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Abstract

Phylogenetic tree searching algorithms often producesidnods of trees
which biologists save in Newick format in order to performthier analysis.
Unfortunately, Newick is neither space efficient, nor caridel to post-tree
analysis such as consensus. We propose a new format forgsfayloge-
netic trees that significantly reduces storage requiresn@htle continuing
to allow the trees to be used as input to post-tree analysssimplemented
mechanisms to read and write such data from and to files, aodrable-
mented a consensus algorithm that is faster by an order ofitodg than
standard phylogenetic analysis tools. We demonstrateesulits on a col-
lection of data files produced from maximum parsimony sessch

1 Introduction

We have developed some improved methods for storing anéwieiy phyloge-
netic data, and we have implemented a consensus algorittimngreased per-
formance. Our approach permits very large data sets to bpactiy stored and
retrieved without any loss of precision. Our implementaid our consensus al-
gorithm provides greatly increased performance when paifa strict and ma-
jority consensus computations.

Producing a phylogeny for a set of taxa involves four majepst First, com-
parative data for the taxa must be collected. This data dékes the form of
DNA sequences, other biomolecular information or matricesnorphological



data. Second, this data is aligned to ensure that compardbtenation is con-
sidered as input to the tree producing step. The third steppsoduce candidate
trees. There are many techniques for doing this includirtgroping maximum
parsimony or maximum likelihood criteria, or, more recgnily using Bayesian
methods [8] [11]. These techniques rarely result in a singkemal tree. Instead,
there are often many trees that a phylogeneticist wouldtbksave for further
processing such as consensus analysis, which is used toasizarhe collection
of trees. These post-tree analyses are the final step.

In this paper, we propose a new format for storing trees wkaskes space, re-
duces time to read a collection of trees, and allows for bp#gformance in com-
puting strict and majority consensus trees. Our systeniledcihe Texas Analysis
of Symbolic Phylogenetic Information (TASPI), and it is atperimental system,
written from scratch. It is a stand alone tool for a few kinfiploylogenetic data
manipulation. TASPI is written in the ACL2 [12] formal logigvhere all oper-
ations are represented as pure functions. Using ACL2’scasd mechanical
theorem prover, it is possible to prove assertions aboutA&PI system.

We begin with a survey of various consensus methods anddunteoour rep-
resentation. We then give an end-to-end example of a maoiisensus analysis
which we use to explain our algorithm for computing consengtinally, we ex-
plain our experiments and give their results.

2 Consensus Methods

Consensus trees are defined by Felsenstein as “trees thaesio®, as nearly as
possible, the information contained in a set of trees whipseare all the same
species” [8]. There are many different kinds of consensah stressing a differ-
ent commonality or difference between the input trees, aath eeciding how to
deal with conflicts between trees.

A conflict between two trees arises when a branch in one treetisn the
other. A branch separates a tree into two sections, creatiipartition between
the leaves in one part of the tree and the leaves in anothitie Bame bipartition
is created by a branch in one tree and a branch in anotheg tiees are said to
share that branch. If, however, there is no branch in thergettee that produces
the same bipartition that is produced by a branch in the fiegt these two trees
are said to be in conflict.

Consensus methods return a single tree, or an indicatiamth&ree meet-
ing the requirement of the method is possible. A consensesisrcreated from



the input trees based on some criteria. Two of the most contyypms of con-
sensus trees are strict and majority. Both of these typeoi$ensus decide
which branches in the input trees to keep, and then buildeaftoen the result-
ing branches. Strict consensus requires that any brantie iconsensus tree be a
branch in every input tree, while a majority tree only reqggithat any branch in
the consensus tree be a branch in at least a majority of tl tirges.

Edward N. Adams Il was the first to propose and present aisolubd the
problem of “combining information from rival trees into onegpresentative tree”
[5]in 1972, and this form of consensus became known as Adaamsensus [1].
Since that time, many other versions have been presentedatemented.

In 1981 Margush and McMorris defined the majority rule treesva know
them today. They proposed this form of consensus as follpwest the “dictio-
nary definition of consensus as 'general agreement’ or 'nigjof opinion™ [13].

It was also around this time that Sokal and Rohlf coined tha tistrict consen-
sus” [22].

Researchers continued to study the properties of consemsiiods, as well
as propose alternatives. In 1982 through 1985, McMorrish@dmann, in both
joint and separate work, explored desirable propertie®n$ensus methods. Un-
fortunately, they proved that it was impossible that a gngkthod could simul-
taneously have all desirable properties explored. Thegrtigs they were inter-
ested in were whether a function was neutral, Pareto, ditéhtand faithful [17].
They proved a theorem similar to a classical impossibihigorem of K. Arrow,
namely that a consensus method can not be both neutral aeth Rathout be-
ing dictatorial. McMorris and Neumann started by proving tlnpossibility for
tree quasi-orders [16] and McMorris later proved it for usdted phylogenetic
trees [14]. Neumann proposed a number of other consenssinesasuch as the
Durshnitt Rule and Cardinality Intersection Rule, whichbedieved were a better
measure of similarity since they upheld faithfulness [Hgwever, none of these
faithful methods gained much popularity.

In 1983, McMorris, Meronk and Neumann parameterized thets#ass of a
tree [15] in an overview of consensus methods availablesgirire. This overview
included Nelson consensus, which is based on replicateg@oenmts. In this type
of consensus, any clade (grouping of taxa) that is in at teastrees should be in
the consensus, but notice that this process does not nabessarrn a tree [15].
Page addressed this problem several years later (1990khtirgg what is now
known as Nelson-Page consensus, a version where a cladariaygp®ore often
is given greater weight, and the greatest weight tree isdhsensus tree [5].

New forms of consensus continued be developed, includioge@onsensus
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Figure 1: A classification of consensus methods from DavighBrt [5]. There is
an arrow from one method to another if every splitin the cosas tree produced
by the first method is contained in every consensus tree peatlby the second
method.



trees (also known as semi-strict, or combinable comporj&8i) local consen-

sus [26] and asymmetric median trees [19]. Researchersoertb look for new

methods, particularly for large and plentiful trees, sittee accuracy of the con-
sensus trees as compared to a known true tree appears tastewith size and
number of trees [4].

In terms of performance, in 1985 Day published a paper [6\vaig how to
compute a strict consensus tree(fkn) time where k is the number of trees in
the input set, and n is the number of leaves in each of the.tidesoutlined a
process for rooted trees, and then showed how the unroctectoald be handled
as well.

