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Abstract

We describe two abstractions that show how Lam-
port’s Paxos and Castro and Liskov’s PBFT are es-
sentially the same consensus protocol, but for differ-
ent failure models. The first abstraction is a regular
register that captures how processes in both protocols
propose and decide values. The second abstraction
is tokens that capture how these protocols guaran-
tee agreement despite partial failures. Together, the
register and tokens provide the abstraction of a write-
once regular register, which we claim is an intuitive
way to conceptualize Paxos and PBFT. We also point
out how details specific to Paxos and PBFT manifest
themselves in the implementation of our abstractions.

1 Introduction

You find a group of people frantically engaged
around a circular table. Intrigued, you edge
closer to find that seat belts bind each person
into his or her chair. Rather than struggle
with their belts, they busily press flashing but-
tons on the table. You see the glint of a red
token in a lady’s hand, but she quickly inserts
the token into a slot and continues pressing
buttons. Next, a green sparkle catches your
eye and you turn your head in its direction
just in time to see a man holding a green
token unlock his belt. Your curiosity finally
overcomes your caution and you approach the
table...

The description above captures moments from the
Game of Paxos. We use this game to show that Lam-
port’s Paxos [7] and Castro and Liskov’s PBFT [2] are
the same protocol, but for different failure models.

Since solving consensus in an asynchronous system
with failures is impossible [4], Paxos gives us the next

best thing for crash failures. It guarantees the safety
properties of consensus and relies on synchrony only
for liveness. PBFT is a state-machine replication pro-
tocol for asynchronous systems with Byzantine faults.
It demonstrates that Byzantine fault-tolerance can be
made practical.

At a high-level, these protocols are intuitively simi-
lar. They both rely on synchrony only for liveness. In
addition, both protocols use leaders to coordinate ac-
tions among quorums [3, 10, 11] of processes. While
some refer to PBFT as Byzantine Paxos [9], the ex-
tent of the similarities between Lamport’s protocol
and Castro and Liskov’s is not obvious.

It is difficult to characterize these similarities for
two main reasons. First, Paxos and PBFT are non-
trivial protocols that use message passing over asyn-
chronous channels to obtain quorums. The subtleties
of the corner cases in such a setting can quickly be-
come overwhelming1. Second, the most elusive as-
pect in these two protocols is in how each guarantees
agreement despite leader failures. We provide two in-
tuitive abstractions that carve Paxos and PBFT into
functionally identical parts that help overcome the
above difficulties.

Our first abstraction is a register that hides the de-
tails of quorum operations. This register has regular
consistency semantics [6] with respect to a partial or-
der that we define. Processes issue read and write op-
erations to this shared register. With a single correct
leader, it is easy to see how to guarantee agreement;
only the leader writes to the register and the leader
writes only one value to the register. Non-leader pro-
cesses wait until they read a non-⊥ value, and agree
on the value read. Guaranteeing agreement becomes

1It is a testament to Paxos’s steep learning curve that, to
be qualified for a research position, candidates may be required
to have at least once tried to understand Paxos by reading the
original paper. [13]
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harder if the leader fails. Processes need to elect a
new leader who then should be careful to only write
values consistent with previous writes.

We define the partial ordering of register operations
such that for a new leader, reads only return values
consistent with the previous leader’s writes. A newly
elected leader therefore only needs to prove that it
issued the appropriate read before it writes a value.

Our second abstraction is tokens that encapsulate
proofs that a leader issued a particular read. To write
a value, a newly elected leader must first present an
appropriate token to the register. By requiring these
tokens as guards to every write, we get a write-once
regular register, which we claim is an intuitive way
to conceptualize Paxos and PBFT.

Details specific to Paxos or PBFT manifest them-
selves in the implementation of these abstractions,
not their specifications. Under benign failures, we
use a crash-tolerant regular register and issue plain-
text tokens. Under Byzantine failures, we use a
Byzantine-tolerant regular register and issue secure
tokens to prevent foul play.

The Game of Paxos lets us intuitively explain our
abstractions. We explain the Game in Section 3. Sec-
tion 4 defines our register’s semantics and our tokens.
Finally, in Sections 5 and 6, we show how Paxos and
PBFT are specialized implementations of the register
and the tokens.

