
BAR Fault Tolerance for Cooperative Services
Extended Technical Report TR-05-10

Jean-Philippe Martin, Amitanand S. Aiyer, Lorenzo Alvisi,
Allen Clement, Michael Dahlin, and Carl Porth

University of Texas at Austin - Dept. of Computer Science

ABSTRACT
This paper describes a general approach to constructing cooperative
services that span multiple administrative domains. In such envi-
ronments, protocols must tolerate bothByzantine behaviorswhen
broken, misconfigured, or malicious nodes arbitrarily deviate from
their specification andrational behaviorswhen selfish nodes de-
viate from their specification to increase their local benefit. The
paper makes three contributions: (1) It introduces the BAR (Byzan-
tine, Altruistic, Rational) model as a foundation for reasoning about
cooperative services; (2) It proposes a general three-level architec-
ture to reduce the complexity of building services under the BAR
model; and (3) It describes an implementation of BAR-B, the first
cooperative backup service to tolerate both Byzantine users and an
unbounded number of rational users. At the core of BAR-B is an
asynchronous replicated state machine that provides the custom-
ary safety and liveness guarantees despite nodes exhibiting both
Byzantine and rational behaviors. Our prototype provides accept-
able performance for our application: our BAR-tolerant state ma-
chine executes 15 requests per second, and our BAR-B backup ser-
vice can back up 100 MB of data in under 4 minutes.

Categories and Subject Descriptors
C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Dis-
tributed Systems

General Terms
ALGORITHMS, RELIABILITY

Keywords
Game theory, Byzantine fault tolerance, Reliable systems, Peer to
Peer

1. INTRODUCTION

This work was supported in part by NSF award CNS 0509338 and NSF
CyberTrust award 0430510. Lorenzo Alvisi was also supported by an
Alfred P. Sloan Fellowhip.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05,October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

This paper describes a general approach to constructing cooper-
ative services that span multiple administrative domains (MADs).
In a cooperative service, nodes collaborate to provide some service
that benefits each node, but there is no central authority that con-
trols the nodes’ actions. Examples of such services include Internet
routing [21, 59], wireless mesh routing [33], file distribution [14],
archival storage [38], or cooperative backup [5, 16, 31]. As MAD
distributed systems become more commonplace, developing a solid
foundation for constructing this class of services becomes increas-
ingly important.

There currently exists no satisfactory way to model MAD ser-
vices. In these systems, the classical dichotomy between correct
and faulty nodes [56] becomes inadequate. Nodes in MAD systems
may depart from protocols for two distinct reasons. First, as in tra-
ditional systems, nodes may bebrokenand arbitrarily deviate from
a protocol because of component failure, misconfiguration, security
compromise, or malicious intent. Second, nodes may beselfishand
alter the protocol in order to increase their utility [1, 27]. Byzan-
tine Fault Tolerance (BFT) [10, 30, 36] handles the first class of
deviations well. However, the Byzantine model classifies all devi-
ations as faults and requires a bound on the number of faults in the
system; this bound is not tenable in MAD systems whereall nodes
may benefit from selfish behavior and be motivated to deviate from
the protocol. Models that only account for selfish behavior [59]
handle the second class of deviations, but may be vulnerable to ar-
bitrary disruptions if even a single node is broken and deviates from
expected rational behavior.

Given the potential for nodes to develop arbitrarily subtle tactics,
it is not sufficient to verify experimentally that a protocol tolerates
a collection of attacks identified by the protocol’s creator. Instead,
just as for authentication systems [8] or Byzantine-tolerant proto-
cols [30], it is necessary to design protocols thatprovably meet
their goals, no matter what strategies nodes may concoct within the
scope of the adversary model.

To allow construction of such protocols, we define a model that
captures the essential aspects of MADs. The Byzantine-Altruistic-
Rational (BAR) model accommodates three classes of nodes.Ra-
tional [59] nodes participate in the system to gain some net benefit
and can depart from a proposed program in order to increase their
net benefit.Byzantine[10, 30, 36] nodes can depart arbitrarily from
a proposed program whether it benefits them or not. Finally, BAR
accommodates the presence ofaltruistic [45] nodes that execute
a proposed program even if the rational choice is to deviate. A
protocol is BAR Tolerant (BART) if it provably provides to its non-
Byzantine participants a set of desired safety and liveness proper-
ties. In this paper, we focus on BART protocols that do not depend
on the existence of altruistic nodes in the system: we assume that at
most n−2

3
of the nodes in the system are Byzantine and that every

non-Byzantine node is rational.
A key question is whether useful systems can be built under the

BAR model. To answer this question, we develop a general three-
level architecture for BART services. The bottom level implements
a small set of key abstractions (e.g., state machine replication and
terminating reliable broadcast) that simplify implementing and rea-
soning about BART distributed services. The middle level parti-
tions and assigns work to individual nodes. Finally, the top level
implements the application-specific aspects of BART services (e.g.,
verifying that responses to requests conform to application seman-
tics.)

We use this architecture to construct BAR-B, a BART coopera-
tive backup service. BAR-B is targeted at environments—such as
a group of students in a dorm, home machines for researchers in a
group, or machines donated to non-profit organizations [32]—that,
by supporting a notion of identity that is “expensive” to obtain,
avoid the Sybil attack [18]. We do not target open membership
peer-to-peer systems.

We find that our architecture makes the design of BAR-B eas-
ier to derive, implement, and comprehend. Compared to previous
peer to peer backup architectures [15, 16, 31], BAR-B has several
advantages: it is unique in tolerating both rational and Byzantine
peers, it provides deterministic retrieval guarantees, and it does not
require peers to exchange storage symmetrically. Perhaps most im-
portantly, we find that using a layereded architecture simplifies the
task of proving safety and liveness properties.

We also show that our approach is practical: our prototype BART
state machine executes batches of 15 requests per second and our
BAR-B prototype can back up 100 MB of data to 10 nodes in under
4 minutes while guaranteeing data recovery despite the failure of 3
nodes.

In this paper we make three main contributions. First, we for-
malize a model for reasoning about systems in the presence of both
Byzantine and rational behavior. Second, we introduce a general
architecture and identify a set of design principles which, together,
make it possible to build and reason about BART systems. Third,
we describe the implementation of BAR-B, a cooperative backup
system within the BAR model. A key component of our system is
a BART protocol for state machine replication that relies on syn-
chrony assumptions only for liveness.

The rest of this paper is organized as follows. In Sections 2 and 3
we formally present the BAR model and our system model. In Sec-
tion 4, we describe our overall 3-level architecture, and the next
three sections present our implementation of each of the levels:
our asynchronous BART state machine, our techniques for work
assignment, and our BAR-B application. Section 8 evaluates the
prototype and Section 9 discusses related work.

2. BAR MODEL
To model a MAD environment we must account for three im-

portant factors: (a) no node is guaranteed to follow the suggested
protocol, (b) the actions of most nodes are guided by self interest [1,
27], and (c) some nodes may be categorically broken [10, 30, 36].

The Byzantine Altruistic Rational (BAR) model addresses these
considerations by classifying nodes into three categories.

Altruistic nodes follow the suggested protocol exactly. Altruis-
tic nodes may reflect the existence of Good Samaritans and “seed
nodes” in real systems. Intuitively, altruistic nodes correspond to
correct nodesin the fault-tolerance literature.

Rational nodes are self-interested and seek to maximize their
benefit according to a known utility function. Rational nodes will
deviate from the suggested protocol if and only if doing so in-
creases their net utility from participating in the system. The utility

function must account for a node’s costs (e.g., computation cycles,
storage, network bandwidth, overhead associated with sending and
receiving messages, power consumption, or threat of financial sanc-
tions [31]) and benefits (e.g., access to remote storage [38, 5, 16,
31], network capacity [33], or computational cycles [57]) for par-
ticipating in a system.

Byzantinenodes may deviate arbitrarily from the suggested pro-
tocol for any reason. They may be broken (e.g., misconfigured,
compromised, malfunctioning, or misprogrammed) or may just be
optimizing for an unknown utility function that differs from the
utility function used by rational nodes—for instance, ascribing value
to harm inflicted on the system or its users.

Under BAR, the goal is to provide guarantees similar to those
from Byzantine fault tolerance to “all rational and altruistic nodes”
as opposed to “all correct nodes.” We distinguish two classes of
protocols that meet this goal.

• Incentive-Compatible Byzantine Fault Tolerant (IC-BFT) pro-
tocols: A protocol is IC-BFT if it guarantees the specified set
of safety and liveness properties and if it is in the best interest
of all rational nodes to follow the protocol exactly.

• Byzantine Altruistic Rational Tolerant (BART) protocols: A
protocol is BART if it guarantees the specified set of safety
and liveness properties in the presence of all rational devia-
tions from the protocol.

An IC-BFT protocol thus must define the optimal strategy for a
rational node. In a BART protocol a rational node may exploit local
optimizations not specified in the protocol without endangering the
global guarantees. Note that IC-BFT protocols are a subset of the
BART protocols.

3. SYSTEM MODEL
Although we seek to develop a general framework for construct-

ing a range of cooperative services, our approach is guided by a
specific problem in a specific set of environments. In particular, we
are building a cooperative backup system for three user communi-
ties: 30 co-workers who cooperatively back up their personal home
machines, 500 students in a dormitory who cooperatively back up
their personal machines, and 50 nonprofit organizations that receive
free or low-cost refurbished PCs [32].

We assume that a trusted authority controls which nodes may
enter the system, that each such member has a unique identity cor-
responding to a cryptographic public key, that each member can
determine whether a public key belongs to a specific member, and
that no set of nodes has the computational power to subvert the stan-
dard cryptographic assumptions associated with public key signa-
tures [50] and secure hashing [46]. These assumptions are reason-
able for our target environments—a volunteer distributes a list of
keys to coworkers; a university’s electronic ID system maps iden-
tities to dormitory residents; the refurbisher installs the key infor-
mation on machines before they are distributed to non-profits—and
facilitate the design of BART systems in three ways. First, they
provide justification for our assumption that the number of Byzan-
tine nodes in the system can be bounded. Second, they give rational
nodes an incentive to consider the long-term consequences of their
actions, making it easier to apply internal sanctions (e.g. denial of
service or data deletion) against misbehaving nodes. Third, they
allow us to tie system identities to real world entities, so that exter-
nal sanctions (e.g. social disgrace, monetary fines, or contractual
penalty) may be applied against the owners of nodes that misbe-
have. Support for external sanctions increases the flexibility of our

protocols, but our protocols do not require the use of external sanc-
tions for safety or liveness.

We have different timing assumptions for BAR-B and for the
underlying BART replicated state machine. BAR-B relies on syn-
chrony to guarantee both its liveness and safety properties—data
trusted to BAR-B is guaranteed to be retrievable only until the lease
associated with it expires. Conversely, the underlying BART state
machine is safe even in an asynchronous system, though liveness is
only guaranteed during periods of synchrony.

To ensure liveness under the BAR model, we make two addi-
tional timing assumptions. First, we give nodes an incentive to stay
as synchronized as possible through a “penance” mechanism (dis-
cussed in Section 5.1.3) that penalizes untimely nodes. For this
mechanism to be acceptable, nodes’ clocks must be sufficiently
synchronized that these penalties do not outweigh the benefits of
participating in the system. Second, we assume that if nodesa and
b are non-Byzantine anda sendsb a request at timet, b’s response
will reacha by time t + max response time. This assumption
allows us to bound the state that non-Byzantine nodes maintain in
order to answer late requests and thereby allows rational nodes to
ensure that the benefits of participation outweigh the costs.

In order to complete our model, we must also make specific as-
sumptions on the rational and Byzantine nodes in the system.

Rational nodes.We make four technical assumptions about ra-
tional nodes. First, we assume that rational nodes receive a long-
term benefit from participating in the protocol. Second, we assume
that rational nodes are conservative when computing the impact of
Byzantine nodes on their utility. Third, we assume that if a proto-
col provides a Nash equilibrium, then all rational nodes will follow
it [34] 1 .Finally, we assume that rational nodes do not collude—
colluding nodes are classified as Byzantine. Relaxing these as-
sumptions is future work.

Rational nodes will only participate in a cooperative system if
they receive a net benefit from their participation. In practice, this
requires that the long-term benefit (e.g. reliable backup) of partici-
pation is sufficient to offset the costs (e.g. storage, bandwidth, com-
putation) of participating in the system; otherwise rational nodes
will refuse to participate, compromising liveness.

Rational nodes want to reduce their cost without relinquishing
the benefits that come from participating in the protocol. We as-
sume a simple model in which nodes’ utilities are affected by the
work that must be done but not by the order in which work is per-
formed or by who requests the work. These two variants can be
handled by hiding the relevant factors (contents of the request or
identity of the sender, respectively) until after nodes commit to ex-
ecuting the request. We assume that rational nodes deviate from
the protocol only if they receive a net benefit from doing so—in
a tie, they continue to follow the protocol. This assumption ap-
pears reasonable, given that deviating from the protocol requires
some effort. Furthermore, we assume that rational nodes abide by
thepromptness principle: if they gain no benefit from delaying the
sending of a message, they send the message as soon as they have
idle cycles and bandwidth available. This assumption recognizes
that idle resources are perishable.

Rational nodes are conservative when estimating the potential
impact of Byzantine nodes on their utility: we assume that for
each rational node, the benefits of the service greatly outweighs
the costs, and therefore any increase in the risk of service failure
is unacceptable. So, when computing the expected outcome of its

1Because the protocol can be regarded as coming from an external
authority, some prefer to regard such an equilibrium as acorre-
lated equilibrium[4], which is a generalization of Nash equilib-
rium. This view would not change our analysis.

actions, a rational noder assumes that the maximum number (f)
of Byzantine nodes are present in the system and that they will act
in the way that minimizesr’s utility.

Byzantine nodes.We assume a Byzantine fault model for Byzan-
tine nodes [10, 30, 36] and a strong adversary. Byzantine nodes can
exhibit arbitrary behavior. For example, they can crash, lose data,
alter data, and send incorrect protocol messages. Furthermore, we
assume an adversary who can coordinate Byzantine nodes in arbi-
trary ways. Finally, we assume that at mostn−2

3
of the nodes in the

system are Byzantine.

4. SYSTEM ARCHITECTURE
This section provides an overview of our design. The sections

that follow describe each level of our design in more detail.

4.1 3-Level Architecture
We propose a three-level architecture for building BART ser-

vices (Figure 1). The layered design simplifies the analysis and
construction of systems by isolating and addressing classes of mis-
behavior at appropriate levels of abstraction.

Replicated State Machine

PrototypeArchitecture

BAR−B BackupLevel 3: Application

Authoritative
Time

Guaranteed
Response

Periodic
Work

Message Queue

Level 2: Work Assignment

Level 1: Primitives

Figure 1: System architecture

Level 1, thebasic primitiveslevel, provides IC-BFT versions of
key abstractions (e.g. Terminating Reliable Broadcast (TRB) [30]
and Replicated State Machine (RSM) [10, 29, 55]) for constructing
reliable distributed services. The BART RSM gives us the abstrac-
tion of a correct (e.g., reliable and altruistic) node.

Level 2,work assignment, allows us to build a system in which
work can be assigned to specific nodes instead of executed by all
replicas in the RSM. The assignment is done through a theGuar-
anteed Responseprotocol that generates either a verifiable match
between a request and the corresponding response or a verifiable
proof that a node failed to respond to a request. The assignment
protocol enables efficient replication for our backup application,
and the protocol itself is optimized to use the RSM as little as pos-
sible.

Level 3, theapplicationlevel, implements a desired service using
the levels underneath. Our architecture defines a contract between
the application and the two lower, application-independent levels.
The lower levels provide reliable communication and authoritative
request-response bindings, while the application is responsible for
providing a net benefit and defining legal request-response pairs.

4.2 Principles of Operation
Accountability lies at the heart of our approach to constructing

BART services: if nodes are accountable for their behavior, then ra-
tional peers have an incentive to behave correctly. Strong identities
and restricted membership make it possible to enforce meaningful
internal and external disincentives. But that is only part of the solu-
tion. How should a system detect and react to incorrect behavior?

The simplest kind of misbehavior to detect and punish occurs
when a set of messages constitute a self-contained cryptographic
Proof Of Misbehavior (POM) by a node. For example, if a node
first signs a promise to store a file with a particular cryptographic

hash and then responds to a request to read the file with a signed
message that contains the wrong data, the two messages amount to
a signed confession by the node that it is faulty and should be pun-
ished. This “aggressively Byzantine” behavior is easy to address,
and a number of systems have done so [11, 41].

Two other “passive-aggressive” behaviors are more problematic.
First, a node may decline to send a message that it should send. The
receiver is in a position to accuse the node of wrongdoing, but it be-
comes a case of “he said/she said”—it is difficult for any third party
to decide whether an accusation of inaction is legitimate or it has
been unjustly leveled by a self-interested or faulty node. Second, a
node may exploit non-determinism to provide incomplete informa-
tion or take undesirable steps that interfere with the protocol’s oper-
ation but are difficult to conclusively prove wrong. For example, in
one step of an asynchronous replicated state machine protocol [10],
a node normally transmits a signed copy of the request, but for live-
ness it is permitted to transmit a signed timeout message instead. In
such a protocol, self-interested nodes may choose to send the time-
out message rather than transmit the request. This choice would
inhibit progress, but it would be hard for another node to prove that
a timeout message was inappropriate.

The implementation of Level 1 primitives addresses such chal-
lenges in three ways. First, nodesunilaterally deny serviceto nodes
that fail to send expected messages. This low-level, local tit-for-
tat technique provides incentives for cooperation without requiring
a third party to judge which node is to blame. Second, the pro-
tocol balances costsso that when nodes have a choice between
two messages, there is no incentive to choose the “wrong” one.
Third, nodes canunilaterally impose extra work(calledpenance)
when they judge that another node’s response is not timely. The
penance mechanism safeguards liveness by discouraging rational
nodes from improperly exploiting timing-based non-determinism.

Addressing the challenges of non-responsiveness and non-deter-
minism in the two higher levels is much simpler. For Level 2 (work
assignment), if a node fails to reply to a request issued via the un-
derlying state machine, then a quorum of nodes in the state machine
generates a proof of misbehavior against the node. And because
applications at Level 3 make use of reliable work assignment, each
request is bound to a reply or timeout. As a result of this binding,
the application protocol must merely be designed so that requests
and responses include sufficient information for any node to judge
the validity of a request/response pair.

5. LEVEL 1: BART STATE MACHINE
At the core of fault-tolerant distributed services are a few funda-

mental primitives. For instance, state machine replication is an es-
sential building block for a range of highly available replicated ser-
vices [7] and quorum-based replication is the basis for fault-tolerant
distributed storage systems [37]. The purpose of the first level of
our architecture is to implement fundamental primitives so that they
continue to provide their customary guarantees within the BAR
model. In this section, we present a BART asynchronous repli-
cated state machine (RSM). Our protocol is based on PBFT [10],
with modifications motivated by the BAR model. These modifica-
tions are based on four guiding principles.

