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Abstract

We present a case for future real-time rendering systems that sup-
port non-physically-correct global illumination techniques by using
ray tracing visibility algorithms, by integrating scene management
with rendering, and by executing on general-purpose single-chip
parallel hardware (CMP’s). We explain why this system design is
desireable and why it is feasible. We also discuss some of the re-
search questions that must be addressed before such a system can
become practical.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture— [I.3.2]: Computer Graphics—Graphics Systems

1 Introduction

For many years, real-time graphics systems have used the tradi-
tional Z-buffer pipeline model, which is limited to local illumina-
tion computations. With appropriate modifications, this pipeline
can support some restrictive global illumination techniques, but do-
ing so is awkward and often inefficient. A different strategy is pos-
sible – VLSI technology has now progressed to the point where we
are on the verge of having sufficient raw computational capability
to use more general global illumination techniques. But there is no
consensus yet about how future graphics systems supporting global
illumination should be organized.

If we look a few years into the future, several major questions
become evident: What rendering algorithms are most appropriate
for this new era? What architectures should we build to support
these algorithms? And what overall system organization should tie
together the application, rendering algorithms, and hardware? We
believe that these questions have not yet been answered satisfacto-
rily.

The purpose of this paper is to argue that these questions are
closely coupled and that addressing them will require simultaneous
investigation of software algorithms and hardware architectures.
We also propose a set of algorithmic and architectural approaches
that we believe present one promising avenue of investigation. Our
hope is that this paper will stimulate discussion in the research com-
munity and help to inspire the combined software and hardware re-
search that we believe is critical to forward progress.

The application-level goal that drives our investigation is sup-
port for real-time global illumination for dynamic scenes. We
place greater emphasis on non-physically-correct global illumina-
tion techniques than on fully physically-based techniques, since
non-physically-correct techniques represent an intermediate step
between today’s local illumination models and eventual use of
100% physically-based techniques.

Most global illumination techniques require a more general
visibility-computation capability than that provided by today’s Z
buffer. We present an algorithmic approach organized around
ray tracing visibility algorithms that efficiently supports dynamic
scenes by integrating scene management with rendering. But this
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tighter integration requires that the graphics hardware directly sup-
port model management as well as rendering.

At the hardware level, we advocate a very flexible architecture:
a multi-core, multi-threaded, MIMD architecture with coherent ac-
cess to a single address space. This architecture efficiently supports
application-specific scene management code as well as the creation
and traversal of dynamic, irregular data structures.

1.1 Background

The Z-buffer 3D graphics pipeline has been widely used for more
than 20 years. As VLSI technology has advanced, this system orga-
nization has progressed down the cost curve from multimillion dol-
lar flight simulators, through high-end graphics workstations made
by companies such as SGI (e.g. [Akeley 1993]), down to single-
chip GPUs made by companies such as NVIDIA and ATI.

For most of this history, Z-buffer graphics hardware was config-
urable but not programmable. However, over the past four years,
we have seen the introduction of user-accessible programmability
at both the vertex [Lindholm et al. 2001] and fragment [NVIDIA
Corp. 2003] stages of the pipeline. The vertex programmability
merely exposed a programmable engine that had already existed in
various forms for many years, but the fragment programmability
exposed fundamentally new hardware functionality. Its introduc-
tion was driven by the realization that beyond a certain point, the
best way to use additional VLSI transistors to improve image qual-
ity is to increase the quality of each pixel rather than increasing the
number of pixels or increasing the geometric detail.

Fragment programmability enabled commodity real-time sys-
tems [Mark et al. 2003] to support programmable shading capabili-
ties inspired by those of Renderman [Hanrahan and Lawson 1990].
However, this programmability has proven to be sufficiently flex-
ible that researchers have begun to think of graphics processors
as general-purpose stream processors [Kapasi et al. 2002], capable
of supporting a variety of non-shading computations [Purcell et al.
2002; Thompson et al. 2002; Bolz et al. 2003]. But at the current
time, most of these other uses of the GPU are not yet fully prac-
tical. The reason is that the current GPU programming model has
limitations that limit performance on general-purpose computations
to much less than peak performance. We expect that this situation
will change with time, but not as rapidly as many researchers are
expecting.

