
TRIPS Appliation Binary Interfae (ABI) ManualAaron Smith Jim Burrill Robert MDonaldNiholas Netherote Bill Yoder Doug BurgerStephen W. Kekler Kathryn S. MKinleyOtober 10, 2006 - Version A.06Teh Report TR-05-22Department of Computer SienesThe University of Texas at AustinThis doument spei�es the TRIPS Appliation Binary Interfae (ABI) Manual for theTRIPS arhiteture, a novel, salable, and low power arhiteture for future tehnologies.

TRIPS Appliation Binary Interfae (ABI) ManualContents1 Overview 12 Arhitetural Desription 12.1 Registers . 12.2 Fundamental Types . 12.3 Compound Types . 23 Funtion Calling Conventions 33.1 Register Conventions . 33.2 Stak Frame Layout . 43.2.1 Link Area . 63.2.2 Argument Save Area . 63.2.3 Loal Variables . 83.2.4 Register Save Area . 83.2.5 Requirements . 83.3 Parameter Passing . 83.4 Return Values . 103.5 Variable Arguments . 114 Runtime Support Funtions 114.1 Appliation Memory Organization . 114.2 Proess Initialization . 124.3 System Calls . 125 Standards Compliane 135.1 C Standards . 135.1.1 Calling Conventions . 135.2 F77 Standards . 145.3 Floating Point Representation . 14