In 2003 a similar optimality constraint was developed fojarisy consensus.
Amenta et al. were trying to generate majority trees moreldyifor their inter-
active visualization system. In doing so, they achievededr time majority tree
algorithm that makes use of randomization (that is, the egaerunning time is
O(kn)) [2].

For many of the other forms of consensus, algorithm complegsults have
also been achieved. While several of these lag#en?) or other polynomial run-
ning times, many more are NP-hard for realistic situtatidosexample, median
consensus and asymmetric median trees) [26].

The latest development in consensus algorithms is in the @renline con-
sensus. Berger-Wolf outlined online algorithms for connpyistrict and majority
consensus trees which would allow an unchanging consendesused as a stop-
ping criterion for heuristic tree searches [3].

It is important to note that all consensus methods, thougk thay return
a tree, rarely return a tree that is most parsimonious, nes dloe returned tree
achieve the best likelihood score. Thus, there has been debae about using
consensus methods to infer phylogenies [5]. However, if dhé appropriate
information, namely that given by the criteria used to aaée tree, is gleaned
from the consensus tree, they are very useful.

3 Representation

Newick format is the standard way of storing a collection bflpgenetic trees.
Adopted in 1986, Newick [7] is a parenthetical notation tiisgs commas to sepa-
rate sibling subtrees, parentheses to indicate childrehagemicolon to conclude
a tree. Newick outlines each tree in its entirety whethenrsgjocone tree, or a col-
lection of trees.



On the other hand, TASPI capitalizes on common structureinvi collection
of trees. TASPI stores a common subtree once, and then edbkrftime the
common subtree is mentioned, TASPI references the firstromoee. This saves
considerable space since potentially large common susbéreeonly stored once,
and the references are much smaller (for empirical reseétsSgction 6).

There are two layers to the TASPI representation of treesa Aigh-level,
trees are represented as Lisp lists, similar in appearanbewick, but without
commas and semicolons. This is the format presented to #reofiFASPI and
on which user functions operate. At a low-level, the datairstead represented
in a form that uses hash-consing [10] to achieve decreasealgst requirements
and improved accessing speeds. For ease of reference inrSéctve call this
the Boyer-Hunt compression.

Consider the following set of rooted trees in Newick format:

(a,((b,(c,d)),e));
(a,((e,(c,d)),b));
(a, (b, (e, (c,d))));
((a, b), (e, (c,d)));

The format of these trees presented to the user of TASPlaghtforward:

(a ((b (c d)) e))
(a ((e (c d)) b))
(a (b (e (c d))))
((a b) (e (c d)))

Notice that storing this set of trees involves restoring ghbtree containing
taxac andd once for every tree. The Boyer-Hunt compression insteagsto
the c- d clade once, the first time it is encountered. If, subsequetité c- d
clade is encountered again, the first time is marked with “#orthe current
value of a counter n that is incremented each time it is usdtenTinstead of
re-storing thec- d clade, a reference in the form “#n#” is stored in its placeisTh
compression has parallels to the Lempel-Ziv data commesshich is based
only on characters seen so far [27]. The compressed verkitie trees above is
given below:

((A((B#1=(C D)) E))
(A (#2=(E #1#) B))

(A (B #2#))
((A B)#2#))
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We use a technique sometimes called hash-consing [10]hvemisures that
no object is ever stored twice. In the context of phylogentges, an object
is a subtree, and consing is a tree constructor that joinsemg Hashing, put
simply, is a technique that creates a table that allows feir $@arches. In this
case, hashing is used to quickly determine if a subtree veasqusly encountered.
The format, using “#n="and “#n#”, is a standard read dispabt@acro from Lisp
programming [23].

Two subtleties remain to be addressed. First, though webeilpresenting
rooted trees in this paper, trees are not all rooted. In facist tree searching
algorithms return unrooted trees since determining thé oba tree may itself
be a computationally intensive problem [8]. Newick formaed not distinguish
between rooted and unrooted trees except through the useitibey flags. By
placing [&R] and [&U] just before the beginning of a tree, ted and unrooted
trees, respectively, are indicated. Without these flagsptius is on the user to

interpret the trees appropriately.
Second, Newick does not give a unique represen- A B

tation for atree. Consider the tree on the right. There C

are many representations for this tree in both Newick

and TASPI. Possible TASPI representations include: D
((F Q9 ((AB) (C(DE)))) and F

((C(ED) ((BA (GP)). | -

To ensure a unique answer in our computations, we order tipeiowith respect
to an ordering on the taxa. As far as we can tell, PAUP also ttuss Thus,
given an alphabetical ordering, we would order the tree ala®m(A (B ((C

(DB) (FG))).

4 Qur algorithm for consensus

We compute a consensus through a sequence of steps. Wedatsthiee source
file containing the trees for which a consensus is to be coath@uring the read
process, we identify every subtree for which we have alreadyg an identical
subtree; thus, instead of creating a new data structurénéostibtree just read,
we reference the previously created subtree. We next caeatapping from all
subtrees to every parent in which a subtree is referenceadglttss information,
we compute the occurrence frequency of every subtree. |§irzdter we have
selected the subtrees that match our selection criteri@pwstruct the consensus
answer. We give an example computation in Subsection 4.1.
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In the following explanation, we use the notion of a "multisevhich is, in-
tuitively speaking, a kind of set in which the number of oceuaces count. More
formally, one may regard a multiset as a function to the spbsftive integers. If
A andB are multisets, theA is a multisubset oB if and only if for eachx in the
domain ofA, x is in the domain oB andA(x) <= B(x).

For example, suppose v, andw are all distinct objects. L& = <u, 1>, <v,
2> and letB = <u, 2>, <v, 4>, <w, 5>, thenA is a multiset with one occurrence
of u and two ofv. Thus,A(v) = 2. A is a multisubset oB becausé\(u) <= B(u)
andA(v) <=B(v).

One way to represent multisets is with lists in which the nand§ occurrences
of an element in a list represents the number of times tha¢lgmaent is in the
corresponding multiset. So for example, we may represenexampleA above
with the Lisp list(u v v).