Ensure long-term benefit to participants.Self-interested nodes
must gain long-term utility for participating in the system to be
motivated to participate faithfully. Ultimately, these benefits must
stem from the higher level service, but as a hook for providing such
benefits to all participants our RSM rotates the leadership role to
guarantee that every node has the opportunity to submit proposals
to the system.

Limit non-determinism. Non-determinism offers nodes the choice
of multiple behaviors. Although each of these behaviors is legal
under different circumstances, given the specific state of each node
one of the behaviors is preferred by the protocol. Self-interested
nodes can hide behind non-determinism to shirk work: they can
disregard the preferred behavior and adopt a less costly one that
other nodes cannot definitively identify as illegal. In our implemen-
tation of BAR primitives we carefully limit the choices available to
a node. For example, we base our state machine on terminating
reliable broadcast (TRB) rather than consensus [24], because the
former protocol, by allowing fewer valid outcomes, gives rational
nodes fewer options from which to choose when deciding which
behavior maximizes their benefit.

Mitigate the effects of residual non-determinism.When non-
determinism is unavoidable, two low-level techniques are often use-
ful. First, we employcost balancingwhen a node has a choice be-
tween multiple actions. The costs of the actions are engineered so
that the protocol-preferred choice is no more expensive than any
other potentially legal choice. For instance, instead of sending a
list of nodes that are up-to-date, an IC-BFT protocol would sendn
bits with entries set to “1” for up-to-date nodes so that the sender
saves no network bandwidth by sending incomplete information.
Second,encouraging timelinessaddresses the non-determinism in-
herent in an asynchronous system by allowing nodes to judge uni-
laterally whether other nodes’ responses are early, on time, or late
and to inflict sanctions for untimely messages. Our techniques en-
sure that (a) nodes have incentives neither to mete out unwarranted
sanctions nor to forbear deserved punishments and that (b) the costs
imposed by Byzantine nodes through spurious unilateral sanctions
are limited.

Enforce predictable communication patterns. We encourage
nodes to participate at every step of the protocol instead of just at
the steps that bring them a direct benefit. Our protocol requires
nodes to have participated in all past steps to be able to propose a
command.

5.1 Protocol Description

Instance 1 of TRB Instance 2

Sender
agree write show−quorum

Figure 2: Terminating Reliable Broadcast (TRB) phases.

In this subsection, we first examine the high-level structure of the
protocol. We then detail the low-level mechanisms used to enforce
periodic communication and limit the effects of non-determinism.
Due to space constraints, we limit our discussion to the key differ-
ences between our protocol and traditional PBFT implementations.
Appendix B

Our BART replicated state machine protocol is based on PBFT [10].
When a node wants the state machine to execute a command, the
node proposes the command in a TRBinstance. Instances proceed
in sequence, with instancei deciding theith command to be exe-
cuted by the state machine. We differ from the PBFT protocol in
several key ways.

1. We use TRB instead of consensus. This choice is an appli-
cation of the principle of limiting non-determinism. In TRB,
only the initialsendermay propose a value during a particu-
lar instance and an instance can terminate only in two ways:

all non-Byzantine nodes either adopt the value proposed by
the sender, or, if the sender is faulty or slow, a default value.
Conversely, in consensus a timeout caused by a slow or faulty
sender may allow a new leader to propose a different value
for that instance. We initially attempted to use a consensus
protocol as the engine of our state machine but found the
restriction on who can propose in each instance useful for
limiting the choices available to rational nodes. Without this
restriction, a new leader elected to terminate instancei may
prevent progress by selfishly trying to make the state machine
adopt its value rather than the sender’s (see Appendix C.4).
By limiting the possible outcomes of instancei, TRB avoids
this conflict of interest.

2. We use a round-robin leader selection policy to ensure that
all nodes can benefit from their participation in the state ma-
chine. Traditional replicated state machines require a client
to send a command to a sender, who proposes the command
to the state machine. But, a rational sender would have no in-
centive to act on a remote client’s wishes. So, for each TRB
instance we rotate the role ofsenderto the next node in the
system. Each participant thus has a periodic opportunity to
propose values to the state machine.

3. We require at least3f +2 nodes (rather than3f +1) to toler-
atef Byzantine nodes. The reason is subtle and, once again,
has to do with the desire to avoid a conflict of interest involv-
ing the sender node in a TRB instance. Suppose the senders
of instancei is slow, and, after sufficiently many nodes time
out ons, a new leader is elected to bring instancei to conclu-
sion. Every node buts is interested in a timely conclusion of
instancei to ensureits turn to propose a value;s, however,
is interested in ensuring thati terminates with the adoption
of s’s original value—rather than the default value—and to
this end can take steps that compromise liveness (see Ap-
pendix C.4). By using an extra node, we prevents, after
it has proposed its value, from participating in the steps re-
quired to complete instancei, eliminating this potential con-
flict.

Our TRB protocol provides four guarantees in an eventually syn-
chronous BAR environment in which the higher-level service pro-
vides net benefits to all participants.Termination: every non-Byz-
antine process eventually delivers exactly one message.Agree-
ment: if a non-Byzantine process delivers a messagem, then all
non-Byzantine processes eventually deliverm. Integrity: if a non-
Byzantine process deliversm, then the sender sentm. Non-Trivi-
ality: In periods of synchrony, if the sender is non-Byzantine and
sends a messagem, then the sender eventually deliversm.

The protocol provides safety (Agreement and Integrity) under
an asynchronous model, but guarantees liveness (Termination and
Non-Triviality) only during periods of synchrony [24] when there
exists a known bound∆ on message delivery time. The require-
ment that all rational participants realize a net benefit from the ser-
vice is needed only to achieve liveness; rational nodes that do not
benefit from the service will not take any action on behalf of the
protocol, but they will not compromise the safety properties.

Figure 2 illustrates an execution of TRB in a period of synchrony
when no failures are present. Each TRBinstanceis organized in a
series ofturns. In each turn, some process is designated theleader.
Thesenderfor instancei is the first leader for instancei. In the first
turn, thesenderattempts a three-phase-commit on a proposed value
(the phases are labeled agree, write, and show-quorum). If the other
nodes receive the messages on time then they accept the value and

the broadcast is successful: in this case, the instance consists of a
single turn. If, on the other hand, nodes decide the message is late,
they send a “set-turn” message to indicate that a new turn should
start. Nodes other than the sender are selected round-robin for the
leader role.

If a collection of set-turn messages selects a new leader, the
newly selected leader first performs a read: it queries all nodes
for their observed value and waits for a quorum of responses. If
any node reports seeing thesender’s proposal, then the new leader
attempts to broadcast that value. Otherwise, the new leader broad-
casts the null valuesenderTO, indicating that thesenderis sus-
pected of having failed. Once a value is delivered, thei + 1st in-
stance starts with the nextsenderin the sequence.

5.1.1 Message queue
Message queues are the low-level mechanism we use to enforce

predictable communication patterns. All communication takes place
through the message queue infrastructure.

Message queues implement a simple local retaliation policy: if
nodex next expects a message from nodey, x will ignore any com-
munication from—and delay any communication to—nodey until
it receives the expected message. The message queue used byx to
regulate its communication withy contains entries for the messages
thatx intends to send toy, interleaved with “bubbles” correspond-
ing to messages thatx expects fromy. A bubble must be filled with
an appropriate message fromy beforex can proceed to send the
messages in the queue beyond the bubble. To ensure thaty sends
the appropriate message, a predicate is associated with each bubble:
a message fromy is allowed to fill a bubble only if it satisfies the
corresponding predicate—otherwise, it is discarded. The message
queue exports three operations:send andexpect(predicate) in-
sert in the queue, respectively, a message and a bubble;deliver
removes the bubble closest to the head of the queue and returns the
corresponding message.

Message queues, combined with quorums of sizen−f −1, pro-
vide the incentive for rational nodes to send all messages expected
in the protocol. If a given rational noder chooses not to send a mes-
sage to some nodes, thens will ignore r in the future. In the worst
case forr, an additionalf Byzantine nodes in the system will not
communicate withr, preventing it from gathering a quorum during
its next turn assender. This situation would preventr from gather-
ing the quorum of responses required in a later step of the protocol,
stoppingr from making progress and effectively excluding it from
the state machine. Because we assume that the value of the service
greatly exceeds the cost of communication, a rationalr prefers to
send all expected messages to avoid any risk of losing access to the
state machine.

5.1.2 Balanced messages
To apply the principle ofcost balancingto the state machine pro-

tocol, we ensure that whenever the protocol provides a node with
the opportunity to choose which message to send next, the intended
message is never more expensive to send than the alternatives. For
example, after a timeout a node should send either the command
issued by the sender for the instance orsenderTOif no such com-
mand was received. We construct thesenderTOmessage to always
be of the length of the largest possible command so that lying would
not allow a node to save bandwidth.

5.1.3 Penance
We implement a “penance” mechanism to encourage timeliness

in the state machine. In particular, although thepromptness prin-
ciple (Section 3) encourages nodes to promptly send any messages

they are deterministically bound to send, we use penances to en-
courage good behavior when waiting may allow a rational node to
avoid sending a specific message. To implement the penance mech-
anism, each node maintains anuntimely vectorthat tracks their per-
ception of other nodes timeliness: a node is considered untimely if
any timeout message electing a new leader arrives significantly ear-
lier or later than expected according to the receiver’s local clock.
When a nodex becomes the sender, it includes its untimely vec-
tor with the value it proposes. After agreeing on the proposal, all
nodes except the senderexpectapenance messagefrom each node
indicted in the untimely vector. Because of the way message queues
handle expects, the untimely nodes must send the penance message
to all non-sender nodes in order to continue using the system.

There are three important considerations to the penance mes-
sage: (1) the size and form of the penance message are chosen so
that the expected benefit of sending late is less than the expected
penance cost, (2) the sender is excused from receiving penance
messages to prevent the sender from incurring additional costs for
truthfully reporting a penance, and (3) the spurious work intro-
duced by Byzantine nodes through the penance mechanism is bound-
ed.

5.1.4 Timeouts and garbage collection
The system makes use of two timeouts for liveness: (1) a “set-

turn” timeout to transfer leadership away from a slow leader and
(2) a max response time timeout to garbage collect messages
queued for extremely slow nodes.

A sufficient number of set-turn timeout messages transfers lead-
ership of an instance to the node lexicographically after the current
turn’s leader. The first turn of an instance uses a pre-specified time-
out, and this timeout is increased for each subsequent turn of that
instance until the instance completes. Note that in every TRB in-
stance only the initial sender (the first leader of the instance) can
propose a non-trivial value, so it is important that the initial time-
out be significantly larger than common-case network delays. Our
prototype uses 10 seconds for its initial set-turn timeout.

The timeout aftermax response time bounds local state in the
presence of extremely slow nodes. In order to ensure apredictable
communication pattern, we require all nodes to send all protocol
messages. If nodea remains silent for an extended period of time,
it can force non-Byzantine nodeb to retain an arbitrarily large set
of pending messages toa. If this state becomes too large, the cost
of participating in the protocol will exceed the benefit, and rational
nodes will withdraw from the system, endangering liveness even in
periods of synchrony. The timeout allows a node to bound this state
so that its benefits from the system exceed its costs2.

In particular, ifa has been holding pending messages forb for
more thanmax response time, thena (i) recordsb as faulty by
addingb to itsbadlist, (ii) garbage collects all state associated with
b, and (iii) refuses further communication withb.

It is undesirable for a non-Byzantine node to declare incorrectly
a slow node to be faulty: doing so jeopardizes liveness and thus puts
at risk the net utility that nodes expect to gain from participating in
the system. Nodes therefore use an extremely longmax response
time (e.g., 1 week in our prototype) that significantly exceeds the

expected worst-case network disconnection time between any pair
of nodes.

5.1.5 Global punishment

2An alternative for bounding state that we are exploring as future
work is to provide an incentive compatible variation of the garbage
collection and checkpoint recovery protocol described by Castro
and Liskov [10].

The state machine includes a mechanism to transform local sus-
picion against other nodes (as recorded in each node’sbadlist)
into POMs. The POMs allow nodes to agree that someone mis-
behaved so that an appropriate global punishment may be applied.
This mechanism also enables the use of quorums of smaller size
(⌈n+f

2
⌉ rather thann − f − 1), improving the availability of the

state machine.
When nodea is the sender of an instance, it includes itsbadlistas

a bit vector with the value it proposes. Nodes monitor thebadlists
they receive from others: if over time nodeb appears on at least
f +1 different senders’badlists, then the receivers of thesebadlists
also begin to considerb faulty: they addb to their ownbadlist,
discard the state associated withb, and refuse to communicate with
b in the future.

In addition to helping punish misbehaving nodes, thebadlist
mechanism enables us to reduce the size of quorums fromn−f−1
to ⌈n+f

2
⌉. Without badlists, quorums of sizen − f − 1 are re-

quired to provide an incentive for a non-Byzantine node to send
all required messages to all recipients that expect the message: by
failing to send messages to even one node, the sender jeopardizes
its ability to propose new commands to the state machine because
the skipped node andf Byzantine nodes could together prevent a
quorum from forming. With quorums of size⌈n+f

2
⌉, a sender that

skips a node does not risk losing the ability to form quorums for
its proposed values; however, the badlist mechanism ensures that
the sender faces the equally severe risk of being included onf + 1
badlists from the skipped node andf Byzantine nodes.

5.2 Proving IC-BFT
To prove that a protocol is IC-BFT for a given model of rational

nodes’ utility and beliefs, one must first prove that the protocol pro-
vides the desired safety and liveness properties under the assump-
tion that all non-Byzantine nodes follow the protocol. Second, one
must prove that it is in the best interest of all rational nodes to fol-
low the protocol.

Our rationality model is described in Section 3. We assume that
rational nodes will follow the protocol if they observe that it is a
Nash equilibrium, so we must show that no node has a unilateral
incentive to deviate. We show this by enumerating all possible de-
viations.

The simplest deviations are those that do not modify the mes-
sages that a node sends. In our state machine protocol, no such de-
viation increases the utility. We must then examine every message
that the node sends and show that there is no incentive to either (i)
not send the message, (ii) send the message with different contents,
or (iii) send the message earlier or later than required. Also, we
must show that nodes have no incentive to (iv) send any additional
message.

THEOREM 1. The TRB protocol satisfies Termination, Agree-
ment, Integrity and Non-Triviality.

THEOREM 2. No node has a unilateral incentive to deviate from
the protocol. (Incentive compatibility)

The full proofs appear in (Appendix B). To illustrate the
methodology, we show some of the lemmas involved in verifying
the incentive-compatibility of the sending of the “set-turn” time-
out message. The incentive for sending the message at all and not
sending it twice are discussed in more general lemmas, not shown
here.

LEMMA 1. No rational noder benefits from delaying sending
the “set-turn” message.

LEMMA 2. No rational noder benefits from sending the “set-
turn” message early.

The proof for the first lemma relies on the penance protocol de-
scribed in the previous section. The second lemma deals with early
time-outs. This deviation may cause the sender’s proposal to be
ignored, andsenderTOto be decided instead. By construction,
senderTOis at least as large as a resend of the sender’s command,
so no bandwidth is saved. Nodes other than the sender have no
stake in which command is decided because they cannot unilater-
ally prevent the sender’s command from executing—at most, they
can delay it. The sender itself could have an interest in manip-
ulating the outcome by sending “set-turn” messages early or late,
which is why in our protocol the sender is not allowed to send these
messages.

LEMMA 3. No rational noder benefits from sending a mal-
formed “set-turn” message.

The “set-turn” message contains no information other than the
turn number, so a malformed message reduces to either a nonsen-
sical message, a resend, or an early send.

6. LEVEL 2: PARTITIONING WORK
Our second level partitions work to reduce the replication over-

head required by cooperative applications. Even though state ma-
chine replication technically suffices to support a backup service
directly, the overhead of such an approach would be unreasonable:
each replica would have to process each command and maintain a
full copy of the program state. In a cooperative backup service with
100 participants, 100 MB of data backed up would consume 10 GB
of disk space. Conversely, by assigning work to individual nodes,
we can make use of arithmetic codes to provide low-overhead fault-
tolerant storage.

We introduce three protocols for work assignment. TheGuaran-
teed Responseprotocol ensures that every request is answered, pos-
sibly with a message indicating that the work was not done in in a
timely fashion. ThePeriodic Workprotocol ensures that clients pe-
riodically answer implicit requests required by an application. The
Message Bindingprotocol binds messages to an authoritative time.

We first describe these protocols using the abstraction of a trusted
altruistic node, which we call thewitness node. Then we show
how the witness node can be implemented on our replicated state
machine in an incentive-compatible manner.

For large systems, using a single replicated state machine to im-
plement the witness node becomes impractical. To allow our cur-
rent system to span more than a few dozen nodes, large systems
should be partioned into disjoint state machines of 10-30 nodes
each. For applications in which nodes must all be able to work
together, these state machines should be able to communicate with
each other [2, 49]. There are BAR-specific challenges related to
communication between state machines. We believe these chal-
lenges are surmountable, but leave them for future work.

6.1 Guaranteed Response
The Guaranteed Response protocol gives rational nodes an in-

centive to respond to requests. The protocol is necessary because
direct communication does not suffice when nodes can behave ra-
tionally. Consider an example where some nodea sends a request
to another nodeb and gets no answer. Nodea may well complain
aboutb, but becausea cannot prove thatb received and ignored its
request, it would be unwise to punishb based ona’s complaint.
The Guaranteed Response protocol eliminates all ambiguity: in the

above situation, it ensures that a lack of response toa can only be
the result of uncooperative behavior byb, who can then be safely
punished.

ReplySummary
from a

Request
from a

Response
from b

request
receivedempty

internal
time out time out

response
received

Figure 3: Basic Guaranteed Response protocol

Figure 3 shows the state transition diagram for a correct witness
node running the Guaranteed Response protocol. The basic idea
is that nodea never sends work requests directly tob, but instead
goes through the witness node. The witness is then in a position to
answer withNoResponseif necessary.

More precisely, clienta starts by sendingRequestto the witness,
who is initially in theemptystate.Requestcontains the name of the
intended recipient,b, as well as the workw that must be performed
by it, and causes the witness to transition to staterequest received.
The witness storesRequestand forwards a copy of it tob. If b is
correct, it will send a signedResponseto the witness, causing it
to enter stateresponse received. Responsecontains the answer to
a’s request together with a summary of the request to whichb is
responding. The witness then discardsRequest, forwardsResponse
to a, and keeps a copy ofResponseuntil it receives froma a Re-
plySummarycontaining a summary ofResponse. If node b does
not answerRequestwithin a predeterminedmax response time,
then the witness transitions to statetime outand sendsNoResponse
toa. This message is signed and contains a summary of the request.
Again, nodea must sendReplySummary(this time with a summary
of NoResponse), returning the witness to theemptystate.

The state of the witness node includes a copy of the last message
sent. This state allows the witness to resend messages that were
lost, which in turn allows our protocol to handle nodes that come
and go. Nodes cannot stay away for too long, however, because
our backup application requires that nodes answer withinmax re-
sponse time.

