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Abstract

Identifying Internet paths that share the same bot-
tleneck enables efficient and fair resource allocation
among flows along those paths. In particular, the topol-
ogy of an overlay network can be improved by iden-
tifying bottlenecks shared by multiple overlay connec-
tions. Such bottlenecks can be identified using several
shared congestion detection techniques. However, all
of these techniques, except DCW (Delay Correlation
with Wavelet denoising) [12], require that the paths
under consideration share a common end point. As
a result, their applicability to paths between different
sources and different destinations in an overlay net-
work is limited. Moreover, all the techniques (including
DCW) have been designed to detect shared congestion
between a pair of paths. To cluster N paths, a straight-
forward approach of using pairwise tests would require
O(N?) time complexity. In this paper, we propose a
scalable approach to cluster Internet paths using multi-
dimensional indexing. By using DCW as the underly-
ing shared congestion detection technique, our approach
does not require a common end point for the paths be-
ing considered. By storing per-path data in an indexed
multidimensional space, we can reduce the computa-
tional complexity of clustering to O(Nlog N). The in-
dexing overhead can be further improved by reducing
dimensionality of the space through the wavelet trans-
form. Computation cost is kept low by using the same
wavelet transform for both denoising in DCW and di-
mensionality reduction. Our approach is evaluated us-
ing simulations and found to be effective for large N.
The tradeoff between indexing overhead and clustering
accuracy is shown empirically.

*Research sponsored by National Science Foundation ANI-
0319168 and CNS-0434515.

1. Introduction

Information on network congestion is critical to net-
work resource management. In particular, identifying
paths sharing the same bottleneck enables efficient and
fair allocation of resources among multiple flows. For
example, Congestion Manager [3] examines all flows
of the host where it resides, and clusters them into
flow aggregates, each of which consists of flows sharing
the same bottleneck. By performing congestion con-
trol over flow aggregates, rather than separately over
individual flows, Congestion Manager was shown to im-
prove both efficiency and fairness of bandwidth sharing
among flows.

Clustering paths sharing the same bottleneck also
benefit overlay networks. Overlay networks have prolif-
erated as an approach to circumvent limitations of the
Internet and provide additional features. An overlay
network consists of a number of participating end hosts
and selected connections between pairs of such hosts.
Because routing in an overlay network is performed
through these connections, their selection is critical
to the overlay network’s performance. However, most
overlay networks are unaware of the underlying net-
work topology and they use simple heuristics to choose
connections. As a result, some physical links may be
shared by many connections, and these links become
bottlenecks in bandwidth-demanding overlay applica-
tions, such as, end system multicast [13], file download
from multiple servers, and overlay QoS routing. Such
bottlenecks in an overlay network are avoidable if the
overlay performs measurements, clusters connections
that share the same bottleneck link, and replaces a
subset of connections in each cluster with other con-
nections not sharing the cluster’s bottleneck.

Paths sharing the same bottleneck can be identi-
fied using shared congestion detection techniques [9,
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Figure 1. Shared congestion detection procedure of DCW

10, 17, 12]. However, all of these techniques, except
DCW (Delay Correlation with Wavelet denoising) [12],
require that paths share a common end point to be
effective. This requirement limits their application to
overlay networks, which need to cluster paths with dif-
ferent sources and different destinations. Moreover, all
the techniques including DCW have been designed to
detect shared congestion between two paths only. To
cluster N paths, the straightforward approach of using
pairwise tests would require O(N?) time complexity.
There are other approaches proposed to reduce time
complexity by performing per-cluster tests instead of
per-path tests [10, 20]. In these approaches, one rep-
resentative per cluster is maintained, and shared con-
gestion detection is performed between a new path and
each cluster representative to determine which cluster
the new path should belong to. However, for reasons
discussed in Section 2, these approaches are not appli-
cable to large-scale overlay networks.

In this paper, we present a scalable approach to clus-
ter paths by shared congestion based on DCW [12],
which does not require a common end point between
paths. In our approach, measurement data are stored
into a multidimensional space, where each data set col-
lected from a network path is represented as a point.
The most important characteristic of this space is that
points are located closely if their corresponding net-
work paths are sharing congestion. Due to this char-
acteristic, finding all paths sharing congestion with a
given path can be replaced with neighbor search in the
space. Because points in the space are indexed us-
ing a tree-like structure, adding paths and searching
neighbors takes sub-polynomial time. As a result, the
computational complexity of clustering N paths can
be improved to O(Nlog N). The indexing overhead
can be further improved by reducing dimensionality
of the space through wavelet transform. Computation
time is kept low because we can use the same wavelet
transform for both wavelet denoising and dimension-
ality reduction. The tradeoff between dimensionality
and clustering accuracy is investigated.

