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Abstract

Phylogenetic tree searching algorithms often produce thousands of trees
which biologists save in Newick format in order to perform further analysis.
Unfortunately, Newick is neither space efficient, nor conducive to post-tree
analysis such as consensus. We propose a new format for storing phyloge-
netic trees that significantly reduces storage requirements while continuing
to allow the trees to be used as input to post-tree analysis. We implemented
mechanisms to read and write such data from and to files, and also imple-
mented a consensus algorithm that is faster by an order of magnitude than
standard phylogenetic analysis tools. We demonstrate our results on a col-
lection of data files produced from maximum parsimony searches.

1 Introduction

We have developed some improved methods for storing and retrieving phyloge-
netic data, and we have implemented a consensus algorithm with increased per-
formance. Our approach permits very large data sets to be compactly stored and
retrieved without any loss of precision. Our implementation of our consensus al-
gorithm provides greatly increased performance when performing strict and ma-
jority consensus computations.

Producing a phylogeny for a set of taxa involves four major steps. First, com-
parative data for the taxa must be collected. This data oftentakes the form of
DNA sequences, other biomolecular information or matricesof morphological
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data. Second, this data is aligned to ensure that comparableinformation is con-
sidered as input to the tree producing step. The third step isto produce candidate
trees. There are many techniques for doing this including optimizing maximum
parsimony or maximum likelihood criteria, or, more recently, by using Bayesian
methods [8] [11]. These techniques rarely result in a singleoptimal tree. Instead,
there are often many trees that a phylogeneticist would liketo save for further
processing such as consensus analysis, which is used to summarize the collection
of trees. These post-tree analyses are the final step.

In this paper, we propose a new format for storing trees whichsaves space, re-
duces time to read a collection of trees, and allows for better performance in com-
puting strict and majority consensus trees. Our system is called the Texas Analysis
of Symbolic Phylogenetic Information (TASPI), and it is an experimental system,
written from scratch. It is a stand alone tool for a few kinds of phylogenetic data
manipulation. TASPI is written in the ACL2 [12] formal logic, where all oper-
ations are represented as pure functions. Using ACL2’s associated mechanical
theorem prover, it is possible to prove assertions about theTASPI system.

We begin with a survey of various consensus methods and introduce our rep-
resentation. We then give an end-to-end example of a majority consensus analysis
which we use to explain our algorithm for computing consensus. Finally, we ex-
plain our experiments and give their results.

2 Consensus Methods

Consensus trees are defined by Felsenstein as “trees that summarize, as nearly as
possible, the information contained in a set of trees whose tips are all the same
species” [8]. There are many different kinds of consensus, each stressing a differ-
ent commonality or difference between the input trees, and each deciding how to
deal with conflicts between trees.

A conflict between two trees arises when a branch in one tree isnot in the
other. A branch separates a tree into two sections, creatinga bipartition between
the leaves in one part of the tree and the leaves in another. Ifthe same bipartition
is created by a branch in one tree and a branch in another, these trees are said to
share that branch. If, however, there is no branch in the second tree that produces
the same bipartition that is produced by a branch in the first tree, these two trees
are said to be in conflict.

Consensus methods return a single tree, or an indication that no tree meet-
ing the requirement of the method is possible. A consensus tree is created from
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the input trees based on some criteria. Two of the most commontypes of con-
sensus trees are strict and majority. Both of these types of consensus decide
which branches in the input trees to keep, and then build a tree from the result-
ing branches. Strict consensus requires that any branch in the consensus tree be a
branch in every input tree, while a majority tree only requires that any branch in
the consensus tree be a branch in at least a majority of the input trees.

Edward N. Adams III was the first to propose and present a solution to the
problem of “combining information from rival trees into onerepresentative tree”
[5] in 1972, and this form of consensus became known as Adams’consensus [1].
Since that time, many other versions have been presented andimplemented.

In 1981 Margush and McMorris defined the majority rule trees as we know
them today. They proposed this form of consensus as following best the “dictio-
nary definition of consensus as ’general agreement’ or ’majority of opinion”’ [13].
It was also around this time that Sokal and Rohlf coined the term “strict consen-
sus” [22].

Researchers continued to study the properties of consensusmethods, as well
as propose alternatives. In 1982 through 1985, McMorris andNeumann, in both
joint and separate work, explored desirable properties of consensus methods. Un-
fortunately, they proved that it was impossible that a single method could simul-
taneously have all desirable properties explored. The properties they were inter-
ested in were whether a function was neutral, Pareto, dictatorial, and faithful [17].
They proved a theorem similar to a classical impossibility theorem of K. Arrow,
namely that a consensus method can not be both neutral and Pareto without be-
ing dictatorial. McMorris and Neumann started by proving the impossibility for
tree quasi-orders [16] and McMorris later proved it for undirected phylogenetic
trees [14]. Neumann proposed a number of other consensus measures, such as the
Durshnitt Rule and Cardinality Intersection Rule, which hebelieved were a better
measure of similarity since they upheld faithfulness [17].However, none of these
faithful methods gained much popularity.

In 1983, McMorris, Meronk and Neumann parameterized the strictness of a
tree [15] in an overview of consensus methods available at the time. This overview
included Nelson consensus, which is based on replicated components. In this type
of consensus, any clade (grouping of taxa) that is in at leasttwo trees should be in
the consensus, but notice that this process does not necessarily return a tree [15].
Page addressed this problem several years later (1990) by creating what is now
known as Nelson-Page consensus, a version where a clade appearing more often
is given greater weight, and the greatest weight tree is the consensus tree [5].

New forms of consensus continued be developed, including loose consensus
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Co−Pareto(splits/clusters)

Asymmetric med.

Figure 1: A classification of consensus methods from David Bryant [5]. There is
an arrow from one method to another if every split in the consensus tree produced
by the first method is contained in every consensus tree produced by the second
method.
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trees (also known as semi-strict, or combinable component)[18], local consen-
sus [26] and asymmetric median trees [19]. Researchers continue to look for new
methods, particularly for large and plentiful trees, sincethe accuracy of the con-
sensus trees as compared to a known true tree appears to decrease with size and
number of trees [4].

In terms of performance, in 1985 Day published a paper [6] showing how to
compute a strict consensus tree inO(kn) time where k is the number of trees in
the input set, and n is the number of leaves in each of the trees. He outlined a
process for rooted trees, and then showed how the unrooted case could be handled
as well.