Thus, the primary economic force driving GPU design is still
real-time rendering, which leads us to the following question: What
rendering requirements should drive the future evolution of graph-
ics hardware? Another way of asking this question is, what addi-
tional capabilities could best be put to good use by applications?
Of course, it only makes sense to consider capabilities that have the
potential to be cost effective in the time frame of interest.

2 Application needs

We believe that there is still unmet application demand for higher-
fidelity real-time imagery. For example, most observers would
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agree that the images produced by batch-rendering systems are no-
ticeably superior to those produced by interactive graphics systems,
and that they would like to see these higher-quality images pro-
duced by real-time systems.

Some of the demand for improved image quality in real-time
graphics can be met by adding support for object-space shading like
that used in batch rendering systems such as REYES [Cook et al.
1987]. In particular, REYES provides better temporal and spatial
anti-alising than the screen-space shading used in current real-time
graphics systems. However, much of the current difference between
batch rendering and real-time rendering results from the poor mod-
eling of global illumination effects in real-time rendering systems
as compared to batch rendering systems. We are already seeing de-
mand for realistic global illumination with the current focus on the
special case of real-time hard shadow generation. REYES and sim-
ilar systems do not support global illumination computations in any
general sense.

Some observers argue that REYES and similar algorithms can be
used to fake a wide variety global illumination effects, as demon-
strated by their use for over 10 years for movie rendering. However,
interactive graphics applications are fundamentally different from
batch movie rendering because the viewpoints and scene configura-
tions are not known a-priori by the programmers and artists. Most
of the techniques used to fake global illumination with REYES-like
systems rely on viewpoint-dependent hand tuning and thus are not
appropriate for use in real-time graphics.

2.1 Use ray tracing visibility

Almost all algorithms that model global illumination effects with-
out the use of extensive hand-tuning rely on global visibility com-
putations. Examples include radiosity, ray tracing [Whitted 1980],
photon mapping [Wann Jensen 2001], approximation of far-field
illumination using spherical basis functions, etc. Thus, we be-
lieve that robust support for global illumination requires support
for global visibility computations, and specifically for ray tracing
visibility.

Recent work shows that raw computational capability has now
advanced to the point where it is reasonable to consider using ray
tracing visibility in real-time graphics systems. Over the past sev-
eral years, several groups have built near-real-time ray tracing sys-
tems with steadily improving price/performance ratios. Most of
these systems run on standard CPUs (e.g. [Parker et al. 1999a;
Parker et al. 1999b; Hurley et al. 2002; Wald et al. 2003b], but one
runs on a specialized ray tracing architecture implemented with an
FPGA [Schmittler et al. 2004], and another uses the fragment pro-
cessors of mainstream GPUs [Purcell et al. 2002]. The system with
the best price/performance ratio [Hurley 2005] runs on a desktop
PC with frame rates over 30 frames/sec for eye+shadow rays on
complex scenes. Its raw performance has been quoted at over 100M
Ray segments/sec. A recent review article [Wald et al. 2003c] pro-
vides an excellent overview of recent developments in this area.

2.2 Use non-physically-correct global illumination

Experience has proven [Gritz and Hahn 1996; Kato 2002] that ray
tracing algorithms and variants such as photon mapping provide the
most robust and general solution to the global illumination problem.
However, we do not expect 2010-era real-time game applications to
rely primarily on physically correct global illumination. Instead, we
expect that these applications will use the point-to-point visibility
queries enabled by a ray tracing visibility framework to implement
various non-physically correct approximations to global illumina-
tion. For example, we expect techniques such as ambient occlusion
[Moyer 2004], instant radiosity [Keller 1997], and variations of pre-
computed radiance transfer [Sloan et al. 2002] to be used. For most

of its history, computer graphics has relied heavily on phenomeno-
logical or quasi-physical approximations to illumination computa-
tion, and we do not expect that situation to change immediately.
In fact, we expect that new phenomenological approximation tech-
niques will be developed that leverage the capabilities of a ray trac-
ing visibility engine.