6.1.1 Implementing the witness node
The incentive-compatible replicated state machine allows us to

implement the abstraction of a correct witness node on top of a col-
lection of BAR nodes. We must be careful to maintain incentive
compatibility: our state machine only provides incentive for com-
munication with members of the state machine, not outsiders, so
nodesa andb must be part of the replicated state machine. There-
fore communication with the witness node is not by actual message
sending: when the Guaranteed Response protocol talks of a node
sending to the witness, this translates to the node submitting a com-
mand to the RSM. Whenever the protocol talks of the witness send-
ing to a node, no actual sending is necessary: since every node in
the RSM has a copy of the witness state, the RSM replica running
on the destination node passes the message to the local code that
handles it.

TheNoResponsemessage is a special case for two reasons. First,
the “timeout” decision must be made deterministically. We ac-
complish this by having the state machine maintain a deterministic
RSM time that is a function of recent values of the local clocks of
all nodes (see Appendix E.4) for details). The RSM replica run-

ning on nodea is responsible for submitting a “timeout” command
to the RSM when the deterministic RSM time indicates that the
response is late. Second, the abstraction of a single, signedNoRe-
sponsemessage from the witness node toa is actually implemented
by havinga receive a signed message fromf + 1 RSM replicas.
After nodes transition to thetime outstate, these signatures are
gathered by replicaa, which uses the message queue primitive de-
scribed in Section 5.1.1 toexpect a signature from every other
replica. The other replicas therefore know, when enteringtime out,
thata is ready for their signature message and the message queue
mechanism gives them an incentive to send the signature. Oncea
has enough signatures to form aNoResponsemessage, it passes the
message to the local code ata that handles it.

Provided that the application provides sufficient sanctions for
nodes that cause aNoResponse, the following theorem holds (see
Appendix E.

THEOREM 3. If the witness node enters therequest received
state for some workw to rational nodeb, thenb will executew.

6.1.2 State limiting
The witness node, naturally, can communicate with more than

one node at a time. It runs several instances of the protocol high-
lighted above, and each instance (which we call aslot) is reserved
for a particular node.

We limit the overhead associated with Guaranteed Response by
limiting the number of slots available to a node. Limiting the num-
ber of slots accomplishes three purposes: (1) it applies a limit to the
memory overhead of running the Guaranteed Response protocol,
(2) it limits the rate at which requests are inserted into the system,
and (3) it forces nodes to acknowledge responses to requests.

6.2 Optimization through Credible Threats
The Guaranteed Response protocols allows data to be replicated

only where necessary. However, requests and responses are still
sent to every node that is part of the replicated state machine and,
because backup requests contain the data being backed up, they can
be large. We therefore optimize our protocol so that in the common
case nodes can communicate directly.

To get the benefits of the Guaranteed Response protocol without
requiring all requests and replies to go through the RSM, we lever-
age the game-theory notion of credible threats [17]. In the game of
chicken [12], a credible threat against rational players would be to
visibly rip off the steering wheel and throw it out the window [35].
In our case, the credible threat takes a somewhat less spectacular
form.

ReplySummary
from a

Vow
from a

Response
from b

vow
receivedempty

internal
time out

request
received

Request
from a

time out

response
received

Figure 4: Guaranteed Response protocol with fast path

We optimize the Guaranteed Response protocol by adding afast
path. The new protocol is shown in Figure 4 with the fast path
in bold. Instead of sending its request to the witness node, nodea
now only sends it aVowwith a summary of its request. The witness
supplies the vow to the target (b in our example). Targetb sends an
ack to nodea, anda sends the full request directly tob. Target
b then replies toa, who forwards summary of the response to the

witness. If the target does not answer then the protocol proceeds
as in the unoptimized case, witha sending the full request to the
witness.

The threat in this case is the vow: ifb does not answera’s request
directly, thena will ask b to answer to the witness node, a costlier
operation forb. Key to the threat is the fact that it is credible. By
sending its vowa has forfeited its right to utilize that slot until it
sends the full request or supplies a reply fromb that matches the
vow. A rational targetb knows that if it does not answera directly,
thena will send the request through the witness node—and this is
enough to motivateb to answera’s direct request.

6.3 The Periodic Work Protocol
Cooperative systems may include maintenance tasks that need

to be performed periodically, for example auditing nodes’ storage
records. However, there may be no incentive for any individual
node to initiate such maintenance work. Under the Periodic Work
protocol, the witness node checks that this periodic work is done.
The existence of this check, in turn, means that rational nodes will
perform these tasks.

In the case of the RSM witness, the Periodic Work protocol ini-
tializes the system with the expectation that, with a certain fre-
quency, each node will provide the witness with an application-
specified response type indicating its completion of a periodic task.
If a node does not supply the expectedReplySummary, the witness
node can either unilaterally deny its services to the offending node
or generate a POM to be handled by the application.

6.4 Authoritative Time Service
In applications where time has meaning, authoritatively binding

messages to time is a potentially important action. TheAuthorita-
tive Time Serviceserves two purposes. First, it maintains an author-
itative time that is recent, nondecreasing, and identical at all state
machine nodes. Second, it binds messages to times according to
that time. In particular, our Guaranteed Response protocol relies
on this time when generatingNoResponses for non-participating
nodes, and BAR-B relies on the message-time binding to identify
certain classes of misbehavior.

In order to maintain the time, each proposal to the state machine
is required to contain a local timestamp generated by the proposer.
The authoritative time is computed by taking the maximum of the
median of the timestamps of the2f + 1 most recent decisions and
the previous authoritative time; when “no decision” is decided, then
the time for that decision is defined to be the previous authoritative
time. In order to bind a message to a time, nodea submits the mes-
sage to theMessage Binding Protocoland proposes aBindingRe-
questto the RSM. The nodes in the RSM then senda a signature
binding the message to the current authoritative time.

7. LEVEL 3: THE APPLICATION
In our architecture, BART applications must discharge each of

the following four responsibilities in order to take advantage of
lower-level abstractions.

1. Provide rational nodes with a long-term benefit for partici-
pating in the system.

2. Assign work to nodes in a fault tolerant manner.

3. Determine if the contents of a request or response constitute
a Proof of Misbehavior (POM) under the application seman-
tics.

4. Sanction nodes that have provably misbehaved.

It is much simpler to design an application under these require-
ments than under the lower-level concerns discussed in Sections 5
and 6. The replicated state machine of the first level provides the
abstraction of a correct node, which is useful in implementing sanc-
tions. Reliable work assignment is taken care of by level two prim-
itives, so the application can focus on defining the legal requests
and responses over the system’s data. As a result, the reader will
notice that the following discussion is considerably simpler than
that in earlier sections: it focuses on structuring the messages so
that incorrect responses act as proofs of misbehavior and not on
encouraging nodes to respond or on balancing costs.

To illustrate how an application addresses these issues, this sec-
tion examines BAR-B, a MAD cooperative backup system.

7.1 BAR-B Overview
BAR-B is a cooperative backup system in which nodes commit

to participating in the system’s state machine and contributing an
amount of storage to the system in exchange for an equal amount
of space on other nodes. Under normal circumstances (see Sec-
tion 7.2 for recovery), nodes interact with BAR-B through three
operations: store, retrieve, and audit. To store a backup file, the
owner compresses it, splits it into smaller pieces (chunks), encrypts
the chunks, and then sends them to different nodes (storers) for stor-
age on the system. The storers respond with signed receipts. The
owner keeps the receipts and the storers keep the StoreInfos (part
of the store request) as their record of participation in the system.
When the owner needs to retrieve a file, it sends a retrieve request to
each node holding a relevant chunk. The retrieve request contains
the receipt, so the storer has three options: (i) return the chunk, (ii)
show that the chunk’s storage lease duration has expired, or (iii)
show a more recent StoreInfo for the same chunk. Any other re-
sponse would indicate that the storer prematurely discarded data
entrusted to it and should be punished.

These receipts constitute audit records. Nodes periodically ex-
change audit records in order to verify that some node is not using
more space in the system than its quota allows (both in terms of
total storage and number of chunks). BAR-B allows each node to
store a limited number of chunks, thereby binding both the state
maintained in the system and the cost of performing audits.

7.1.1 Arithmetic coding
To toleratef faults using less storage than required by full repli-

cation, nodes erasure code [51] files with anx−f out ofx encoding
and store the resulting chunks on different peers. For example, in a
10-node system withf = 2, a node must contribute 1.3GB of local
storage to back up 1GB of data. Keeping this ratio reasonable is
crucial to motivate self-interested nodes to participate.

In practice, many files are small. Since there is both a limit on the
number of chunks and some per-chunk overhead, it is beneficial to
keep chunks reasonably large. The BAR-B user interface therefore
aggregates small files together before uploading the aggregate to
BAR-B as a single backup file.

7.1.2 Request-response pattern
The responsibility of Level 2 is to structure messages carefully so

that an incorrect response to a request constitutes a POM against the
sender of the response. The work assignment primitive in Section 6
provably binds requests either to responses or to NoResponse if the
target fails to respond. Every message in the BAR-B protocol is
stamped with a unique sequence number and signed by the sender.

Store. A BAR-B store request consists of two components, the
chunk being stored and a tuple(chunkId, owner, storer, hash, size,
prevSize, time)called theStoreInfo. The hashand sizefields of

the StoreInfocorrespond to the hash and size, respectively, of the
chunk being stored. TheprevSizefield is the size of the file be-
ing replaced—the owner’s quota is charged formax(size, prev-
Size) until max response time expires. Thetime is a real-time
stamp used to calculate when the storage lease will expire; if it is
too far into the future, a storer can generate a POM via the time
service described in the previous section. There are three possible
responses to a store request: (a) aReceiptcontaining theStore-
Info and time-stamped and signed by the storer, (b) aStoreReject
containing theStoreInfoand aProof that is stamped and signed by
the storer, and (c) anything else. AStoreRejectcan return proof
that the storer is full in the form of a list ofStoreInforecords, each
signed and stamped by its respective sender and holding an active
lease, and such that the total size of theStoreInforecords plus the
request’sStoreInfosize exceed the node’s quota. When the owner
issues aStoreInforequest or receives a response, the owner adds
it to its record of utilization of the system, known as theOwnList.
Any other response constitutes a POM against the storer—either
(a) the response itself is a POM generated by the work allocation
level (e.g., NoResponse) or (b) the response is inappropriate for the
request and thus a signed confession.

Retrieve. A BAR-B retrieve request consists of theReceiptfor
the chunk to be returned. The three possible responses to a retrieve
request are: (a) aRetrieveConfirmcontaining theReceiptand the
corresponding chunk stamped and signed by the storer, (b) aRe-
trieveDenycontaining theReceiptand aProof stamped and signed
by the storer, and (c) anything else. If the response is aRetrieve-
Deny, then the theProof must show either (a)Receipthas expired
(b) theReceipthas been superseded by a more recentStoreRequest
from the sameowner to the samechunkId, or (c) the storer is in
the process of recovering its data (see below). Any other response
constitutes a POM against the storer—either (a) the response itself
is a POM generated by the work allocation level (e.g., NoResponse)
or (b) the response is inappropriate for the request and thus a signed
confession.

Audit. An audit takes place in three phases. First the auditing
node selects a node to audit. The auditing node then requests both
the OwnList andStoreListfrom the auditee. After retrieving the
two lists, the auditing node requests theOwnListandStoreListfor
f nodes chosen at random in the system. The collection of lists
are cross-checked for inconsistencies; any inconsistencies resultin
a POM against the offending node. AnOwnListandStoreListare
inconsistent if aReceiptindicated on one should be present but is
not on the other. Audits are potentially expensive operations, and
rational nodes would avoid performing them if possible. We avoid
this problem by leveraging the Periodic Work protocol described
in Section 6.1. The RSM-implementedwitness nodeperiodically
expects the results from a recent audit—either a POM or a complete
set ofOwnLists andStoreLists.

7.1.3 Time constraints
The primary purpose of a backup system is to provide retrieval

following a catastrophic disk or user failure. The utility of a backup
program is greatly reduced if the retrieval guarantee is “eventual
recovery” rather than “recovery within timet.” In order to guar-
antee a concrete recovery window, BAR-B assumes that all non-
Byzantine nodes will respond to a request withinmax response-
time . Any node that fails to do so is considered faulty; a POM

against such a node can be acquired by issuing a request through
the work allocation primitive.

We utilize leases to bound the duration of store requests on the
system. In BAR-B, everyStoreInfoexpires 30 days after the re-
quest is issued by the owner. If the owner needs to keep the chunk

in the system for more than 30 days, the owner must renew the
chunk by sending an additionalStoreRequestbefore the current
lease expires. Otherwise, the storer is free to discard the data. A
lease expires when theAuthoritative Time Servicedescribed in Sec-
tion 6.4 indicates a date 30 days after thetimefield of aStoreInfo.

The introduction of these timing assumptions and lease durations
allows BAR-B to (a) provide stronger guarantees with respect to
recovery time and (b) limit the amount of “dead” storage in the
system. These two factors aid in increasing the overall utility of the
system, making it more attractive for rational nodes.

7.1.4 Sanctions
Various components of the BAR-B system, from the primitives

in sections 5 and 6 to the mechanisms described earlier in this sec-
tion, generate POMs against specific nodes. These POMs convict a
node of misbehavior and require that the node be punished appro-
priately; without appropriate punishment, nodes may find it in their
interest to misbehave.

We leverage the Periodic Work protocol to force each node to
submit periodically to the state machine either a POM it has gener-
ated, or a special NoPOM (which, to obey the cost balancing prin-
ciple, is no cheaper than a POM).

For simplicity, BAR-B handles all POMs in the same fashion:
whenever a POM is submitted to the state machine, the POM is
distributed to all nodes and each node evicts the guilty party. Note
that the POM provides a basis for more sophisticated strategies in-
cluding suspending a node’s store and retrieve rights pending ad-
ministrative intervention, increasing the storage a node must con-
tribute (without increasing its quota) or releasing the POM to an
administrative entity for external disciplinary action.

7.2 Recovery
Since we are dealing with a backup system, nodes that lose their

local state must still be able to make use of the system. Our ap-
proach (1) allows such a node to assume a new identity to access
its old state and (2) restricts this ability to prevent rational nodes
from shirking work and to limit damage by Byzantine nodes.

A node only needs a few things to be able to recover: the list
of its peers, its membership certificate, and its key pairs. The
user saves this information to a safe place when installing the pro-
gram. Initially we give each node a fixed series oflinked identities,
i0 . . . imax. A key pair is associated with each identity. After a
node using identityij−1 crashes and loses data, it uses a new iden-
tity ij and sends a RECOVER message to every other node. In
response, these node send the list ofij ’s chunks that they are stor-
ing. From this list, the recovering node can then retrieve its backup
data as needed.

Any node that receives a message from identityij (1) assigns all
message queue bubble obligations of any preceding linked identity
(ik, k < j) to ij , (2) grants retrieve rights toij for any data with
a valid lease byik, (3) initiates a fixed grace period during which
RECOVERINGis considered a valid response byij to any retrieve
request, and (4) evictsik from the system. The node also notes that
the data it entrusted toik is gone, and therefore starts refreshing
its backup data. The erasure coding scheme ensures that the full
backup is recoverable despite the loss of the chunks stored onik.

Two factors prevent a rational node from exploiting linked iden-
tities to avoid punishment. First, each node has a small number of
identities (e.g., 3 initially plus 1 every two years) and cannot re-
cover its data after all have been used; using a linked identity thus
reduces the future utility of the system. Second, a new linked iden-
tity is responsible for the messages of previous identities, so nodes
cannot avoid work. The first factor also limits the damage that can

be done by a series of linked entities under a “persistently Byzan-
tine” node’s control. A possible addition to the two factors would
be to require identityij to contribute1.1j times the storage of iden-
tity i0 but give it no corresponding increase in quota; this measure
is not strictly necessary, but it would further discourage nodes from
needlessly changing identities.

A natural concern in our model is to ensure that nodes respond
truthfully to the RECOVER message. A node might send only a
subset of the list of chunks it is storing, in the hope of deleting
the unlisted chunks to save disk space. This would be against the
best interest of a rational node, however, because the recovering
node might not have lost all of its receipts. In that case, a signed
incomplete answer along with the receipts that should have been
listed form a POM against the node.

7.3 Guarantees
The BAR-B system provides the following guarantees under BAR-

B’s coarse synchrony assumptions. (i) Data stored on BAR-B can
be retrieved within the lease period. (ii) No POM can be gathered
against a node that does not deviate from the protocol. (iii) No
node can store more than its quota on BAR-B without risking be-
ing caught. (iv) If a node with at least one unused linked-identity
crashes and loses its disk, it is guaranteed a window of time during
which it can rejoin the system and recover all data it has stored.

8. EVALUATION
In this section we evaluate our replicated state machine and BAR-B

prototype. Our microbenchmarks show that our RSM prototype
can perform about 15 operations a second, an adequate level of
performance for our application’s requirements. We then evaluate
the performance of the BAR-B application. We find that our non-
optimized BAR-B prototype can back up 100 MB of data to 10
nodes in under 4 minutes and guarantee that the data are recover-
able despite the failure of 3 nodes.

8.1 Experimental Setup
Except where noted, experiments run on Pentium-IV machines

with 2.4 Ghz processors, 1 GB of memory, and Debian Linux 3.0.
These are shared machines, connected through 100 Mbps ethernet.
The Emulab [63] experiments were run on Pentium-III machines
with 850 Mhz processors, 256 Mb of RAM, and Red Hat Linux 9.

Our prototypes are implemented using Java 1.4. We set the initial
TRB network timeout to 10 seconds. The maximum response time
and lease duration are set to a week and a month respectively, but
our experiments do not rely on these values. Each node is allocated
40 slots in the Guaranteed Response Protocol. Unless otherwise
noted, we do not introduce failures in our experiments. We use
the BouncyCastle cryptographic library and Onion Networks’ FEC
library for erasure coding.

8.2 Micro-benchmarks
We use micro-benchmarks to evaluate our replicated state ma-

chine prototype. The main questions we try to answer are (a) whether
our RSM is practical, (b) whether our RSM scales to a reasonable
number of nodes, and (c) whether our RSM handles intentionally
slow nodes well.

Figure 5 shows the average speed of TRB operations for systems
of 5 to 23 nodes. Each trial measures the average duration over 30
TRB operations with 4 KB proposals. We run each configuration
10 times and show the median value as well as the10th and90th

percentiles. We run the experiment twice: once withf = 1 and
once with the maximalf tolerated given the number of nodes. The
chart shows that TRB completes in less than 60 ms for 5 nodes

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

A
ve

ra
ge

 T
R

B
 ti

m
e

(m
s)

Number of nodes

max f
f=1

Figure 5: RSM performance as nodes are added

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

TRB number

Fixed, Unlucky
Round-Robin
Fixed, Lucky

Figure 6: Impact of rotating leadership

or 175 ms for 23 nodes, a level of performance that is sufficient
for our application due to (a) the relatively modest response time
demands of backup and (b) the ability to batch multiple application
commands in each TRB instance to improve throughput [10]. The
graph also shows that performance is hardly affected by the choice
of f and is reasonable for the range of sizes we chose. Eventually,
however a large cooperative service should be split into multiple
state machines as proposed in Section 6.