2 Related Work

Our work is the latest in a series of papers that revisit
the Paxos protocol.

De Prisco et al. introduce the Clock General Timed
Automaton (Clock GTA) [12] and use it to model,
verify, and analyze Paxos. Using the Clock GTA,
they analyze the performance of the protocol during
periods of failures and also during more ‘nice’ times.

Lamport’s own second take at Paxos [8] directly
and concisely explains the protocol. Our goal is to
maintain that clarity and simplicity while providing
a characterization that encompasses both Paxos and
Castro and Liskov’s PBFT.

Lampson describes Abstract Paxos [9], a version
of Lamport’s original protocol, and derives Classic
Paxos, Byzantine Paxos, and Disk Paxos [5] from it.
In each derivation, he shows how a process chooses

an appropriate value before trying to get enough pro-
cesses to accept that value. Lampson highlights this
choosing step as the key problem in implementing
Paxos-like protocols and uses his formalism to explore
how three Paxos variants accomplish it. We leverage
the existing body of work on quorum systems so that
the complexity in the choosing step is encapsulated
in a regular register’s read operation.

Boichat et al. propose a register abstraction to
explain Paxos [1]. They separate Paxos’s safety
and liveness requirements into eventual register and
leader election abstractions. From these abstractions,
they construct Paxos variants such as Disk Paxos.
They do not, however, address the Byzantine case.
Our register abstraction is similar to their register,
but departs in an important way; our register ex-
poses two operations, read and write, whereas theirs
exposes only a single propose operation. We believe
that exposing the read and write operations is crucial
to help reasoning about Paxos and PBFT.

3 The Game of Paxos

The Game of Paxos captures the protocol that correct
processes execute in order to reach consensus.

A Paxos table is a circular table with a register em-
bedded at its center. Upon sitting down, each player
finds that a seat belt binds him to his chair. The
only way to unlock the belt buckle is for the player
to know the register’s final value. And the only way
to know the final value is to access the register via an
interface located at each seat.

Each interface consists of two buttons, a dial that
can be set to arbitrary values, a token slot, and an
inset metal tray. One button is labeled ‘read’ and
the other is labeled ‘write.’ The read button con-
tinually blinks, whereas the write button is initially
dark. Each interface also has a tamper-proof seal on
it so that the player can trust the results it gets back
from the interface. At the center of the interface is
an instruction label:
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To learn the register’s final value, follow the steps to
play the Game of Paxos below.

1. Push the read button and examine the token that
drops into the tray.

2. If the token is green, the buckle will unlock because
the final value of the register is stamped on the
token.

3. If the token is red and is stamped with a value,
place the token in the slot, set the dial to the same
value, and push the now blinking write button (it
will turn back off). Go back to step 1.

4. If the token is red and blank, place the token in
the slot, set the dial to any value, and push the
blinking write button. Go back to step 1.

Tokens serve as proof that a read returned a partic-
ular value. Inserting a red token into the slot enables
a player to issue a write. Green tokens are indicators
that a value has been written into the register.

In order for this game to help players reach con-
sensus, all green tokens must have the same value
stamped on them. A user manual under each seat
shows how the interface, tokens, and register guaran-
tee this property. We open the manual in the next
section.

4 The User Manual

This manual contains important information regard-
ing the safe operation of your Paxos table. We urge
you to read it carefully and become familiar with
its contents. In so doing, you will understand how
your Paxos table guarantees that all green tokens are
stamped with the same value.

4.1 Chapter 1: Features & Safety

Your Paxos table comes with a register embedded at
its center. You can access the register via an interface
at each seat. It should look similar to the picture in
Figure 1. Your interface guarantees the following:

Validity: If a token is stamped with value v, then
some player pressed the write button with the
dial set to v.

Integrity: A player following the rules obtains at
most one green token.

Agreement: All green tokens are stamped with the
same value.

read write

Dial

read and write buttons

Metal Tray
Instruction Label

Token Slot

Figure 1: Example interface at each seat.

Warning! Check your table’s operating assumptions.
If you violate these assumptions, your Paxos table
may behave unexpectedly.

4.2 Chapter 2: Register Semantics

Your embedded register stores value and timestamp
pairs2. It provides two operations to access it: read
and write. The register’s initial value is ⊥, which no
one can write. Furthermore, each read or write has
begin and end times measured by a world clock.