2.3 Dynamic scenes are the challenge

Most interactive applications, particularly those in the economi-
cally important gaming market, use dynamic scenes. These scenes
include geometrically complex objects that move, and, more sig-
nificantly, deform. Unfortunately, there has been very little effort
devoted to raytracing for dynamic scenes, and in particular for de-
formable objects.

Deformable objects such as the skinned characters [Lander
1998] used in QuakeIII and Doom present a significant challenge.
The deformable nature of these characters is not well supported by
any existing method for ray tracing. In particular, the simple ap-
proach of pre-building an acceleration data structure for the object
and repositioning that object within the scene [Lext and Akenine-
Moller 2001; Wald et al. 2003a] does not work for objects in which
many polygons deform every frame. We believe that any practical
real-time raytracing system must support moving and deformable
objects with reasonable performance.

3 Integrate scene management with rendering

To ray trace dynamic scenes in real time we must reassess the cru-
cial role of acceleration structures in making the ray tracing pro-
cess efficient. The highest performance ray tracers use a space
partitioning acceleration structure such as an octree or BSP tree,
but the scene data is not originally stored in this form. Instead, the
space partitioning data structure is constructed from data stored in a
scene graph represented as a hierarchy of (potentially overlapping)
bounding volumes.

A simple approach is to begin the computation of each frame by
rebuilding an acceleration data structure of the type used in batch
ray tracing. The problem with this approach is that the cost of re-
building the acceleration structure may exceed the ray tracing cost
itself. This problem is particularly serious if the scene has very high
depth complexity, forcing the system to perform work for objects
that are not hit by any rays. Even if we only rebuild those por-
tions of the acceleration structure containing moving objects [Rein-
hard et al. 2000] the system may be performing much unnecessary
work. For dynamic scenes it becomes apparent that minimizing the
rebuild cost may be as important as minimizing the traversal cost,
since the minimization of the total cost is the overriding criterion.

The most promising approach is to use lazy evaluation tech-
niques to build the acceleration structure (building on and extending
work by Ar et al. [Ar et al. 2002]). When a ray enters a previously
untouched portion of the space partitioning data structure, the sys-
tem puts the ray traversal on hold; then constructs that portion of the
space partitioning data structure from the scene graph; and finally
lets ray traversal resume through the newly created geometry.

However, this approach requires a close interaction between the
acceleration data structure and the scene graph used to model the
world at the application level. We believe that this recognition is
the key to designing an effective system organization for real time
dynamic ray tracing.

Consider a system in which scene management is tightly inte-
grated with rendering (Figure 1). Such a system does not necessar-
ily eliminate the need to store geometry using two different organi-
zations – hierarchical scene graph and space partitioning – but such
a system can tightly control which data is converted into the space
partitioning form and when it is stored in this form. In particular,
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Figure 1: We propose that scene management be tightly integrated with rendering and that both be executed on the flexible parallel hardware.
We refer to this flexible parallel hardware as a PPU (parallel processing unit).

the system can insure that only visible or nearly-visible surfaces are
stored in space partitioning form.

Requiring the rendering system to integrate scene management
with rendering is a major change from today’s systems, so it is rea-
sonable to ask why it is possible to separate scene management
from rendering in a Z-buffer system but not in a ray tracer. In a
simple Z-buffer system, visibility computations are performed in
object order, so that each polygon in the scene is touched once and
only once each frame by the visibility algorithm. Thus, for the pur-
pose of the visibility computation, there is no need to store more
than one polygon in local memory at a time. Of course the geome-
try must be stored somewhere in the system, but this can be done by
the application or scene graph in any manner that is desired, with
the geometry streamed across the immediate mode interface to the
Z-buffer system. Commonly, the geometry is stored in a hierar-
chical data structure for the application to animate and otherwise
modify.

Typically, ray tracing algorithms are “ray order” algorithms, in
which the basic visibility algorithm can touch one polygon, then
touch a second polygon, and eventually return to the first poly-
gon. This type of algorithm requires direct access to the geomet-
ric database describing the scene. However, the geometric database
need not be stored in the same format as the scene graph that is
manipulated by the application. By transferring data lazily between
the two data structures, we can minimize the cost of maintaining
two different data structures.