The remainder of this paper is organized as follows.
Section 2 summarizes other approaches for path clus-

tering. Section 3 presents the theory of our clustering
approach including the data structure we use to store
measurement data sets for paths. Section 4 presents
the basic implementation steps and our path clustering
algorithm. A performance evaluation of our approach
is presented in Section 5, and we conclude in Section 6.

2. Related Work on Path Clustering

Among studies on identifying bottlenecks, Flow-
Mate [20] and the entropy-based approach [10] have
objectives that are most like our objective in this pa-
per.

FlowMate is based on the technique proposed by
Rubenstein et al. [17] for shared congestion detection.
Given two paths, a sequence of delay samples is ob-
tained for each path. If correlation between successive
packets in the first sequence is higher than correlation
between the two sequences, it is inferred that the two
paths are sharing a congested point. When clustering
paths, FlowMate maintains a “representative” path in
each cluster, and applies the shared congestion detec-
tion technique to a new path and the representative of
each cluster, instead of every path in the cluster, to
reduce computational complexity.

The entropy-based approach was designed to cluster
flows from a large number of sources to a common des-
tination. Thus the paths used by the flows form a tree
rooted at the destination. It is assumed that each path
contains exactly one bottleneck. For each path, inter-
packet arrival times are measured at the destination.
For each path, it calculates the average entropy for ev-
ery cluster assuming the path is in that cluster. Then
the path is moved to the cluster with the minimum
average entropy.

Both approaches [10, 20] are inappropriate for large
overlay networks for the following reasons. First,
while overlay networks consist of a large number of
paths with different sources and destinations, these ap-
proaches can only cluster paths that share a common
end point, FlowMate at the source and the entropy-
based approach at the destination. Moreover, the lat-
ter requires the amount of cross traffic to be low. More
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Figure 2. Mapping delay sequences into a
multidimensional space

specifically, for the entropy-based approach to be ro-
bust, more than 20% of the traffic at the bottleneck
should arrive at the common destination.

Second, suppose the N paths to be clustered share
a common end point. The worst-case computational
complexity of these two approaches is still O(NN?) be-
cause both of them use a clustering algorithm similar
to K-Means clustering [14] with a low complexity only
when the number of clusters is small. In a large-scale
overlay network, however, there exist many indepen-
dent paths (each of which is a cluster) in addition to
multi-path clusters. Therefore, the number of clusters
is likely to be large.

3. Our Approach

In our approach to cluster paths, we use DCW [12]
to detect shared congestion. In DCW, a sequence of
one-way delay samples, called a delay sequence, is mea-
sured for each path. The DCW procedure for detecting
shared congestion between two paths is shown in Fig-
ure 1.

As shown in Figure 1, the measured delay sequences,
denoted by xg and yo', are denoised using wavelet
transform. Let the denoised delay sequences be x and
y. Then the cross-correlation coefficient XCOR, be-
tween them is computed. DCW decides that the two
paths share congestion if XCORyy is larger than a spec-
ified threshold value, XCORnreshold-

1We use a lower-case bold letter to represent a delay sequence,
and an upper-case bold letter to represent a sequence of wavelet
coefficients.

A major disadvantage of DCW when applied to a
large number of paths is that the cross-correlation coef-
ficient must be computed for every pair of paths, which
does not scale well. To avoid pairwise computation, we
make use of a data structure, where delay sequences
are stored in such a way that given a path, all other
paths sharing congestion with the path are found and
retrieved easily. For this purpose, we use a multidi-
mensional space.