In 2003 a similar optimality constraint was developed for majority consensus.
Amenta et al. were trying to generate majority trees more quickly for their inter-
active visualization system. In doing so, they achieved a linear time majority tree
algorithm that makes use of randomization (that is, the expected running time isO(kn)) [2].

For many of the other forms of consensus, algorithm complexity results have
also been achieved. While several of these haveO(kn2) or other polynomial run-
ning times, many more are NP-hard for realistic situtations(for example, median
consensus and asymmetric median trees) [26].

The latest development in consensus algorithms is in the area of online con-
sensus. Berger-Wolf outlined online algorithms for computing strict and majority
consensus trees which would allow an unchanging consensus to be used as a stop-
ping criterion for heuristic tree searches [3].

It is important to note that all consensus methods, though they may return
a tree, rarely return a tree that is most parsimonious, nor does the returned tree
achieve the best likelihood score. Thus, there has been somedebate about using
consensus methods to infer phylogenies [5]. However, if only the appropriate
information, namely that given by the criteria used to create the tree, is gleaned
from the consensus tree, they are very useful.

3 Representation

Newick format is the standard way of storing a collection of phylogenetic trees.
Adopted in 1986, Newick [7] is a parenthetical notation thatuses commas to sepa-
rate sibling subtrees, parentheses to indicate children, and a semicolon to conclude
a tree. Newick outlines each tree in its entirety whether storing one tree, or a col-
lection of trees.
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On the other hand, TASPI capitalizes on common structure within a collection
of trees. TASPI stores a common subtree once, and then each further time the
common subtree is mentioned, TASPI references the first occurrence. This saves
considerable space since potentially large common subtrees are only stored once,
and the references are much smaller (for empirical results see Section 6).

There are two layers to the TASPI representation of trees. Ata high-level,
trees are represented as Lisp lists, similar in appearance to Newick, but without
commas and semicolons. This is the format presented to the user of TASPI and
on which user functions operate. At a low-level, the data areinstead represented
in a form that uses hash-consing [10] to achieve decreased storage requirements
and improved accessing speeds. For ease of reference in Section 6, we call this
the Boyer-Hunt compression.

Consider the following set of rooted trees in Newick format:

(a,((b,(c,d)),e));
(a,((e,(c,d)),b));
(a,(b,(e,(c,d))));
((a,b),(e,(c,d)));

The format of these trees presented to the user of TASPI is straightforward:

(a ((b (c d)) e))
(a ((e (c d)) b))
(a (b (e (c d))))
((a b) (e (c d)))

Notice that storing this set of trees involves restoring thesubtree containing
taxac andd once for every tree. The Boyer-Hunt compression instead stores
the c-d clade once, the first time it is encountered. If, subsequently, thec-d
clade is encountered again, the first time is marked with “#n=” for the current
value of a counter n that is incremented each time it is used. Then, instead of
re-storing thec-d clade, a reference in the form “#n#” is stored in its place. This
compression has parallels to the Lempel-Ziv data compression which is based
only on characters seen so far [27]. The compressed version of the trees above is
given below:

((A ((B #1=(C D )) E ))
(A (#2=(E #1#) B))
(A (B #2#))
((A B)#2#))
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We use a technique sometimes called hash-consing [10], which ensures that
no object is ever stored twice. In the context of phylogenetic trees, an object
is a subtree, and consing is a tree constructor that joins subtrees. Hashing, put
simply, is a technique that creates a table that allows for fast searches. In this
case, hashing is used to quickly determine if a subtree was previously encountered.
The format, using “#n=” and “#n#”, is a standard read dispatch macro from Lisp
programming [23].

Two subtleties remain to be addressed. First, though we willbe presenting
rooted trees in this paper, trees are not all rooted. In fact,most tree searching
algorithms return unrooted trees since determining the root of a tree may itself
be a computationally intensive problem [8]. Newick format does not distinguish
between rooted and unrooted trees except through the use of auxiliary flags. By
placing [&R] and [&U] just before the beginning of a tree, rooted and unrooted
trees, respectively, are indicated. Without these flags, the onus is on the user to
interpret the trees appropriately.

Second, Newick does not give a unique represen-
tation for a tree. Consider the tree on the right. There
are many representations for this tree in both Newick
and TASPI. Possible TASPI representations include:
((F G) ((A B) (C (D E)))) and
((C (E D)) ((B A) (G F))).

BA

F
G E

D

C

To ensure a unique answer in our computations, we order the output with respect
to an ordering on the taxa. As far as we can tell, PAUP also doesthis. Thus,
given an alphabetical ordering, we would order the tree above as(A (B ((C
(D E)) (F G)))).

4 Our algorithm for consensus

We compute a consensus through a sequence of steps. We first read the source
file containing the trees for which a consensus is to be computed. During the read
process, we identify every subtree for which we have alreadyread an identical
subtree; thus, instead of creating a new data structure for the subtree just read,
we reference the previously created subtree. We next createa mapping from all
subtrees to every parent in which a subtree is referenced. Using this information,
we compute the occurrence frequency of every subtree. Finally, after we have
selected the subtrees that match our selection criteria, weconstruct the consensus
answer. We give an example computation in Subsection 4.1.
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In the following explanation, we use the notion of a ”multiset”, which is, in-
tuitively speaking, a kind of set in which the number of occurrences count. More
formally, one may regard a multiset as a function to the set ofpositive integers. If
A andB are multisets, thenA is a multisubset ofB if and only if for eachx in the
domain ofA, x is in the domain ofB andA(x) <= B(x).

For example, supposeu, v, andw are all distinct objects. LetA =<u, 1>,<v,
2> and letB =<u, 2>,<v, 4>,<w, 5>, thenA is a multiset with one occurrence
of u and two ofv. Thus,A(v) = 2. A is a multisubset ofB becauseA(u) <= B(u)
andA(v) <= B(v).

One way to represent multisets is with lists in which the number of occurrences
of an element in a list represents the number of times that theelement is in the
corresponding multiset. So for example, we may represent the exampleA above
with the Lisp list(u v v).