3.1 Additional improvements

If ray traversal is managed so that most rays touching a particular
portion of space are processed simultaneously [Pharr et al. 1997],
then the system has the option of treating geometry represented in
space-partitioning form as disposable. That is, when a particular
volume of space is visited by a batch of rays, first the system cre-
ates an acceleration structure in on-chip memory for the geometry
residing in that volume of space, then performs ray/triangle inter-
section tests, then discards the acceleration structure. The acceler-
ation structure for that volume of space can be recreated later from
the scene graph if it happens to be needed again.

Several other optimizations become convenient in this frame-
work. If the system stores scene graph data using higher-order rep-
resentations such as subdivision surfaces, these representations may
be tesselated into triangles as the system creates the spatial acceler-
ation structure. The data explosion that occurs during this step can
be confined to on-chip memory, just as it is for a Z-buffer pipeline

that includes a tesselation processor. Pharr and Hanrahan describe a
variant of approach for displacement surfaces [Pharr and Hanrahan
1996].

An additional advantage of tight integration of scene manage-
ment with rendering is that the system can automatically adapt the
LOD of geometry to local ray density, even instantiating the same
geometry at two different levels of detail, as is often needed when
different types of rays (eye and reflected, for example) intersect the
same geometry. A recent paper from Pixar [Christensen et al. 2003]
has clearly demonstrated the value of using ray differentials to man-
age geometric level of detail in a raytracer.

4 Is a unified system organization practical?

We recognize that proposing to tightly couple scene management
with rendering flies in the face of conventional wisdom about
graphics system design. Current systems, following the lead of Iris
GL and OpenGL [Segal and Akeley 2002], are characterized by
the separation of scene management from rendering, mediated by a
carefully-designed immediate mode rendering interface (Figure 1).

Why do we have this interface? Because experience has shown
that it is not possible to build an efficient, fully general-purpose
scene manager. Attempts to standardize systems of this type,
such as CORE [Graphics standards planning committee 1979] and
PHIGS [(american national standards institute) 1988], failed largely
because of their attempt to integrate support for modeling and ren-
dering using an API framework.

So why do we think we can do better? Because experience has
also shown that it is possible to build reusable scene managers
specialized for particular application domains. The most promi-
nent examples are Performer [Rohlf and Helman 1994] which is
specialized for visual simulation and id software’s widely licensed
game engines, which are specialized for first-person-shooter games.
However, these systems do not use a standard API framework – ei-
ther the engine is either highly configurable through internal hooks
(Performer) or it can be directly modified in source code form (id’s
game engines).

We conclude that it is probably not possible to build a fully
generic scene engine behind an API, but that it is possible to build
specialized engines that implement performance critical tasks and
can be adapted for particular applications. Thus, if one is will-
ing to allow a scene manager to be implemented in “user” code
(i.e. not embedded in unprogrammable hardware, or behind a one-
size-fits-all interface), then it is perfectly possible to build a high-
performance scene manager. If this scene manager can run on the
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same hardware that supports the rendering, then we believe that the
scene manager can include rendering code, and thus provide the in-
tegrated renderer / scene manager that we propose. This approach
is analogous to the programmable shaders in today’s hardware, but
carried much farther.

5 Parallel architecture supporting late binding

To efficiently support the ray tracing system we have described,
the hardware architecture and corresponding parallel programming
model must be very flexible and allow most control and data bind-
ing decisions to be deferred until run time. For example, a highly-
specialized architecture, a SIMD architecture, or a streaming archi-
tecture would not be appropriate for this workload.

Several factors drive this need for generality:

• Application-dependent scene management: The architec-
ture cannot be designed for particular scene management
code.

• Irregular data structures: The scene graph and acceleration
data structures are irregular, requiring pointer-chasing or its
equivalent.

• Dynamic data structures: The irregular data structures must
be built and modified with high performance, as well as being
traversed with high performance.

• Data dependent control flow: Adaptive tesselation, ray trac-
ing, and other tasks use highly data-dependent control flow.

• Data locality: Many of the data structures exhibit temporal
locality in their access patterns, but the exact form of the lo-
cality is not known at compile time due to the irregular nature
of the data structures.