Suppose that delay samples were collected from
three different paths: X, Y, and Z. Then we denoise
them to obtain x, y, and z, respectively. According
to the DCW procedure in Figure 1, we should com-
pute XCORyy, XCORy,, and XCOR,«. For better
scalability, however, we instead map each denoised de-
lay sequence to a point in a multidimensional space.
A critical condition that the multidimensional space
must satisfy is that points corresponding to strongly-
correlated sequences should be located closely. For ex-
ample, as shown in Figure 2, if x and y are strongly-
correlated (because X and Y share congestion) and z
is not, x and y should be mapped into points close
to each other while z should be mapped to a point
far from them. Then, in this space, all sequences that
have strong correlation with a given sequence (in other
words, all paths that share congestion with a given
path) can be identified by searching neighbors of the
point corresponding to the given sequence (or path).
More specifically, we need a mapping such that the
Fuclidean distance between two points in the multidi-
mensional space is a monotonically decreasing function
of the cross-correlation coefficient between the denoised
delay sequences mapped to those points. With such a
mapping, all the points within the radius corresponding
to XCORihreshold in the multidimensional space must
represent delay sequences of the paths sharing conges-
tion.

Challenges of this approach are to find a multidi-
mensional space with the desired property and to sup-
port efficient insertion and neighbor search operations
in that space.

3.1. Mapping delay sequences into a multidimen-
sional space

Given two paths, X and Y, let their delay sequences
after denoising be the following:

= (z1,T2,...,Tm)

(yl7y27' 7ym)



Then the cross-correlation coefficient between them is
computed as
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where Z and § are the mean values of the elements of
x and y, respectively. The goal is to map the delay
sequences x and y into two points x and y in an m-
dimensional Euclidean space so that the distance be-
tween X and y is a monotonically decreasing function
of XCORxy. This is achieved with the following map-

ping.

XCORyy =

(1)

(x1 —T,x2 — T,y ..., Ty — T)
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Let x = (i‘l,fg, ce ,‘fm) and S’ = (’gl,gg, N ,:l]m).
Then, by Eq. 2 and 3, the distance Dxy between x and
y is derived as follows.
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This is simplified using Eq. 1 to be

Dgy =1/2(1 — XCORxy) . 4)
Therefore, given two delay sequences x and y, the dis-
tance between their mappings X and y is a monotoni-
cally decreasing function of the cross-correlation coef-
ficient between x and y.

The paths sharing congestion (or having the cross-
correlation coefficient greater than XCORhyeshold)
with a given path can be found by searching for neigh-
bors of the path within the following radius.

Dthrcshold - \/2 (1 - XOORthrcshold) (5)

The impact of this radius on clustering accuracy is in-
vestigated in Section 5.1.

3.2. Choice of an indexing scheme

By mapping delay sequences into a multidimen-
sional space, pairwise computation of cross-correlation

coeflicients becomes unnecessary; inserting delay se-
quences into the multidimensional space and searching
for neighbors within a radius replace the pairwise com-
putations. This means that the complexity of those two
operations, insertion and neighbor search, is critical to
the overall performance. In this section, we introduce
an index structure to facilitate them.

It is known that a well-designed multidimensional
indexing scheme can insert N points in O(N log N)
time and perform neighbor search within a sphere in
O(log N) time [2]. Many indexing schemes have been
proposed to store and manage multidimensional data,
including the R-tree [7], R+-tree [18], R*-tree [4], SS-
tree [19], and SR-tree [11]. As their names suggest,
they are all based on a tree-like index structure with
a similar insertion algorithm. However, each has a dif-
ferent search performance mainly because they employ
different bounding shapes, which encompass the data
in a subtree. The R-tree and its successors use rectan-
gles as bounding shapes, and the SS-tree uses bound-
ing spheres instead. The SR-tree integrates bounding
rectangles and spheres to enhance the performance of
neighbor search, especially for high-dimensional data.
Since the SR-tree outperforms other schemes in neigh-
bor search [11], it is used as the multidimensional in-
dexing structure in the experiments presented in this
paper.

Note that the clustering algorithm we propose does
not depend on a specific indexing scheme; any multi-
dimensional indexing scheme that efficiently performs
insertion and neighbor search can be used.

3.3. Dimensionality reduction

To achieve high accuracy in detecting shared con-
gestion, delay samples need to be collected for more
than 10 seconds at a sampling rate of 10Hz [12]. This
means that the number of elements in a delay sequence
is over 100, and so is the dimensionality of the multi-
dimensional space. However, such high dimensionality
increases the overhead of path clustering based on the
multidimensional space, because the performance of
multidimensional indexing deteriorates as the dimen-
sionality of the data sets increases [11].