Several definitions will be useful.

tip: a symbol or integer.
e tree: atip or, recursively, a list of one or more trees.
e fringe: a list of all tips in a tree.

e subtree If a and b are trees, thenis asubtreeof b if and only if either (1)
aisbor (2)bis alistandais a subtree of a member bf

e proper subtree: If a andb are treesa is aproper subtreeof b iff ais a
subtree ob andais notb.

e domain: Thedomainof an association list (a list of key-value pairs) is the
set of the keys of the members of the association list.

e replete. An association lisdb is repleteif and only if for all t1 in the
domain ofdb, (1) t1 is a nontip tree and (2) iR is a nontip proper subtree
of t1, thendb(t2) is a list representing the multiset of all trees in the domain
of db that have2 as a member, includintgd.. Note that the multisdi(a) (b)

(a)) has the tre€a) as a member twice.

e top level: A tree in the domain of a replet#b is said to bdop levelif and
only if it is a proper subtree of no member of the domaiuliof

To compute the consensus, our algorithm proceeds by:



1. Producing a replete association list of all of the sulstie¢he original input,
2. Counting the frequencies of the non-tip subtrees,

3. Collecting the subtrees that appear as often as the @dsdymajority thresh-
old, and finally,

4. Constructing the consensus tree.

Step one is accomplished by our functiplete-trees-list-top which con-
verts the original input list of trees into a replete assiaialist (database). This
replete database is a mapping from subtrees to every paeentantaining the
subtree in question. Step two is performed by the functiotge-frequencies
which counts the frequencies of every subtree fringe in dpdete database by
iterating through the replete database. Step three isctioi¢ethe subtrees that
occur as often as the threshold. Finally, using this catb@adf subtrees, function
build-term-top constructs the consensus answer.

Our functionreplete-trees-list-toptakes a list of non-tip trees no member of
which is a proper subtree of another, such as a list of tréegithl the same set
of taxa. replete-trees-list-topreturns a replete association lgit such that (1x
is a member of the domain db if and only if x is a member of or is a non-tip
proper subtree of a memberland (2) ifx is in the domain otlb, thendb(x) is an
integer if and only ifx is a member of anddb(x) is the number of times occurs
in I. For an example execution mdplete-trees-list-top see Subsection 4.1.

Functionfringe-frequenciestakes a list of nontip trees such that no member
of | is a proper subtree of any other membek @uch as that produced Ibgplete-
trees-list-top). fringe-frequenciesreturns a minimal length association list that
pairs the fringdr of each nontip subtree of each membel with the number of
occurrences ihof non-tip subtrees of membersiahat have fringédr .

By scanning through the resulting association list, we pick out the sub-
trees that appear as often as the desired threshold. We baweed to store the
actual number of times any specific subtree appears, westoéct the desired
subtrees (fringes) into a list.

The functionbuild-term-top takes two arguments. The first argument is a
sorted listl of the subtrees’ fringed;is sorted using a lexicographic (normaliza-
tion) order that is based both on the internal tips and the sizhe elements in
each subtree. All the subtreeslimust appear in the consensus answer. The
second argument is a normalization taxatistthat is used by our lexicographic
ordering function so we can produce a unique representafiany subtree that



((AB)C) ((DE) (FG)) ((AB)C) (D (E(FG)) ((A(BC) ((DE) (FG))
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Figure 2: A collection of trees together with their TASPI regentations

itself includes more than one subtree. Remember, we rafireseh subtree as

a list of subtrees, so to make the representation unique rengmbers of each
subtree.build-term-top constructs a consensus answer tree recursively by first
building an answer of the first subtreelofOnce the first answer subtree is com-
puted for the first element inany (sub-)subtrees required to build the first subtree
are “crossed out” frorhthat remain to be processed, and we continue with the next
remaining element dfuntil no entries remain.

4.1 Example

Consider the five trees in Figure 2. The TASPI representatidhese trees is the
input to the functiorreplete-trees-list-top This function returns the following
association list, where keys are in boldface:

((AB)((A B) Q)
(((AB)C)(DE)(FG)) . 1)
(OEX(DE) FQ
((DE (FQ))
((CE)FG) ((AB) O ((DE FQ))
((AB)C)(DE)FG)) . 1)
(((AB)C)(((AB) O (D (E(F Q)))
(((AB) O ((DE) F Q)
(((AB) Q ((DB (FQ)))
((FG) (E (F Q)
((DB (FQ))
((E(FG)) (D (E (F G)))
(DEFG) (((AB Q (D(E(FQ))))

10



(((AB)C)(D(E(FG))) . 1)
((BC) (A (B Q))
(DEF) ((DEF) Q)
((DEF)G) ((A(B Q) ((DEF) Q))
((ABC)(DERG) . 1)
(ABC)H((A (B Q) ((DE (FQ))
((A(B Q) ((DEF) G))
((OCE)(FG)((A (B Q) ((DE) (F
(((AB) O ((DE (F

((ABCH(®E)(FG)) . 1)

A subtree is the key for each element of the list, and the nedeaiof each
entry (the values) is either (1) trees or subtrees in whiehkéty appears, or (2)
an integer representing the number of times this top leeel diccurs in the input
collection. Thus, this is a replete association list. Ttasagiation list is now the
input to the functiorfringe-frequencies which produces this list:

9))
9)))

((AB) . 3) ((DE F). 1)

((DB . 3) ((ABC . 5)

((FQ . 3) ((DEF G . 5)
((EFG .1 ((ABCDEFGQ . 5)
((BC . 2

This frequency list has each fringe from our replete assiocidist, together with
an integer. Remember, a fringe is simply a list of the tips irea, so we do not
distinguish between the fringe froM (B C)) and the fringe fron{ (A B)
C) . The integer gives the number of trees that have a subtréehs fringe.

We are now prepared to sweep through this list and recordrihgef that
occur at least as often as the threshold for both a strict aajdrity consensus.
In this example, for the strict majority we collect thosen§es that occur 5 times,

and for the majority, we collect those that occur at leasti®f. This gives us:
((ALBCDEFG . 5)

((ABCDEFQ . 5) EEREBG? ;3)5)

((DEFQ . 5) ad (F o 3

((AB QO . 5) (oo
((A B) 3)

Finally, the function build-term-top uses either the strict
or majority fringes together with a normalization list suclas
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(ABCDEFG to create the strict and majority consen-
sus trees. In this case we creafgf ABC (DEF G) and

(((AB) O ((DEB (FQ)).

5 Experimental Methodology

5.1 Data Set Collection

In order to see how well TASPI performs, as compared to ctlyevailable
programs, we searched for collections of trees. We stariiéxtnges generated by
Usman Roshan as part of his thesis work at the University ¥d3¢20]. Roshan
obtained large data sets of biomolecular data from onlineb#dses as well from
biologists at UT. He used the alignments provided, and tkeroved parsimony
uninformative sites as well as low confidence sites. He thssduhis data to
compare tree searching techniques such as those implamei®AUP [24] and
TNT [9] to his own (Recursive lterative Disc Covering Metlsdd Doing these
searches generated hundreds and sometimes thousandssdbtreach data set.
Roshan saved these trees and generously allowed us to atiadyn.