Version A.06 i Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) Manual1 OverviewThis doument desribes the appliation binary interfae for the TRIPS Grid Proessor.The goal of this doument is to provide a onsistent standard for vendors and researhersto follow. No thought has been given to any other language besides C and FORTRAN. Youare enouraged to build upon and expand this doument for other languages suh as C++and Java.For additional information relevant to the Trips Appliation Binary Interfae, please onsultthe following manuals:� TRIPS Proessor Referene Manual� TRIPS Intermediate Language (TIL) Manual� TRIPS Assembly Language (TASL) Manual� TRIPS Objet File Format (TOFF) Spei�ation2 Arhitetural DesriptionFor a omplete arhitetural desription, refer to the TRIPS Proessor Referene Manual.2.1 RegistersThe TRIPS arhiteture provides 128 general purpose registers (GPRs). By onventionGPRs are named R0 - R127. The arhiteture makes no distintion between oating pointand general purpose registers. The TRIPS arhiteture does not de�ne any speial purposeontrol registers whih are aessible through the instrution set.2.2 Fundamental TypesTable 1 shows the TRIPS equivalents for ANSI C fundamental types along with their sizesand alignments. Fundamental types are always aligned on natural boundaries. The TRIPSarhiteture supports 64, 32, 16 and 8-bit load and store operations. All data is in big endianbyte order.For the purposes of this doument, we de�ne the following types:� doubleword { A doubleword is 64-bits and the least signi�ant 3-bits of the address ofa doubleword in memory are always zero.� word { A word is 32-bits and the least signi�ant 2-bits of the address of a word inmemory are always zero.Version A.06 1 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) ManualANSI C Size (in bytes) Alignment (in bytes)har 1 1unsigned har 1 1signed har 1 1short 2 2unsigned short 2 2signed short 2 2int 4 4unsigned int 4 4signed int 4 4enum 4 4long 8 8unsigned long 8 8signed long 8 8long long 8 8unsigned long long 8 8signed long long 8 8oat 4 4double 8 8long double 8 8Table 1: TRIPS Fundamental Types� halfword { A halfword is 16-bits and the least signi�ant bit of the address of a halfwordin memory is always zero.� byte { A byte is 8-bits.2.3 Compound TypesThe alignment requirements for arrays, strutures, unions and bit �elds are summarized inTable 2.Arrays are aligned aording to the alignment of their individual elements. For example,har a[10℄; /* aligned on 1-byte */short as[10℄; /* aligned on 2-bytes */float af[10℄; /* aligned on 4-bytes */Strutures and unions are aligned aording to their most restritive element. Paddingshould be added to the end of the struture or union to make its size a multiple of thealignment. Fields within strutures and unions are aligned aording to the �eld's type withthe exeption of bit �elds. Padding should be added between �elds to ensure alignment. Forexample,Version A.06 2 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) ManualCompound Type AlignmentArrays Same as individual elementsUnions Most restritive alignment of membersStrutures Same as unionsBit �elds Same as individual elementsTable 2: Alignment of Compound Typesstrut s1 {har b[9℄; /* aligned on 1-byte */short bs; /* aligned on 2-bytes */int bi; /* aligned on 4-bytes */har b2[9℄; /* aligned on 1-byte */};The individual elements b and b2 are aligned on 1-byte boundaries. The elements bsand bi are aligned on a 2-byte and 4-byte boundaries respetively. A 1-byte pad will beadded between b and bs in order to align bs on a 2-byte boundary. Sine int is the mostrestritive element of the struture, a 3-byte pad would be added to the end of the strutureto align it on a 4-byte boundary.The maximum size of a bit �eld is 64-bits. Bit �elds annot be split over a 64-bit boundary.Zero-width bit �elds pad to the next 32-bits, regardless of the type of the bit �eld. No otherrestrition applies to bit �eld alignment. However, bit �elds impose alignment restritionson their enlosing struture or union aording to the fundamental type of the bit �eld.3 Funtion Calling Conventions3.1 Register ConventionsTable 3 de�nes the register onventions for the TRIPS arhiteture. There is no distintionbetween oating point and integer values for the purpose of the onventions.Registers R0, R1 (stak pointer), R2 (return address) and R12{R69 are allee-save or non-volatile, whih means that the ompiler preserves their values aross funtion alls. Anyfuntion whih uses any register in this lass must save the value before hanging it, andrestore it before the funtion returns.The remaining registers, R3{R11 and R70{R127, are aller-save or volatile, whih means thatthey an be overwritten by a alled funtion. The ompiler will ensure that any funtionwhih uses any register in this lass must save the value before alling another funtion, andrestore it after that funtion returns, if that value is to be reused after the all.Register R1 (SP) ontains the funtion's stak pointer. It is the responsibility of the funtionto derement the stak pointer by the size of its stak frame upon entry in the funtionVersion A.06 3 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) ManualReg. # Usage and desription LifetimeR0 System Call ID for SCALL Callee-saveR1 Stak Pointer Callee-saveR2 Return Address Register Callee-saveR3 Arguments and Return Values Caller-saveR4 Arguments and Return Values Caller-saveR5 - R10 Arguments Caller-saveR11 Reserved for Environment Pointer Caller-saveR12 Frame Pointer or Loal Variable Callee-saveR13 - R69 Loal Variables Callee-saveR70 - R127 Loal Variables Caller-saveTable 3: Register Conventionsprologue and inrement the stak pointer by the size of its stak frame upon exit in thefuntion epilogue. To support the debugger, the ompiler stores the aller's stak pointer inthe link area as a bak hain pointer, prior to derementing the stak pointer register (SP)in the prologue.If a funtion uses alloa, whih alloates spae for the user on the stak, register R12 (FP) isused to aess the funtion's stak frame while allowing the stak pointer (R1) to be hangedby alloa. Upon entry to suh a funtion, the address in R1 is �rst deremented and thenthis address is opied into R12. Then register R12 is opied bak into R1 just before registerR1 is inremented on the funtion's return.Register R2 ontains the funtion's return address upon entry. It is the responsibility of thefuntion to preserve its return address so that it may return to its aller. If the funtionalls no other funtions, it may do this by keeping its return address in R2. Otherwise, itmust save the return address in the link area.3.2 Stak Frame LayoutEah funtion has a stak frame on the runtime stak whih grows downward from highaddresses. Figure 1 shows the stak frame organization. Note that the �gure shows lowmemory addresses at the top and high addresses at the bottom.From low to high addresses, the stak frame for a funtion (allee) ontains:� Fixed Size Link Area� Argument Save Area� Loal Variables� Register Save AreaVersion A.06 4 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) Manual

Arguments set by Caller
and used by Callee.

Caller’s Stack Pointer (SP)

before call to Callee.

Callee’s Stack Pointer (SP)
after prolog is executed.

Callee saves saves
Caller’s non−volatile registers.

Arguments set by Callee
and used by Callee’s callee.