Caution. In many register implementations, the
timestamp is a monotonically increasing natural
number, which has no relation to the world clock.

Register Operations

Your register’s read operation takes no parameters,
but returns a value and timestamp pair. Your regis-
ter’s write operation takes two parameters: a value
and a timestamp. A write begins as partial and ends
either when it becomes total or when a write with
higher timestamp ends, whichever occurs first3

This register departs from traditional registers in
three ways. The first difference is that your regis-
ter distinguishes between partial and total writes. A
write may begin (as partial) but never be total be-
cause of an overlapping operation with higher times-
tamp. The second departure is that the timestamp
returned by a read corresponds to the register’s cur-

2For convenience, we use the syntactic convention that v is
a value and ts is a timestamp.

3The conditions for when a write becomes total are imple-
mentation specific.
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read returns (v = ?, ts = 2)
write ( v = ?, ts = 3)

write (v = ?, ts = 1)

world time

Figure 2: A disallowed sequence of register opera-
tions, independent of the values. First, the write with
timestamp 1 should end when the other write ends.
Second, the read should return a timestamp at least
3.

rent timestamp, not the timestamp used by the as-
sociated write. The purpose of this change will be
evident later.

The third distinction is that the write has value
and timestamp parameters, instead of just a value
parameter. The timestamp parameter must satisfy
two conditions.

The first condition is that no writer can have used
the timestamp for a prior write. The La98 register
model assumes that writers select timestamps from
disjoint sets of numbers and use each timestamp at
most once. The CL99 model, on the other hand, is
more resilient; it tolerates clients that issue multi-
ple writes with the same timestamp. The CL99 is
more expensive because it employs a sophisticated
pre-write phase, and guarantees that only one write
per timestamp passes this phase. You can find details
regarding this phase in the CL99 documentation (see
Section 6).4

The second condition is that an operation’s
timestamp be at least as large as the timestamp
of every previous non-overlapping operation; reads
must satisfy this condition, as well. Figure 2 shows
a sequence of register operations not allowed under
our definitions.

Consistency Semantics

Your register has regular consistency semantics [6].
In a register with regular semantics, a read that is not
concurrent with a write returns the last written value.
A read that is concurrent with a write can return the
last written value or a value that is concurrently being
written.

4The La98 and CL99 tables are inspired by Lamport’s pro-
tocol and Castro and Liskov’s work, respectively.

partial write (v = a, ts = 0)

partial write (v = b, ts = 1)

total write (v = c, ts = 3)

read returns (v = a, b, or      , ts = 1) total write (v = d, ts = 5)

read returns (v = c, ts = 4)

world time

Figure 3: An illustration of regular consistency se-
mantics under the partial order definition. The read
with ts=4 returns c because no write is concurrent
with it and the total write(c,3) immediately precedes
the read according to the partial order. The read with
ts=1, however, can return either a, b, or ⊥ because
it is concurrent with the first two writes.

Traditionally, two operations are concurrent if they
overlap in real time. Your register uses real time and
timestamps to give a stronger partial ordering as fol-
lows:

1. Non-overlapping operations are ordered accord-
ing to real time.

2. Overlapping operations are partially ordered ac-
cording to their timestamp as follows:

(a) writes are ordered by increasing timestamp.

(b) a total write precedes a read if the read re-
turns a higher timestamp.

(c) a read precedes a write (whether partial or
total) if the read returns an earlier times-
tamp.

Figure 3 gives an example of how this partial order
affects reads under regular semantics.

4.3 Chapter 3: Console Circuitry

The console circuitry underneath each interface me-
diates communication between you and the register.
For your safety, the register is embedded in the center
of the Paxos table. You can request reads and writes
via an interface at each seat.
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In response to a press of a read button, the cir-
cuitry reads the register, stamps the resulting value
and timestamp onto a token, and returns the token.
The circuitry chooses the appropriate colored token
based upon whether a total write has happened. If
the register has notified the circuitry that a write has
become total, then the circuitry selects a green to-
ken. Otherwise, the circuitry selects a red token. If
the circuitry reads value ⊥ from the register, then the
circuitry stamps only the timestamp onto the token.