Several definitions will be useful.� tip : a symbol or integer.� tree: a tip or, recursively, a list of one or more trees.� fringe: a list of all tips in a tree.� subtree: If a and b are trees, thena is asubtreeof b if and only if either (1)
a is b or (2)b is a list anda is a subtree of a member ofb.� proper subtree: If a andb are trees,a is a proper subtreeof b iff a is a
subtree ofb anda is notb.� domain: Thedomainof an association list (a list of key-value pairs) is the
set of the keys of the members of the association list.� replete: An association listdb is replete if and only if for all t1 in the
domain ofdb, (1) t1 is a nontip tree and (2) ift2 is a nontip proper subtree
of t1, thendb(t2) is a list representing the multiset of all trees in the domain
of db that havet2 as a member, includingt1. Note that the multiset((a) (b)
(a)) has the tree(a) as a member twice.� top level: A tree in the domain of a repletedb is said to betop levelif and
only if it is a proper subtree of no member of the domain ofdb.

To compute the consensus, our algorithm proceeds by:
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1. Producing a replete association list of all of the subtrees in the original input,

2. Counting the frequencies of the non-tip subtrees,

3. Collecting the subtrees that appear as often as the designated majority thresh-
old, and finally,

4. Constructing the consensus tree.

Step one is accomplished by our functionreplete-trees-list-topwhich con-
verts the original input list of trees into a replete association list (database). This
replete database is a mapping from subtrees to every parent tree containing the
subtree in question. Step two is performed by the functionfringe-frequencies
which counts the frequencies of every subtree fringe in the replete database by
iterating through the replete database. Step three is collecting the subtrees that
occur as often as the threshold. Finally, using this collection of subtrees, function
build-term-top constructs the consensus answer.

Our functionreplete-trees-list-toptakes a listl of non-tip trees no member of
which is a proper subtree of another, such as a list of trees all with the same set
of taxa. replete-trees-list-topreturns a replete association listdb such that (1)x
is a member of the domain ofdb if and only if x is a member ofl or is a non-tip
proper subtree of a member ofl and (2) ifx is in the domain ofdb, thendb(x) is an
integer if and only ifx is a member ofl anddb(x) is the number of timesx occurs
in l. For an example execution ofreplete-trees-list-top, see Subsection 4.1.

Functionfringe-frequenciestakes a listl of nontip trees such that no member
of l is a proper subtree of any other member ofl (such as that produced byreplete-
trees-list-top). fringe-frequencies returns a minimal length association list that
pairs the fringefr of each nontip subtree of each member ofl with the number of
occurrences inl of non-tip subtrees of members ofl that have fringefr .

By scanning through the resulting association list, we justpick out the sub-
trees that appear as often as the desired threshold. We have no need to store the
actual number of times any specific subtree appears, we simply collect the desired
subtrees (fringes) into a list.

The functionbuild-term-top takes two arguments. The first argument is a
sorted listl of the subtrees’ fringes;l is sorted using a lexicographic (normaliza-
tion) order that is based both on the internal tips and the size of the elements in
each subtree. All the subtrees inl must appear in the consensus answer. The
second argument is a normalization taxa listtx, that is used by our lexicographic
ordering function so we can produce a unique representationof any subtree that
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A B C D E F G A B C D E F G

AA AB B BC CD DE EF FG GE F GC D

(((A B) C) (D (E (F G))))

(((A B) C) ((D E) F G)) ((A (B C)) ((D E F) G))

((A (B C)) ((D E) (F G)))(((A B) C) ((D E) (F G)))

Figure 2: A collection of trees together with their TASPI representations

itself includes more than one subtree. Remember, we represent each subtree as
a list of subtrees, so to make the representation unique we sort members of each
subtree.build-term-top constructs a consensus answer tree recursively by first
building an answer of the first subtree ofl. Once the first answer subtree is com-
puted for the first element inl, any (sub-)subtrees required to build the first subtree
are “crossed out” froml that remain to be processed, and we continue with the next
remaining element ofl until no entries remain.

4.1 Example

Consider the five trees in Figure 2. The TASPI representationof these trees is the
input to the functionreplete-trees-list-top. This function returns the following
association list, where keys are in boldface:

((A B)((A B) C))
((((A B) C) ((D E) (F G))) . 1)
((D E)((D E) F G)

((D E) (F G)))
(((D E) F G) ((A B) C) ((D E) F G)))
((((A B) C) ((D E) F G)) . 1)
(((A B) C)(((A B) C) (D (E (F G))))

(((A B) C) ((D E) F G))
(((A B) C) ((D E) (F G))))

((F G) (E (F G))
((D E) (F G)))

((E (F G)) (D (E (F G))))
((D (E (F G))) (((A B) C) (D (E (F G)))))
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((((A B) C) (D (E (F G)))) . 1)
((B C) (A (B C)))
((D E F) ((D E F) G))
(((D E F) G) ((A (B C)) ((D E F) G)))
(((A (B C)) ((D E F) G)) . 1)
((A (B C))((A (B C)) ((D E) (F G)))

((A (B C)) ((D E F) G)))
(((D E) (F G))((A (B C)) ((D E) (F G)))

(((A B) C) ((D E) (F G))))
(((A (B C)) ((D E) (F G))) . 1)

A subtree is the key for each element of the list, and the remainder of each
entry (the values) is either (1) trees or subtrees in which the key appears, or (2)
an integer representing the number of times this top level tree occurs in the input
collection. Thus, this is a replete association list. This association list is now the
input to the functionfringe-frequencies, which produces this list:

((A B) . 3) ((D E F). 1)
((D E) . 3) ((A B C) . 5)
((F G) . 3) ((D E F G) . 5)
((E F G) . 1) ((A B C D E F G) . 5)
((B C) . 2)

This frequency list has each fringe from our replete association list, together with
an integer. Remember, a fringe is simply a list of the tips in atree, so we do not
distinguish between the fringe from(A (B C)) and the fringe from((A B)
C). The integer gives the number of trees that have a subtree with this fringe.

We are now prepared to sweep through this list and record the fringes that
occur at least as often as the threshold for both a strict and majority consensus.
In this example, for the strict majority we collect those fringes that occur 5 times,
and for the majority, we collect those that occur at least 3 times. This gives us:

((A B C D E F G) . 5)
((D E F G) . 5)
((A B C) . 5)

and

((A B C D E F G) . 5)
((D E F G) . 5)
((A B C) . 5)
((F G) . 3)
((D E) . 3)
((A B) . 3)

Finally, the function build-term-top uses either the strict
or majority fringes together with a normalization list suchas
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(A B C D E F G) to create the strict and majority consen-
sus trees. In this case we create((A B C) (D E F G)) and
(((A B) C) ((D E) (F G))).