In our mapping between delay sequences and points
in the multidimensional space, each delay sample cor-
responds to one coordinate of a point. This means
that reducing dimensionality is equivalent to discard-
ing delay samples, which immediately results in lower
accuracy. Since all delay samples are considered to be
“equally important,” discarding any of them is equally
harmful to accuracy. However, wavelet coefficients can
break this symmetry. Using wavelet coefficients instead



of time series enables efficient proximity search with
fewer dimensionality than that of using all delay sam-
ples. This is possible by utilizing wavelet coefficients
at only large scales which bear information for slow-
varying pattern of delay sequences [16].

Let the discrete wavelet transform? of x be

X = (X1,Xs,...,Xm) = DWT(X). (6)

One problem in mapping X instead of X to a multi-
dimensional space is that the relationship between the
distance in the multidimensional space and the corre-
sponding cross-correlation coefficient shown in Eq. 4
may not hold any more. Fortunately, if we choose
DWT in Eq. 6 to be an orthonormal wavelet transform,
the Fuclidean distance between two time series is equal
to the distance between their wavelet coefficients [15].
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Figure 3. Energy distribution of wavelet coef-
ficients

Figure 3 shows the energy (i.e. information) distri-
bution of delay time series obtained from a congested
link using ns-2 [6]. Most of the energy is concentrated
on large-scale wavelet coefficients and any remaining
energy is distributed sparsely over small-scale wavelet
coefficients. Therefore, using wavelet coefficients only
at large scales can achieve performance comparable to
using all coeflicients, while effectively reducing dimen-
sionality. We will show empirically in Section 5.2 how
many dimensions are needed to achieve good perfor-
mance.

3.4. Reusing results of wavelet denoising

DCW uses discrete wavelet transform based on
Daubechies wavelet [12], which is orthonormal [5].

2Depending on the wavelet transform, the number of wavelet
coefficients may be slightly different from the number of elements
in x.

Therefore, we may use in DWT(X) the same discrete
wavelet transform that is used for denoising in Fig-
ure 1 to keep the computation cost low. In fact, X =
DWT(x) can be obtained directly from X = DWT(x)
without any need to compute x.

Let X = DWT(xy — &, 29 — T, ..., Ty — T). Then

X = DWT(X) (7)
. DpWT <(:c1 - T, .Tgm— T,... ,}:m — 1‘7)) (8)
>im (T — T)?
_ DWT(x1 — z;nxg -, - 2, T — T) (9)
> (@i — T)
X

- X (10)

Since the discrete wavelet transform is a linear opera-
tion,

X = DWT(z1—Z,%9 —Zy..., T —T)
= DWT(x1,29,...,2m)— DWT(Z,Z,...,T)
- X - zDWT()

where I = (1,1,...,1).

For indexing with wavelet coefficients at the K
largest scales, we use only their corresponding coeffi-
cients from the above calculation. Thus, the final se-
quence to be stored in the multidimensional space is

X' = (X1,Xs,...,X}3) (11)
where k is the number of wavelet coefficients corre-

sponding to the K largest scales.

4. Basic Implementation Steps
An actual implementation of path clustering consists
of the following steps:
1. Select network paths to measure delay.
2. Measure delay samples to get xq for each path.

3. Process xg to obtain a Wavelgt coefficient vector
with reduced dimensionality, X’.

4. Collect X'’ for each selected path.
5. Cluster paths.

The first and fourth steps are application-dependent.
For example, in the case of overlay multicast, delay is
measured at every congested edge of a multicast tree,
and each internal node of the tree collects data from
its child nodes.



In this section, we will only describe the application-
independent steps, i.e., what a node measuring delay
should do (the second and third steps), and how a node
collecting data performs clustering (the last step).

4.1. Measuring and processing delay samples

Either a source or destination of a path measures
one-way delay with sampling frequency of 10 Hz as rec-
ommended by DCW [12]. Delay samples (x¢ in Fig-
ure 1) are collected for 12.8 seconds to make the num-
ber of samples a power of 2 for calculation convenience.
Then xq is converted into X’ by (i) using the wavelet
transform, (ii) performing denoising, and (iii) applying
Eq. 10-11. Only X’ for the path is submitted to the
node that clusters paths.

4.2. Path clustering

In general, a clustering problem is NP-hard [8].
However, since we know Dipreshold, the maximum ra-
dius of a cluster defined in Eq. 5, we can design a simple
and efficient algorithm for path clustering. The pseudo
code is presented in Figure 4.