We take as a starting point that our target architecture provides
explicit parallelism, which provides better power efficiency than a
single mainstream high-ILP CPU [Sasanka et al. 2004].

5.1 MIMD control flow

We advocate a MIMD programming model because it supports data
parallel execution of computation kernels that use data-dependent
conditionals and looping. Support for MIMD control flow is criti-
cal for efficiently creating and traversing adaptive spatial data struc-
tures such as k-d trees, as well as for executing short data-dependent
loops such as those used in vertex skinning and anisotropic texture
filtering [Sankaralingam et al. 2003a]. MIMD computation also
supports general task level parallelism, i.e. it allows multiple dis-
tinct “kernels” to run concurrently. A primary example of the need
for this is to allow closely coupled scene graph management and
rendering tasks to run concurrently, particularly when these tasks
are not individually sufficiently parallelizable to be able to occupy
the entire machine.

Current graphics hardware (e.g. NVIDIA 6800 with shader
model 3.0) supports a more restrictive SPMD (single-program, mul-
tiple data) programming model in which MIMD-style control flow
is supported, but all fragment or vertex processors must be running
the same program. However, the hardware implementation of the
control flow is closer to a SIMD implementation, so that code with
divergent branching behavior is inefficient [Nvidia Corp. 2004].

Even if future architectures use a MIMD organization as we ad-
vocate, that does not preclude support for simpler programming
models as well. Most other parallel programming models (e.g.

various variants of “stream programming”) can be described as re-
stricted subsets of the one we have outlined and thus can be sup-
ported by the same hardware. For tasks that can tolerate these lim-
itations, the restricted programming models are often easier to use
and typically encourage the programmer to express the task in a
form that will perform well. For example, the stream programming
model forbids the code within one kernel from directly communi-
cating with the code within another kernel, thereby eliminating the
potential for many types of concurrency and performance bugs.

Recent industry designs seem to endorse our view that MIMD ar-
chitectures are a better choice than SIMD architectures for general-
purpose single-chip parallel computation. Sun’s Niagara [Krewell
2003] and IBM/STI’s CELL [Pham et al. 2005] are both fully
MIMD. The most advanced graphics processors (e.g. GeForce
6800) currently have a MIMD programing model (actually SPMD)
implemented as a MIMD execution model in the vertex processor
and a SIMD execution model in the fragment processor. We expect
future architectures to gradually move towards a MIMD implemen-
tation, although maintaining current fragment ordering semantics in
a MIMD machine presents some challenges. Several interesting re-
search architectures that use a highly-parallel MIMD organization
are IBM’s Cyclops [Caşcaval et al. 2002] (not yet built), Stanford’s
Smart Memories [Mai et al. 2000] (not yet built), MIT’s RAW [Tay-
lor et al. 2004] (already built), and the MIT M-Machine [Keckler
et al. 1998] (already built) which demonstrated some promising ap-
proaches for supporting fine-grained MIMD parallelism.

Note that although all of the architectures mentioned above are
MIMD in their overall organization, many of them support 4-wide
SIMD instructions within each core. These short-vector SIMD
instructions are an efficient mechanism for exploiting what is re-
ally just a particularly common form of instruction-level paral-
lelism found in graphics and scientific code. Even in machines that
are designed to exploit MIMD thread-level parallelism, it is still
worthwhile to support such low-cost forms of instruction level par-
allelism, since exploiting such parallelism improves performance
without requiring an increase in on-chip storage such as would be
required by support for additional threads.

5.2 Hardware caches and global address space

For processors built using modern VLSI technology it is desir-
able to include a multi-level memory hierarchy on chip, since for
workloads with temporal memory-access locality this strategy pro-
vides a favorable combination of low power consumption, low aver-
age memory-access latency, and high load/store bandwidth [Kapasi
et al. 2002].

There are a variety of mechanisms by which a programming
model can provide access to high-speed on-chip memory. The
two most popular mechanisms are a hardware-managed cache and
a software-managed scratchpad memory. The difference between
these two approaches is fundamental. For a cache, the decision as
to which elements of data should be stored on chip is automatically
made by the hardware at run-time, with the decision typically made
at a fine granularity (e.g. blocks of 32 bytes). With a software-
managed scratchpad memory, the decision as to which data should
be stored on chip is made either at compile time or made explicitly
by software at runtime, usually at a coarser granularity.