5 Experimental Methodology

5.1 Data Set Collection

In order to see how well TASPI performs, as compared to currently available
programs, we searched for collections of trees. We started with trees generated by
Usman Roshan as part of his thesis work at the University of Texas [20]. Roshan
obtained large data sets of biomolecular data from online databases as well from
biologists at UT. He used the alignments provided, and then removed parsimony
uninformative sites as well as low confidence sites. He then used this data to
compare tree searching techniques such as those implemented in PAUP [24] and
TNT [9] to his own (Recursive Iterative Disc Covering Methods). Doing these
searches generated hundreds and sometimes thousands of trees for each data set.
Roshan saved these trees and generously allowed us to analyze them.

Roshan provided these trees in over 650 different files. Eachfile was gener-
ated from a single data set and had the data set name as part of the file name.
We created eleven files, one for each data set, that containedall of the trees that
Roshan had provided for that data set. There are a few data sets for which Roshan
provided trees on that we are not using in our benchmark because PAUP fails to
generate accurate consensus trees. (We have communicated this error in PAUP to
David Swofford). These now huge files are contained in a single directory and
collectively referred to as Collection 1. We also kept several original files intact
and created a directory of them which we refer to as Collection 2.

A third collection of trees was obtained from Tiffani Williams. William’s
collection consisted of trees generated from nine data sets, where 2505 trees were
saved for each data set. We will refer to these as Collection 3.

An overview of the data sets used to generate these trees is given in Tables 2
and 3 which can be found in Appendix B. (For more information about the data
sets used to generate these trees, see pages 55-59 of Usman Roshan’s dissertation
[20]. Note that Williams used data from Roshan, so some of theinformation on
Williams trees is from [20].)
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5.2 Transformation Process

The files of trees that were provided were not in a form that allowed them to
be input directly to any of PAUP, TNT or TASPI. The files sometimes contained
comments about how the trees were generated, parsimony scores, or other output
from their production. Other times the files were just a line by line listing of trees
in Newick format.

We created a suite of Perl scripts that take these input files and generate the
input files for TNT and PAUP. For PAUP, these scripts collect the taxa list from the
first tree in the file, and the trees themselves, and put them into a Nexus file that
can then be executed by PAUP. The command to compute consensus (see Section
5.3) is also put into the Nexus file. Similarily for TNT, the taxa names are read
and put into the file along with the trees themselves and the commands to do the
desired computation. We also have wrapper scripts which allow us to compute
consensus in PAUP or TNT for a directory of source files.

TASPI was designed to read the source files directly. It uses avariant of JCL
(Job Control Language) to read the file and strip out unnecessary information,
which presently includes branch lengths (since branch lengths are not used in
computing consensus). While the trees are being read, they are also being trans-
formed into TASPI’s internal format.

5.3 Commands Used

In PAUP, the command to compute a consensus tree iscontree. We used this
command and set various options. We first computed the strictconsensus tree
by setting the option for strict to yes and the option for majority to no. We then
computed a majority rule tree by setting strict to no and majority to yes with
percent 50. We noticed much longer times for computing the strict tree than for
majority, which, given our understanding of the problem made little sense. So,
we also computed the strict majority tree by issuing a command that set strict to
no, but majority to yes with percent 100. As expected, this resulted in the same
trees as the strict command, but in much more reasonable times. The commands
as they appeared in our input files are as follows:

contree all/strict=yes majrule=no treefile=<outputFile> replace;
contree all/strict=no majrule=yes percent=50 treefile=<outputFile> replace;
contree all/strict=no majrule=yes percent=100 treefile=<outputFile> replace;
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We also ran PAUP with a paup block that computed first the majority tree (with
percent 50), and then the strict majority by using the majrule option with percent
100 to test whether or not PAUP makes any use of the work done inthe first
contreecommand.

In TNT, there are two commands to compute (and not approximate) consensus
trees. To compute a strict consensus, the command isnelsen(which, incidentally,
has nothing to do with Nelson consensus except a play on wordsby the authors).
To compute a majority consensus, the command ismajority. The majority com-
mand allows the user to specify the cutoff to be used. This cutoff is the opposite of
the percent in PAUP. In PAUP, “percent” is the percentage of input trees in which
a branch must occur in order to be in the majority tree. In TNT,“cutoff” is the
frequency at which a group is collapsed. Thus, it is not possible to compute a
strict consensus tree using the majority command, since entering a cutoff of 100
tells TNT to collapse all groups with a frequency of 100 or less. We could attempt
to compute a strict consensus using the majority command by entering a cutoff of
99 (cutoffs must be integers), but for greater than 100 treesthis need not be a strict
tree, and in our tests, we often have more than 100 trees. Thus, we do not use the
majority command to compute a strict consensus tree in TNT.

One more point about TNT commands remains to be addressed. Bydefault,
TNT collapses branches with low support before doing a consensus computation.
However, we were not dealing with any initial data other thanthe trees, so we
turned this feature off by using the commandcollapse notemp. The other reason
for doing this was to ensure that we were doing appropriate timing comparisons.

Finally, in TASPI, the commands to compute a consensus are asfollows:

(setq *taxa-list* ’(<theTaxaList>))
(bmaj-nexus-file “<fileName>” *taxa-list*)

(build-term-top (strip-cars<*bio-majority*j*bio-common*>) *taxa-list*)

The first command sets a global variable*taxa-list* to a list representing
the taxa list. This is analogous to thetaxalabelscommand present in the taxa
block of a Nexus file. The second command is what does the largepart of the
work of our algorithm: reads the input file, finds all partitions present, and creates
two global variables,*bio-majority* and*bio-common* which have the
partitions occuring in a majority of the input trees, and thepartitions occuring
in all input trees, respectively. The last command builds a TASPI representation
of the appropriate tree, majority if*bio-majority* is passed, and strict if
*bio-common* is passed as the argument. At present, only a 50% majority can
be built by TASPI, but implementing other cutoffs is trivial.
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6 Results

6.1 Storing trees

One of the major contributions of TASPI is the condensed format in which trees
can be stored, while maintaining structural information. Figure 3 shows the four
sizes for each of our benchmark data sets. The Newick line is the size of the
trees as they were given to us, after removing non-topological information (that
is, branch lengths and other comments within the file were first removed). The
Newick.bz2 line is the size of the file after compression using the algorithm imple-
mented in bzip2 [21]. The TASPI.bhz line is the size of the fileafter compression
using the Boyer-Hunt method. Notice that this is a compression in that the size
of the file is much smaller, but all the information present inthe original files is
still accessible, in fact, at reduced speeds. Finally, the TASPI.bhz.bz2 line is the
size of the file if it is compressed using the Boyer-Hunt method and then bzip2 is
applied.