In response to a press of a write button, the cir-
cuitry first checks whether the button is blinking. If
not, the button press has no effect. You can make the
write button blink by using a red token. If the red to-
ken is blank, then insert it into the slot and the write
button should immediately begin blinking. If the red
token is not blank, set the dial to the same value as
on the token, and then insert the token into the slot.
When you press a blinking write button, the console
circuitry issues a write with value v and timestamp
ts to the register, where v is the dial’s value and ts is
the timestamp on the inserted red token.

4.4 Chapter 4: Write-Once Regular Register

Your table provides the abstraction of a write-once
regular register. A write-once register stores a value,
initially ⊥, that changes at most once. Such a register
is clearly useful to satisfy agreement.

Your register defines its value as the value written
by the last total write. Therefore, for your regis-
ter to be write-once, all total writes must write the
same value. The Paxos table provides the following
stronger property:

Theorem 1. If write(v, ts) is the first write that is
total, then all writes with a higher timestamp also
write v. 5

Corollary 1: All reads after the first total write in
the partial order return the same value.

Corollary 2: All green tokens have the same non-⊥
value stamped on them.

Warning! Reads issued before the first total write
ends may return values that, strictly speaking, never
end up actually written to your register. These

5Because of space constraints, the proof is in the Appendix.

values come from concurrent partial writes

Disclaimer. Unfortunately, due to budget con-
straints, your table cannot guarantee that a write
will eventually become total.

We hope you enjoy your Paxos table. This con-
cludes the user manual.

4.5 Discussion

The register abstracts away the details of asynchrony
and quorum operations. In the next sections, we show
an implementation of the register over a set of dis-
tributed processes where every read and write sends
messages over asynchronous links to a quorum of pro-
cesses.

The tokens play a key role in understanding how
to guarantee agreement across mulitple writers. A
writer needs to be careful to only issue writes that
will not violate agreement. Because of the regis-
ter’s partial order definition, the result of a read indi-
cates what value and timestamp pairs a write can use
without violating agreement. Since the console cir-
cuitry stamps read results onto tokens, tokens serve
as guards to writes, thus guaranteeing agreement.

Different failure assumptions affect the register’s
and tokens’ implementations, not their specifications.
For example, Paxos assumes a crash-failure model
so it corresponds to a crash-tolerant regular register,
plain-text tokens, and players that follow the Game’s
rules. PBFT, however, assumes a Byzantine failure
model, and requires a Byzantine-tolerant register and
secure tokens that curb ill-willed players. In the next
sections, we show how Paxos and PBFT are opti-
mized implemenations of the Paxos table for different
failure models.

5 Paxos

5.1 Network Model

We consider an asynchronous distributed system of n

processes. Processes communicate via message pass-
ing over unauthenticated links. We place no bound
on message delay, clock drift, or the time necessary
to execute a computation step.
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We assume reliable links to present the protocols
more concisely. Any protocol that satisfies safety con-
ditions using our network assumptions will still sat-
isfy those same conditions using unreliable links. We
also assume that failed processes do not recover.

5.2 The La98 Paxos Table

In this section, we show how to build the La98 Paxos
table. We begin with a fault-tolerant implementa-
tion of the regular register. We implement the regis-
ter over a set of processes. Player’s reads and writes
contact these processes by sending requests over asyn-
chronous links. Upon receiving a request, a process
may respond with an acknowledgement. We discuss
how to interpret these acknowledgements when we
present the La98 console circuitry and tokens.

Figure 4 describes the protocol a La98 process fol-
lows. Each process maintains a current timestamp,
which is the the highest timestamp it has seen so
far, and a value-timestamp pair representing the last
write acknowledgement it sent.

If process i receives a write request for v and ts

from console c, i first checks ts. If ts is at least the
current timestamp, then i updates its current times-
tamp and sends a write acknowledgement back to c.
A write becomes total when a majority of processes
have acknowledged it.

If process i receives a read request with timestamp
ts, i checks ts in the same manner as above. If the
check succeeds, then i updates its current timestamp
and responds with a read acknowledgement contain-
ing the value-timestamp pair of the last write ac-
knowledgement it sent.