Caller’s local variables

Caller’s Link Area

Callee’s Link Area

Low Address

High Address

Callee’s local variables

Register Save Area

Argument Save Area

Argument Save Area

Figure 1: Stak Frame Layout
Version A.06 5 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) Manual(SP) Bak hain pointer; i.e., stak frame address of aller(SP) + 8 Callee's return addressFigure 2: Link Area After Callee Prologue3.2.1 Link AreaThis �xed size area holds (a) the address of the aller's stak frame and (b) the allee'sreturn address (Figure 2):� The �rst doubleword (lowest address in the allee's stak frame) ontains the aller'sstak pointer value, sometimes alled the \bak hain". The �rst stak frame (that is,the stak frame of the start funtion) will have a bak hain value of 0.� The seond doubleword ontains the allee's return address, whih is set by the allerbefore branhing to the funtion. If debugging is not required, this doubleword maybe left unde�ned in order to avoid a store to memory.Note: If a funtion dynamially alloates spae on the stak (e.g., alloa()), then thealloated spae must be between the link area and the argument save area. This meansthat the link area must be moved when the alloation is performed. The stak pointerregister must always point to the link area.Figure 3 shows the use of bak hain pointers to traverse the stak frames.3.2.2 Argument Save AreaThis variable size area is large enough to hold all of the arguments that a routine may passto any of the routines that it alls as determined by:� A minimum of MAX_ARG_REGS (8) doublewords is usually reserved for the argumentsave area beause the aller an not know if it is alling a routine that uses va_start.See setion 3.5.� For a \leaf routine" this area may ontain 0 doublewords. When a routine alls afuntion it plaes the �rst MAX_ARG_REGS doublewords of arguments in the argumentregisters (R3 . . . R10). Any additional doublewords of arguments are plaed startingin doubleword 8 of the argument save area. Eah argument is plaed in at least oneregister or in at least one doubleword in the argument save area. Arguments largerthan a doubleword may be split between a register and the argument save area. Theleast signi�ant 3-bits of the address of any argument in the argument save area arezero.
Version A.06 6 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) Manual
All stack items are aligned on high virtual memory
8-byte boundaries. environment = 0xFFFFFFFF

and
argv strings

argument save area

return address = 0
sp of _start() back chain pointer=0

register save area

local variable area Stack grows down.

argument save area

return address Fixed size
sp of main() back chain pointer link area of main()

register save area

local variable area

argument save area

return address link area of func()
sp of func() back chain pointer

register save area

local variable area

return address link area of leaf()
sp of leaf() back chain pointer

unused stack
area

Application bss
and data area

low memory

 Loader places data beginning at 0x80000000.Figure 3: TRIPS Stak LinkagesVersion A.06 7 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) Manual3.2.3 Loal VariablesAny loal variables of a allee that must reside in memory are plaed in the loal variablearea. The least signi�ant 3-bits of the address of any variable are always zero. The size ofthe area may be zero.3.2.4 Register Save AreaThis area holds the ontents of any of the allee-save registers that the allee modi�es.Registers are saved to inreasing addresses. For example, if the allee modi�es only theallee-save registers R60 and R62 then the register save area will be 16 bytes. Register R60will be stored at o�set 0 and register R62 will be stored at o�set 8 into the register savearea. The least signi�ant 3-bits of the address of any register in the register save area arezero. The size of the area may be zero.3.2.5 RequirementsThe following requirements apply to the stak frame:� The least signi�ant 4-bits of the value in the stak pointer register (SP) shall alwaysbe zero.� The stak pointer shall point to the last word of the urrent stak frame. Thus, (SP) isthe address of the \bak hain" word of the link area. The stak shall grow downward,that is, toward lower addresses.� The stak pointer shall be deremented by the alled funtion in its prologue andrestored prior to return.� Before a funtion hanges the value in any allee-save general register, Rn, it shall savethe value in Rn in the register save area.3.3 Parameter PassingBoth salar and ompound type parameters are passed in registers R3 through R10. Pa-rameters shall be assigned onseutively to registers so that R3 ontains the �rst funtionparameter. Assuming that the �rst argument is requires 8 bytes or less, R4 ontains theseond. This ontinues until all argument registers are oupied. If there are not enoughregisters for the entire parameter list then the parameters overow in onseutive order ontothe argument save area of the stak.Salars less than 64-bits are right justi�ed within the register. The aller must not assignmore than a single salar argument to a register.Version A.06 8 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) Manual