Roshan provided these trees in over 650 different files. HEbxlvas gener-
ated from a single data set and had the data set name as phd fietname.
We created eleven files, one for each data set, that contalhefithe trees that
Roshan had provided for that data set. There are a few datéosethich Roshan
provided trees on that we are not using in our benchmark lsecBAUP fails to
generate accurate consensus trees. (We have communiuateddor in PAUP to
David Swofford). These now huge files are contained in a sidlglectory and
collectively referred to as Collection 1. We also kept saleriginal files intact
and created a directory of them which we refer to as Collacio

A third collection of trees was obtained from Tiffani Wiliiegs. William’s
collection consisted of trees generated from nine datawbere 2505 trees were
saved for each data set. We will refer to these as Collection 3

An overview of the data sets used to generate these treegels igi Tables 2
and 3 which can be found in Appendix B. (For more informatibowt the data
sets used to generate these trees, see pages 55-59 of UsaiamRdlissertation
[20]. Note that Williams used data from Roshan, so some ofrtfegmation on
Williams trees is from [20].)
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5.2 Transformation Process

The files of trees that were provided were not in a form thaivadld them to
be input directly to any of PAUP, TNT or TASPI. The files somats contained
comments about how the trees were generated, parsimorgssoorother output
from their production. Other times the files were just a ligdibe listing of trees
in Newick format.

We created a suite of Perl scripts that take these input fildsganerate the
inputfiles for TNT and PAUP. For PAUP, these scripts collbettaxa list from the
first tree in the file, and the trees themselves, and put theamailNexus file that
can then be executed by PAUP. The command to compute corss@esuSection
5.3) is also put into the Nexus file. Similarily for TNT, thexteanames are read
and put into the file along with the trees themselves and thextands to do the
desired computation. We also have wrapper scripts whi@walis to compute
consensus in PAUP or TNT for a directory of source files.

TASPI was designed to read the source files directly. It usesiant of JCL
(Job Control Language) to read the file and strip out unnecgssformation,
which presently includes branch lengths (since branchtlhengre not used in
computing consensus). While the trees are being read, tkegiso being trans-
formed into TASPI’s internal format.

5.3 Commands Used

In PAUP, the command to compute a consensus trensree We used this
command and set various options. We first computed the sitsensus tree
by setting the option for strict to yes and the option for migjato no. We then
computed a majority rule tree by setting strict to no and migjdo yes with
percent 50. We noticed much longer times for computing thetdtee than for
majority, which, given our understanding of the problem métile sense. So,
we also computed the strict majority tree by issuing a condribat set strict to
no, but majority to yes with percent 100. As expected, thssiited in the same
trees as the strict command, but in much more reasonabls.timee commands
as they appeared in our input files are as follows:

contree all/strict=yes majrule=no treefilesutputFile> replace;
contree all/strict=no majrule=yes percent=50 treefileatputFile- replace;
contree all/strict=no majrule=yes percent=100 treefileuatputFile- replace;

13



We also ran PAUP with a paup block that computed first the ntgjoee (with
percent 50), and then the strict majority by using the majaogtion with percent
100 to test whether or not PAUP makes any use of the work dorleeirfirst
contreecommand.

In TNT, there are two commands to compute (and not approg)cansensus
trees. To compute a strict consensus, the commamnelsen(which, incidentally,
has nothing to do with Nelson consensus except a play on vioyrtise authors).
To compute a majority consensus, the commandagority. The majority com-
mand allows the user to specify the cutoff to be used. Thisftistthe opposite of
the percent in PAUP. In PAUP, “percent” is the percentagepfii trees in which
a branch must occur in order to be in the majority tree. In TNTfoff” is the
frequency at which a group is collapsed. Thus, it is not gmsgo compute a
strict consensus tree using the majority command, sinagiagta cutoff of 100
tells TNT to collapse all groups with a frequency of 100 osléd&/e could attempt
to compute a strict consensus using the majority commandteyieg a cutoff of
99 (cutoffs must be integers), but for greater than 100 tigesieed not be a strict
tree, and in our tests, we often have more than 100 trees., Weudo not use the
majority command to compute a strict consensus tree in TNT.

One more point about TNT commands remains to be addressedefBult,
TNT collapses branches with low support before doing a amsisecomputation.
However, we were not dealing with any initial data other tiiaa trees, so we
turned this feature off by using the commacallapse notempThe other reason
for doing this was to ensure that we were doing appropriatgnt comparisons.

Finally, in TASPI, the commands to compute a consensus dlass:

(setq *taxa-list* '(<theTaxaList))
(bmaj-nexus-file <fileName>" *taxa-list*)
(build-term-top (strip-cars<*bio-majority*|*bio-common*>) *taxa-list*)

The first command sets a global variabteaxa- | i st * to alist representing
the taxa list. This is analogous to thexalabelscommand present in the taxa
block of a Nexus file. The second command is what does the [aageof the
work of our algorithm: reads the input file, finds all partit®opresent, and creates
two global variablest bi o- maj ori t y* and* bi o- common* which have the
partitions occuring in a majority of the input trees, and faetitions occuring
in all input trees, respectively. The last command build®\&H1 representation
of the appropriate tree, majority #fbi o- maj ori t y* is passed, and strict if
*bi 0- common* is passed as the argument. At present, only a 50% majority can
be built by TASPI, but implementing other cutoffs is trivial
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6 Results

6.1 Storing trees

One of the major contributions of TASPI is the condensed &irim which trees
can be stored, while maintaining structural informatiorgufe 3 shows the four
sizes for each of our benchmark data sets. The Newick linedssize of the
trees as they were given to us, after removing non-topoédgiormation (that
is, branch lengths and other comments within the file weré rensioved). The
Newick.bz2 line is the size of the file after compression gs¢ire algorithm imple-
mented in bzip2 [21]. The TASPI.bhz line is the size of thediteer compression
using the Boyer-Hunt method. Notice that this is a compogssi that the size
of the file is much smaller, but all the information presenthia original files is
still accessible, in fact, at reduced speeds. Finally, h8Hl.bhz.bz2 line is the
size of the file if it is compressed using the Boyer-Hunt mdtand then bzip2 is
applied.

It is readily apparent that bzip2 produces smaller files ttm@nBoyer-Hunt
compression. However, the compressed Boyer-Hunt fileseadyrto be used as
input to analysis, such as consensus. Overall, this repiesepotentially huge
savings in space since the Boyer-Hunt files can be furthepoessed using bzip2
for sharing and transmission purposes. Notice that in aésdhe smallest size
for a file is that from TASPI.bhz.bz2.