The La98 model has room for nc consoles, each
with a unique identifier from the set {0, . . . , nc − 1}.
Console circuits do not fail. Otherwise, players may
be left with an unresponsive console. Console circuits
send read and write requests to the processes imple-
menting the register. The circuitry maintains its own
current timestamp and monitors the token slot and
dial to determine when the write button should blink.

When a player pushes a blinking write button on
console c, c sends a write request to the register with
timestamp equal to the inserted red token’s times-
tamp and value equal to the dial’s current value.
Upon receiving a set of write acknowledgements for
the same timestamp from a majority of processes, c

currentTS := 0
lastWrite := (⊥ , 0 )

task on receive 〈WRITE-REQUEST, v, ts, c〉
if ( ts ≥ currentTS )

currentTS := ts

lastWrite := (v, ts)
send 〈WRITE-ACK, v, ts, i〉 to conso l e c

endif

task on receive 〈READ-REQUEST, ts, c〉
if ( ts ≥ currentTS )

currentTS := ts

send 〈READ-ACK, ts, lastWrite, i〉 to conso l e c

endif

Figure 4: Process i’s protocol for the La98 register.

La98 message Paxos message

read request prepare request

read ack prepare response

write request accept request

write ack accept response

Table 1: How La98 messages map to Paxos.

sets a flag, valueWritten, to indicate that a write
has become total and the next read should return a
green token.

When a player pushes console c’s read button, c

updates its current timestamp and broadcasts a read
request, with the update timestamp, to the processes.
The update guarantees that each read request is rep-
resented by a unique timestamp. If c receives ac-
knowledgements to its read request from a majority
of processes, c examines the value-timestamp pairs in
each read acknowledgement. The value returned by
the read is the value among the pairs with highest
timestamp. The circuitry then selects a green or red
token, based upon the valueWritten flag, and stamps
the value of the read and the current timestamp onto
the token. Figure 5 gives the La98 console circuitry.

5.3 Paxos and the La98 Paxos Table

We now give a brief overview of the Paxos protocol
and show how it relates to the La98 Paxos table. The
reader can find the full Paxos protocol in [7].

Processes in Paxos play any of three roles: pro-
posers, acceptors, and learners. Proposers propose

6



currentTS := c

valueWritten := false

task on read button push

while( t rue ) do

broadcast 〈READ-REQUEST, currentTS, c〉 to p r o c e s s e s
currentTS := currentTS + nc

wait until r e c e i v ed 〈READ-ACK, currentTS, lastWrite, j〉 from a major i ty o f p r o c e s s e s
let v be the value among the lastWrites with h ighe s t timestamp
if valueWritten then

return ( ‘ green ’ , v , currentTS )
else

return ( ‘ red ’ , v , currentTS )
on timeout

cont inue

task on receive 〈WRITE-ACK, v, ts, j〉
let msgs be the r e c e i v ed 〈WRITE-ACK, v, ts, k〉 from a major i ty o f p r o c e s s e s
if (msgs e x i s t s ) then

valueWritten := true

forward msgs to every conso l e { t h i s l i n e he lps te rminat ion }
endif

task on blinking write button push

let v and ts be d ia l ’ s va lue and timestamp on i n s e r t e d red token
broadcast 〈WRITE-REQUEST, v, ts, c〉

Figure 5: Console c’s protocol for the La98 console circuitry.

values that acceptors then accept. If a learner dis-
covers enough acceptors have accepted a value, then
the learner can learn (or decide) that value.

These roles have analogues in the La98 table. Play-
ers propose values by pressing a blinking write button
and learn values by picking up a green token. Each
process implementing the La98 register is an accep-
tor.

Every proposer starts the protocol with a unique
proposal number. A process issues a proposal in two
phases. In the first phase, it sends a prepare request
containing the current proposal number to all accep-
tors. An acceptor responds to a prepare request with
i) the highest numbered proposal it has accepted so
far and ii) a promise not to accept any more requests
with numbers lower than the proposal number in the
prepare request.

To enter the second phase, a proposer must receive
responses to its prepare request from a majority of
acceptors. In the second phase, a proposer selects
the value in the responses with the highest proposal
number. If there is no such value, then the proposer
an arbitrary value. The proposer then sends an ac-
cept request containing the current proposal number
and the selected value to all acceptors. After issu-

ing an accept request, a proposer updates its current
proposal number to the next unique number.