In applications with highly regular memory access patterns, such
as classical DSP applications, a software-managed memory is the
right choice. Software-managed memories carry less hardware
overhead, allow static scheduling of the entire machine (particularly
important for SIMD architectures), and provide the user and com-
piler with better performance guarantees than a hardware-managed
cache.

In contrast, applications that manipulate adaptive data structures
such as k-d trees, BSP trees, or short variable-length lists cannot
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easily manage memory at compile time. The application writer and
compiler may know that there will be significant spatial and tempo-
ral locality of the memory accesses, but they do not know exactly
what form this locality will take for any particular data set. For
these applications, the binding of particular data elements to the
on-chip memory is best performed at a fine spatial granularity. This
approach is exactly that used by conventional hardware-managed
caches. Since we believe that the construction, modification, and
use of adaptive spatial data structures will be a performance-critical
part of future real-time 3D graphics applications, we believe that
future hardware architectures should support hardware-managed
caches or at a minimum must include hardware primitives from
which equivalent behavior can be efficiently implemented in soft-
ware.

One important advantage of an architecture with traditional
hardware-managed caches – especially if cache-coherency is sup-
ported – is that the architecture can provide the illusion of a single
large memory, in which the storage hierarchy is simply an auto-
matic hardware-supported performance optimization. In practice,
parallel software must be heavily tuned to achieve good perfor-
mance from such an architecture, but this performance tuning can
be done incrementally. In contrast, software-managed memories
are usually exposed to the programmer and/or compiler as a series
of architecturally visible capacity “cliffs”, which must be painfully
overcome even in the earliest software prototypes.

The recently announced CELL architecture [Pham et al. 2005],
is an interesting hybrid between the traditional cache strategy and
scratchpad strategy. CELL’s parallel cores (called SPE’s) have
a local scratchpad memory, but the DMA transfers between this
scratchpad and main memory are coherent within a single global
address space. The difficulty of managing a scratchpad memory is
mitigated by the fact that the scratchpad is unusually large (256 KB
per core). For a programmer, is is qualitatively easier to manage this
L2-sized scratchpad than it is to manage a more traditional L1-sized
scratchpad. Nevertheless, we believe that it will prove to be chal-
lenging to efficiently implement some irregular-datastructure algo-
rithms on CELL. Even the strategy of using software to mimic tra-
ditional cache behavior is unlikely to perform well on CELL, due to
the long branch mis-predict penalty and lack of hardware-supported
multithreading. However, we believe that adding minimalist multi-
threading capability to the CELL SPE architecture would substan-
tially improve this situation at relatively low cost, and we hope that
this capability will be considered for future versions of CELL.

5.3 Hardware support for multithreading

A major problem encountered by most modern architectures is that
the latency for moving data between the processing chip and off-
chip DRAM memory can be 100 or more cycles. To maintain
high ALU utilization, the machine must perform other work while
such requests are outstanding. With a hardware-managed cache, the
problem is particularly severe, because the compiler and hardware
do not know in advance whether a particular ‘load’ or ‘store’ will
miss the cache(s). Thus, every access to the unified address space
potentially incurs a 100 cycle delay, whereas in a machine with a
scratchpad, only the explicit accesses to off-chip memory can incur
this delay.

Fortunately, highly parallel computations such as those in 3D
graphics normally have other work (i.e. other threads) that can be
processed during an off-chip memory access. There are two strate-
gies for switching to other thread(s), which we will now describe.

The first strategy is to assume that every memory access misses
the cache. This approach is followed by classical texture caching
systems [Igehy et al. 1998], by the specialized SaarCOR raytrac-
ing architecture [Schmittler et al. 2004], and by cacheless multi-
threaded architectures like Tera [Alverson et al. 1990]. The ALU

switches to other thread(s) (e.g. another fragment or vertex) for the
required number of cycles, regardless of whether or not the memory
request actually missed the cache. Unfortunately, this strategy re-
quires that the number of active threads per ALU be approximately
equal to the off-chip memory latency. The memory needed to store
the working set for these threads can easily dominate the die area
of the parallel processor, particularly when one considers the data-
cache or scratchpad-memory footprint of each thread as well as its
registers.