6.2 Reading trees

An advantage of the TASPI system is its ability to quicklydéarge numbers of
large trees. Figure 4 gives the read times in seconds for &aotr benchmark
collections of trees. The PAUP and TNT times are averagestimgead over
a number of runs while the TASPI times are from a single ruror gomplete
reading timing data see Appendix D).

Notice that reading the compressed trees is always thestastge for any
collection, and not by a small margin. Even reading the sofites is faster in
TASPI than itis in either PAUP or TNT, again, usually by a lrgargin. (There is
one possible exception to this in Collection 2, for t64.nWowever, for TNT and
PAUP we would require greater timing precision in order toumately compare
read times.)

PAUP and TNT are very comparable in their read times. On tdilgs such
as those in Collections 1 and 3, TNT tends to do slightly bétizn PAUP, but the
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Figure 3: Storage space required for each data set.
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difference is never much, and TNT doing better is not an alisalle.

6.3 Computing Consensus

We ran consensus computations using PAUP, TNT, and TASP, thhe com-
mands described in Section 5.3. Computations were on ahRatgium 4 CPU
3.4 GHz computer with 1024K cache and an Intel Itanium 2 CPQUM®Biz com-
puter. (We were required to use two computers because of éneomny required
to do a consensus analysis in TASPI on Collection 1. Pleas&esetion 6.4 for a
further discussion of the memory requirement.)

Figure 5 shows the time to compute consensus with each ofrtgrgms.
These times are all in seconds, and include the time to fiast tlee input trees. In
each case, the trees are read, and then both a strict treenaajdréty 50 consen-
sus tree are computed. Note that TASPI has better perfoertanes compared
to PAUP and TNT, and that TASPI does better the larger the fAés0 note that
TASPI achieves results identical to PAUP in all cases. Téial$o the same as
TNT, but TNT uses a different taxon ordering, so we requinaadorm of nor-
malization to see that the trees are identical.

6.4 Analysis

Storing trees in compressed TASPI format saves considenadhory space. For
the Collections 2 and 3, using compressed TASPI format is b¥¢imes smaller

than Newick, and compressed TASPI together with bzip2 igméd better than
Newick. Using bzip2 alone is better than compressed TAS&iel but com-

pressed TASPI together with bzip2 is 2 times better thanZaipne. In other

words, compressed TASPI together with bzip2 creates filgsrédguire less than
2% of the original Newick space requirement.

Notice that as simply a compressed format, compressed T&SieL as good
as bzip2, but bzip2 data is not ASCII. Compressed TASPI isIiAN&@Gd can there-
fore be read as input to later algorithms. This is its striendt the data is not
required as input, compressed TASPI is still useful sinceising bzip2 on the
compressed TASPI files we can achieve even smaller data files.

Reading the compressed TASPI format saves considerabte thkgain, for
Collections 2 and 3, reading the compressed TASPI repras@mtof trees is
quicker than reading the Newick. TNT and PAUP are comparaibtbeir read
times, but reading Newick files with TASPI is 5 to 7 times fastean with either
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TNT or PAUP. Reading the compressed TASPI format on the dihad is 97
times faster than reading with PAUP or TNT.

These fast read times translate into a fast consensus enalyg total time
to read a collection of trees and then compute a strict andnihagonsensus in
TASPI is 14 times faster when reading compressed trees, ang faster when
reading Newick for Collection 2. Similarly, for Collectia®, TASPI is almost
9 times faster when reading compressed trees, and 5 times fésen reading
Newick trees. It is important to note that in every case, TA&RI PAUP return
the exact same results.

TASPI's total time is 29 times shorter than TNT on Collect®and 33 times
shorter on Collection 2. We were expecting TNT to exceed PAURs ability
to compute consensus trees since it is known for its abilitgyuickly generate
maximum parsimony trees. Our results show that this speddati translate to
its consensus algorithms.

Now, the greatest drawback to TASPI is its memory requirdmdn running
our experiments we used both a 32 bit computer and a 64 bitemn@ he 64 bit
machine was required for Collection 1 of trees due to a lack@mory on the 32
bit machine. PAUP and TNT were both able to complete on theit3®dchines,
but did so with terrible performance.

TASPI is able to read all data files on the 32 bit machine (Witheéxception of
RbcL500, which would be possible if we allocated memoryattghtly). However,
it is not capable of running a consensus analysis on the faegen Collection 1.
Currently we are maintaining a charade of fully functionedgramming which
is in large part where our memory issues arise. Early resuitts Collection 1
indicate that we may be able to achieve running times overmi@stfaster than
PAUP.

7 Conclusion

In phylogenetics, computing consensus trees is not whest computation time
is spent. However, having fast consensus methods is beganareasingly im-
portant. Researchers are proposing the use of the rate nfjela a consensus
tree as a stopping criterion for heuristic MP searches wivimhld require recom-
puting a consensus tree multiple times over the course ohalysis [25].

We have given a new format for collections of phylogeneges$ that would
make this possible. The format allows trees to be storednsiderably less space,
while allowing for improved performance in computing conses. Considering
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all of our data sets, TASPI format allows collections of ré@be stored in 1/47th
the amount of space required by Newick. Using TASPI to compohsensus for
all collections in our benchmarks (and using scaled numherd5 times faster
than using PAUP and over 300 times faster than using TNT.
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Data Set Pentium| Itanuim | Factor (I/P)
orsLIPS.DATA fixed 1.58 21.16 13.39
SRNA_mito_proteobac| 7.08 31.83 4.49
rdp_actinobacteria 6.98 39.64 5.68
Will _Euk 4.33 24.81 5.73
threedom 2org 6.41 32.73 5.11
oxsLIPS.DATA fixed 1.95 12.70 6.51
LSU_TOLO95 2.90 15.81 5.45
Mari.data 5.50 27.13 4.93
t10000.nwk 16.29 | 61.41 3.77
t64.nwk 0.76 6.65 8.75
Average 5.60

Table 1: Comparison of computation times

A Comparison of machines

Due to the memory requirements as discussed in Section 6.4/ane required to
use two different machines in our benchmarks. The first wdsdomputer with
an Intel 3.4 GHz Pentium 4 processor while the second was am&thine based
on a 900 MHz Itanium 2 processor. In order to get comparabheb®us, we ran
consensus using TASPI on Collection 2 on both of the macl{sessTable 1). We
then found the average factor by which the Itanium machine siaver than the
Pentium (we removed the largest factor to avoid biasing esults) and scaled
our timing data from the Itanium (for Collection 1) by thicftar (5.6).