Our performance is inferior to protocols that are not designed
for the BAR model. PBFT [10] requires only 15 ms per consen-
sus on less powerful hardware than ours. Part of the difference is
explained by our language choice, but the main factor is the fact
that our IC-BFT RSM requires the properties of digital signatures,
so we cannot rely on the faster MAC primitives. Note that (just
as in PBFT) to maximize application throughput, nodes can submit
multiple commands in a batch for each TRB operation.

Figure 6 shows the relative impact of two leader election policies
in the presence of failures. Our protocol rotates the role of sender
between instances of TRB. A PBFT-like protocol instead rotates
the sender only when the current sender is determined to be faulty
or untimely. When the sender is timely and non-Byzantine, the
state machine proceeds at full speed for either protocol, without
timing out (cf. “Fixed, Lucky”). However, a Byzantine sender can
proceed slowly—just fast enough to avoid triggering a time-out (cf.
“Fixed, Unlucky”). Our sender rotation (cf. “Round-Robin”) limits
the worst case damage imposed by a slow node.

8.3 BAR-B
Our BAR-B experiments are designed to determine the follow-

ing: (a) whether the performance of BAR-B is adequate, (b) the

Store Retrieve Recover
0

50

100

150

200

250

300

350

400

T
im

e
(s

)

Post-computation
Pre-computation

Figure 7: Operation time for 100 MB

4/10 7/10 10/10
0

50

100

150

200

T
im

e
(s

)
an

d
S

to
re

d
(M

b)

Store
Retrieve
Recover
Data stored

Figure 8: Operation time for 20MB at various encodings

value of the fast path optimization, and (c) the cost of performing
system audits.

Figure 7 shows the time required to perform our basic system
operations for 100 MB of data on a system with 11 nodes. A node
can place data on the system at the rate of 100 MB in 219 seconds,
and retrieve it in 90 seconds. Recovery of the data after a local disk
failure completes in just under six minutes. Recover is slower than
the basic retrieve operation because it performs additional tasks—
fetchingStoreLists from all nodes and reconstructing and storing
local BAR-B metadata.

Figure 8 shows the performance of our system under a range of
encoding parameters when storing a 20 MB file on a system with
11 nodes. Each group of bars represents a choice of encoding pa-
rameters. As the ratio gets closer to one, the total amount of stored
data stored on the system (indicated by the line) diminishes and the
performance of the system increases. Storing a 20 MB file when
encoded at 7 out of 10 (7/10) transmits approximately 31 MB of
encoded data at 0.67 MB/s. The corresponding retrieve operation
operates at 1.2 MB/s. Overall, the additional cost required for uti-
lizing 7/10 encoding as compared to 10/10 is modest.

Figure 9 shows the effects of loading the system with multiple
nodes storing or retrieving at the same time. The experiment itself
records the time required when the specified number of nodes each
store or retrieve of a single 20 MB file using the 7/10 encoding.
When all nodes are active each node sees a modest reduction in
throughput (from 0.67 MB/s to 0.54 MB/s) but the aggregate sys-

Store Retrieve

0

10

20

30

40

50

60

T
im

e
(s

)
1 storer
3 storer
6 storer
9 storer
11 storer

Figure 9: Concurrent operations

100Mbps 25Mbps 10Mbps 5Mbps
0

100

200

300

400

500

600

700

800

900

T
im

e
(s

)

Store
Retrieve
Recover

Figure 10: Operation under different network conditions

tem throughput grows to 5.86 MB/s.
To this point, we have shown experiments run on a 100 Mbps

LAN. Figure 10 shows the time required to store, recover, and
retrieve a 20 MB file on Emulab machines with connections of
100 Mbps, 25 Mbps, 10 Mbps, and 5 Mbps, and round-trip latency
of 26ms. At bandwidths of 10 Mbps and 5 Mbps, the network be-
comes a limiting factor and performance falls with network band-
width. The baseline 100 Mbps store is slower than that found in
Figure 8 due to the higher latency and slower machines on the Em-
ulab site.

Figure 11 illustrates the effect of the “fast path” (Section 6.2) op-
timization on time and bandwidth. In each pair, the first bar shows a
measurement of the unoptimized system, and the second bar shows
the version with the fast path. For a 2 MB file encoded at 7/10, the
fast path cut the duration of the store operation by 40% and reduced
the traffic by a factor of five. Larger files would see even greater
relative improvement.

Figure 12 shows the bandwidth required to perform an audit of
an 11 node system. The bandwidth required is plotted against the
number of chunks stored on the system. The “Direct Send/Re-
ceive” bandwidth lines correspond to the exchange ofOwnLists
andStoreLists. The number and size of requests and replies sent

Slow Fast
0

5

10

15

20

T
im

e
(s

)

SlowFast
0

5

10

15

20

25

30

35

T
ra

ffi
c

(M
b)

Figure 11: Impact of the fast path optimization

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
ud

it
ba

nd
w

id
th

 (
M

B
)

Chunks on the system

Direct Send
Direct Receive

RSM send
RSM Receive

Figure 12: Cost of audit as capacity grows

through the RSM is constant, but the RSM bandwidth consumed
during an audit increases as the duration of the audit increases be-
cause the RSM completes additional (empty) instances. 38 MB of
traffic is necessary for audit when the system stores 44000 chunks,
which corresponds to up to 40 GB of storage or about 28 GB of
backup files encoded at 7/10.

9. RELATED WORK
Our work brings together Byzantine fault-tolerance and game

theory.
Byzantine agreement [30] and Byzantine fault tolerant state ma-

chine replication have been studied in both theoretical and prac-
tical settings [6, 9, 26, 48, 55]. Our work is clearly indebted to
recent research [2, 10, 36, 52, 64] that has shown how BFT can be
practical in distributed systems that fall under a single administra-
tive domain—indeed, Castro and Liskov’s BFT state machine [10]
is the starting point for our IC-BFT state machine. Our work ad-
dresses the new challenges that arise in MAD distributed systems,
where the BFT safety requirement that fewer than one third of the
nodes deviate from the assigned protocol can be easily violated.

Game theory [25] has a long history in the economics litera-
ture [4, 28, 40] and has recently become of general interest in com-
puter science [3, 20, 22, 23, 44, 47, 61]. Protocol and system de-
signers have used game theoretic concepts to model behaviors in

a variety of settings including routing [21, 58, 59], multicast [42],
and wireless network [61]. Common across these works is the as-
sumption thatall nodes behave rationally—the presence of a single
Byzantine node may lead to a violation of the guarantees that these
system intend to provide.

Shneidman et al. [59, 60] recognize the need for a model that
includes both Byzantine and rational nodes, but their protocols ad-
dress only the latter. Nielson et al [43] identify different rational
attacks and discuss high-level strategies that can be used to address
them.

To our knowledge, Eliaz’s notion ofk Fault-Tolerant Nash Equi-
librium (k-FTNE) [19] is the only previous attempt to formally
model games that include both rational and Byzantine agents. Eliaz’s
model is more general than the one we assume—for our Nash equi-
librium, a rational node that is considering deviating from the pro-
tocol assumes that Byzantine nodes will perform the actions that
are most damaging to it; to achieve equilibrium, Eliaz requires that
rational players have no incentive to deviateregardlessof the ac-
tions of the Byzantine players. Eliaz’s problem domain differs from
ours: it targets auctions with human participants and provides no
example of howk-FTNE may be used to build cooperative com-
puter services with Byzantine and rational nodes.

Rigorous design for incentive compatible systems has largely
been restricted to theoretical work. Practical systems for tolerating
rational behavior [13, 16] commonly rely on informal reasoning.
Bittorrent [13] uses a tit-for-tat strategy to build a Pareto efficient
mechanism for content distribution. However Shneidman demon-
strates that the algorithm is not actually incentive compatible [60].
Other systems use audits [41] or witnesses [39] to discourage ra-
tional nodes from deviating from their assigned task, but they do
not specify an incentive compatible or Byzantine tolerant mech-
anism for implementing audits or witnessing. Using BART state
machines to implement a reliable witness from self-interested or
Byzantine nodes is one of the contributions of this paper.

Cooperative storage and backup systems have been studied ex-
tensively in the literature [2, 5, 15, 16, 31, 49, 53]. The backup sys-
tems proposed in [5, 15] rely on the assumption that all non-faulty
nodes behave correctly. Samsara [16] and Lillibridge et al. [31] in-
troduce a set of incentives to influence rational nodes, but they do
not bound the damage Byzantine nodes can inflict to stored data.
An additional limitation of Samsara is its reliance on random spot-
checks to verify that a node is storing data it has promised under
which if a nodeo fails such a spot check, the system probabilis-
tically deleteso’s data. This increases the likelihood that a node
will be unable to retrieve its files precisely when they are needed
most. Conversely, we guarantee that a node can recover its data for
a period of time, even if it suffers a total disk failure. This property
seems useful in a backup system.

10. CONCLUSIONS
This paper describes a general approach to constructing coopera-

tive services spanning MADs in the context of a cooperative backup
system. The three primary contributions of this paper are (1) the in-
troduction of the BAR (Byzantine, Altruistic, and Rational) model,
(2) a general architecture for building services in the BAR model,
and (3) an application of this general architecture to build BAR-B,
the first cooperative backup service to tolerate both Byzantine users
and an unbounded number of rational users.

11. ACKNOWLEDGMENTS

The authors would like to thank Alfredo Di Tillio and Peter Stone
for help with the subtleties of game theory and the whole LASR
group for interesting conversations and help with early drafts.

12. REFERENCES
[1] E. Adar and B. Huberman. Free riding on gnutella. Technical

report, Xerox PARC, Aug. 2000.
[2] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak,

J. Douceur, J. Howell, J. Lorch, M. Theimer, and
R. Wattenhofer. Farsite: Federated, available, and reliable
storage for an incompletely trusted environment. In5th
OSDI, Dec 2002.

[3] A. Akella, S. Seshan, R. Karp, S. Shenker, and
C. Papadimitriou. Selfish behavior and stability of the
internet: a game-theoretic analysis of tcp. InProc.
SIGCOMM, pages 117–130. ACM Press, 2002.

[4] R. J. Aumann. Subjectivity and correlation in randomized
strategies.Journal of Mathematical Economics, 1(1):67–96,
1974.

[5] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pStore: A
secure peer-to-peer backup system. Technical Memo
MIT-LCS-TM-632, Massachusetts Institute of Technology
Laboratory for Computer Science, October 2002.

[6] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols.J. ACM, 32(4):824–840, 1985.

[7] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault
tolerance.ACM Trans. Comput. Syst., 14(1):80–107, 1996.

[8] M. Burrows, M. Abadi, and R. Needham. A Logic of
Authentication. InACM Trans. Comput. Syst., pages 18–36,
Feb. 1990.

[9] R. Canetti and T. Rabin. Optimal Asynchronous Byzantine
Agreement. Technical Report 92-15, TR 92-15, Dept. of
Computer Science, Hebrew University, 1992.

[10] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery.ACM Trans. Comput. Syst.,
20(4):398–461, 2002.

[11] J. Chase, B. Chun, Y. Fu, S. Schwab, and A. Vahdat. Sharp:
An architecture for secure resource peering. InSOSP, 2003.

[12] The game of chicken.
http://www.gametheory.net/
Dictionary/Games/GameofChicken.html.

[13] B. Cohen. The bittorrent home page. http://bittorrent.com.
[14] B. Cohen. Incentives build robustness in bittorrent. InProc.

2nd IPTPS, 2003.
[15] L. Cox and B. Noble. Pastiche: Making backup cheap and

easy. InProc. 5th OSDI, Dec 2002.
[16] L. P. Cox and B. D. Noble. Samsara: honor among thieves in

peer-to-peer storage. InProc. 19th SOSP, pages 120–132,
2003.

[17] A. K. Dixit and S. Skeath.Games of Strategy. W. W. Norton
& Company, 1999.

[18] J. R. Douceur. The Sybil attack. InProc. 1st IPTPS, pages
251–260. Springer-Verlag, 2002.

[19] K. Eliaz. Fault tolerant implementation.Review of Economic
Studies, 69:589–610, Aug 2002.

[20] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing
the cost of multicast transmissions.J. Comput. Syst. Sci.,
63(1):21–41, 2001.

[21] J. Feigenbaum, R. Sami, and S. Shenker. Mechanism design
for policy routing. InProc. 23rd PODC, pages 11–20. ACM
Press, 2004.

[22] J. Feigenbaum and S. Shenker. Distributed algorithmic
mechanism design: Recent results and future directions. In
Proc. 6th DIALM, pages 1–13. ACM Press, New York, 2002.

[23] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica.
Free-riding and whitewashing in peer-to-peer systems. In
Proc. PINS, pages 228–236. ACM Press, 2004.

[24] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process.J. ACM,
32(2):374–382, 1985.

[25] D. Fudenberg and J. Tirole.Game theory. MIT Press, Aug.
1991.

[26] J. Garay and Y. Moses. Fully Polynomial Byzantine
Agreement forn>3t Processors int + 1 Rounds.SIAM J. of
Computing, 27(1), 1998.

[27] K. P. Gummadi, R. J. Dunn, S. Saroio, S. D. Gribbl, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. InProc. 19th SOSP,
2003.

[28] J. Harsanyi. A general theory of rational behavior in game
situations.Econometrica, 34(3):613–634, Jul. 1966.

[29] L. Lamport. The part-time parliament.ACM Trans. Comput.
Syst., 16(2):133–169, 1998.

[30] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem.ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[31] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative internet backup scheme. InUSENIX
ATC, june 2003.

[32] M. Loney. Charity gives 40,000 pcs a fresh start.CNET
News.com, February 4 2005.
http://news.com.com/Charity+gives+403421.html.

[33] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Sustaining cooperation in multi-hop wireless networks. In
NSDI, May 2005.

[34] G. J. Mailath. Do people play Nash equilibrium? lessons
from evolutionary game theory.Journal of Economic
Literature, 36 (September 1998), 1347-1374, 1998.

[35] D. Malhotra. Making threats credible.Negotiation, 8(3),
Mar. 2005.

[36] D. Malkhi and M. Reiter. Byzantine quorum systems.
Distributed Computing 11/4, pages 203–213, 1998.

[37] D. Malkhi and M. Reiter. Secure and scalable replication in
Phalanx. InProc. 17th SRDS, Oct 1998.

[38] P. Maniatis, D. S. H. Rosenthal, M. Roussopoulos, M. Baker,
T. Giuli, and Y. Muliadi. Preserving peer replicas by
rate-limited sampled voting. InProc. 19th SOSP, pages
44–59. ACM Press, 2003.

[39] N. H. Minsky and V. Ungureanu. Law-governed interaction:
a coordination and control mechanism for heterogeneous
distributed systems.ACM Trans. Softw. Eng. Methodol.,
9(3):273–305, 2000.

[40] J. Nash. Non-cooperative games.The Annals of
Mathematics, 54:286–295, Sept 1951.

[41] T. W. Ngan, D. Wallach, and P. Druschel. Enforcing fair
sharing of peer-to-peer resources. InProc. 2nd IPTPS, 2003.

[42] T.-W. Ngan, D. S. Wallach, and P. Druschel.
Incentives-compatible peer-to-peer multicast. In2nd
Workshop on Economics of Peer-to-Peer Systems, 2004.

[43] S. J. Nielson, S. A. Crosby, and D. S. Wallach. A taxonomy
of rational attacks. InProc. 4th IPTPS, Feb. 2005.

[44] N. Nisanb and A. Ronenc. Algorithmic mechanism design.
Games and Economic Behavior, 35:166–196, April 2001.

[45] N. Ntarmos and P. Triantafillou. Aesop: Altruism-endowed
self organizing peers. InProc. 2nd DBISP2P, August 2004.

[46] N. I. of Standards and Technology. Secure hash standard.
Technical report, U.S. Department of Commerce, August
2002.

[47] C. Papadimitriou. Algorithms, games, and the internet. In
Proc. 33rd STOC, pages 749–753. ACM Press, 2001.

[48] M. Reiter. The Rampart toolkit for building high-integrity
services. InDagstuhl Seminar on Dist. Sys., pages 99–110,
1994.

[49] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: The oceanstore prototype. InFAST,
2003.

[50] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems
(reprint).Commun. ACM, 26(1):96–99, 1983.

[51] L. Rizzo. Effective erasure codes for reliable computer
communication protocols.SIGCOMM Comput. Commun.
Rev., 27(2):24–36, 1997.

[52] R. Rodrigues, M. Castro, and B. Liskov. BASE: using
abstraction to improve fault tolerance. InProc. 18th SOSP,
pages 15–28. ACM Press, Oct. 2001.

[53] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. In Proc. 18th SOSP, pages 188–201. ACM Press,
2001.

[54] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. Tcp
congestion control with a misbehaving receiver.SIGCOMM
Comput. Commun. Rev., 29(5):71–78, 1999.

[55] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: a tutorial.ACM Comput. Surv.,
22(4):299–319, Sept. 1990.

[56] F. B. Schneider.Distributed Computing(Editor: Sape
Mullender), chapter 2,”What Good are Models and What
Models are Good?”, pages 17–26. ACM Press, second
edition, 1993.

[57] ”seti@home”. http://setiathome.ssl.berkeley.edu/.
[58] J. Shneidman and D. Parkes. Rationality and self-interest in

peer to peer networks. InProc. 2nd IPTPS, 2003.
[59] J. Shneidman and D. C. Parkes. Specification faithfulness in

networks with rational nodes. InProc. 23rd PODC, pages
88–97. ACM Press, 2004.

[60] J. Shneidman, D. C. Parkes, and L. Massoulie. Faithfulness
in internet algorithms. InProc. PINS, Portland, USA, 2004.

[61] V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. R.
Rao. Cooperation in wireless ad hoc networks. In
INFOCOM, 2003.

[62] A. Venkataramani, R. Kokku, and M. Dahlin. Tcp nice: A
mechanism for background transfers. InProceedings of the
2002 USENIX Operating Systems Design and
Implementation (OSDI) conference, Dec 2002.

[63] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. InProc. 5th OSDI, pages 255–270, Boston,
MA, Dec. 2002. USENIX Association.

[64] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. InProc. 19th SOSP, pages

253–267. ACM Press, Oct. 2003.

APPENDIX

A. COMMUNICATION PRELIMINARIES
Communication in the BAR model is handled through a col-

lection of special mechanisms. At the core of these mechanisms
is a BART channel which handles message resends on unreliable
links in an incentive compatible manner. The second component of
these mechanisms is the message queue infrastructure. The mes-
sage queue infrastructure enforces a tit-for-tat communication pol-
icy between nodes. Under this policy nodea will send messages to
nodeb only as long asb has previously sent appropriate messages to
a. This tit-for-tat policy is important in implementing predictable
communication patterns in our protocols.

A.1 BART channel
We instrument a bidirectional BART channel between two nodes

as a pair of modified one way TCP connections3. The underlying
network is unreliable – messages may be dropped or reordered.
We assume that the higher level protocols using the channel pro-
vide some benefit to rational nodea whena successfully delivers a
message to non-Byzantine nodeb.

Unreliable networks are subject to message loss and reordering.
We address the problem of message loss by constructing a variation
of a one way TCP connection. We address issues associated with
reordering through consideration of well formed messages.