It is readily apparent that bzip2 produces smaller files thanthe Boyer-Hunt
compression. However, the compressed Boyer-Hunt files are ready to be used as
input to analysis, such as consensus. Overall, this represents a potentially huge
savings in space since the Boyer-Hunt files can be further compressed using bzip2
for sharing and transmission purposes. Notice that in all cases the smallest size
for a file is that from TASPI.bhz.bz2.

6.2 Reading trees

An advantage of the TASPI system is its ability to quickly read large numbers of
large trees. Figure 4 gives the read times in seconds for eachof our benchmark
collections of trees. The PAUP and TNT times are average times to read over
a number of runs while the TASPI times are from a single run. (For complete
reading timing data see Appendix D).

Notice that reading the compressed trees is always the fastest time for any
collection, and not by a small margin. Even reading the source files is faster in
TASPI than it is in either PAUP or TNT, again, usually by a large margin. (There is
one possible exception to this in Collection 2, for t64.nwk.However, for TNT and
PAUP we would require greater timing precision in order to accurately compare
read times.)

PAUP and TNT are very comparable in their read times. On larger files such
as those in Collections 1 and 3, TNT tends to do slightly better than PAUP, but the
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difference is never much, and TNT doing better is not an absolute rule.

6.3 Computing Consensus

We ran consensus computations using PAUP, TNT, and TASPI, with the com-
mands described in Section 5.3. Computations were on an Intel Pentium 4 CPU
3.4 GHz computer with 1024K cache and an Intel Itanium 2 CPU 900 MHz com-
puter. (We were required to use two computers because of the memory required
to do a consensus analysis in TASPI on Collection 1. Please see Section 6.4 for a
further discussion of the memory requirement.)

Figure 5 shows the time to compute consensus with each of the programs.
These times are all in seconds, and include the time to first read the input trees. In
each case, the trees are read, and then both a strict tree and amajority 50 consen-
sus tree are computed. Note that TASPI has better performance times compared
to PAUP and TNT, and that TASPI does better the larger the files. Also note that
TASPI achieves results identical to PAUP in all cases. This is also the same as
TNT, but TNT uses a different taxon ordering, so we require some form of nor-
malization to see that the trees are identical.

6.4 Analysis

Storing trees in compressed TASPI format saves considerable memory space. For
the Collections 2 and 3, using compressed TASPI format is over 10 times smaller
than Newick, and compressed TASPI together with bzip2 is 76 times better than
Newick. Using bzip2 alone is better than compressed TASPI alone, but com-
pressed TASPI together with bzip2 is 2 times better than bzip2 alone. In other
words, compressed TASPI together with bzip2 creates files that require less than
2% of the original Newick space requirement.

Notice that as simply a compressed format, compressed TASPIis not as good
as bzip2, but bzip2 data is not ASCII. Compressed TASPI is ASCII, and can there-
fore be read as input to later algorithms. This is its strength. If the data is not
required as input, compressed TASPI is still useful since byusing bzip2 on the
compressed TASPI files we can achieve even smaller data files.

Reading the compressed TASPI format saves considerable time. Again, for
Collections 2 and 3, reading the compressed TASPI representation of trees is
quicker than reading the Newick. TNT and PAUP are comparablein their read
times, but reading Newick files with TASPI is 5 to 7 times faster than with either
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TNT or PAUP. Reading the compressed TASPI format on the otherhand is 97
times faster than reading with PAUP or TNT.

These fast read times translate into a fast consensus analysis. The total time
to read a collection of trees and then compute a strict and majority consensus in
TASPI is 14 times faster when reading compressed trees, and 7times faster when
reading Newick for Collection 2. Similarly, for Collection3, TASPI is almost
9 times faster when reading compressed trees, and 5 times faster when reading
Newick trees. It is important to note that in every case, TASPI and PAUP return
the exact same results.

TASPI’s total time is 29 times shorter than TNT on Collection3 and 33 times
shorter on Collection 2. We were expecting TNT to exceed PAUPin its ability
to compute consensus trees since it is known for its ability to quickly generate
maximum parsimony trees. Our results show that this speed did not translate to
its consensus algorithms.

Now, the greatest drawback to TASPI is its memory requirements. In running
our experiments we used both a 32 bit computer and a 64 bit computer. The 64 bit
machine was required for Collection 1 of trees due to a lack ofmemory on the 32
bit machine. PAUP and TNT were both able to complete on the 32 bit machines,
but did so with terrible performance.

TASPI is able to read all data files on the 32 bit machine (with the exception of
RbcL500, which would be possible if we allocated memory differently). However,
it is not capable of running a consensus analysis on the largefiles in Collection 1.
Currently we are maintaining a charade of fully functional programming which
is in large part where our memory issues arise. Early resultswith Collection 1
indicate that we may be able to achieve running times over 10 times faster than
PAUP.

7 Conclusion

In phylogenetics, computing consensus trees is not where most computation time
is spent. However, having fast consensus methods is becoming increasingly im-
portant. Researchers are proposing the use of the rate of change of a consensus
tree as a stopping criterion for heuristic MP searches whichwould require recom-
puting a consensus tree multiple times over the course of an analysis [25].