Proposal numbers correspond to the La98 regis-
ter’s timestamps. A proposer’s prepare and accept
phases correspond to La98 reads and writes, respec-
tively. We provide Table 1 to relate Paxos messages
to La98 messages.

An acceptor accepts a prepare or accept request
provided that it has not accepted any other request so
far with a higher proposal number. Finally, a learner
can learn a value v once it realizes a majority of accep-
tors have responded to an accept request containing
v.

This last step is analogous to a write becoming
total. Note that we could have optimized the console
by saving the value written by a total write in the
valueWritten variable, and obviating the need for
subsequent reads of the register.

6 Byzantine Paxos

6.1 System Model

Faulty processes deviate arbitrarily from the pro-
tocol. However, they cannot subvert cryptographic
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currentTS := 0
lastWrite := ⊥
primary := 0 {These two va r i a b l e s he lp to ensure that ma l i c i ou s p l ay e r s w i l l }
timeoutV al := T {not be ab le to i n d e f i n i t e l y prevent a wr i t e from becoming t o t a l .}

task on receive 〈PRE-WRITE-REQUEST, v, ts〉c
if ( ( c i s the primary conso l e ) AND

(ts = currentTS ) AND
( have not sent WRITE−REQUEST with timestamp ts) then

broadcast 〈WRITE-REQUEST, v, ts, c〉i to r e g i s t e r p r o c e s s e s
endif

task on receive 〈WRITE-REQUEST, v, ts, c〉j
let msgs be the r e c e i v ed 〈WRITE-REQUEST, v, ts, c〉k from a r e g i s t e r quorum
if ( ( ts = currentTS ) AND

(msgs e x i s t s ) ) then

lastWrite := msgs

send 〈WRITE-ACK, v, ts〉i to conso l e c

endif

task on receive 〈READ-REQUEST〉c
send 〈READ-ACK, currentTS, lastWrite〉i to j

task at time timeoutV al

currentTS := currentTS + 1
primary := currentTS mod nc

timeoutV al := timeoutV al + (currentTS × T )

Figure 6: Process i’s protocol for the CL99 register.

primitives such as digital signatures.

We use the same asynchrony and network assump-
tions as Section 5.1. To prevent message forgery, pro-
cesses and consoles use private keys to sign messages
that others then verify using the corresponding public
key. We use the notation 〈M〉x to indicate a message
M signed by console or process x. Improperly signed
messages are discarded.

6.2 The CL99 Paxos Table

The CL99 table has room for nc consoles and uses nr

processes to implement the regular register. Consoles
and processes have unique identifiers. In particular,
we identify each console from the set {0, . . . , nc − 1}.
We first present an implementation where console cir-
cuits do not fail and later show how to modify the
register if we relax this assumption. Any number of
players can deviate from the rules.

Figure 6 describes the protocol that a correct pro-
cess follows. The CL99 defines a quorum as ⌈2nr

3 ⌉
processes and tolerates ⌊nr−1

3 ⌋ process failures. Each
CL99 process maintains a current timestamp and last
written variable as in the La98 register. CL99 pro-

cesses, however, do not update their timestamps in
response to receiving a request; they increment their
timestamps based on a timeout value and only receive
requests for their current timestamp. This prevents
attacks that send requests with high timestamps with
the intent to delay writes from becoming total. Fur-
ther, CL99 processes use the notion of a primary for
each timestamp. The primary for timestamp ts is the
console with id ts modulo nc; only the primary for ts

is allowed to issue a write for ts.

The CL99 register introduces an additional phase
for writes to prevent writes using different values but
identical timestamps. Consoles send pre-write re-
quests to CL99 processes. If a process i receives a
pre-write request for v and ts from console c, i checks
that 1) c is the primary for ts, 2) ts is the current
timestamp, and 3) it has not responded to a pre-
write request for ts yet. If all three checks are true,
then i broadcasts a write request message, containing
v, ts, and c. Note that at most one pre-write request
can gather a quorum of corresponding write request
messages.