A.1.1 One way channel
Unreliable networks are subject to message loss and reordering.

In this section we address the issue of message loss and a TCP
based resend policy.

TCP employs a resend policy based on local timeouts [62]. The
policy itself is straightforward and easy to understand. Each mes-
sagem sent by nodea to nodeb must be explicitly acknowledged.

In a bidirectional TCP connection, the acknowledgement can be
included in the next message sent fromb to a. As long asa has not
received some messagemi+1 from b, a resendsmi everyround-
trip-time time period. Similarly,b resendsmi+1 everyround-trip-
time time period until receivingmi+2 from a. Sincemi+1 serves
as the acknowledgement tomi andmi+2 acknowledgesmi+1, ra-
tional nodeb can save work by not resendingmi+1 and instead re-
lying on nodea to resend messages as appropriate. Unfortunately
a follows similar reasoning and does not resendmi, resulting in
the resend mechanism failing entirely.

We address the above issue by restricting our attention to one
way TCP connections. This restriction allows us to make a clear
demarcation between the sender and acker on the connection and
we can state by fiat that the sender is responsible for resending
messages. Since the sender receives benefit when the message is
received by a non-Byzantine node, the sender has sufficient incen-
tive to continue sending as long as he believes the acker is non-
Byzantine.

The TCP Daytona optimistic ack attack [54] exposes a flaw in
allowing ackers to send ack messages which are not bound to the
message being acknowledged. In the original optimistic TCP Day-
tona attack, a client aggressively acks packets in order to increase
the TCP window and induce the sender into devoting an unfair
amount of bandwidth to that client. In the context of a BAR con-
nection, a rational client could proactively generate ack messages

3In a one way TCP connection, exactly one node sends data and
the other node only sends acknowledgement for data received.

1 run on nodea t o send messages t ob :
2 mcount : = 0 ; / / message sequence number
3 queue : = ∅ ; / / FIFO s e t o f pend ing messages
4 curr : = n u l l ; / / message c u r r e n t l y be ing s e n t
5 enab led : = t r u e ; / / f l a g i n d i c a t i n g whether messages shou ld be s e n t
6
7 on t i m e o u t :
8 send (curr) ;
9

10 on rcv (ackm) :
11 i f curr = m t hen
12 d i s a b l e t i m e r ;
13 curr : = nextMessage () ;
14 send (curr) ;
15
16 send (msg) :
17 i f enab led then
18 curr : = msg ;
19 send msg over network ;
20 s t a r t t i m e r ;
21
22 r e l i a b l e−send (msg) :
23 m : = 〈msg , mcount + +〉 ;
24 queue . append (msg) ;
25 i f curr = n u l l t hen
26 curr : = nextMessage () ;
27 send (curr) ;
28
29 nextMessage () :
30 i f queue . empty () t hen
31 wa i t f o r queue . hasElement () ;
32 r e t u r n queue . r e m o v e F i r s t () ;
33
34 d i s a b l e () :
35 enab led : = f a l s e ;
36
37 e n a b l e () :
38 enab led : = t r u e ;
39
40 run on nodeb t o r e c e i v e messages froma :
41 next : = 0 ; / / sequence number o f nex t message t o r e c e i v e
42 enab led : = t r u e ; / / f l a g i n d i c a t i n g whether acks shou ld bes e n t
43
44 on rcv (〈msg, i〉) :
45 m : = 〈msg, i〉 ;
46 i f next > i t hen
47 d i s c a r d m ;
48 r e t u r n ;
49 i f next = i ∨ next = i − 1 ∧ enab led then
50 send ackm over network ;
51 i f next = i t hen
52 next : = i + 1 ;
53 i f next < i t hen
54 d i s a b l e ()
55 p r o c e s s (msg) ;
56
57 d i s a b l e () :
58 enab led : = f a l s e ;
59
60 e n a b l e () :
61 enab led : = t r u e ;
62
63 p r o c e s s (msg) :
64 / / pass message t o h i g h e r l e v e l p r o t o c o l
65 / / c a l l r cv o f h i g h e r l e v e l

Figure 13: BAR one way channel

to prevent the sender from resending dropped messages. We ad-
dress this issue in the same fashion as [54], by introducing a nonce.
Our nonce consists of a hash of the message being acknowledged.

In summary, we construct a one way connection between two
nodes in which one node is designated the sender. Messages sent
over the connection receive a unique non-decreasing sequence num-
ber. The sender is responsible for inserting new messages onto the
connection and resending the message until it receives an appropri-
ate ack from the acker; messagemi should be sent only after the
receipt ofackmi−1 . Acks are uniquely tied to a specific message
through a nonce consisting of the hash of the message being ac-
knowledged. This mechanism is sufficient to provide the following
guarantees if neither node behaves in a Byzantine fashion:

• mi will never be sent beforeackmi−1

• ackmi will never be sent beforemi

• mi will never be sent aftermi+1

• ackmi will never be sent afterackmi+1

The resend policy is successful as long as both nodes are non-
Byzantine and the sender receives sufficient benefit from delivering
messagem to a non-Byzantine node.

Messages received out of order are considered to be malformed
and are immediately dropped. The pseudocode for one way chan-
nels can be found in Figure 13. As long as non-Byzantine node
a believes nodeb to be non-Byzantine, the higher level protocols
provide sufficient benefit toa for having its message received byb,
and rational nodes believe that if noack has arrived byround-trip-
timefrom a non-Byzantine node then a message has been dropped,
the following theorems hold:

THEOREM 4. If a is the sender, thena will resendmi if a does
not receiveackmi within round-trip-time.

PROOF. It is assumed thata believesb to be non-Byzantine, im-
plying thata believesb will follow the protocol directly. It is also
assumed thata believes the lack of response byb indicates a mes-
sage has been dropped. Sincea receives sufficient benefit whenb
receives the message,a will resend.

THEOREM 5. If a is the acker and receivesmi from b for the
first time or at least round-trip-time after the last timemi was re-
ceived, thena will sendackmi to b.

PROOF. By assumptiona considersb to be non-Byzantine, sob
will stop sendingmi only upon receivingackmi from a. Sincea
incurs cost from processingmi, it is in a’s best interest forb to stop
sendingmi. If the receipt ofmi marks the first timea receivedmi,
thena must sendackmi in order to stopb from resending. If the
receipt ofmi is at leastround-trip-timeafter the previous receipt of
mi, thena considers it likely that a message has been dropped and
again must resendackmi to stopb from resendingmi indefinitely.
In both cases,a incurs less cost by sendingackmi and stoppingb
from resendingmi.

In addition to providing the above properties, the one way chan-
nel can be unilaterally disabled to save on future costs when the
node at the other end is believed to be Byzantine.

A.1.2 Two way channel
In order to allow nodesa andb to both send and receive mes-

sages to each other, we must construct a bidirectional channel. We
build our BART bidirectional channels from two one way chan-
nels. Pseudocode for the bidirectional channel is shown in Fig-
ure 14. The bidirectional channel provides the same guarantees as

101 run on nodea t o c o o r d i n a t e communicat ion wi thb :
102 sendChanne l / / one way channe l f o r sends
103 rcvChanne l / / one way channe l f o r r e c e i v e s
104 queues / / c o l l e c t i o n o f message queues
105
106 send (msg) :
107 sendChanne l . r e l i a b l e−send (msg)
108
109 rcv (msg) :
110 mq : = msg queue e x p e c t i n gmsg

111 i f mq = n u l l t hen
112 d i s a b l e S e n d ()
113 e l s e
114 mq . p r o c e s s (msg)
115 i f mq . comple ted () t hen
116 queues . remove (mq)
117
118 r e g i s t e r (mq) :
119 queues . add (mq)
120
121 d i s a b l e () :
122 sendChanne l . d i s a b l e ()
123 rcvChanne l . d i s a b l e ()
124
125 e n a b l e ()
126 sendChanne l . e n a b l e ()
127 rcvChanne l . e n a b l e ()
128
129 d i s a b l e S e n d () :
130 sendChanne l . d i s a b l e ()

Figure 14: Bidirectional BAR channel

the underlying one way channels, while facilitating the coordina-
tion between messages sent bya andb.

In addition to thesendandreceivemethods, the two way chan-
nel exports operations to associate message queues with the chan-
nel (register(), remove()) and disable communication to a node that
is considered faulty by higher levels of the protocol (enable(), dis-
able(), disableSend()).

A.2 Message queue infrastructure
The message queue implements, in an incentive-compatible man-

ner, a reliable channel with a simple local retaliation policy of “If
you don’t talk to me, then I won’t talk to you”. The pseudocode
implementing this policy is shown in Figure 15.

Our description of the message queue is built over the BART
two-way-channeldescribed in Figure 14 and focuses on the imple-
mentation of a tit-for-tat policy.

A.3 Message queue tit-for-tat
If we say that two nodes,a andb, communicate through ames-

sage queuethat means that both nodes have an instance of the mes-
sage queue object (it’s not a distributed object). The most important
methods of this object follow.

• send(message)

• expect(predicate)

• receive(predicate)

The first two calls return immediately. The message queue will
send the messages passed to the send() method, but only after it
has received messages that are expected (indicated through the ex-
pect() function). The receive(predicate) function extracts the mes-
sage which was previously expected and received. Consider for
example some hypothetical protocol in which two nodes answer
each others queries. The protocol for nodea, using message queue
mq, could be similar to the pseudocode below.

mq.send("QUERY: 1+1=?")
mq.expect(msg that starts with REPLY)
msg := mq.receive(msg that starts with REPLY)
mq.expect(msg that starts with QUERY)
qry := mq.receive(msg that starts with QUERY)
answer := compute_answer(qry)
mq.send("REPLY: "+answer)

201 c l a s s message−queue :
202
203 p u b l i c message−queue (d e s t i n a t i o n) :
204 ready =1
205 d e s t = d e s t i n a t i o n
206 r e a d y S e t = new HashSet ()
207 s u c c e s s o r s = new Set () ;
208 queue = new Queue () ;
209 channe l [d e s t i n a t i o n] . r e g i s t e r (t h i s)
210
211 p u b l i c send (msg) :
212 queue . enqueue (msg)
213
214 p u b l i c e x p e c t (p r e d i c a t e) :
215 queue . enqueue (p r e d i c a t e)
216
217 p u b l i c msg r e c e i v e (p r e d i c a t e) :
218 msg = ⊥
219 wh i le (msg = =⊥)
220 msg = r e a d y S e t . g e t (p r e d i c a t e)
221 r e a d y S e t . remove (msg) ;
222 r e t u r n msg
223
224 p u b l i c l i n k (nextQueue) :
225 s u c c e s s o r s . add (nextQueue)
226 i f (! i s−r e a l l y−done) : nextQueue . ready−−
227
228 p u b l i c done () :
229 queue . enqueue (” done ”)
230 check−send ()
231
232 jo inGroup (agroup) :
233 a s s e r t (agroup == n u l l)
234 group : = agroup
235 agroup . o n e s t a r t e d ()
236
237 p u b l i c leaveGroup () : / / needs t o be a tomic
238 i f (! i s−r e a l l y−done && group ! = n u l l)
239 group . onedone ()
240 group : = n u l l
241
242 p u b l i c i s−enab led () :
243 r e t u r n t r u e i f f ((ready>0)
244 and (group== n u l l o r group . p rev iousGroup = = n u l l o r
245 group . p rev iousGroup . pend ing ==0))
246
247 p u b l i c i s−done () :
248 r e t u r n i s−r e a l l y−done
249
250 p u b l i c p r o c e s s (msg)
251 wa i t u n t i l i s−enab led ()
252 p r e d i c a t e : = queue . g e t F i r s t M a t c h i n g E x p e c t (msg)
253 i f (p r e d i c a t e = = n u l l) r e t u r n
254 i f (p r e d i c a t e ! = queue . top ()| | i s I n c o n s i s t e n t (msg)) :
255 channe l [msg . s e n d e r] . d i s a b l e S e n d ()
256 queue . remove (p r e d i c a t e)
257 r e a d y S e t . add (p r e d i c a t e , msg)
258 check−send ()
259
260 p r o t e c t e d check−send () :
261 i f (! i s−enab led ()) r e t u r n
262 wh i le (queue . top () i n s t a n c e o f message
263 or queue . top () ==” done ”) :
264 x : = queue . dequeue ()
265 i f (x==” done ”) :
266 r e a l l y−done ()
267 e l s e :
268 channe l [x . r e c e i v e r] . send (x)
269
270 p r o t e c t e d r e a l l y−done () :
271 i s−r e a l l y−done : = t r u e
272 f o r e a c h s u c c e s s o r i n s u c c e s s o r s
273 s u c c e s s o r . ready ++
274 i f (group != n u l l) :
275 group . onedone ()
276
277 p u b l i c u n l i n k (nextQueue) :
278 i f (s u c c e s s o r s . c o n t a i n s (nextQueue) && ! i s−r e a l l y−done)
279 nextQueue . ready ++
280 s u c c e s s o r s . remove (nextQueue)
281
282 p r o t e c t e d s t a t i c boo lean i s I n c o n s i s t e n t (msg) :
283 / / check t o see i f t h e c u r r e n t message a long wi th some p r e vi o u s l y
284 / / r e c e i v e d messages r e v e a l t h a t t h e s e n d e r has
285 / / d e v i a t e d from t h e p r o t o c o l .
286 / / r e t u r n t r u e i f t h e r e c e i v e d messages canno t be s e n t
287 / / by a node f o l l o w i n g t h e p r o t o c o l ;
288 / / r e t u r n f a l s e o t h e r w i s e
289
290 c l a s s group :
291
292 p u b l i c l i n k (nextGroup) :
293 a s s e r t (nextGroup . p rev iousGroup == n u l l)
294 nextGroup . p rev iousGroup : = t h i s
295
296 p u b l i c onedone (pee r) :
297 pend ing−−
298
299 p u b l i c o n e s t a r t e d (pee r) :
300 pend ing ++

Figure 15: Message queues

The message queue mechanism ensures that if nodeb does not
answer the first query, then it will not get an answer froma either.

This mechanism is implemented by putting both the messages to
be sent and the predicates to check incoming messages on a sin-
gle queue (Figure 15, lines 212 and 215). Predicates are removed
when the corresponding message is received (line 256), and out-
going messages are only sent when there is no predicate ahead of
them in the queue (functioncheck-send(), lines 260-268).

A.4 Message queue linking
The message queue offers the ability to link several message

queues together so they behave like a single, longer message queue.
Our protocol uses this function so that different threads communi-
cating with the same peer can have their own message queue (thus
imposing a known order of these messages even though the thread
execution may be interleaved).

To link message queuesa and b, one uses the following call:
a.link(b) (line 224). The messages on queueb will not be sent until
the last message ina was sent. The function done() is used to in-
dicate when message queuea ends. The message queue will report
that it is done as soon as it has sent all the messages and satisfied
all the expects before “done”. Consider the following example:

mq1.link(mq2)
mq1.send("QUERY: 1+1=?")
mq1.expect(msg that starts with REPLY)
msg := mq1.receive()
mq1.done()
mq2.expect(msg that starts with QUERY)
qry := mq2.receive()
answer := compute_answer(qry)
mq2.send("REPLY: "+answer)

In the example above, the two message queuesmq1 andmq2 are
linked to provide the same functionality as the previous example.
In addition, the function mq1.is-done() can be called to determine
whether the answer to the “1+1” query was received.

A.5 Message queue groups
Linking message queues does not fundamentally change the way

they work. But the grouping we describe here does, because it
allows a message queue to be blocked untilseveralother message
queues are done.

We introduce a new object, the Group. It has a single method,
link(), that links groups together. Message queues can join a group
by calling joinGroup(group). If groupsg andh are linked by calling
g.link(h), then the message queues that are part of grouph will not
send messages to the network until all message queues that are part
of groupg are done (done is defined exactly the same as for linking
between message queues).

This functionality is implemented through the Group class (lines
290-300), the function joinGroup (line 232) and the function is-
enabled (line 242). Intuitively, the purpose of group linking is to
provide a higher-level tit-for-tat policy, where we can think of each
message queue as a transaction or a remote procedure call: group
linking ensures that other nodes cannot participate in new trans-
actions unless they have completed all the transactions that were
initiated in the previous group.

A.6 Message queue sets
Fault-tolerant protocols often use quorum-based communication,

in which nodes communicate with more than one node at a time. In
order to provide quorum-style communication primitives, we intro-
ducemessage queue sets: these objects contain a message queue for

301 i n s t a n c e−c t o r (i n s) :
302 f o r eve ry pee r p :
303 c r e a t e messge queue group i n s t a n c e [i n s] [p]
304 i f (i ns>0) :
305 i n s t a n c e [ins−1][p] . l i n k (i n s t a n c e [i n s] [p])
306 f o r t i n 0 . . (n−1) :
307 tu rn−c t o r (t)
308 n o t i f i c a t i o n−c t o r ()
309
310 i n s t a n c e−run () :
311 c a l l i n s t a n c e−c t o r () f o r t h e nex t i n s t a n c e
312 c a l l t u rn−run (0) on a new t h r e a d
313 n o t i f i c a t i o n−run ()
314
315 n o t i f i c a t i o n−c t o r () :
316 c r e a t e message queue s e t MQS t o a l l
317 c r e a t e message queue s e t MQE t o a l l
318 MQS. jo inGroup (i n s t a n c e [i n s])
319 MQE. jo inGroup (i n s t a n c e [i n s])

320 MQE. e x p e c t (decided, nv, ~a,~b) from a l l

321 MQE. r e c e i v e (decided, nv, ~a,~b) from a l l

322 on r e c e i v i n g (decided, nv, ~aj, ~bj) from j :

323 f o r each message−queue mq t o j i n MQ[t] :
t > min{turn(aj), turn(decision)}

324 i f mq has no t s e n t or r e c e i v e d a message :
325 mq . leaveGroup ()
326
327 n o t i f i c a t i o n−run () :
328 / / e n s u r e t h a t everyone fo rwa rds t h e d e c i s i o n messge
329 wa i t u n t i l

330 we r e c e i v e (decided, nv, ~a,~b) t h rough MQE:

331 then d e c i d e (nv, ~a,~b)
332 i f (! s e n d e r) :
333 MQE. e x p e c t (untimely-penance) o f s i z e
334 un t im e l y [j]∗penance from each j ! = s e n d e r
335 MQE. r e c e i v e (untimely-penance) o f s i z e
336 u n t im e l y [j]∗penance from each j ! = s e n d e r
337 MQE. done ()
338

339 d e c i d e (nv, ~a,~b) :
340 i f (dec ided ! = ⊥) :
341 i f (t u r n (dec ided)< t u r n (~a)) :
342 MQ[t u r n (~a)] . l i n k (MQS)
343 MQ[t u r n (dec ided)] . u n l i n k (MQS)

344 dec ided : = (nv, ~a,~b)
345 r e t u r n
346 MQ[t u r n (~a)] . l i n k (MQS)

347 dec ided : = (nv, ~a,~b)

348 MQS. send (decided, nv, ~a,~b) t o a l l
349 i f ((nv ! = ⊥) and (no t s e n d e r)) : / / we dec ided on t h e sender ’ s v a lu e
350 MQS. send (untimely-penance) o f s i z e
351 nv . un t i me l y [i]∗penance t o a l l bu t t h e s e n d e r
352 i f (s e n d e r and proposed v a lu e was dec ided) :
353 un t ime l y [j] = 0 f o r a l l j
354 MQS. done ()
355 c a l l i n s t a n c e−run () f o r nex t i n s t a n c e

Figure 16: IC-BFT TRB, instance level functions

each other node in the system, and allow grouped communication
using the following commands.