We have given a new format for collections of phylogenetic trees that would
make this possible. The format allows trees to be stored in considerably less space,
while allowing for improved performance in computing consensus. Considering
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all of our data sets, TASPI format allows collections of trees to be stored in 1/47th
the amount of space required by Newick. Using TASPI to compute consensus for
all collections in our benchmarks (and using scaled numbers) is 25 times faster
than using PAUP and over 300 times faster than using TNT.
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Data Set Pentium Itanuim Factor (I/P)
orsLIPS.DATA fixed 1.58 21.16 13.39
sRNA mito proteobac 7.08 31.83 4.49
rdp actinobacteria 6.98 39.64 5.68
Will Euk 4.33 24.81 5.73
threedom 2org 6.41 32.73 5.11
oxsLIPS.DATA fixed 1.95 12.70 6.51
LSU TOLO95 2.90 15.81 5.45
Mari.data 5.50 27.13 4.93
t10000.nwk 16.29 61.41 3.77
t64.nwk 0.76 6.65 8.75

Average 5.60

Table 1: Comparison of computation times

A Comparison of machines

Due to the memory requirements as discussed in Section 6.4, we were required to
use two different machines in our benchmarks. The first was Dell computer with
an Intel 3.4 GHz Pentium 4 processor while the second was an HPmachine based
on a 900 MHz Itanium 2 processor. In order to get comparable numbers, we ran
consensus using TASPI on Collection 2 on both of the machines(see Table 1). We
then found the average factor by which the Itanium machine was slower than the
Pentium (we removed the largest factor to avoid biasing our results) and scaled
our timing data from the Itanium (for Collection 1) by this factor (5.6).

B Data Set Overview

The trees in our collections were generated by outside sources, namely Usman
Roshan and Tiffani Williams. Tables 2 and 3 summarize the data sets that they
used to generate the trees used in our benchmarks.
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Data Set Source Type Seqs Sites Best Number
Score of Trees

Collection 1 – Trees from Usman Roshan
LIPS Goloboff rDNA 439 2461 41290 28947
LSU database RNA 1322 1078 52053 26938
Mari Kallersjo rbcL DNA 2954 1232 59858 18938
OCHO Ochoterena rbcL DNA 854 937 23005 31085
RcbL500 Rice web site rbcL DNA 500 759 16218 141065
Rdp actinobacteria RDP 16s ribosomal RNA 4583 1263 60892 6706
Rdp firmicutes RDP 16s ribosomal RNA 7233 1352 156219 1866
SsuEukaryotes ERD Eukaryotes RNA 6590 1661 232630 2143
ThreeDom Gutell three-domain sRNA 7180 1122 91894 2346
ThreeDom 2org Gutell three-domain sRNA 8506 851 99839 1503
Will Gutell sRNA 2000 1251 74536 20926

Table 2: Data set overview
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Data Set Source Type Seqs Sites Best Score Number
of Trees

Collection 2 – Trees from Usman Roshan
orsLIPS.DATA Goloboff rDNA 439 2461 41290 803
sRNA mito proteobac unknown unknown 2587 unknown unknown 369
rdp actinobateria unknown unknown 4583 unknown unknown 301
Will Euk Gutell sRNA 2000 1251 74536 537
threedom 2org Gutell 3-dom sRNA 8506 851 99839 47
oxsLIPS.DATA Goloboff rDNA 439 2461 41290 926
LSU TOL095 database RNA 1322 1078 52053 423
Mari.data Kallersjo rbcL DNA 2954 1232 59858 465
t10000.nwk Rice web site rbcL DNA 500 759 16218 10000
t64.nwk Rice web site rbcL DNA 500 759 16218 64

Collection 3 – Trees from Tiffani Williams
aster328 Gutell RNA 328 946 2505
eern476 Eernisse Metazoan DNA 476 1008 17765 2505
john921 Johnson AvianCytochromebDNA 921 713 42759 2505
lipsc439 Goloboff rDNA 439 2461 41290 2505
mari2594 Kallersjo rbcL DNA 2954 1232 59858 2505
ocho854 Ochoterena rbcL DNA 854 937 23005 2505
rbcl500 Rice web site rbcL DNA 500 759 16218 2505
three567 Soltis rbcL, atpB, 18s DNA 567 2153 74536 2505
will2000 Gutell sRNA 2000 1251 74536 2505

Table 3: Data set overview continued
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C Storage

The raw data numbers for storing the collections of trees in our benchmarks are
given in Table 4.

D Read times

This appendix shows additional read times for each of our collections of trees. All
times are in seconds, and the type of computer used was an Intel(R) Pentium(R) 4
CPU 3.40GHz with 1024 KB. Table 5 gives the read times using PAUP and Table
6 gives the read times using TNT.

Table 7 gives comparative numbers. The times for TNT and PAUPare average
times across a number of runs, while the TASPI numbers are from a single run.

E Computing consensus times

This appendix gives further details about computing consensus in PAUP and TNT.
In PAUP, we computed a strict consensus using the “strict” option, a majority
consensus with percent 50, a majority consensus with percent 100, and then both
a majority with percent 50 and a majority with percent 100. Table 8 shows the
total computation time for each of these possibilities. In each case the time shown
is the number of seconds to both read in the trees and compute the consensus tree
indicated. Notice that to compute a strict majority tree takes considerably more
time than to compute the same tree using the majority option.Having no access
to the source code of PAUP we have no ideas why this is, but it does seem to be
an issue.

In TNT, we computed a strict consensus tree using the commandnelsenand a
majority tree with cutoff 50 using themajoritycommand, and then also computed
both strict and majority trees. As in the PAUP table, the times shown in Table 9
are total computation times and therefore include the time to read in the collection
of trees.

Table 10 gives comparative numbers. Each entry is the time toread and com-
pute both a strict and majority tree in the program given in the column heading.
(The times for Collection 1 are scaled from the 64-bit computer.) Notice again
that using the compressed TASPI format always results in by far the shortest time
for any collection of trees.
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Data Set Newick Newick.bz2 TASPI TASPI.bz2

Collection 1 – Trees from Usman Roshan
LIPS 158M 3.3M 5.2M 704K
LSU 244M 12M 33M 5.4M
Mari 355M 20M 25M 4.4M
OCHO 329M 12M 12M 2.0M
RbcL500 455M 11M 28M 4.4M
Rdp actinobacteria 228M 24M 38M 8.4M
Rdp firmicutes 101M 14M 23M 5.7M
SsuEukaryotes 106M 12M 14M 2.9M
ThreeDom 126M 20M 32M 8.5M
ThreeDom 2org 96M 17M 35M 9.1M
Will Euk 298M 12M 15M 2.6M

Collection 2 – Trees from Usman Roshan
orsLIPS.DATA 4.4M 97K 189K 33K
sRNA mito proteobac 6.9M 550K 1.5M 311K
rdp actinobacteria 11M 776K 1014K 238K
Will Euk 7.7M 281K 534K 90K
threedom 2org 3.0M 549K 1.3M 383K
oxsLIPS.DATA 5.1M 97K 195K 29K
LSU TOLO95 3.9M 149K 449K 76K
Mari.data 8.8M 460K 795K 141K
t10000.nwk 33M 197K 771K 31K
t64.nwk 212K 3.7K 14K 2.8K