B Data Set Overview

The trees in our collections were generated by outside ssuramely Usman
Roshan and Tiffani Williams. Tables 2 and 3 summarize tha dats that they
used to generate the trees used in our benchmarks.
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Data Set Source Type Seqs| Sites| Best | Number

Score | of Trees

Collection 1 — Trees from Usman Roshan

LIPS Goloboff rDNA 439 | 2461 | 41290 | 28947
LSU database RNA 1322 | 1078| 52053 | 26938
Mari Kallersjo rbcL DNA 2954 | 1232| 59858 18938
OCHO Ochoterena | rbcL DNA 854 | 937| 23005 | 31085
RcbL500 Rice web site| rbcL DNA 500| 759| 16218 | 141065
Rdp.actinobacteria| RDP 16s ribosomal RNA| 4583 | 1263 | 60892 6706
Rdp.firmicutes RDP 16s ribosomal RNA 7233 | 1352 | 156219 1866
SsuEukaryotes ERD Eukaryotes RNA | 6590| 1661 | 232630 2143
ThreeDom Gutell three-domain sRNA 7180 | 1122| 91894 2346
ThreeDom 2org | Gutell three-domain sRNA 8506 | 851| 99839 1503
Will Gutell SRNA 2000| 1251 | 74536 | 20926

Table 2: Data set overview




9¢

Data Set Source Type Seqs Sites| Best Scoreg Number

of Trees

Collection 2 — Trees from Usman Roshan
orsLIPS.DATA Goloboff rDNA 439 2461 41290 803
sRNA_mito_proteobad| unknown unknown 2587 | unknown| unknown 369
rdp_actinobateria unknown unknown 4583 | unknown| unknown 301
Will _Euk_ Gutell SRNA 2000 1251 74536 537
threedom 2org Gutell 3-dom sRNA 8506 851 99839 a7
OXSLIPS.DATA Goloboff rDNA 439 2461 41290 926
LSU_TOL095 database RNA 1322 1078 52053 423
Mari.data Kallersjo rbcL DNA 2954 1232 59858 465
t10000.nwk Rice web sitel rbcL DNA 500 759 16218 10000
t64.nwk Rice web site| rbcL DNA 500 759 16218 64
Collection 3 — Trees from Tiffani Williams

aster328 Gutell RNA 328 946 2505
eern476 Eernisse Metazoan DNA 476 1008 17765 2505
john921 Johnson AvianCytochromeDNA | 921 713 42759 2505
lipsc439 Goloboff rDNA 439 2461 41290 2505
mari2594 Kallersjo rbcL DNA 2954 1232 59858 2505
ocho854 Ochoterena | rbcL DNA 854 937 23005 2505
rbcl500 Rice web site| rbcL DNA 500 759 16218 2505
three567 Soltis rbcL, atpB, 18s DNA 567 2153 74536 2505
will2000 Gutell SRNA 2000 1251 74536 2505

Table 3: Data set overview continued




C Storage

The raw data numbers for storing the collections of treesumb@nchmarks are
given in Table 4.

D Readtimes

This appendix shows additional read times for each of olectbns of trees. All
times are in seconds, and the type of computer used was dfRnBentium(R) 4
CPU 3.40GHz with 1024 KB. Table 5 gives the read times usingfPAnd Table
6 gives the read times using TNT.

Table 7 gives comparative numbers. The times for TNT and PatdRwverage
times across a number of runs, while the TASPI numbers ane &single run.

E Computing consensus times

This appendix gives further details about computing cosiseim PAUP and TNT.
In PAUP, we computed a strict consensus using the “strictioop a majority
consensus with percent 50, a majority consensus with pet€€) and then both
a majority with percent 50 and a majority with percent 100bl&a8 shows the
total computation time for each of these possibilities.dnlecase the time shown
is the number of seconds to both read in the trees and contput®hsensus tree
indicated. Notice that to compute a strict majority treeeakonsiderably more
time than to compute the same tree using the majority optitaving no access
to the source code of PAUP we have no ideas why this is, buteis deem to be
an issue.

In TNT, we computed a strict consensus tree using the commelisdnand a
majority tree with cutoff 50 using theajority command, and then also computed
both strict and majority trees. As in the PAUP table, the srakown in Table 9
are total computation times and therefore include the toread in the collection
of trees.

Table 10 gives comparative numbers. Each entry is the timeat and com-
pute both a strict and majority tree in the program given ea¢blumn heading.
(The times for Collection 1 are scaled from the 64-bit coreplitNotice again
that using the compressed TASPI format always results imbthe shortest time
for any collection of trees.
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Data Set | Newick | Newick.bz2| TASPI | TASPI.bz2|

Collection 1 — Trees from Usman Roshan

LIPS 158M 3.3M 5.2M 704K
LSU 244M 12M 33M 5.4M
Mari 355M 20M 25M 4.4M
OCHO 329M 12M 12M 2.0M
RbcL500 455M 11M 28M 4.4M
Rdp.actinobacteria 228M 24M 38M 8.4M
Rdpfirmicutes 101M 14M 23M 5.7M
SsuEukaryotes 106M 12M 14M 2.9M
ThreeDom 126M 20M 32M 8.5M
ThreeDom 2org 96M 17M 35M 9.1M
Will _Euk 298M 12M 15M 2.6M
Collection 2 — Trees from Usman Roshan
orsLIPS.DATA 4.4M 97K 189K 33K
SRNA_mito_proteobac| 6.9M 550K 1.5M 311K
rdp_actinobacteria 11M 776K 1014K 238K
Will _Euk 7.7T™M 281K 534K 90K
threedom.2org 3.0M 549K 1.3M 383K
oxsLIPS.DATA 5.1M 97K 195K 29K
LSU_TOLO95 3.9M 149K 449K 76K
Mari.data 8.8M 460K 795K 141K
t10000.nwk 33M 197K 771K 31K
t64.nwk 212K 3.7K 14K 2.8K
Collection 3 — Trees from Tiffani Williams
aster328 5.3M 52K 281K 38K
eern476 7.7T™M 100K 731K 68K
john921 16M 380K 1.3M 239K
lipsc439 7.1M 69K 406K 35K
mari2594 47M 1.8M 3.3M 515K
ocho854 15M 259K 1.1M 131K
rbcl500 8.1M 117K 596K 71K
three567 9.3M 102K 578K 45K
will2000 36M 1.2M 2.8M 426K

Table 4: Data Set Sizes
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Filename | Strict | Maj50 | Maj100 | Both | Average|