• send(message) to nodes

• expect(predicate) from nodes

• receiveQuorum(predicate)

The first two functions simply delegate to the underlying mes-
sage queues. The third function calls receive(predicate) on all
message queues and returns as soon as a quorum of message queues
have delivered an answer.

For convenience, we also define

• link(MessageQueueSet)

• unlink (MessageQueueSet)

These functions link and unlink the corresponding message queues
(to same peer) with each other.

B. TERMINATING RELIABLE BROADCAST
Each node in the RSM participates in a series of TRB instances,

to decide on the operations to be executed on the RSM.
Each TRB instance has a distinguished sender node, which pro-

poses a command to be executed. Nodes are chosen to be the sender
in a round-robin fashion, so that each node can benefit from having
its operations executed by the RSM.

401 tu rn−c t o r (t) :
402 i f myLeaderTurn (t)
403 message queue s e t MQ[t] = s e t o f message queues t o a l l bu t th e s e n d e r
404 e l s e
405 message queue s e t MQ[t] = s e t c o n s i s t i n g o f message queuet o

t h e l e a d e r (t o s e n d e r i f t ==0)
406 MQ[t] . j o inGroup (i n s t a n c e [i n s])
407 i f (t>0) :
408 MQ[t−1]. l i n k (MQ[t])
409 i f myLeaderTurn (t) :
410 expec t−e l e c t i o n (t)
411
412 tu rn−run (t) :
413 / / s e n d e r p a r t i c i p a t e s on ly i n t h e f i r s t t u r n
414 i f (s e n d e r and t> 0) :
415 r e t u r n
416 i f (t>0) and (dec ided ==⊥) : t u rn−c t o r (t +(n−1))
417 i f (myLeaderTurn (t)) : t u rn−l e a d e r (t)
418 e l s e :
419 i f (dec ided = =⊥ or dec ided . t u r n>= t) : t u rn−f o l l o w e r (t)
420 MQ[t] . done ()
421
422 tu rn−l e a d e r (t) :
423 i f (no t s e n d e r)
424 s t a r t t i m e r t i m e o u t : i f i t f i r e s then
425 c a l l t u rn−run (t +1) on a new t h r e a d
426 i f (t>0) :
427 po l : = r e c e i v e−e l e c t i o n (t)
428 e l s e
429 po l : = ⊥
430 p r o p o s a l : = (va lue , un t im e l y [])
431 i f (po l ==” done ”) : r e t u r n

432 (nv, ~a,~b) : = l e a d e r−t h r e e−phase−commit (t , p r o p o s a l)
433 MQ[t] . send (ack) t o a l l
434 s t o p t i m e r t i m e o u t

435 i f (showsChosen (~b)) : d e c i d e (nv, ~a,~b)
436
437 tu rn−f o l l o w e r (t) :
438 s t a r t t i m e r t i m e o u t : i f i t f i r e s then
439 c a l l t u rn−run (t +1) on a new t h r e a d
440 send−e l e c t i o n (t)
441 f o l l o w e r−t h r e e−phase−commit (t)
442 MT[t] . e x p e c t (ack) from l e a d e r
443 ack : = MQ[t] . r e c e i v e (ack) from l e a d e r
444 s t o p t i m e r t i m e o u t
445 i f t i m e r t i m e o u t f i r e d more thanavg latency + window ago :
446 un t i me l y [l e a d e r−of (t)] + +
447
448 l e a d e r−of (t) :
449 / / d e t e r m i n e which node i s l e a d e r f o r a g iven t u r n
450 i f (t ==0) : r e t u r n 0
451 e l s e : r e t u r n ((t−1)%(n−1)) +1
452
453 l a t e s t (~r, t) :
454 I f a l l rj ∈ ~r have r j.~a == ⊥ t hen

455 r e t u r n SF

456 e l s e
457 r e t u r n rj.val f o r rj ∈ ~r wi th t h e l a t e s t rj.~a

458

459 showsChosen (~b) :
460 r e t u r n t r u e i f t h e r e ’ s a quorum who a c c e p t e d t h e v a lu e
461
462 myLeaderTurn (t) :
463 r e t u r n (i d = = l e a d e r−of (t))

Figure 17: IC-BFT TRB, turn level functions

501 send−e l e c t i o n (t) :
502 / / send a message t o e l e c t t h e new l e a d e r
503 MQ[t] . send (〈set-turn, t〉i) t o l e a d e r−of (t)
504
505 expec t−e l e c t i o n (t) :
506 MQ[t] . e x p e c t (〈set-turn, t〉j) from every j 6= 0

507
508 r e c e i v e−e l e c t i o n (t) :
509 tr : = now ()
510 f o r eve ry nodej from which we do no t r e c e i v e t h e e xp ec t ed
511 se t−t u r n message betweentr − window and tr + window :
512 untimely[j] : = untimely[j] + 1
513 wa i t u n t i l :
514 pol = MQ[t] . rece iveQuorum (〈set-turn, t〉j)

515 we r e c e i v e a quorumpol of messages from MQ[t] :
516 r e t u r n pol ,

517 or d e c i d e (nv, ~a,~b) i s c a l l e d and r e c e i v e d a t l e a s t one se t−t u r n
message from o t h e r s :

518 MQ[t] . send (junk) , wor th 3 messages , t o a l l who have s e n tt h e
se t−t u r n message .

519 MQ[t] . e x p e c t (junk−ack) , wor th 3 messages , from a l l who have s e n t
t h e se t−t u r n message .

520 MQ[t] . r e c e i v e (junk−ack) , wor th 3 messages , from a l l who have
s e n t t h e se t−t u r n message .

521 r e t u r n ” done ”
522
523 l e a d e r−t h r e e−phase−commit (t , p r o p o s a l) :
524 / / 1 . read t h e o ld v a l u e s
525 i f (t > 0)
526 MQ[t] . send (read, t, polt) t o a l l e x c e p t t h e s e n d e r
527 MQ[t] . e x p e c t rj = 〈read-ack, t, val, ~a, padding〉j from a l l j o t h e r t han

t h e s e n d e r
528 wa i t u n t i l :
529 ~r : = MQ[t] . rece iveQuorum (〈read-ack, t, val, ~a, padding〉j)

530 we r e c e i v e a quorum~r of messages from MQ[t] :

531 or d e c i d e (nv, ~a,~b) i s c a l l e d :
532 MQ[t] . send (junk) , wor th 2 messages , t o a l l
533 MQ[t] . e x p e c t (junk−ack) , wor th 2 messages , from a l l
534 MQ[t] . r e c e i v e (junk−ack) , wor th 2 messages , from a l l
535 r e t u r n ” done ”
536 / / 2 . g e t t h e agreement v e c t o r
537 i f (t > 0)
538 nv : = pad (l a t e s t (~r))
539 e l s e
540 nv : = pad (proposal))
541 s : = hash (nv)
542 MQ[t] . send (agree, t, nv, ~r) t o a l l e x c e p t s e n d e r
543 MQ[t] . e x p e c t 〈agree-ack, t, s〉j from a l l j

544 wa i t u n t i l :
545 ~a : = MQ[t] . rece iveQuorum (〈agree-ack, t, s〉j)

546 we r e c e i v e a quorum~a of messages from MQ[t] :

547 or d e c i d e (nv, ~a,~b) i s c a l l e d :
548 MQ[t] . send (junk) , wor th 1 message , t o a l l
549 MQ[t] . e x p e c t (junk−ack) , wor th 1 message , from a l l
550 MQ[t] . r e c e i v e (junk−ack) , wor th 1 message , from a l l
551 r e t u r n ” done ”
552 / / 3 . upda te t h e s t a t e o f t h e a c c e p t o r s
553 MQ[t] . send (write, t, nv, ~a) t o a l l e x c e p t s e n d e r
554 MQ[t] . e x p e c t bj = 〈write-ack, t, max polj〉j from a l l j

555 wa i t u n t i l :

556 ~b : = MQ[t] . rece iveQuorum (〈write-ack, t, max polj〉j)

557 we r e c e i v e a quorum~b of messages from MQ[t] :

558 or d e c i d e (nv, ~a,~b) i s c a l l e d :
559 r e t u r n ” done ”

560 wh i le f a i l e d (~b, t) and w a i t i n g won ’ t cause a penance :

561 wa i t f o r more answers from MQ[t] , pu t them i n~b .

562 r e t u r n (nv, ~a,~b)
563
564 f o l l o w e r−t h r e e−phase−commit (t) :
565 l : = l e a d e r−of (t)
566 i f (t>0) :
567 MQ[t] . e x p e c t ((read, t, polt) or junk) from l
568 m : = MQ[t] . r e c e i v e ((read, t, polt) or junk)) / / s t a r t a tomic1
569 i f (m i s junk) :
570 / / v e r i f y t h e s i z e o f t h e junk i s wor th 3 messages
571 / / wa i t f o r r e c e i v i n g t h e dec ided message on MQE from l
572 MQ[t] . send (junk−ack) , wor th 3 messages .
573 r e t u r n
574 max pol := max(max pol, polt)
575 MQ[t] . send 〈read-ack, t, m val, ~m a, padding〉i t o l
576 MQ[t] . e x p e c t (agree, t, nv, ~r) or junk from l / / end atomic1
577 m : = MQ[t] . r e c e i v e ((agree, t, nv, ~r) or junk) / / s t a r t a tomic2
578 i f (m i s junk) :
579 / / v e r i f y t h e s i z e o f t h e junk i s wor th 2 messages
580 / / wa i t f o r r e c e i v i n g t h e dec ided message on MQE from l
581 MQ[t] . send (junk−ack) , wor th 2 messages .
582 r e t u r n
583 MQ[t] . send 〈agree-ack, t, hash(nv)〉i t o l
584 MQ[t] . e x p e c t (write, t, ~a) or junk from l / / end a tomic2
585 m : = MQ[t] . r e c e i v e ((write, t, ~a) or junk) / / s t a r t a tomic3
586 i f (m i s junk) :
587 / / v e r i f y t h e s i z e o f t h e junk i s wor th 1 message
588 / / wa i t f o r r e c e i v i n g t h e dec ided message on MQE from l
589 MQ[t] . send (junk−ack)
590 r e t u r n
591 mp : = max pol

592 i f t >= mp :
593 (m val, ~m a) := (nv, ~a)
594 MQ[t] . send 〈write-ack, t, mp〉i t o l / / end atomic3

Figure 18: IC-BFT TRB, low level functions

Figures 16, 17 and 18 show the protocol for executing a single
instance of TRB. The TRB protocol, similar to the Paxos protocol,
proceeds turn-by-turn. In the first turn, turn0, the sender tries to
propose a value and write it to a quorum of nodes. If the sender is
unable to write the values by the timeout then the remaining nodes
start the next turn. For turnst > 0, a leader (chosen in a round-
robin manner) tries to do a three-phase-write to complete the TRB
instance. Again, if the leader for turnt fails to complete the turn by
timeout, turnt + 1 starts off and the leader for turnt + 1 tries to
complete the instance.

The timeouts for successive turns in a instance increase expo-
nentially. Eventually, during a period of synchrony, a leader will
be able to complete the instance in the turn before the timeout fires
and will inform all other nodes about the decision.

Each node, on hearing about the decision, will (after checking
the proof) decide on the value and inform all other nodes about the
decision, if it has not already done so.

To ensure incentive-compatibility, we require incentives for nodes
to send the messages according to the protocol. The incentives for
sending and receiving the messages correctly is addressed by the
message queues.

For each instance, there is a message-queue between each pair
of nodes, for each turn. For every turn in an instance, there is a
message queue between each pair of nodes4. A message queue
to nodej (from say nodei) for turn t is represented (by nodei) as
MQ[t][j]. The set of message queues (from say nodei) to all nodes,
in turn t, forms a message queue set and is represented (by nodei)
by MQ[t].

In addition to having a message queue to every node per turn,
there are two additional message queues, between each pair of
nodes, used to send and expect the decision values. Every node
expects to hear the decision value from every other nodej on the
message queue MQE[j], and sends the decision value to all the
other nodes on MQS[j].

If the sender’s value is decided upon, then nodes also send and
expect appropriate amount of penance-penalty on these message
queues.

Linking of message queues provides a mechanism to ensure that
a node can only make progress w.r.t another node, if it satisfies all
the expectations in the existing message queues. Specifically, the
message queues to nodes in a turnt are linked to message queues
in turns> t, so that if a node has not fulfilled its obligation in turn
t, it will not receive messages for turns> t.

The message queues MQE and MQS are not linked to any other
message queues in the instance, so a node can always hear about
the decision, for a particular instance, from other nodes.

Linking of message queues groups, across instances, provides
a way for long-term incentives. All message queues in a partic-
ular instance, to a node, form a message-queue-group. Message
queue groups are linked across instances, this ensures that if there
are any unfulfilled expects for a node in any message queue, that
has communicated in instancel, then the node will not receive any
messages for instances> l unless the expect is fulfilled.

B.1 Deviation detection
Once a rational noder knows that a nodea is Byzantine it no

longer needs to send any message toa (methoddisableSend()).
Nodes that visibly deviate from the protocol are considered to be
Byzantine.

4This is actually a overkill; due to the communication pattern fol-
lowed by the protocol, only the message queues communicating
with the leader will be used

Deviations such as sending out-of-order messages can be han-
dled by the message queue itself (line 254). However, there can
be some application level detection that can be done. TheisIncon-
sistent()method (in line 282) looks for any visible inconsistencies
in the messages that are received. If the inconsistencies reveal a
node to deviating from the protocol, then the node is considered
Byzantine and ignored thereafter.

Example:
Let Ra

t andW a
t denote the events when nodea receives the read

and write messages for turnt. Also, let RAa
t andWAa

t denote
the events when nodea sends the read-ack and write-ack for turn
t. We assume that the follower nodes immediately (atomically)
send responses to the read/agree/write messages. Therefore,Ra

t

andRAa
t can be imagined to be the same events. Similarly,W a

t

andWAa
t can also be considered the same events.

Note that a read-ack response, for turnt, contains the vector~a
corresponding to the latest written value at timeRAa

t (line 575).

B.1.1 Deductions from a write-ack
We say a write in turnt is successful at nodea, if nodea updates

its m val with the value ofnv in response to the write message
in line 593. A write for turnt is successful at nodea if and only
if a has not responded to a read with a higher turn number, before
responding to the write (lines 574 and 592).

write succeded(a, t) ⇐⇒ ∀t′ : (t < t′ ⇒ WAa
t → RAa

t′)

Any node that sees a write-ack message of the form〈write −
ack, t, polt〉a can infer thatt < t′ ⇒ WAa

t → RAa
t′ .

B.1.2 Deductions from a read-ack
Now consider a node’s response to a read message. The protocol

specifies that the read-ack message sent bya must include the vec-
tor~a from a successful write ata with the highest turn seen so far.
If nodea responds with a read-ack for turnt with a vector~a which
is from turnt0 then, it must be that:

∀t′ : write succeded(a, t′) ∧ WAa
t′ → RAa

t ⇒ t′ ≤ t0

B.1.3 Detecting a possible misbehavior
Now we demonstrate how these semantic checks can help detect

additional deviations.
Suppose nodea responds to a read for turnt2 before it receives

a write for turnt1. The protocol specifies that the write for turnt1
fail. If node a deviates from the protocol and makes the write for
t1 succeed ata then the deviation can be detected.

Without loss of generality, assume thatt2 is the earliest turn> t1
to whicha has responded before sending the write-ack message for
turn t1. Therefore the vector~a included in the read-ack message
for turn t2 must be from a turnt0 such thatt0 < t1

5.
Thus, on receiving the read-ack message, a rational node can

deduce that

∀t′ : write succeded(a, t′) ∧ WAa
t′ → RAa

t2
⇒ t′ ≤ t0

Specifically, fort′ = t1, ¬write succeded(a, t1) ∨ RAa
t2

→
WAa

t1
.

However, on receiving the (successful write ata) write-ack mes-
sage for turnt1, nodes can deduce that

t1 < t′ ⇒ WAa
t1

→ RAa
t′

5It cannot be fromt1 becausea has not yet received the write for
turn t1. It cannot be from any turn> t1 becauset2 is the earliest
turn> t1 to whicha responds

Specifically, fort′ = t2, WAa
t1

→ RAa
t2

, which contradicts the
previous deduction based on the read-ack message, thus exposing
that nodea’s misbehavior.

C. TRB CORRECTNESS

C.1 Proof technique
To prove that a protocol is IC-BFT for a given model of rational

nodes’ utility and beliefs, one must first prove that the protocol pro-
vides the desired safety and liveness properties under the assump-
tion that all non-Byzantine nodes follow the protocol. Second, one
must prove that it is in the best interest of all rational nodes to fol-
low the protocol.

We start by proving correctness assuming that all non-Byzantine
nodes follow the protocol.

C.2 Correctness assuming incentives
Here we assume that all non-Byzantine nodes follow the proto-

col.

DEFINITION 1. A valuev is said to beproposedin turn t, if a
leader sends a validagree message in turnt with valuev.

DEFINITION 2. A valuev is said to bechosenin turn t if there
is a quorumQ such that all non-Byzantine nodes inQ answered the
write message forv in turn t before receiving theread message
from any later turnt′.

LEMMA 4. If two non-Byzantine nodes satisfy the expect for
a write message in turnt with valuesv and v′ respectively, then
v == v′.

PROOF. Each write message has the format(write, t, nv,~a, ~r),
where~a consists of a quorum of answers of format〈agree-ack, t, s〉j ,
ands is the hash of the valuev.

Since any two quorums intersect in a non-Byzantine node, and
such a node sends only oneagree-ackmessage in a particular turn,
it follows that the sameagree-ackmessage is used in the~a value
for the write ofv andv′.

This requires that the hash forv andv′ be the same. Under the
secure hash assumption, it follows thatv == v′.

LEMMA 5. If a value has been chosen in turnt, then no other
value can be proposed in turnt′, t′ > t.

PROOF. By contradiction. Letv be the value chosen in turnt,
andt′ > t be the earliest turn aftert in which some node proposed
a different valuev′.

If v has been chosen in turnt it follows that all non-Byzantine
nodes in a quorumQ have received a write message forv, but have
not received a read message from any later turn.

For a value to be proposed in any turnt′ > 0, it needs to contain
read-acks from a quorum of nodes. Non-Byzantine nodes will re-
spond with an agree-ack only if the agree message is well formed,
i.e. the valuev′ that is proposed is consistent with the vector~r that
has been sent (in particular,latest(~r, t′) == v′ and every element
of ~r is a valid message).

Vector~r contains signed values from a quorum of nodesQ′ and
cannot be modified. Since Q and Q’ intersect in at least one non-
Byzantine node, and the non-Byzantine node will send the valuev,
it follows that there is at least one entry in~r stating that valuev was
written in turnt.