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

7−bytes

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

6−bytes
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

5−bytes

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

3−bytes
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

4−bytes

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

2−bytes
��
��
��
��
��

��
��
��
��
��

1−byte

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

8−bytes

��
��
��
��
��

��
��
��
��
��

data Figure 4: Passing C StrutsCompound types (C struts) larger than 64-bits are paked into onseutive registers. Com-pound types less than 64-bits are plaed within the register in the position that allows asimple store to plae them in memory aligned upon a doubleword boundary (see Figure 4).The argument save area, whih is loated at a �xed o�set of ARG_SAVE_OFFSET (24) bytesfrom the stak pointer, is reserved in eah stak frame for use as an argument list. Aminimum of MAX_ARG_REGS (8) doublewords is reserved if the routine alls another routine.The size of this area must be suÆient to hold the longest argument list being passed bythe funtion whih owns the stak frame. Although not all arguments for a partiular allare loated in storage, onsider them to be forming a list in this area, with eah argumentoupying one or more doublewords.If more arguments are passed than an be stored in registers, the remaining arguments arestored in the argument save area.The rules for parameter passing are as follows:� Eah argument is mapped to as many doublewords of the argument save area as arerequired to hold its value.1. Single preision oating point values are mapped to a single doubleword.Version A.06 9 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) Manual2. Double preision oating point values are mapped to a single doubleword.3. Simple integer types (har, short, int, long, enum) are mapped to a single double-word. Value shorter than a doubleword are sign or zero extended as neessary.4. Pointers are mapped to a single doubleword.5. Aggregates and unions passed by value are mapped to as many doublewords ofthe argument save area as the value uses in memory.6. Other salar values, suh as FORTRAN omplex numbers, are mapped to thenumber of doublewords required by their size.� If the allee has a known prototype, arguments are onverted to the type of the orre-sponding parameter before being mapped into the parameter save area. For example,if a long is used as an argument to a oat double parameter, the value is onverted todouble-preision and mapped to a doubleword in the argument save area.� The �rst MAX_ARG_REGS (8) doublewords mapped to the argument save area are neverstored in the argument save area by the alling funtion. Instead, these doublewordsare passed in registers as desribed above.� Argument values beyond the �rst eight doublewords must be stored in the argumentsave area following the �rst eight doublewords. The �rst eight doublewords in theargument save area are reserved for the initial arguments, even though they are passedin registers.� General registers are used to pass some values. The �rst eight doublewords mapped tothe argument save area orrespond to the register R3 through R10. If the argumentsare mapped to fewer than eight doublewords of the argument save area, registers or-responding to those unused doublewords are not used.� If the allee takes the address of any of its parameters that are passed in registers, thenthose parameters must be stored by the allee into the argument save area.Note: if the ompilation unit for the aller ontains a funtion prototype, but the allee hasa mismathing de�nition, and if the allee takes the address of any of its parameters, thewrong values may be stored in the �rst eight doublewords of the argument save area.3.4 Return ValuesFuntions shall return values of type oat, double, int, long, enum, short, and har, or apointer to any type, as unsigned or signed integers as appropriate, zero- or sign-extended to64-bits if neessary, in R3.Aggregates or unions of any length shall be returned in a storage bu�er alloated by thealler. The aller will pass the address of this bu�er as a hidden �rst argument in R3,ausing the �rst expliit argument to be passed in R4. This hidden argument is treated asVersion A.06 10 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) Manuala normal formal parameter, and orresponds to the �rst doubleword of the parameter savearea.Funtions shall return omplex oating point salar values of size 16-bytes or less in registersR3 (real-part) and R4 (imaginary part).3.5 Variable ArgumentsIf the allee uses va_start it is the allee's responsibility to store the registers R3 throughR10 in the argument save area. The remaining arguments are stored by the aller.The va_start operation auses the address of the spei�ed parameter to be stored in thedoubleword alloated for the va_list variable. As eah argument is aessed by va_arg thisaddress is inremented by the proper multiple of 8.There is no provision in this spei�ation that de�nes how a \variable argument" funtionan determine the number of arguments that were passed to it.4 Runtime Support Funtions4.1 Appliation Memory OrganizationThe TRIPS prototype runtime system lays out virtual memory for appliations from highvirtual addresses to low virtual addresses as follows:� environment { At the \top", or highest address, of appliation memory is the programenvironment, whih is passed through to the program loader in the **envp string array,by the all to the program's main() routine.