Collection 1 — Trees from Usman Roshan
LIPS.DataAll 51 67 66 64 62.00
LSU_tolo95All 489 | 484 480 480 || 483.25
Mari_All 1285| 1307 | 1315 | 1318|| 1306.25
OCHO.DataAll 198 | 204 206 205 || 203.25
RbcL500QAll 451 | 452 452 456 || 452.75
Rdp.actinobateridAll | 1246 | 1241 | 1254 | 1251 1248.00
Rdp.firmicutesAll 857 | 852 859 857 || 856.25
SsuEukaryotegAll 895 | 892 896 897 || 895.00
ThreeDom_All 1143 | 1139 | 1148 | 1144 1143.50
Threedom.2org All 999 | 991 990 986 || 991.50
Will _EukAll 779 | 785 782 784 | 782.50

Collection 2 — Trees from Usman Roshan
orsLIPS.DATA 1 1 1 1 1.00
sRNA_mito_proteobad 21 22 22 21 21.50
rdp_actinobateria 46 46 55 45 48.00
Will _Euk 17 16 16 16 16.25
threedom 2org 26 25 25 25 25.25
OXSLIPS.DATA 2 2 2 2 2.00
LSU_TOL095 6 6 6 7 6.25
Mari.data 27 33 41 26 31.75
t10000.nwk 31 27 28 28 28.50
t64.nwk <1 <1 <1 <1 <1

Collection 3 — Trees from Tiffani Williams
aster328 2 3 2 2 2.25
eern476 4 5 4 5 4.50
john921 16 17 17 20 17.50
lipsc439 8 4 4 4 5.00
mari2594 137 137 145 205 || 156.00
ocho854 15 15 14 15 14.75
rbcl500 6 12 12 12 10.50
three567 15 7 7 7 9.00
will2000 74 73 73 73 73.25

Table 5: Time (in seconds) to read trees into PAUP when almobtnpute the
type of consensus given in the column heading
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| Filename | Strict | Maj50 | Both | Average]
Collection 1 — Trees from Usman Roshan
LIPS.DataAll 38.00 | 38.00 | 38.00 38.00
LSU_tolo95All 425.00 | 429.00 | 400.00 | 418.00
Mari_All 1178.00| 1185.00| 1182.00| 1181.67
OCHO.DataAll 147.00 | 149.00 | 148.00 | 148.00
RbcL50QAll 328.00 | 330.00| 309.00| 322.33
Rdp.actinobateriaAll | 1165.00{ 1163.00{ 1175.00| 1167.67
RdpfirmicutesAll 809.00 | 811.00 | 805.00 | 808.33
SsuEukaryotesAll 851.00 | 857.00 | 857.00 | 855.00
ThreeDom_All 1097.00| 1096.00| 1097.00| 1096.67
Threedom.2org All 969.00 | 972.00 | 962.00 | 967.67
Will _Euk_All 679.00 | 679.00| 673.00 | 677.00
Collection 2 — Trees from Usman Roshan
orsLIPS.DATA 0.00 0.00 1.00 0.33
SRNA_mito_proteobac, 21.00 | 22.00 | 20.00 | 21.00
rdp_actinobateria 47.00 | 45.00 | 45.00 | 45.67
Will _Euk 15.00 15.00 15.00 15.00
threedom 2org 26.00 | 26.00 | 26.00 | 26.00
OoXSLIPS.DATA 1.00 1.00 1.00 1.00
LSU_TOL095 5.00 6.00 6.00 5.67
Mari.data 25.00 | 26.00 | 25.00 25.33
t10000.nwk 20.00 | 20.00 19.00 19.67
t64.nwk 0.00 0.00 0.00 0.00
Collection 3 — Trees from Tiffani Williams
aster328 1.00 2.00 2.00 1.67
eernd476 4.00 4.00 4.00 4.00
john921 16.00 15.00 15.00 15.33
lipsc439 4.00 3.00 4.00 3.67
mari2594 136.00 | 139.00 | 143.00 | 139.33
ocho854 14.00 13.00 | 30.00 19.00
rbcl500 5.00 5.00 4.00 4.67
three567 13.00 13.00 6.00 10.67
will2000 71.00 | 72.00 | 71.00 71.33

Table 6: Time (in seconds) to read trees into TNT when abothhapute the type
of consensus given in the column heading
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Data Set Name

[ PAUP [ TNT | TASPI| TASPLbhz]

Collection 1 — Trees from Usman Roshan
LIPS 62.00 | 38.00 | 32.28 2.30
LSU 483.25 | 418.00 | 93.50 20.07
Mari 1306.25| 1181.67| 142.31 12.15
OCHO 203.25| 148.00| 70.62 5.47
RbcL500 452.75| 322.33 | 171.64 11.94
Rdp.actinobacteria 1248.00| 1167.67| 97.40 19.68
Rdpfirmicutes 856.25 | 808.33 | 41.21 10.18
SsuEukaryotes 895.00 | 855.00 | 42.87 5.71
ThreeDom 1143.50| 1096.67| 67.31 14.99
ThreeDom_2org 991.50 | 967.67 | 43.25 13.78
Will _Euk 782.50 | 677.00 | 128.18 6.00

Collection 2 — Trees from Usman Roshan
orsLIPS.DATA 1.25 1.00 0.77 0.04
sRNA_mito_proteobadg| 21.00 | 21.00 | 2.42 0.37
rdp_actinobacteria 45.00 | 46.00 | 3.31 0.26
Will _Euk 16.00 18.33 2.53 0.13
threedom 2org 25.50 | 28.00 1.12 0.33
OXSLIPS.DATA 1.00 1.00 0.91 0.05
LSU_TOLO95 5.75 6.00 1.36 0.11
Mari.data 26.00 | 25.00 3.15 0.21
t10000.nwk 23.25 19.67 | 14.29 0.19
t64.nwk <1 0.00 0.10 0.00

Collection 3 — Trees from Tiffani Williams
aster328 2.75 1.67 1.17 0.07
eern476 5.00 4.00 1.75 0.19
john921 16.25 15.33 3.56 0.31
lipsc439 4.00 3.00 1.57 0.10
mari2594 142.00 | 138.00 | 11.42 0.85
ocho854 14.75 14.33 3.53 0.28
rbcl500 6.00 6.00 1.95 0.16
three567 7.00 6.33 2.28 0.15
will2000 77.50 | 88.00 9.89 0.71

