoy leader 1
Th‘?s‘? two situations do not modify the expect_ed m.me?r of tuns and then a read request from leader 2, then the sender would have

for this instance of consensus. They are also identical in term of an incentive to deviate from the protocol and send its own value

message S'tﬁe’ becauge tr;es I_cls_ﬁde(;.frfnust pa?) t?e pro;t)r(])szil to.max|hstead, pretending it hasn’t received the message from leader 1.
mum size, the same size € diérence between the wo IS In order to avoid both scenarios, we allow the sender to try to

Wh'ihﬂ;/allue ('js demd:ed 'rlhthe eﬁd’ \;\;]h'ch Tay chz?_ri]ge how much write its value only once: it cannot be elected leader in later turns,
wor _eLea er Tgsthgod roug tmh IS '”tsharlcf'l owevzter,fas wke and read messages are not sent to it. Since the read and write quo-
arguein Lemma 13, (his does not change the total amount 0T WOrK. ., .\« m st still intersect in at least one correct node and there must

There is therefore no incentive fetto deviate from the protocol by be a quorum of correct nodes among all nodes but the sender, it
waiting for more answers. J follows thatn > 3f + 2 '

LEMMA 32. Thereis no incentive for arational leadeto wait
for more than a quorum of answers to its read message.

PROOF Waiting for more answers may allow the leader to go

LEMMA 33. Thereis noincentive for a rational leadeto wait
for more than a quorum of answers to its agree message. D. REPLICATED STATE MACHINE

The replicated state machine provides the following guarantee
under our liveness assumption that all non-Byzantine nodes get
some overall benefit from participating in the state machine.

PROOF Getting more answers cannot influence the outcome, so
there is no incentive to wait for more.[]

LEMMA 34. There is no incentive to answer late to either a])
read, agree or write message. THEOREM 11. If non-Byzantine node submits some command

c to the state machine then eventually every non-Byzantinemode
PROOF. The effect of a late reply to these requests is to poten- in the state machine will deliver
tially slow down the leader (or sender), increasing the risk that this
instance of TRB lasts one more turn and potentially influencing the PROOF Eventual synchrony guarantees that eventualbyets
outcome. its turn as sender in the state machine. TRB’s non-triviality con-
Only the sender has a stake in the outcome, and it does not an-dition then guarantees thatwill successfully deliver its proposal.
swer to these messages. Remains the possibility of adding a turn,Oncea is done with earlier submissions it will submit which
which would cause the rational node to send more messages andt will deliver. The agreement condition guarantees that all non-
therefore increase its cost. Rational nodes therefore have an incenByzantine nodes will deliver as well. [
tive to respond to these queries immediatelyl

LEMMA 35. There is no reason why a rational nodeshould E. WORKASSIGNMENT
try to send read/agree/write messages instead of junk. Work assignment is introduced in Section 6. Here we add to that
discussion by providing pseudocode and proof sketches.
PrROOF The junk message has the same cost as sending the re- This section addresses issues related to work assignment and rel-
maining read/agree/write messages so there is no reason why a ragvant efficiency optimizations. In general, work assignment is used
tional node should prefer to send these messages instead of the junko reduce replication factors associated with running a protocol and

message. [to increase communication efficiency and reliability. The work as-
signment protocol leverages the state machine to replicate the as-

LEMMA 36. There is no reason why a rational nodeshould signment of work to a specific node or set of nodes. The work itself
try to send junk instead of read/agree/write. is then performed on the specific nodes. In general, the messages

and execution of allocation are orders of magnitude less expensive
PROOF The junk message has the same cost as sending the rethan the execution of the work itself.
maining read/agree/write messages so there is no reason why ara- For all proofs in this section, we make the “sufficient benefit”
tional nod_e should prefer to send junk messages instead of the readassumption, that is rational nodegains sufficient benefit from
lagree/write messages. membership to outweigh the cost of participating in the system if
Also, sending a junk message has the semantics that a decisiorho more thary nodes deviate from the protocol.
has already been reached in a previous turn. If this is not the case, Letw be work instructionsg, b be nodes in state machire Let
then it is possible that the recipient may consider the node to be a,, pe the result of performing.. We also assume that all liveness
Byzantine node.] conditions are met.