Collection 3 – Trees from Tiffani Williams
aster328 5.3M 52K 281K 38K
eern476 7.7M 100K 731K 68K
john921 16M 380K 1.3M 239K
lipsc439 7.1M 69K 406K 35K
mari2594 47M 1.8M 3.3M 515K
ocho854 15M 259K 1.1M 131K
rbcl500 8.1M 117K 596K 71K
three567 9.3M 102K 578K 45K
will2000 36M 1.2M 2.8M 426K

Table 4: Data Set Sizes
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Filename Strict Maj50 Maj100 Both Average

Collection 1 – Trees from Usman Roshan
LIPS.DataAll 51 67 66 64 62.00
LSU tolo95 All 489 484 480 480 483.25
Mari All 1285 1307 1315 1318 1306.25
OCHO.DataAll 198 204 206 205 203.25
RbcL500All 451 452 452 456 452.75
Rdp actinobateriaAll 1246 1241 1254 1251 1248.00
Rdp firmicutesAll 857 852 859 857 856.25
SsuEukaryotesAll 895 892 896 897 895.00
ThreeDom All 1143 1139 1148 1144 1143.50
Threedom 2org All 999 991 990 986 991.50
Will Euk All 779 785 782 784 782.50

Collection 2 – Trees from Usman Roshan
orsLIPS.DATA 1 1 1 1 1.00
sRNA mito proteobac 21 22 22 21 21.50
rdp actinobateria 46 46 55 45 48.00
Will Euk 17 16 16 16 16.25
threedom 2org 26 25 25 25 25.25
oxsLIPS.DATA 2 2 2 2 2.00
LSU TOL095 6 6 6 7 6.25
Mari.data 27 33 41 26 31.75
t10000.nwk 31 27 28 28 28.50
t64.nwk < 1 < 1 < 1 < 1 < 1

Collection 3 – Trees from Tiffani Williams
aster328 2 3 2 2 2.25
eern476 4 5 4 5 4.50
john921 16 17 17 20 17.50
lipsc439 8 4 4 4 5.00
mari2594 137 137 145 205 156.00
ocho854 15 15 14 15 14.75
rbcl500 6 12 12 12 10.50
three567 15 7 7 7 9.00
will2000 74 73 73 73 73.25

Table 5: Time (in seconds) to read trees into PAUP when about to compute the
type of consensus given in the column heading
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Filename Strict Maj50 Both Average

Collection 1 – Trees from Usman Roshan
LIPS.DataAll 38.00 38.00 38.00 38.00
LSU tolo95 All 425.00 429.00 400.00 418.00
Mari All 1178.00 1185.00 1182.00 1181.67
OCHO.DataAll 147.00 149.00 148.00 148.00
RbcL500All 328.00 330.00 309.00 322.33
Rdp actinobateriaAll 1165.00 1163.00 1175.00 1167.67
Rdp firmicutesAll 809.00 811.00 805.00 808.33
SsuEukaryotesAll 851.00 857.00 857.00 855.00
ThreeDom All 1097.00 1096.00 1097.00 1096.67
Threedom 2org All 969.00 972.00 962.00 967.67
Will Euk All 679.00 679.00 673.00 677.00

Collection 2 – Trees from Usman Roshan
orsLIPS.DATA 0.00 0.00 1.00 0.33
sRNA mito proteobac 21.00 22.00 20.00 21.00
rdp actinobateria 47.00 45.00 45.00 45.67
Will Euk 15.00 15.00 15.00 15.00
threedom 2org 26.00 26.00 26.00 26.00
oxsLIPS.DATA 1.00 1.00 1.00 1.00
LSU TOL095 5.00 6.00 6.00 5.67
Mari.data 25.00 26.00 25.00 25.33
t10000.nwk 20.00 20.00 19.00 19.67
t64.nwk 0.00 0.00 0.00 0.00

Collection 3 – Trees from Tiffani Williams
aster328 1.00 2.00 2.00 1.67
eern476 4.00 4.00 4.00 4.00
john921 16.00 15.00 15.00 15.33
lipsc439 4.00 3.00 4.00 3.67
mari2594 136.00 139.00 143.00 139.33
ocho854 14.00 13.00 30.00 19.00
rbcl500 5.00 5.00 4.00 4.67
three567 13.00 13.00 6.00 10.67
will2000 71.00 72.00 71.00 71.33

Table 6: Time (in seconds) to read trees into TNT when about tocompute the type
of consensus given in the column heading
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Data Set Name PAUP TNT TASPI TASPI.bhz

Collection 1 – Trees from Usman Roshan
LIPS 62.00 38.00 32.28 2.30
LSU 483.25 418.00 93.50 20.07
Mari 1306.25 1181.67 142.31 12.15
OCHO 203.25 148.00 70.62 5.47
RbcL500 452.75 322.33 171.64 11.94
Rdp actinobacteria 1248.00 1167.67 97.40 19.68
Rdp firmicutes 856.25 808.33 41.21 10.18
SsuEukaryotes 895.00 855.00 42.87 5.71
ThreeDom 1143.50 1096.67 67.31 14.99
ThreeDom 2org 991.50 967.67 43.25 13.78
Will Euk 782.50 677.00 128.18 6.00

Collection 2 – Trees from Usman Roshan
orsLIPS.DATA 1.25 1.00 0.77 0.04
sRNA mito proteobac 21.00 21.00 2.42 0.37
rdp actinobacteria 45.00 46.00 3.31 0.26
Will Euk 16.00 18.33 2.53 0.13
threedom 2org 25.50 28.00 1.12 0.33
oxsLIPS.DATA 1.00 1.00 0.91 0.05
LSU TOLO95 5.75 6.00 1.36 0.11
Mari.data 26.00 25.00 3.15 0.21
t10000.nwk 23.25 19.67 14.29 0.19
t64.nwk < 1 0.00 0.10 0.00

Collection 3 – Trees from Tiffani Williams
aster328 2.75 1.67 1.17 0.07
eern476 5.00 4.00 1.75 0.19
john921 16.25 15.33 3.56 0.31
lipsc439 4.00 3.00 1.57 0.10
mari2594 142.00 138.00 11.42 0.85
ocho854 14.75 14.33 3.53 0.28
rbcl500 6.00 6.00 1.95 0.16
three567 7.00 6.33 2.28 0.15
will2000 77.50 88.00 9.89 0.71