Since entries in~r include~a in addition to the value and turn, all
non-⊥ values in~r, even if they are from a Byzantine node, must
have been proposed earlier.

Moreover,t′ is the earliest turn aftert to propose a value other
thanv. So there cannot be any proposed valuev” 6= v with a turn
numbert” > t in ~r received in turnt′.

Valuev from turn t is therefore the value in~r with the highest
turn number, andlatest(~r, t′) will return v. Therefore the leader
in turn t′ must propose valuev.

LEMMA 6. A valuev is chosen in turnt only if v was proposed
in turn t.

PROOF. A non-Byzantine node accepts awrite message only
after it accepted the correspondingagree message. Since all quo-
rums contain at least one non-Byzantine node, it follows that forv
to be chosen at turnt it must have been proposed at turnt.

THEOREM 6 (SAFETY). If some non-Byzantine node decides
on a valuev in turn t then no non-Byzantine node will decide on a
value other thanv.

PROOF. A node decides on a valuev only after either seeing evi-
dence that the value was chosen. The previous two lemmas indicate
that at most one value may ever be chosen.

THEOREM 7 (LIVENESS). Eventually every non-Byzantine node
decides.

PROOF. Since the time-out delays increase exponentially, dur-
ing the synchronous period there will be some turn after which
every leader is guaranteed to have enough time to complete with-
out being interrupted by another leader election. Consider the first
such leader who is non-Byzantine. That leader will be able to write
a consensus value without interference, and it will have gathered
a quorum of acknowledgments (~b) that show that no other leader
was elected before the end of the write. That information allows
nodes to decide. Since the leader is non-Byzantine he sends it to
all and all non-Byzantine nodes decide, and report to the sender if
necessary.

THEOREM 8. The protocol satisfies the conditions for TRB.

PROOF. • Termination is guaranteed by Theorem 7.

• Agreement follows from Theorem 6 and Theorem 7

• Integrity is assured because a leader cannot propose any ar-
bitrary value. The expect in line 576 is satisfied only if the
proposed value has been written earlier, or is⊥. The fact that
a leader cannot propose an arbitrary value hence follows by
induction on the turn numbert.

• In a period of synchrony, if the sender is non-Byzantine then
no non-Byzantine node will time out on the sender because
the time out values are larger than the known guaranteed de-
livery time ∆. It follows that the sender will be able to com-
plete the turn and get all non-Byzantine nodes to deliver the
message.

LEMMA 7. A non-Byzantine node will be eventually able to
satisfy the expect of every other non-Byzantine node, which could
cause the other node to ignore this node.

PROOF. A non-Byzantine node only expects messages listed in
Table 1. For each of the messages listed, we argue that a non-
Byzantine node will eventually be able to send the message to fulfil
the expect of the other non-Byzantine nodes.

• decided: Every non-Byzantine node will eventually decide,
then it will send the decided message to all the other non-
Byzantine nodes.

• set-turn:If a decision has not been reached earlier, then even-
tually the time out for the turn will fire and the non-Byzantine
node will send the set-turn message.
If a decision has been reached in an earlier turn, then it does
not matter if the node does not send the set-turn message be-
cause message queues after the decision turn, which have not
communicated, do not cause nodes to ignore the other node.

• read/agree/write-acks:These messages are sent in response
to the read/agree/write messages and can be generated from
the corresponding messages locally. Therefore a non-Byzantine
will not get stuck in sending these messages.

• junk/junk-ack: This can be generated locally, without wait-
ing for other nodes, therefore no correct node will get stuck
because of these messages.

• untimely:Once a decision has been reached (which will hap-
pen eventually) this message can also be generated locally.

• ack: This message can be generated locally, therefore no node
will get stuck not being able to send this message.

• read: If the decision has been reached in an earlier turn, then
the node will eventually hear about the decision on MQE, and
can bail out by sending a junk message.
If the decision has not yet been reached, then eventually all
the non-Byzantine nodes will send the set-turn message to this
node, which will be sufficient to form a quorum and generate
the appropriate read message.

• agree:If the decision has been reached in an earlier turn, then
the node will eventually hear about the decision on MQE, and
can then bail out by sending a junk message.
If the decision has not yet been reached, then eventually all
the non-Byzantine nodes will send the read-ack messages to
this node, in response to the read message that it sent, which
will be sufficient to form a quorum and generate the appropri-
ate agree message.

• write: If the decision has been reached in an earlier turn, then
the node will eventually hear about the decision on MQE, and
can then bail out by sending a junk message.
If the decision has not yet been reached, then eventually all
the non-Byzantine nodes will send the agree-ack messages
to this node, in response to the agree message that it sent,
which will be sufficient to form a quorum and generate the
appropriate write message.

THEOREM 9. Liveness across instances, assuming Incentive Com-
patibility: No non-Byzantine node will be ignored by another non-
Byzantine node indefinitely.

PROOF. A non-Byzantine nodei, following the protocol, will
only ignore another nodej

1. permanently:if j has revealed itself to be Byzantine by vis-
ibly deviating from the protocol (e.g. by sending messages
out-of-order or sending messages that do not satisfy the struc-
ture of the expect).

2. temporarily: as long as an expect is yet to be fulfilled.

Firstly, no non-Byzantine node will be considered Byzantine by
another non-Byzantine node, because the protocol only sends mes-
sages when the message is expected and the messages will be of
the required format.

Moreover, by Lemma 7 a non-Byzantine node will eventually
be able to satisfy the expect of all the other non-Byzantine nodes.

Hence a non-Byzantine node will not indefinitely ignore another
non-Byzantine node for not fulfilling an expect.

C.3 Equilibrium and incentive compatibility
Background.
We now show that the protocol represents an equilibrium point.

More specifically, it represents aNash equilibrium. We start by
introducing this concept and relating it to our domain.

Nash Equilibira are a game theory concept. Game theory studies
“games” among rational players. In one-shot games, for example,
every playeri (we shall call them nodes from here on) simultane-
ously picks somestrategyσi. The rules of the game determine a
utility u for each node, as a function of its strategy and the strategy
of the othern − 1 nodes. The utility for nodei can be written as
the functionui(σ0, . . . , σn−1), which we abbreviateui(σi, σ−i).

The Nash equilibrium is defined as follows [25]:

ui(σ
∗

i , σ∗

−i) ≥ ui(si, σ
∗

−i) for all si ∈ Si

Whereσ∗

i is the strategy proposed to nodei, andSi is the set of
all deterministic strategiesi can choose from.

To link these concepts to our domain, we observe that the strat-
egy represents which actions the node will take in response to events
it can observe. In other words, the strategy is the protocol that the
node follows. A game-theoretic “game” is determined by a func-
tion that takes every node’s strategy as input and outputs a resulting
utility for each node. In our case, the input is which protocol each
node follows and node’s utilities are determined by the costs and
benefits that the node experiences from running the protocol. We
define the cost precisely later in this section. The two differences
between our setting and the traditional phrasing of the Nash equi-
librium is that, first, the utility can be influenced by network delays
so that rational nodes must reason based on their expected utility.
Second, Byzantine nodes may deviate arbitrarily from the protocol.

In a way similar to how an assignment of strategies to nodes can
be said to be a Nash equilibrium for a given game if no player can
improve its utility by unilaterally deviating from the assigned strat-
egy, we say that a given protocol is a Nash equilibrium if no rational
node can improve its expected utility by unilaterally deviating from
the assigned protocol.

Proof technique.
To prove that the protocol is a Nash equilibrium, we show that

it is in every node’s best interest not to deviate from the proposed
protocol under the assumption that all other non-Byzantine nodes
follow the protocol.

Showing that something is in the best interest of a rational node is
dependent on what the node considers in its interest, but also of the
node’s beliefs and knowledge. For example, a node that knows that
a given nodex is Byzantine will see no incentive to send messages
tox, whereas one that does not know who is Byzantine must instead
consider the expected utility of sending a message tox.

A rational noder evaluates its utilityu for a strategyσ by com-
puting its worst-case expected outcome. The worst case is com-
puted over the choices of which nodes are Byzantine, and what
Byzantine nodes do. The expectation is over network performance.
The outcome then includes the costs: sending and receiving mes-
sages and computing signatures, and the benefits are: having their
own proposal accepted. Noder also includes future effects of its
actions, for example whether some node(s) now considerr to be
Byzantine (by setting the corresponding entry inbadlist to true) or
whether nodes will ignorer in the future (because thehasBubble
function returnstrue). A change that would preventr from par-
ticipating in future instances of TRB is considered to have infinite

not send send different diff. time
set-turn Lemma 10 Lemma 16 Lemma 14
read Lemma 10 and 36 Lemma 17 Lemma 31
read-ack Lemma 10 and 36 Lemma 18 Lemma 34
agree Lemma 10 and 36 Lemma 21 Lemma 32
agree-ack Lemma 10 and 36 Lemma 19 Lemma 34
write Lemma 10 and 36 Lemma 22 Lemma 33
write-ack Lemma 10 and 36 Lemma 20 Lemma 34
decided Lemma 10 Lemma 23 Lemma 24 and 25
junk Lemma 10 and 35 Lemma 28 Lemma 29
ack Lemma 10 Lemma 26 Lemma 27
untimely Lemma 10 Lemma 15 Lemma 15

Table 1: Map of deviation to lemma

cost since it robsr from an infinite number of beneficial instances
of TRB.

Our assumptions are presented in the System model, Section 3.
In short, we assume that rational nodes gain a long-term benefit in
participating, we assume that they consider the worst-case outcome
of their actions, and we assume that if they observe that the protocol
is a Nash equilibrium then they will follow the protocol.

The simplest deviations are those that do not modify the mes-
sages that a node sends. In our state machine protocol, no such de-
viation increases the utility. We must then examine every message
that the node sends and show that there is no incentive to either (i)
not send the message (ii) send the message with different contents,
or (iii) send the message earlier or later than required. Also, we
must show that nodes have no incentive to (iv) send any additional
message.

Our protocol also imposes the requirement that must be met in
an implementation: (a) The penance is larger than the benefit of
sending a time-out message late

THEOREM 10 (INCENTIVE COMPATIBILITY). No node has any
unilateral incentive to deviate from the protocol.

In order to show that no deviation is beneficial, we systematically
explore all deviations. Table 1 maps each deviation to the lemma
that shows that it is not beneficial. The concern of nodes sending
additional messages is covered by Lemmas 11 and 8.

LEMMA 8. Once a rational nodei knows that some other node
j is Byzantine,i will not send any further message toj.

PROOF. If j is known to be Byzantine (for example because
it was observed deviating from an incentive-compatible protocol),
then sending messages to it does not affect the worst-case outcome.
In particular, nodej can always opt to ignore any message from
i. Therefore, there is nothing to be gained from the expense of
sending messages toj.

Lemma 8 is a natural consequence from the fact that nodes are
rational and that they believe that some nodes may be Byzantine.
Naturally, in the worst case Byzantine nodes will not do something
so foolish as letting themselves be identified.

LEMMA 9. If a rational noder is being ignored by a non-Byzantine
nodea, thenr may not be able to write its value.

PROOF. Sending a validwrite message requires the message to
contain a quorum ofagree-ackmessages in~a. If the f Byzantine
nodes, along with the non-Byzantine nodea do not send theagree-
ackmessage tor, thenr can never gather a quorum ofagree-acks
to generate a write message. Hence cannot send any write message.

Moreover, if the senderr does not send a validwrite message,
then no further leader will be able to read the value and the TRB
will decide⊥.

LEMMA 10. If a rational noder knows that not sending some
expected messagem to non-Byzantine nodes would causes to
ignorer, thenr has incentive to send the message.

PROOF. If s ignoresr, then r will not receive any messages
from s. In the worst case (forr), all f Byzantine nodes will also
ignorer. Then, for instances wherer is the sender, it will not be
able to gather the requiredn − f − 1 answers to itsagree mes-
sage (sincef + 2 nodes will not be included: the sender itself,s,
and thef faulty nodes). Asr cannot gather enough messages to
form awrite message, it will then be ignored by all non-Byzantine
nodes. From then on, noder will not be able to send its proposals
to anyone: it is effectively excluded from the state machine. Node
r would forgo participation in an infinite number of future benefi-
cial instances of TRB: no finite benefit from not sending the mes-
sagem may be worth this cost. Noder will therefore make sure
to send all expected messages whose absence would cause other
non-Byzantine to ignore it.

LEMMA 11. Rational nodes only send a messagem to nodej
if j expects that message.

PROOF. The queue protocol regards any node that sends a mes-
sage which is not the current expected message as a Byzantine
node. Therefore a rational node will only send a messagem to
a non-Byzantine node, if it is currently expected.

Sending an unexpected messages to Byzantine nodes cannot im-
prove their worst-case behavior (if anything, it may help them drive
the system to an even less pleasant state). Therefore, no ratio-
nal node sends an unexpected message to anyone, Byzantine or
not.

LEMMA 12. No rational noder (r is not the sender) can ensure
with certainty that⊥ will be delivered in a given instance of TRB.

PROOF. Nodes can influence the delivered value through their
actions. However, if Byzantine nodes were to follow the protocol,
then in a period of synchrony the sender will be able to communi-
cate with a quorum of nodes and get its value delivered regardless
of the actions ofr (in particular ifr does not send any message).

Therefore, rational noder cannot ensure with certainty that value
⊥ will be delivered as the result ofr’s actions.

LEMMA 13. Rational nodes other than the sender have to do
the same amount of total work if in a given instance of TRB the
decision is⊥ instead of the sender’s value.

PROOF. If a sender’s proposal is not accepted, then the sender
will propose it again next time. Lemma 12 indicates that if a sender
tries forever, the proposed value will be eventually delivered. More-
over, the size of the messages are padded so a rational node will
incur the same cost in the instance, irrespective of what is being
decided. The total amount of work, therefore, is the same.

LEMMA 14. There is nothing to be gained by sending the time-
out message earlier or later than the protocol calls for.

PROOF. The protocol requires non-leader nodes to send the time-
out message for turnt (“set-turn(t)”) as soon as they believe that
turn t started. The leader in turnt never sends “set-turn(t)”, and the
sender never sends set-turn messages either.

Starting the next turn earlier (or later, as the case may be) may in-
fluence the outcome of TRB (toward either⊥ or the sender’s value),
but that has no effect on the amount of work that noder has to per-
form (Lemma 13).

All the messages for the current turn must be sent, so there is no
other benefit from starting a turn earlier.

Delaying the start of turnt may save a node some effort, because
it is possible that the delay allows the decided message to arrive, if
the decision has been reached, so that there is no need to send the
set-turn message anymore.

However, the recipient of set-turn expects that message at a given
time (and follows the protocol by hypothesis), so if the node sends
“set-turn” late it increases its chance of missing the window, thus
raising the expected cost through the penance mechanism. By re-
quirement (a), this expected cost is larger than the expected benefit
from potentially not having to send “set-turn” and going through an
extra turn (potentially with value⊥).

LEMMA 15. Rational nodes have no incentive to omit or mod-
ify the untimely message.

PROOF. The untimely message (computed in lines 446 and 512,
sent in line 350) is intended to inflict additional cost onto nodes
that are believed to be untimely. Each node, other than the sender,
expects this message every instance for the appropriate size. If the
message is not received, or is not of the appropriate size, then other
nodes will ignore this node in future instances. Therefore rational
nodes will not omit or modify the untimely message.

LEMMA 16. There is nothing to be gained by sending a set-turn
message with the wrong contents.

PROOF. Since set-turn only contains a turn number and a signa-
ture, wrong contents would be equivalent to either sending twice to
the message queue or sending a malformed message (Lemma 11),
or sending set-turn early (Lemma 14).

LEMMA 17. There is no incentive to lie in the read request.

PROOF. The format of the read request is entirely determined
(line 567), the only freedom being in the specific choice of which
quorum of entries in the POL are filled. Since all POL entries have
the same size, all choices result in a POL of the same total size
and hence the same cost. Since using a different valid POL has no
impact on the protocol and does not reduce cost, there is no reason
why a rational node would choose one quorum over another.

LEMMA 18. There is no incentive to lie in the response to a
read message.

PROOF. There are only two different possible answers to a read
message: either the sender’s value, or⊥. Since the sender’s value
is signed and nodes cannot forge signatures, the only possible lie is
to answer⊥ when, in fact, one has received a value.

This lie increases the likelihood of⊥ being delivered instead of
the sender’s value, which has two consequences. First, it changes
the amount of work that must be done in this turn. However, as we
argue in Lemma 13, nodes other than the sender expect to have to
do the same amount of work even if they try to increase the like-
lihood of ⊥ being delivered. Second, it increases the size of the
messages that must be sent because the⊥ answer has the same size
(in bytes) as the longest allowed proposal (requirement b). There-
fore there is no benefit to lying in response to a read message.

LEMMA 19. There is no incentive to lie in the response to an
agree message.

PROOF. The answer to agree is entirely determined by the agree
message itself, so any deviation would be equivalent to not sending
a message that the leader expects. Lemma 10 shows that there is no
incentive to do that.

LEMMA 20. There is no incentive for a rational noder to lie in
the response to a write message.

PROOF. The only choice in the response ismax pol, the latest
leader that the node has received a message from. Since these mes-
sages are signed, the only possible lie for a rational node is to reply
with some POL it has received.

Since the size of the POL is constant, the only benefit of replying
with an older POL is to influence the protocol. As we argued before
(Lemma 13), only the sender has a stake in influencing the decision
and the sender does not receive write messages.

Remains the possibility that answering with a different POL will
influence the number of turns that the protocol takes to complete
(that’s a cost). Answering with the requester’s POL instead of a
later one (if we received one) means that there is some chance that
the requester now thinks its proposal succeeded when, in fact, it
failed. But, doing so can exposer to be deviating from the protocol
and get ignored by other nodes, so a rational node will not send an
older POL.

LEMMA 21. There is no incentive to send incorrect data in the
agree message.

PROOF. The agree message (sent in line 542) include the turn
number, proposal, and~r. Changing the turn number would be
equivalent to not sending the agree message, which would result
in hasBubble returningtrue (Lemma 10). The protocol does not
restrict which proposal the sender can send, other than the condi-
tion that it must include the untimely vector. Lemma 15 argues that
there is no incentive to send an incorrect untimely vector. Lead-
ers that are not the sender have no choice in the proposal, as it is
entirely determined by the contents of~r and thelatest function.
The vector~r itself contains signed answers from other nodes, so
it cannot be tampered with, other than choosing which answers to
include in~r. These deviations are covered by Lemma 32.

LEMMA 22. There is no incentive forr to send incorrect data
in the write message.

PROOF. Sending a value that does not match the agreed-up hash
would cause everyone to considerr Byzantine. The vectors~r and~a
are both constant-size and cannot influence the protocol other than
markingr as Byzantine, so there is no incentive to change them
either.

LEMMA 23. There is no incentive forr to send incorrect data
in the decided message.

PROOF. That message contains information signed by others, so
it cannot be faked byr.

LEMMA 24. There is no incentive forr to delay sending the
decided message.