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

Il user calls this to submit a request
submit(query , target):
_queries.enqueue ((query , target))

/1 this is always running
run():
while true:
/1 ready for query
(g,t) := _queries.dequeue(); // blocks if no query
clientto_witness ((q,t))
/1 waiting for reply
r := receivefrom_witness ()
/1 handle reply
if (r is a response from t):
/1 deliver informs the user that a reply has arrived
deliver(r)
clientto_witness (summary(r))
else:
/Il r is a time-out, witness has a POM
POM := receivesignedfrom_witness ()
deliver (POM)
clientto_witness (summary (POM))

Figure 19: Guaranteed response client protocol

651
652
653
654
655
656
657
658
659
660
661
662

clientto_witness (m)
propose (m)

witnessto_client(msg, c)
if (this == c¢): deliver(msg)

witnessto_client.signed (msg, c)
Il execute this code while processing the message in teeide
/1 function , just before line no 354

MQS.send (sign(m)) to c

if (this ==c¢): MQE.expect(sign(m)) from all

Figure 20: Communication with the witness

E.1 Guaranteed-Response Protocol

801
802
803

onReceive(qry):
response := process(qry);
clientto_witness (response);

Figure 22: Guaranteed response target protocol

E.2 Credible threats

The fast path optimization is presented in Section 6.2. We now
argue that it is in the best interest of the rational nodes to follow the
fast path.

LEMMA 37. Rational clients will partake in the fast path opti-
mization.

PROOF The fast path requires sending the request tmde.
The slow path requires sending the same message through the state
machine (requiring sending the message at ledshes). The tar-
get in the request is faulty with probabilitf/n, so the expected
cost of taking the fast path i + 1 times the cost of sending the
message while the expected cost of the slow pathtiihes the cost
of sending the message. The fast path has lower expected cost so
will be followed. [

LEMMA 38. Rational targets will partake in the fast path opti-
mization.

PROOF The fast path requires sending the responserode.

We show the Guaranteed Response pseudocode in Figures 19The slow path requires sending the same message through the state
21 and 22. The code matches the state diagrams in Figure 3. Wemachine and results in sending the message at4etistes. The

show the code for a single slot, but in practice we use several slots,

so there are several instances of the code running in parallel.
Provided that the application provides sufficient sanctions for
nodes that causdoResponsehe following theorem holds:

THEOREM 12. If the witness node enters the request received
state for some work to rational nodeb thenb will executew.

PROOF If b does not executay thenb cannot send the (cor-

requesting node is faulty with probabilily/n, so the expected cost

fo the fast path ig + 1 times the cost of sending the message while
the cost of the slow path istimes the cost of sending the message.
The fast path has lower expected cost so is preferred by rational
nodes. [

THEOREM 13. Rational nodes will follow the fast path.

rect) response to the witness. Since the witness is guaranteed to be- PROOF. By Lemma 37 the client will follow the fast path and

have correctly, the witness will generate a verifiableResponse

by Lemma 38 the target node will follow the fast path. Thus all

message when the timeout fires. Since, by assumption, rationalrational nodes follow the fast path]

nodes will take whatever actions necessary to avoid a verifiable
NoResponse message on their behalfwill executew. [

E.3 Periodic Work Protocol

The periodic work protocol is a mechanism used by the applica-

Each node is allocated a constant number of slots. The strict ;5 designer to specify general maintenance work that must be per-

transitions permitted within each individual slot requires that a pre-

formed by individual nodes. The periodic work protocol functions

vious request is completed before the next request using that slotby requiring each node to periodically submit the result of a work

may start. Our model of rationality specifies that nodes respond
within max_response_time or they are considered Byzantine.

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

Figure 21: Guaranteed response witness protocol

/1 slot for client ¢
run():
isByzantine[c]=false
while (not isByzantine[c]):

/1 empty state

(query ,target) := receivdrom._client(c)

Il request received

witnessto.client(query,target)

wait until:
either: reply := receivefrom_client(target)
or: internal time out

if (received a reply):
/1 response received
witnessto_client(reply ,c)

else:
/1 time out
isByzantine[target]=true
witnessto_client("timeout”,c)
reply := sign("POM: NoResponse”)
witnessto_client.signed (reply ,c)

ack := receivefrom_client(c)

if (ack != summary(reply)):
isByzantine[c]=true

request to the witness. If the result of the work request is received
before the period expires, the period is restarted and the request is
repeated. When the witness is implemented using a RSM, the pe-
riod can be described by passage of time or successful proposals
to the RSM. Figure 23 shows the state transitions for the periodic
work protocol. Figure 24 shows pseudocode for the protocol where
work is expected everk successful proposals by the participating
node.

THEOREM 14. Rational nodes will follow the periodic work
protocol.