Table 7: Comparative read times (in seconds). Note that the time to read the com-
pressed RbcL500 data is scaled from a 900MHz machine insteadof the 3.4GHz
machine in all other entries (see Section A).
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Filename Strict Maj50 Maj100 Both

Collection 1 – Trees from Usman Roshan
LIPS.DataAll 176.46 75.88 74.62 81.53
LSU tolo95 All 1642.71 608.70 604.74 733.36
Mari All 9487.74 1501.86 1507.31 1710.64
OCHO.DataAll 793.78 236.81 235.58 270.21
RbcL500All 1046.88 508.22 507.95 574.82
Rdp actinobateriaAll 8870.73 2102.26 2114.41 2985.75
Rdp firmicutesAll 12187.21 1592.72 1574.64 2304.54
SsuEukaryotesAll 14053.96 1176.39 1156.38 1445.68
ThreeDom All 11840.77 2251.45 2229.79 3325.03
Threedom 2org All 8145.78 2899.05 2853.41 4748.29
Will Euk All 3883.13 907.21 902.51 1027.35

Collection 2 – Trees from Usman Roshan
orsLIPS.DATA 6.48 1.57 1.62 1.95
mito proteobac 171.00 30.71 29.76 39.14
rdp actinobateria 638.22 75.30 66.42 98.56
Will Euk 189.59 20.62 20.22 25.14
threedom 2org 418.39 106.76 76.72 153.36
oxsLIPS.DATA 7.17 1.79 1.78 2.07
LSU TOL095 35.28 7.67 7.46 9.29
Mari.data 310.66 33.23 32.04 39.97
t10000.nwk 120.33 26.82 26.83 30.00
t64.nwk 0.95 0.27 0.26 0.37

Collection 3 – Trees from Tiffani Williams
aster328 8.45 3.09 3.10 3.57
eern476 18.07 5.67 5.65 6.51
john921 71.12 19.26 19.19 22.32
lipsc439 18.00 4.86 4.82 5.54
mari2594 1303.51 157.28 164.94 184.52
ocho854 71.66 16.86 16.72 19.14
rbcl500 23.03 6.83 6.79 7.68
three567 36.08 8.40 8.37 9.47
will2000 498.92 88.63 86.84 102.29

Table 8: Time (in seconds) to read trees and compute consensus using PAUP.

32



Filename Strict Maj50 Both

Collection 1 – Trees from Usman Roshan
LIPS.DataAll 91.32 451.57 500.27
LSU tolo95 All 866.92 16372.49 16564.88
Mari All 2522.30 9247.21 10536.53
OCHO.DataAll 359.18 9034.97 9154.71
RbcL500All 669.54 20749.34 20792.32
Rdp actinobateriaAll 2614.17 46203.27 47675.47
Rdp firmicutesAll 1879.99 22792.60 23878.79
SsuEukaryotesAll 1920.54 6450.15 7514.41
ThreeDom All 2488.50 39222.34 40600.86
Threedom 2org All 2231.63 38541.74 39964.79
Will Euk All 1499.25 5381.59 6236.13

Collection 2 – Trees from Usman Roshan
orsLIPS.DATA 1.92 2.69 3.78
sRNA mito proteobac 41.25 169.74 191.09
rdp actinobateria 93.59 255.65 303.13
Will Euk 32.76 37.82 54.95
threedom 2org 58.70 152.83 182.31
oxsLIPS.DATA 2.26 2.61 3.87
LSU TOL095 11.76 19.81 22.06
Mari.data 51.90 61.54 87.75
t10000.nwk 40.63 42.25 63.52
t64.nwk 0.26 0.26 0.40

Collection 3 – Trees from Tiffani Williams
aster328 4.23 4.95 7.35
eern476 8.78 13.13 18.20
john921 36.45 95.41 115.02
lipsc439 7.29 8.34 12.53
mari2594 309.08 396.75 557.13
ocho854 29.72 41.02 58.23
rbcl500 9.78 12.39 16.38
three567 11.12 14.38 19.23
will2000 171.59 296.47 396.44

Table 9: Time (in seconds) to read trees and compute consensus using TNT.
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Data Set Name PAUP TNT TASPI TASPI.bhz

Collection 1 – Trees from Usman Roshan
LIPS 81.53 500.27 46.17 11.92
LSU 733.36 16564.88 160.95 79.60
Mari 1710.64 10536.53 261.61 53.95
OCHO 270.21 9154.71 127.59 27.21
RbcL500 574.82 20792.32 216.42 67.12
Rdp actinobacteria 2985.75 47675.47 151.46 101.30
Rdp firmicutes 2304.54 23878.79 87.19 64.79
SsuEukaryotes 1445.68 7514.41 63.25 31.42
ThreeDom 3325.03 40600.86 99.68 90.76
ThreeDom 2org 4748.29 39964.79 91.47 76.78
Will Euk 1027.35 6236.13 137.04 32.34

Collection 2 – Trees from Usman Roshan
orsLIPS.DATA 1.95 3.78 1.58 0.87
sRNA mito proteobac 39.14 191.09 7.08 5.88
rdp actinobacteria 98.56 303.13 6.98 4.43
Will Euk 25.14 54.95 4.33 2.08
threedom 2org 153.36 182.31 6.41 6.18
oxsLIPS.DATA 2.07 3.87 1.95 1.17
LSU TOLO95 9.29 22.06 2.90 1.75
Mari.data 39.97 87.75 5.50 2.91
t10000.nwk 30.00 63.52 16.29 2.35
t64.nwk 0.37 0.40 0.76 0.62

Collection 3 – Trees from Tiffani Williams
aster328 3.57 7.35 2.11 1.07
eern476 6.51 18.20 3.79 2.87
john921 22.32 115.02 6.69 4.08
lipsc439 5.54 12.53 2.84 1.60
mari2594 184.52 557.13 20.69 12.54
ocho854 19.14 58.23 6.11 4.19
rbcl500 7.68 16.38 3.65 2.31
three567 9.47 19.23 4.04 2.20
will2000 102.29 396.44 18.43 10.4

Table 10: Comparative computation of consensus times (in seconds). Note that
for Collection 1, the TASPI times are scaled from a 900Mhz machine instead of
the 3.4GHz machine in all other entries (see Section A).
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