Table 7: Comparative read times (in seconds). Note thatrtietb read the com-
pressed RbcL500 data is scaled from a 900MHz machine instethe 3.4GHz
machine in all other entries (see Section A).
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| Filename | Strict | Maj50 | Maj100| Both |
Collection 1 — Trees from Usman Roshan
LIPS.DataAll 176.46 | 75.88 | 74.62 81.53
LSU_tolo95All 1642.71 | 608.70 | 604.74 | 733.36
Mari_All 9487.74 | 1501.86| 1507.31| 1710.64
OCHO.DataAll 793.78 | 236.81 | 235.58 | 270.21
RbcL500QAll 1046.88 | 508.22 | 507.95 | 574.82
Rdp.actinobaterigAll || 8870.73 | 2102.26| 2114.41| 2985.75
RdpfirmicutesAll 12187.21| 1592.72| 1574.64| 2304.54
SsuEukaryotesAll 14053.96| 1176.39| 1156.38| 1445.68
ThreeDom_All 11840.77| 2251.45| 2229.79| 3325.03
Threedom 2org All 8145.78 | 2899.05| 2853.41| 4748.29
Will _Euk_All 3883.13| 907.21 | 902.51 | 1027.35
Collection 2 — Trees from Usman Roshan
orsLIPS.DATA 6.48 1.57 1.62 1.95
mito_proteobac 171.00 | 30.71 | 29.76 | 39.14
rdp_actinobateria 638.22 | 75.30 | 66.42 | 98.56
Will _Euk 189.59 | 20.62 20.22 25.14
threedom.2org 418.39 | 106.76 | 76.72 | 153.36
OoXSLIPS.DATA 7.17 1.79 1.78 2.07
LSU_TOL095 35.28 7.67 7.46 9.29
Mari.data 310.66 | 33.23 | 32.04 | 39.97
t10000.nwk 120.33 | 26.82 26.83 30.00
t64.nwk 0.95 0.27 0.26 0.37
Collection 3 — Trees from Tiffani Williams
aster328 8.45 3.09 3.10 3.57
eern476 18.07 5.67 5.65 6.51
john921 71.12 19.26 19.19 22.32
lipsc439 18.00 4.86 4.82 5.54
mari2594 1303.51| 157.28 | 164.94 | 184.52
ocho854 71.66 16.86 16.72 19.14
rbcl500 23.03 6.83 6.79 7.68
three567 36.08 8.40 8.37 9.47
will2000 498.92 | 88.63 | 86.84 | 102.29
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Table 8: Time (in seconds) to read trees and compute cornsesswyy PAUP.



Filename | Strict | Maj50 | Both |
Collection 1 — Trees from Usman Roshan
LIPS.DataAll 91.32 | 451.57 | 500.27
LSU_tolo95All 866.92 | 16372.49| 16564.88
Mari_All 2522.30| 9247.21 | 10536.53
OCHO.DataAll 359.18 | 9034.97 | 9154.71
RbcL500QAll 669.54 | 20749.34| 20792.32
Rdp.actinobateridAll || 2614.17| 46203.27| 47675.47
RdpfirmicutesAll 1879.99| 22792.60| 23878.79
SsuEukaryotesAll 1920.54| 6450.15| 7514.41
ThreeDom_All 2488.50| 39222.34| 40600.86
Threedom 2org All 2231.63| 38541.74| 39964.79
Will _Euk_All 1499.25| 5381.59 | 6236.13
Collection 2 — Trees from Usman Roshan
orsLIPS.DATA 1.92 2.69 3.78
SRNA mito_proteobac| 41.25 | 169.74 | 191.09
rdp_actinobateria 93.59 | 255.65 | 303.13
Will _Euk 32.76 37.82 54.95
threedom.2org 58.70 | 152.83 | 182.31
oxsSLIPS.DATA 2.26 2.61 3.87
LSU_TOL095 11.76 19.81 22.06
Mari.data 51.90 61.54 87.75
t10000.nwk 40.63 42.25 63.52
t64.nwk 0.26 0.26 0.40
Collection 3 — Trees from Tiffani Williams
aster328 4.23 4.95 7.35
eern476 8.78 13.13 18.20
john921 36.45 95.41 115.02
lipsc439 7.29 8.34 12.53
mari2594 309.08 | 396.75 | 557.13
ocho854 29.72 41.02 58.23
rbcl500 9.78 12.39 16.38
three567 11.12 14.38 19.23
will2000 171.59 | 296.47 | 396.44

Table 9:

Time (in seconds) to read trees and compute consessiwg TNT.
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Data Set Name |

[ PAUP | TNT

[ TASPI | TASPI.bhz]

Collection 1 — Trees from Usman Roshan
LIPS 81.53 500.27 | 46.17 11.92
LSU 733.36 | 16564.88| 160.95 79.60
Mari 1710.64| 10536.53| 261.61 53.95
OCHO 270.21 | 9154.71 | 127.59 27.21
RbcL500 574.82 | 20792.32| 216.42 67.12
Rdp.actinobacteria 2985.75| 47675.47| 151.46| 101.30
Rdpfirmicutes 2304.54| 23878.79] 87.19 64.79
SsuEukaryotes 1445.68| 7514.41| 63.25 31.42
ThreeDom 3325.03| 40600.86| 99.68 90.76
ThreeDom_2org 4748.29| 39964.79| 91.47 76.78
Will _Euk 1027.35| 6236.13| 137.04 32.34

Collection 2 — Trees from Usman Roshan
orsLIPS.DATA 1.95 3.78 1.58 0.87
sRNA_mito_proteobad| 39.14 | 191.09 7.08 5.88
rdp_actinobacteria 98.56 | 303.13 6.98 4.43
Will _Euk 25.14 54.95 4.33 2.08
threedom 2org 153.36 | 182.31 6.41 6.18
OXSLIPS.DATA 2.07 3.87 1.95 1.17
LSU_TOLO95 9.29 22.06 2.90 1.75
Mari.data 39.97 87.75 5.50 2.91
t10000.nwk 30.00 63.52 16.29 2.35
t64.nwk 0.37 0.40 0.76 0.62

Collection 3 — Trees from Tiffani Williams
aster328 3.57 7.35 2.11 1.07
eern476 6.51 18.20 3.79 2.87
john921 22.32 115.02 6.69 4.08
lipsc439 5.54 12.53 2.84 1.60
mari2594 184.52 | 557.13 | 20.69 12.54
ocho854 19.14 58.23 6.11 4.19
rbcl500 7.68 16.38 3.65 2.31
three567 9.47 19.23 4.04 2.20
will2000 102.29 | 396.44 | 18.43 10.4

Table 10: Comparative computation of consensus times (arsis). Note that
for Collection 1, the TASPI times are scaled from a 900Mhz Invae instead of
the 3.4GHz machine in all other entries (see Section A).
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