PrROOF Failure to send an expected message results in being ig-
nored by the shunned node. If the shunned node is non-Byzantine,
then the shunned node plus tfi@yzantine nodes are sufficient to
deny access to the underlying RSM. By assumption, the benefit of
access to the RSMis larger than the costs associated with following
the protocol faithfully. [

1001 run on replicated node:

1002

1003 time m [// variable holding the current time
1004 decisionsS // variable holding set of decisions
1005

1006 getTime () :

1007 return m;

1008

1009 on decisiondy :

request
fulfilled

response
received

implicit
request

time out

service 1010 5= S\dy_(3f43) time
1011 S = S U {dy.time}
1012 m’ := median(S)

Testart 1013 if m’ > m then

timer 1014 m = m'

Figure 25: Deterministic RSM clock protocol
Figure 23: Periodic work protocol

1101 bind (msg):

1102 rsm.propose (bind(msg));
901 run on replicated node: 1103
902 Work work; 1104 on delivering bind(msg) from a:
903 long counter; 1105 if (this == a):
904 long period; 1106 MQE. expect ((sig,t)) from all
905 String target; 1107 t := DRC.getTime();
906 1108 sig := sign(t, hash(msg));
907 setup (Work w, long k, String peer): 1109 MQS. send ((sig ,t)) to a;
908 k 1= w; = - -
00 counter = k; Figure 26: Message binding protocol
910 period := k;
911 target := peer;
912
13 o THEOREM 16. The time returned by the DRCiiscent
914 on decisiond from target:
915 counter := counter— 1; . - .
916 if d is result of work then PrROOF Lines 10 and 11 ensure that the time is computed over
= iod; ..
P A i the2f + 1 most recent decisions.[]
919 isByzantine[target] = true

Figure 24: Periodic work protocol THEOREM 17. The time returned by the DRCientical

PROOF The time is updated only when a decision is reached.
R Al I Ti i isi h
E4 Deterministic RSM Clock ny call to getTime() between successive decisions returns the same

value. O
The deterministic RSM clock (DRC) is at the core of the author-

itative time service discussed in Section 6.4. The objective of the THEOREM 18. In periods of synchrony, rational nodes include
DRC is not to synchronize the local clocks of the nodes, but to pro- the correct time in their proposals.
vide a consistent global clock which can be used to order operations proor Rational nodes must always include some time in their
and define when events (as defined by state machine decisions) tak9r0p05a|s’ otherwise they will be considered Byzantine by their
place. peers. If they get a benefit speeding up or slowing down the DRC
then they may consider sending an incorrect time value. However,
the worst the Byzantine nodes can then do is be honest, and so the
other times proposed in th¥f + 1 proposals window will be cor-
rect, and the median value chosen for the DRC will in fact not be
influenced by the actions of the rational node. Since rational nodes
tonly deviate from the protocol if there is some benefit in it, the
rational nodes will choose to follow the protocoll]

E.4.1 Message Binding Protocol

In order to bind a message to a time, nadgibmits the message
to theMessage Binding Protocaind proposes BindingRequesb
the RSM. The nodes in the RSM then send signature binding
the message to the current authoritative time through the message
The protocol itself is very simple. The current time is computed gueue architecture. Figure 26 shows pseudocode for the Message
by taking the maximum of the median of the timestamps of the Binding Protocol.
2f + 1 most recent decisions and the previous deterministic time. ~ Provided the overall application provides sufficient benefit for
Decisions of the underlying state machine (Section B) include a maintaining use of the state machine, the following theorem holds:
timestamp field which is set to the local time of the sender when
the proposal is first made. When “no decision” is decided, then
the time for that decision is defined to be the previous determinstic

DEFINITION 3 (NON-DECREASING). A clockisnon-decreasing
iff for time ¢; returned before time;, t; < t;.

DEFINITION 4 (ReECENT). A replicated clock igecentiff in
periods of synchrony, the tintereturned by the clock is no smaller
than the value time proposed by a non-Byzantine sender in the las
2f + 1 instances.

DEFINITION 5 (IDENTICAL). A replicated clock igdentical
iff for all local calls of the getTime() function on a replica between
processing decisioh and decisiork+1 getTime() returns the same
timet on all replicas.

THEOREM 19. The message binding protocol is incentive com-
patible.

time. Pseudocode for the protocol is shown in Figure 25. ~ PROOFR. Whenbind(msg) is decided, a non-Byzantine propos-
The following theorems provide the correctness argument for the ing node expects a message of the f@wiy, ¢) from all members
clock protocol. of the state machine. If the expect is not fulfilled by naddien

the proposing node will stop sending messagds teurthermore,
THEOREM 15. The time returned by the DRCrign-decreasing if the time ¢ is not correct for the decision, then the message is
o o malformed and will be ignored. These events both potentially re-
_ PROOE At each deC|s_|on the value of the deterministic cl(_)ck sultin f + 1 total nodes (the shunned non-Byzantine node And
is potentially updated. Line 13 guards the change to the perS'StemByzantine nodes) ignoring, denyingb the expected benefit from
clock value, insuring that the clock is only changed if the new value mempership in the state machinel
is strictly larger than the old value.[]