PROOF. Every other node expects a decided message fromr and
will not talk to r in future instances unless it receives the decided
message. Further, since there is no hope of finding a cheaper de-
cided message by waiting, a rationalr will not wait in order to hear
from a

Once a decision has been reached, it has been reached. Waiting
longer is not going to change the decision, or the cost of sending
the decision messsage.

However, by waiting longer, one could possibly hear that a de-
cision had been reached earlier, which could potentially help in
avoiding sending some extra messages for turns that have not yet
communicated.

This, we argue, will not be the case because MQS is linked to
MQ[decision.turn]. This ensures that the decision message will
be sent only after all expects upto MQ[decision.turn] are satisfied.
At this point, however, both the nodes have already communicated
upto turns decision.turn and therefore will not be able to remove
the expects for those turns even if they find out that a decision has
been reached earlier.

LEMMA 25. There is no incentive forr to send the decided
message early.

PROOF. r is supposed to send the decided message to other
nodes, as soon as they have fulfilled the obligations up to decided.turn.
If r sends the decided message early, it gains nothing. On the con-
trary, it may stand to lose potential saving that it could have got if
r were to hear about an earlier decision.

LEMMA 26. There is no incentive forr to send a different ack
message.

PROOF. The format of the ack message is fixed. Sending a ack
message with different content is equivalent to not sending the ack
message. From Lemma 10, it follows that a rational noder has no
motivation to skip sending the ack messages.

LEMMA 27. There is no incentive forr to delay sending the ack
message.

PROOF. The format and size of the ack message is fixed and will
not change by waiting longer. Therefore a rational leader,r, has no
motivation to delay sending the ack message.

LEMMA 28. There is no incentive forr to send a different junk
message.

PROOF. The junk message is allowed to be anything. Only the
size and number of signatures for the junk message matters. More-
over, if the size and number of signatures are wrong, then the mes-
sage will not help to fulfil the expect andr will get ignored.

LEMMA 29. There is no incentive forr to delay sending the
junk message.

PROOF. The format and size of the junk message is purely de-
pendent on whether it replaces which message and will not change
by waiting longer. Therefore a rational node,r, has no motivation
to delay sending the junk message.

LEMMA 30. There is no incentive for a rational leaderr to
send a message in its leader turnt before the protocol indicates
turn t should start.

PROOF. It may prevent the previous leader from succeeding.
Leaders have no stake in the outcome, so all that preventing the
other from succeeding achieves is potentially cause more set-turn
messages to be sent.

The sender cannot start early because the protocol says it should
start immediately.

LEMMA 31. There is no incentive for a rational leaderr to wait
for more than a quorum of time-out messages before starting its
leader duty.

PROOF. That would allow the leader to go thejunk message
route instead of the normal three phase commit. We use the penance
mechanism to balance the costs.

LEMMA 32. There is no incentive for a rational leaderr to wait
for more than a quorum of answers to its read message.

PROOF. Waiting for more answers may allow the leader to go
from a situation in which it must propose⊥ (because none of the
answers so far have seen the sender’s value) to one in which it can
propose the sender’s value (because one of the answers includes it,
cf. thelatest function in line 453)—or the other way around.

These two situations do not modify the expected number of turns
for this instance of consensus. They are also identical in term of
message size, because the leader must pad the proposal to maxi-
mum size, the same size as⊥. The difference between the two is
which value is decided in the end, which may change how much
work the leader must go through in this instance. However, as we
argue in Lemma 13, this does not change the total amount of work.
There is therefore no incentive forr to deviate from the protocol by
waiting for more answers.

LEMMA 33. There is no incentive for a rational leaderr to wait
for more than a quorum of answers to its agree message.

PROOF. Getting more answers cannot influence the outcome, so
there is no incentive to wait for more.

LEMMA 34. There is no incentive to answer late to either a
read, agree or write message.

PROOF. The effect of a late reply to these requests is to poten-
tially slow down the leader (or sender), increasing the risk that this
instance of TRB lasts one more turn and potentially influencing the
outcome.

Only the sender has a stake in the outcome, and it does not an-
swer to these messages. Remains the possibility of adding a turn,
which would cause the rational node to send more messages and
therefore increase its cost. Rational nodes therefore have an incen-
tive to respond to these queries immediately.

LEMMA 35. There is no reason why a rational noder should
try to send read/agree/write messages instead of junk.

PROOF. The junk message has the same cost as sending the re-
maining read/agree/write messages so there is no reason why a ra-
tional node should prefer to send these messages instead of the junk
message.

LEMMA 36. There is no reason why a rational noder should
try to send junk instead of read/agree/write.

PROOF. The junk message has the same cost as sending the re-
maining read/agree/write messages so there is no reason why a ra-
tional node should prefer to send junk messages instead of the read-
/agree/write messages.

Also, sending a junk message has the semantics that a decision
has already been reached in a previous turn. If this is not the case,
then it is possible that the recipient may consider the node to be a
Byzantine node.

C.4 Enlightening examples
The protocol in Figure 17 distinguishes between the sender and

the leader: the sender proposes a value and, if it is not timely, a
new leader is elected. This distinction may seem unnecessary, but
in fact it is important that the sender not be involved in steps where
it may influence whether its value gets decided. This can occur in
two places.

First, the sending of the “set-turn” messages. Suppose an exe-
cution in which the sender receives a POL from a later leader, and
then a write for the value⊥, indicating that the new leader did not
see any of the messages sent by the sender. The sender may then
have an incentive to send its “set-turn” message early to elect a new
leader, in the hope that the new leader may see one of the written
values and will attempt to write the sender’s value instead of⊥.

Second, the answer to “read” requests. In the same scenario as
described above, if the sender receives a write for⊥ by leader 1
and then a read request from leader 2, then the sender would have
an incentive to deviate from the protocol and send its own value
instead, pretending it hasn’t received the message from leader 1.

In order to avoid both scenarios, we allow the sender to try to
write its value only once: it cannot be elected leader in later turns,
and read messages are not sent to it. Since the read and write quo-
rums must still intersect in at least one correct node and there must
be a quorum of correct nodes among all nodes but the sender, it
follows thatn ≥ 3f + 2.

D. REPLICATED STATE MACHINE
The replicated state machine provides the following guarantee

under our liveness assumption that all non-Byzantine nodes get
some overall benefit from participating in the state machine.

THEOREM 11. If non-Byzantine nodea submits some command
c to the state machine then eventually every non-Byzantine noden
in the state machine will deliverc.

PROOF. Eventual synchrony guarantees that eventuallya gets
its turn as sender in the state machine. TRB’s non-triviality con-
dition then guarantees thata will successfully deliver its proposal.
Oncea is done with earlier submissions it will submitc, which
it will deliver. The agreement condition guarantees that all non-
Byzantine nodes will deliverc as well.

E. WORK ASSIGNMENT
Work assignment is introduced in Section 6. Here we add to that

discussion by providing pseudocode and proof sketches.
This section addresses issues related to work assignment and rel-

evant efficiency optimizations. In general, work assignment is used
to reduce replication factors associated with running a protocol and
to increase communication efficiency and reliability. The work as-
signment protocol leverages the state machine to replicate the as-
signment of work to a specific node or set of nodes. The work itself
is then performed on the specific nodes. In general, the messages
and execution of allocation are orders of magnitude less expensive
than the execution of the work itself.

For all proofs in this section, we make the “sufficient benefit”
assumption, that is rational nodea gains sufficient benefit from
membership to outweigh the cost of participating in the system if
no more thanf nodes deviate from the protocol.

Letw be work instructions,a, b be nodes in state machineA. Let
u be the result of performingw. We also assume that all liveness
conditions are met.

601 / / u s e r c a l l s t h i s t o submi t a r e q u e s t
602 submi t (query , t a r g e t) :
603 q u e r i e s . enqueue ((query , t a r g e t))
604
605 / / t h i s i s a lways runn ing
606 run () :
607 wh i le t r u e :
608 / / ready f o r query
609 (q , t) : = q u e r i e s . dequeue () ; / / b l o c k s i f no query
610 c l i e n t t o w i t n e s s ((q , t))
611 / / w a i t i n g f o r r e p l y
612 r : = r e c e i v e f r o m w i t n e s s ()
613 / / hand le r e p l y
614 i f (r i s a r e s p o n s e from t) :
615 / / d e l i v e r i n fo rms t h e u s e r t h a t a r e p l y has a r r i v e d
616 d e l i v e r (r)
617 c l i e n t t o w i t n e s s (summary (r))
618 e l s e :
619 / / r i s a t ime−out , w i t n e s s has a POM
620 POM : = r e c e i v es i g n e d f r o m w i t n e s s ()
621 d e l i v e r (POM)
622 c l i e n t t o w i t n e s s (summary (POM))

Figure 19: Guaranteed response client protocol

651 c l i e n t t o w i t n e s s (m)
652 propose (m)
653
654 w i t n e s s t o c l i e n t (msg , c)
655 i f (t h i s = = c) : d e l i v e r (msg)
656
657
658 w i t n e s s t o c l i e n t s i g n e d (msg , c)
659 / / e x e c u t e t h i s code wh i le p r o c e s s i n g t h e message i n t h e de c i d e
660 / / f u n c t i o n , j u s t b e f o r e l i n e no 354
661 MQS. send (s i g n (m)) t o c
662 i f (t h i s = = c) : MQE. e x p e c t (s i g n (m)) from a l l

Figure 20: Communication with the witness

E.1 Guaranteed-Response Protocol
We show the Guaranteed Response pseudocode in Figures 19,

21 and 22. The code matches the state diagrams in Figure 3. We
show the code for a single slot, but in practice we use several slots,
so there are several instances of the code running in parallel.

Provided that the application provides sufficient sanctions for
nodes that causeNoResponse, the following theorem holds:

THEOREM 12. If the witness node enters the request received
state for some workw to rational nodeb thenb will executew.

PROOF. If b does not executew then b cannot send the (cor-
rect) response to the witness. Since the witness is guaranteed to be-
have correctly, the witness will generate a verifiableNoResponse
message when the timeout fires. Since, by assumption, rational
nodes will take whatever actions necessary to avoid a verifiable
NoResponse message on their behalfb will executew.

Each node is allocated a constant number of slots. The strict
transitions permitted within each individual slot requires that a pre-
vious request is completed before the next request using that slot
may start. Our model of rationality specifies that nodes respond
within max response time or they are considered Byzantine.

701 / / s l o t f o r c l i e n t c
702 run () :
703 i s B y z a n t i n e [c]= f a l s e
704 wh i le (no t i s B y z a n t i n e [c]) :
705 / / empty s t a t e
706 (query , t a r g e t) : = r e c e i v ef r o m c l i e n t (c)
707 / / r e q u e s t r e c e i v e d
708 w i t n e s s t o c l i e n t (query , t a r g e t)
709 wa i t u n t i l :
710 e i t h e r : r e p l y : = r e c e i v ef r o m c l i e n t (t a r g e t)
711 or : i n t e r n a l t ime ou t
712 i f (r e c e i v e d a r e p l y) :
713 / / r e s p o n s e r e c e i v e d
714 w i t n e s s t o c l i e n t (rep l y , c)
715 e l s e :
716 / / t ime ou t
717 i s B y z a n t i n e [t a r g e t]= t r u e
718 w i t n e s s t o c l i e n t (” t i m e o u t ” , c)
719 r e p l y : = s i g n (”POM: NoResponse ”)
720 w i t n e s s t o c l i e n t s i g n e d (rep l y , c)
721 ack : = r e c e i v ef r o m c l i e n t (c)
722 i f (ack ! = summary (r e p l y)) :
723 i s B y z a n t i n e [c]= t r u e

Figure 21: Guaranteed response witness protocol

801 onRece ive (qry) :
802 r e s p o n s e : = p r o c e s s (qry) ;
803 c l i e n t t o w i t n e s s (r e s p o n s e) ;

Figure 22: Guaranteed response target protocol

E.2 Credible threats
The fast path optimization is presented in Section 6.2. We now

argue that it is in the best interest of the rational nodes to follow the
fast path.

LEMMA 37. Rational clients will partake in the fast path opti-
mization.

PROOF. The fast path requires sending the request to1 node.
The slow path requires sending the same message through the state
machine (requiring sending the message at leastn times). The tar-
get in the request is faulty with probabilityf/n, so the expected
cost of taking the fast path isf + 1 times the cost of sending the
message while the expected cost of the slow path isn times the cost
of sending the message. The fast path has lower expected cost so
will be followed.

LEMMA 38. Rational targets will partake in the fast path opti-
mization.

PROOF. The fast path requires sending the response to1 node.
The slow path requires sending the same message through the state
machine and results in sending the message at leastn times. The
requesting node is faulty with probabilityf/n, so the expected cost
fo the fast path isf +1 times the cost of sending the message while
the cost of the slow path isn times the cost of sending the message.
The fast path has lower expected cost so is preferred by rational
nodes.

THEOREM 13. Rational nodes will follow the fast path.

PROOF. By Lemma 37 the client will follow the fast path and
by Lemma 38 the target node will follow the fast path. Thus all
rational nodes follow the fast path.

E.3 Periodic Work Protocol
The periodic work protocol is a mechanism used by the applica-

tion designer to specify general maintenance work that must be per-
formed by individual nodes. The periodic work protocol functions
by requiring each node to periodically submit the result of a work
request to the witness. If the result of the work request is received
before the period expires, the period is restarted and the request is
repeated. When the witness is implemented using a RSM, the pe-
riod can be described by passage of time or successful proposals
to the RSM. Figure 23 shows the state transitions for the periodic
work protocol. Figure 24 shows pseudocode for the protocol where
work is expected everyk successful proposals by the participating
node.

THEOREM 14. Rational nodes will follow the periodic work
protocol.

PROOF. Failure to send an expected message results in being ig-
nored by the shunned node. If the shunned node is non-Byzantine,
then the shunned node plus thef Byzantine nodes are sufficient to
deny access to the underlying RSM. By assumption, the benefit of
access to the RSM is larger than the costs associated with following
the protocol faithfully.

request
fulfilled

time out

implicit
request

time out

response
received

restart
timer

deny
service

Figure 23: Periodic work protocol

901 run on r e p l i c a t e d nodep :
902 Work work ;
903 long c o u n t e r ;
904 long p e r i o d ;
905 S t r i n g t a r g e t ;
906
907 s e t u p (Work w , long k , S t r i n g pee r) :
908 work : = w;
909 c o u n t e r : = k ;
910 p e r i o d : = k ;
911 t a r g e t : = pee r ;
912
913
914 on d e c i s i o nd from t a r g e t :
915 c o u n t e r : = c o u n t e r− 1;
916 i f d i s r e s u l t o f work then
917 c o u n t e r : = p e r i o d ;
918 i f c o u n t e r = 0 then
919 i s B y z a n t i n e [t a r g e t] = t r u e

Figure 24: Periodic work protocol

E.4 Deterministic RSM Clock
The deterministic RSM clock (DRC) is at the core of the author-

itative time service discussed in Section 6.4. The objective of the
DRC is not to synchronize the local clocks of the nodes, but to pro-
vide a consistent global clock which can be used to order operations
and define when events (as defined by state machine decisions) take
place.

DEFINITION 3 (NON-DECREASING). A clock isnon-decreasing
iff for time ti returned before timetj , ti ≤ tj .

DEFINITION 4 (RECENT). A replicated clock isrecentiff in
periods of synchrony, the timeti returned by the clock is no smaller
than the value time proposed by a non-Byzantine sender in the last
2f + 1 instances.

DEFINITION 5 (IDENTICAL). A replicated clock isidentical
iff for all local calls of the getTime() function on a replica between
processing decisionk and decisionk+1 getTime() returns the same
timet on all replicas.

The protocol itself is very simple. The current time is computed
by taking the maximum of the median of the timestamps of the
2f + 1 most recent decisions and the previous deterministic time.
Decisions of the underlying state machine (Section B) include a
timestamp field which is set to the local time of the sender when
the proposal is first made. When “no decision” is decided, then
the time for that decision is defined to be the previous determinstic
time. Pseudocode for the protocol is shown in Figure 25.

The following theorems provide the correctness argument for the
clock protocol.

THEOREM 15. The time returned by the DRC isnon-decreasing.

PROOF. At each decision the value of the deterministic clock
is potentially updated. Line 13 guards the change to the persistent
clock value, insuring that the clock is only changed if the new value
is strictly larger than the old value.

1001 run on r e p l i c a t e d nodep :
1002
1003 t ime m / / v a r i a b l e h o l d i n g t h e c u r r e n t t ime
1004 d e c i s i o n sS / / v a r i a b l e h o l d i n g s e t o f d e c i s i o n s
1005
1006 getTime () :
1007 r e t u r n m ;
1008
1009 on d e c i s i o ndk :
1010 S := S \ dk−(2f+3).time

1011 S := S ∪ {dk.time}

1012 m′ := median(S)

1013 i f m′ > m t hen

1014 m := m′

Figure 25: Deterministic RSM clock protocol

1101 b ind (msg) :
1102 rsm . p ropose (b ind (msg)) ;
1103
1104 on d e l i v e r i n g b ind (msg) from a :
1105 i f (t h i s = = a) :
1106 MQE. e x p e c t ((s ig , t)) from a l l
1107 t : = DRC. getTime () ;
1108 s i g : = s i g n (t , hash (msg)) ;
1109 MQS. send ((s ig , t)) t o a ;

Figure 26: Message binding protocol

THEOREM 16. The time returned by the DRC isrecent.

PROOF. Lines 10 and 11 ensure that the time is computed over
the2f + 1 most recent decisions.

THEOREM 17. The time returned by the DRC isidentical.

PROOF. The time is updated only when a decision is reached.
Any call to getTime() between successive decisions returns the same
value.

THEOREM 18. In periods of synchrony, rational nodes include
the correct time in their proposals.

PROOF. Rational nodes must always include some time in their
proposals, otherwise they will be considered Byzantine by their
peers. If they get a benefit speeding up or slowing down the DRC
then they may consider sending an incorrect time value. However,
the worst the Byzantine nodes can then do is be honest, and so the
other times proposed in the2f + 1 proposals window will be cor-
rect, and the median value chosen for the DRC will in fact not be
influenced by the actions of the rational node. Since rational nodes
only deviate from the protocol if there is some benefit in it, the
rational nodes will choose to follow the protocol.

E.4.1 Message Binding Protocol
In order to bind a message to a time, nodea submits the message

to theMessage Binding Protocoland proposes aBindingRequestto
the RSM. The nodes in the RSM then senda a signature binding
the message to the current authoritative time through the message
queue architecture. Figure 26 shows pseudocode for the Message
Binding Protocol.

Provided the overall application provides sufficient benefit for
maintaining use of the state machine, the following theorem holds:

THEOREM 19. The message binding protocol is incentive com-
patible.

PROOF. Whenbind(msg) is decided, a non-Byzantine propos-
ing node expects a message of the form(sig, t) from all members
of the state machine. If the expect is not fulfilled by nodeb then
the proposing node will stop sending messages tob. Furthermore,
if the time t is not correct for the decision, then the message is
malformed andb will be ignored. These events both potentially re-
sult in f + 1 total nodes (the shunned non-Byzantine node andf
Byzantine nodes) ignoringb, denyingb the expected benefit from
membership in the state machine.