The second strategy is to switch to another thread only if the
data access actually misses the cache. This approach is the one
used by modern multithreaded machines such as Niagara [Krewell
2003], Cyclops [Caşcaval et al. 2002], and MAJC [Kowalczyk et al.
2001]. The advantage of this second approach is that fewer threads
are required, particularly if cache misses are infrequent. Thus we
consider this strategy to be the better one, at least if the machine
is already a MIMD machine. However, it is worth noting that this
strategy may not perform well if the memory accesses by different
threads are highly correlated, leading to situations where all threads
stall at the same time waiting for the same cache line. For exam-
ple, this situation can occur for texture map lookups in a fragment
shader. In some cases careful use of ‘prefetching’ can mitigate this
problem, but it is not yet clear if this strategy would be effective for
texture mapping.

There is an unfortunate tension between the goal of maximizing
overlap of the working sets of different threads (which in turn re-
duces the per-thread SRAM requirements) and minimizing the tem-
poral correlation between cache misses of different threads (which
in turn allows a reduction in the ratio of threads-per-ALU). We ex-
pect that managing this tradeoff will be a major focus of future
performance-optimization efforts for both hardware and software
in single-chip parallel systems. One advantage of SIMD control
flow that is often under-appreciated is that SIMD execution pro-
vides implicit but very tight inter-thread synchronization that facil-
itates reasoning about and management of this tradeoff. Managing
this tradeoff in MIMD systems can require that fine-grained inter-
thread synchronization be used for this purpose as well as for the
traditional purpose of managing the more obvious control and data
dependencies in the parallel computation.

5.4 Parallelism Summary

The various design decisions for a parallel machine are closely cou-
pled to each other. For example, the decision to use a hardware-
managed L1 cache in each core is at odds with a decision to use
SIMD control. Broadly speaking, there appear to be two reason-
able points in the design space, which can be referred to as “static”
and “dynamic”. Static machines such as Imagine bind and schedule
most fine-grain resources at compile time – ALUs, on-chip mem-
ory, off-chip memory accesses, etc. The static strategy can use
compile-time information about the program, but cannot not use
much if any information about data-dependent behavior. In con-
trast, dynamic machines such as Niagara [Krewell 2003], Cyclops
[Caşcaval et al. 2002] and the Intel IXP network processor [Adiletta
et al. 2002] bind and schedule most resources at run time with hard-
ware assistance. The dynamic-binding strategy uses both program
information and runtime information derived from the data being
processed.

For tasks in which the runtime information can significantly im-
prove the quality of resource binding and scheduling, we believe
that the dynamic approach will provide superior performance and
will also be easier to program. However, for problems that can be
effectively scheduled at compile time, there is no benefit to the dy-
namic approach, and the hardware support needed for it reduces the
performance/price ratio of the hardware. Thus, the decision as to
what type of machine to build should rest largely on anticipated ap-
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plication characteristics. We have argued that future real-time 3D
graphics algorithms will use adaptive data structures, and thus that
future architectures targeted to support these algorithms should use
dynamic binding and scheduling. The close coupling we find here
between the choice of software algorithms and the choice of hard-
ware architectures is one of the reasons that we are advocating that
algorithmic and hardware questions be investigated in tandem.

As with most such design-space tradeoffs, hybrid strategies ex-
ist. For example CELL has MIMD control flow, seemingly placing
it in the dynamic category, but its high branch-mispredict penalty
coupled with lack of multithreading somewhat penalize highly dy-
namic algorithms, as does CELL’s choice of scratchpad memory
rather than cache for local storage. A useful perspective on the
general static-vs-dynamic tradeoff can be found in the architectural
taxonomy found at the end of [Taylor et al. 2004].

5.5 CPU and parallel processor on the same die

Experience teaches us that very few problems are perfectly paral-
lelizable. Historically, Cray’s vector machines outperformed their
competitors because they had superior performance for scalars and
short vectors [Hennessy et al. 2003]. 3-D graphics is no exception
to this general rule – modern graphics hardware has serialization
points, although these potential bottlenecks are normally not user
programmable.