If process i receives a quorum of properly signed
write request messages containing v, ts, and c, then
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currentTS := 0
valueWritten := false

task on read button push

while( t rue ) do

broadcast 〈READ-REQUEST〉c to p r o c e s s e s
wait until r e c e i v ed a quorum of 〈READ-ACK, ts, lastWrite〉j with same ts

if ( ts ≥ currentTS ) then

let v be the value among the lastWrites with h ighe s t timestamp
currentTS := ts

if valueWritten then

return ( ‘ green ’ , v , currentTS )
else

return ( ‘ red ’ , v , currentTS , quorum of READ−ACKs)
endif

on timeout

cont inue

task on receive 〈WRITE-ACK, v, ts〉j
let msgs be the r e c e i v ed 〈WRITE-ACK, v, ts〉k from a quorum
if (msgs e x i s t s ) then

valueWritten := true

currentTS := ts + 1
forward msgs to every conso l e { t h i s l i n e he lps te rminat ion }

endif

task on b l i nk i ng wr i t e button push { i m p l i c i t l y v e r i f i e s token }
let v and ts be d ia l ’ s va lue and timestamp on i n s e r t e d red token
broadcast 〈PRE-WRITE-REQUEST, v, ts〉c

Figure 7: Console c’s protocol for the CL99 console circuitry.

i first compares its current timestamp against ts. If
they match, then i sends the appropriate write ac-
knowledgement to c. In addition, i saves the quorum
of write request messages as proof that it was allowed
to send the write acknowledgement message.

If process i receives a read request from console c,
i responds with a read acknowledgement containing
the current timestamp and the last proof that it as-
sembled for a write acknowledgement. The quorum
of messages constituting this proof is an unforgeable
version of an La98 process’s value-timestamp pair,
which represents the last write acknowledgement that
that process sent.

The CL99 console implementation, in Figure 7, is
very similar to the La98 model; it also maintains a
timestamp variable and monitors the slot and dial.

When a player pushes a blinking write button on
console c, c sends a pre-write request to the reg-
ister with timestamp equal to the inserted red to-
ken’s timestamp, and value equal to the dial’s cur-
rent value. Upon receiving a quorum of write ac-
knowledgements for the same value and timestamp,

console c sets the valueWritten flag to true and sets
its current timestamp to be greater than ts so that
subsequent reads will return the totally written value
(see Corollary 1).

When a player pushes console c’s read button, the
console broadcasts a read request to all processes. If
c receives a quorum of read acknowledgements for
timestamp ts greater than or equal to its current
timestamp, then c examines the quorums of write
request messages in each acknowledgement. Remem-
ber that conceptually, each quorum of write request
messages is just a secure value-timestamp pair repre-
senting the last write a process acknowledged. As in
the La98, c selects the value among these ‘pairs’ with
highest timestamp and stamps the value and ts onto
an appropriately colored token, again based upon the
valueWritten flag.

As presented, we can improve the CL99 table in
at least three ways. First, the write for timestamp 0
does not require a red token. Second, similar to the
La98 optimization, the CL99 console circuitry can
save the value written by a total write so that sub-
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CL99 table message PBFT message

pre-write request pre-prepare
(with no red token)

write request prepare

write ack commit

read ack view change

pre-write request new view
(with red token)

Table 2: How CL99 messages map to PBFT.

sequent read button presses do not trigger a read of
the register.

Third, we can alter the CL99 register to tolerate
players manipulating their console circuits. The im-
plementation in Figure 7 relies on a console circuit
correctly verifying a red token. If we allow consoles
to fail, we can alter the pre-write message format
to contain the inserted red token. Upon receiving a
pre-write message, processes then verify the included
red token with respect to the pre-write’s value and
timestamp. If the verification fails, then the process
discards the pre-write request.

6.3 PBFT and the CL99 Paxos Table

In this section, we see how Castro and Liskov’s PBFT
is essentially the CL99 table with the above three
optimizations.

The PBFT protocol is a Byzantine tolerant state-
machine replication algorithm. It is hard to see the
connection between PBFT and Byzantine Paxos be-
cause PBFT handles aspects such as failures, check-
points, garbage collection, and quorums that quickly
increase the protocol’s complexity. We strip PBFT
down to the elements necessary to achieve consensus
and present this version below while explaining its
similarities to the CL99 Paxos table.