� stak { Beneath the program environment area is the stak, whih grows \downward"in 8-byte derements, toward lower addresses.� heap { The heap, plaed on top of the program's text and data segments, grows upwardby means of the brk() system all.� bss { The unitialized data setion, for variables tagged with the .omm diretive, setsthe boundary between the program text and data area and the heap area.� initialized data { The program's read/write initialized data setion appears at loweraddresses than the .bss area.� read-only data { This area is reserved for initialized data that is marked by the ompilerwith the .rdata diretive as read-only.� program text { At the lowest program addresses are the ode bloks omprising theprogram's exeutable setion.Version A.06 11 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) ManualRegister DesriptionR1 The initial stak pointer, aligned to a 16-byte boundary.R3 Contains arg, the number of program arguments.R4 Contains argv, the array of NULL-terminated argument strings.R5 Contains envp, the array of NULL-terminated environment strings.Table 4: Registers Initialized by the Loader4.2 Proess InitializationAppliation behavior at startup on a TRIPS proessor is modeled on PowerPC onventions.1For an appliation whose entry point is de�ned as:int main(int arg, har ** argv, har ** envp)Table 4 lists the ontents of registers when the loader returns ontrol to the system software.The ontents of other registers are unspei�ed. It is the responsibility of the appliation tosave those values that will be needed later.The loader will push the argument ount, argument values, and environment strings as the�rst items on the user-stak, starting at the top of appliation memory. Next, the loader willpush the addresses of those strings onto the stak. Hene, R1 will point to the stak addressjust below the values supplied from the environment and arguments to the program, whosevalue is a NULL pointer.4.3 System CallsSystem all support on the TRIPS prototype simulators is provided through the SCALL in-strution. As de�ned in the TRIPS Proessor Referene Manual, when a SCALL instrutionis exeuted, a System Call Exeption will our after the program blok with the SCALLommits. The TRIPS prototype simulators provide a runtime exeption handler that deter-mines the type of system all and servies the request.To invoke a system all, the identi�er for the all is plaed in R0. The return address andarguments for the all are passed in R2 and R3{R10 in aordane with the Funtion CallingConventions, and upon ompletion, the result ode is returned in R3. If the system all wasservied suessfully, the value returned in R3 will be 0. Otherwise, R4 will ontain thevalue of errno from the simulator's host environment. Note that if no error has ourred,the value of R4 will be unde�ned upon return from a system all.The TRIPS prototype simulators urrently provide support-by-proxy for the system servieslisted in Table 5. These servies are de�ned in the /usr/inlude/sys/sysalls.h TRIPS systemheader �le.1Zuker, Steve and Karhi, Kari: System V Appliation Binary Interfae: PowerPC Proessor Supplement,1995.Version A.06 12 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) ManualServie Numeri IDexit 1read 3write 4open 5lose 6reat 8unlink 10time 13lseek 19brk 45gettimeofday 78stat 106lstat 107fstat 108Table 5: System Call Identi�ers5 Standards ComplianeThis setion douments any deviation from the relevant standards in use for the TRIPSsystem. This setion disusses only known deviations for whih no ompliane is planned.All other deviations should be regarded as bugs in the relevant software or hardware.The relevant standards are� ANSITM X3.159-1989 1989 C Programming Language� ISO/IEC 9899 1999 C Programming Language� ANSITM X3.9-1978 Fortran 77 Programming Language� IEEE 754-1985 and IEEE 854-1987 Floating Point Representation5.1 C Standards5.1.1 Calling ConventionsAs TRIPS does not support operations on 32-bit IEEE single preision oating point values,single preision oating point values are always passed as double preision arguments toalled subroutines. See Setion 3.3.2.2 of the ANSITM X3.159-1989 standard and Setions6.5.2.2 and 6.9.1 of the ISO/IEC 9899 standard.
Version A.06 13 Otober 10, 2006

TRIPS Appliation Binary Interfae (ABI) Manual5.2 F77 StandardsThe TRIPS ompiler does not support the \assigned goto" apability as spei�ed in Setion11.3 of the ANSITM X3.9-1978 standard.5.3 Floating Point RepresentationSee the \TRIPS Proessor Arhiteture Manual: Version 1.2: Teh Report TR-05-19 (03/10/05)"for information on this subjet.

Version A.06 14 Otober 10, 2006