For this reason, we believe that future graphics algorithms will
split their work between an array of parallel processors optimized
for high, power-efficient throughput on parallel code and at least
one CPU-like processor optimized for maximum performance on
a single thread. We believe that these two core types will be im-
plemented with different sets of transistors, rather than by recon-
figuring a single underlying substrate [Sankaralingam et al. 2003b;
Taylor et al. 2004; Mai et al. 2000]. The reason is that a well-
designed throughput-optimized processor differs from a single-
thread-optimized processor in almost every respect, including the
physical design of the individual transistors. The flexibility gained
from a single reconfigurable substrate is likely to be more than off-
set by the cost of the necessary compromises.

To facilitate the low-latency, high-bandwith transfer of work be-
tween the throughput-optimized and single-thread-optimized pro-
cessing cores, they must be integrated on a single die. Network
processors [Adiletta et al. 2002] and CELL use this organization al-
ready, and we believe that in the long term these technical benefits
as well as market trends towards cost reduction make such integra-
tion inevitable for graphics processors.

5.6 More than one kind of throughput-optimized core?

One important but open question is whether future chip-
multiprocessors should have just one kind of throughput-optimized
core, or two or more varieties of such cores. For example, it would
be reasonable to build an architecture which has one set of cores
that can only write to memory via stream outputs (like today’s GPU
fragment processors), and a second set of cores supporting cache-
coherent memory writes and reads. The first set of cores would
have higher peak performance, but would be restricted to a nar-
rower class of computations than the second set of cores.

Other kinds of cores may also be useful. For example, current
graphics chips include a simple configurable hardware unit (the
raster-operation unit) located next to each of several memory con-
trollers. We have shown that adding additional capabilities to this
unit enables it to efficiently assist the task of building linked lists
[Johnson et al. 2005]. Others have shown that such “near-memory
processing” can be useful for traversing linked lists [Hughes and
Adve 2005].

Finally, if a single-chip parallel architecture is expected to be
heavily used for one particular task such as 3D rendering, it may
be advantageous to include highly-specialized cores optimized for
particular tasks such as texture filtering (included in today’s GPU’s)
or ray/triangle intersection testing.

Most of these decisions must be made based on detailed
cost/benefit analysis of both the workload and the hardware imple-
mentation, but there is one broad issue that will impact all such de-
cisions. It is possible that future power budgets will prohibit archi-
tectures from using all of their transistors at once. This constraint
would favor heterogeneous specialization of the architecture’s pro-
cessing units, a point that was first brought to our attention by Mark
Horowitz.

6 Conclusion

We have argued that the next frontier in improved real-time im-
age quality is to simulate global illumination effects for dynamic
scenes. We claim that ray tracing will be the visibility algorithm of
choice, but that it will initially be used to support non-physically-
correct global illumination techniques.

We believe that a ray tracing system that efficiently supports dy-
namic scenes will need to integrate scene management with ren-
dering. Since scene management code is somewhat application
specific, this tight integration implies that the parallel architec-
ture used to accelerate rendering must also be capable of executing
application-specific scene management code. In turn, this requires
that the parallel architecture support a general-purpose parallel pro-
gramming model, with inter-thread communication, synchroniza-
tion, and perhaps cache-coherent memory operations. The pro-
gramming model supported by today’s GPUs lacks most of these
capabilities, and in particular it does not provide adequate support
for creating and modifying adaptive data structures.

We believe the most promising hardware architecture to support
this programming model is a MIMD multithreaded machine with
cache-coherent shared memory. However, this conjecture remains
unproven, and many questions remain about the details of such an
architecture as well as its price/performance ratio.

To date we have not built either the software or the hardware
necessary to confirm our hypothesis. What we have presented is a
set of informed opinions backed by reasonable arguments and some
initial results from architecture and algorithm simulations [Johnson
et al. 2005]. Our purpose in presenting these opinions is two-fold.
First, we think the ideas are sufficiently interesting that they will
stimulate useful discussion within the research community. Second,
we hope to persuade the research community that the particular ap-
proach we have outlined is sufficiently promising to be worthy of
detailed investigation.
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