Processes in PBFT have unique ids from the set
{0,. . . ,n − 1}, where n is the number of processes.
Each process maintains its view, which is a monoton-
ically increasing natural number initialized to 0. The
primary for view v is the process with id v modulo n.
PBFT assumes at most f ≤ ⌊n−1

3 ⌋ process failures.
Therefore, a quorum consists of n − f processes.

Conceptually, each process in PBFT plays the
roles of player, console circuit, and register pro-

cess. PBFT’s views correspond to the CL99 register’s
timestamps.

In normal-case operation (without primary fail-
ures), the PBFT protocol consists of three phases —
pre-prepare, prepare, and commit — each of which
contacts a quorum of processes.

In the pre-prepare phase, the primary p issues
〈PRE-PREPARE, vue, val〉p, where vue is the current
view and val is the value that p proposes. A process
accepts a pre-prepare message provided the sender
is the primary of vue, the process’s current view is
vue, and the process has not already accepted a pre-
prepare message for vue. When a process i accepts
〈PRE-PREPARE, vue, val〉p it broadcasts a correspond-
ing message 〈PREPARE, vue, val〉i and enters the pre-
pare phase.

In the prepare phase, a process waits and collects
a quorum of prepare messages that have matching
values and views. Once a process i has such a quo-
rum of messages that match its current view vue, i

broadcasts 〈COMMIT, vue, val〉i and enters the commit
phase.

In the commit phase, a process waits for a quorum
of commit messages that have matching values and
views. Once a process i has such a quorum, i can
decide the corresponding value.

Table 2 gives the mapping from messages in PBFT
to messages in the optimized CL99 table.

If the primary fails, processes elect a new primary
to issue proposals. A process increments its current
view if it has not decided within some timeout pe-
riod. By incrementing their views, processes essen-
tially elect a new primary.

When a process increments its view to vue, it
sends 〈VIEW-CHANGE, vue,P〉i to the new primary,
where P is the quorum of prepare messages that
triggered i to broadcast its last commit message.
When the primary p for view vue receives a quo-
rum of valid view-change messages, p broadcasts
〈NEW-VIEW, vue,V, 〈PRE-PREPARE, vue, val〉p〉p, V is
the triggering quorum of view-change messages and
val is the value among the prepare messages of V with
highest view number. If all the P in the view-change
messages are empty, then val is a special noop value.

The P field of a view-change message is essentially
the quorum of write request messages in a CL99 read
acknowledgement. Remember that conceptually this
quorum is a secure value-timestamp ‘pair.’ The V
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field of a new-view message is conceptually a red to-
ken.

When a process receives a new-view message, it
verifies the contents including the V field and the
appropriate selection of the value in the contained
pre-prepare message. If the process can verify the
contents, then it acts as if it received the pre-prepare
message and continues executing the protocol, as be-
fore, but in the new view.

7 Conclusion

We use the Paxos table to introduce the register and
token abstractions, which we claim makes it easier to
understand Paxos and PBFT’s subtleties. Because
implementation details manifest themselves only in
these abstraction’s implementations, the table pro-
vides a unified framework to conceptualize Paxos
and PBFT. We are working on expressing variants
like Disk Paxos and Fast Byzantine Paxos using the
Paxos table.
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8 Appendix

Theorem 1: If write(v, ts) is the first write that is
total, then all writes with a higher timestamp also
write v.

Proof: Induct on the number n of writes after
write(v, ts).

Base Case: There are 0 writes after write(v, ts). Triv-
ial.
Inductive Hypothesis: The first n ≥ 0 writes after
write(v, ts) all write the same value.

1. Consider the n + 1th write(v′, ts′) after
write(v, ts).

2. ts′ is greater than every timestamp used by the
first n writes after write(v, ts).

3. In general, a write(v′, ts′) can only be issued with
either a blank red token with timestamp ts′ or a
red token stamped with v′ and ts′.

4. However, write(v′, ts′) cannot be issued with a
blank red token because a read that returns
timestamp ts′ cannot return ⊥ since write(v, ts)
completed and ts < ts′.

5. Now consider the read that results in a red token
stamped with v′ and ts′. Because the register is
regular, v′ can either be the last written value or
a value being concurrently written.

6. Observe that the last written value and any value
being concurrently written can only be v due to
the Induction Hypothesis.

7. v′ = v
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