PATH-CLUSTERING(P)
1 > P is a set of X’ for all paths.
25—
3 for each pe P

4 s < NEAREST-NEIGHBOR-IN-SPHERE(S, p)
5 if s = nil

6 INSERT(S, p)

7 Cp — {p}

8 P —P—{p}

9 for each pe P
10 s « NEAREST-NEIGHBOR-IN-SPHERE(S, p)
11 Cs — Cs U{p}
12 return {C,|s € S}

Figure 4. Clustering algorithm

The algorithm begins with two sets: P, a set of X’
for all paths, and S, initially empty and implemented
with a multidimensional space indexed as described in
Section 3. For notational simplicity, we use p to de-
note a member of P. We assume that the multidimen-
sional indexing scheme being used (SR-tree [11] in our
experiments) supports two operations: INSERT(S,p)
which adds a point p to the space S, and NEAREST-
NEIGHBOR-IN-SPHERE(S, p) which searches in S for
the nearest neighbor of p among points in the sphere
centered at p with radius Dipreshold- 1he latter returns

one of them if there are multiple nearest neighbors, and
nil if there is no neighbor in the sphere.

For each member p in P, the algorithm tests if any
point stored in the multidimensional space is closer
than the threshold from p. If none, the path repre-
sented by p does not share congestion with any of the
paths corresponding to the previously inserted points,
and thus it is added to S to create a new cluster. If
there is a point closer than Dipreshold, ignore p because
p should belong to an existing cluster. In this way, af-
ter the first loop (Lines 3-8), S contains a set of points
such that every point in P shares congestion with at
lease one point in S while the points in S do not share
congestion with one another. Each point inserted into
S represents the center of a cluster. For each cluster, a
set (Cp in Line 7) containing its center point is created
to store points belonging to the cluster.

The second loop (Lines 9-11) identifies members of
each cluster. For each member p in P, the cluster of
the closest center s in S is selected, and p is added to
the selected cluster, Cs.

Finally, a set of all clusters is returned (Line 12).

For performance reason, our implementation always
keeps the entire SR-tree in memory, although the orig-
inal proposal of the SR-tree assumes that the tree is
maintained on a disk.

Note that the algorithm selects only one cluster for
each path, whereas a path may belong to multiple clus-
ters. If finding all clusters is more desirable, Lines 10
and 11 should be modified so that p is added to every
cluster of which the center is in the sphere.

5. Performance Evaluation

In evaluating the proposed path clustering ap-
proach, we focus on the performance of clustering
and various tradeoffs with different parameter val-
ues. Because the shared congestion detection technique
(DCW) itself was extensively evaluated [12], we do not
repeat it in this paper.

We analyze the performance of the proposed ap-
proach using simulation data from ns-2 with the topol-
ogy shown in Figure 5. The bandwidth of each link
is 1.5 Mbps. To create background traffic, a different
amount of short-lived TCP traffic is added to each link.
TCP flows are created by ns-2’s web traffic generator.

One-way delay samples are measured on 16 paths,
from node s to node r; for 1 < i < 16. Along the path
from node s to each r;, at most one link is selected
as a congested link, which is used by a large number
of web sessions simultaneously, resulting in a loss rate
between 5 and 10%. The number of web sessions is
chosen uniformly between 180 and 250. The other links
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Figure 5. Network topology

have less than 70 web sessions and no packet is lost.
Every experiment was repeated 500 times to get an
average.

Given N paths, we use the following as performance
metrics for accuracy.

False positive rate Among N(N — 1)/2 pairs of
paths, the false positive rate is the fraction of path
pairs such that the two paths in a pair do not share
congestion with each other but belong to the same
cluster.

False negative rate The fraction of path pairs such
that the two paths in a pair share congestion with
each other but belong to different clusters.

Clustering accuracy The fraction of path pairs that
are neither false positives nor false negatives.

In this section, we use these metrics to study the
impact of threshold on neighbor search and the re-
quired dimensionality to maintain a reasonable accu-
racy. We also investigate the scalability of our clus-
tering approach by comparing against clustering with
pairwise operations.

5.1. Shared congestion threshold

The  cross-correlation  coefficient threshold
(XCORnreshola) affects both false positive and
false negative rates directly, because the threshold de-
termines the radius of neighbor search in clustering. A
smaller radius (larger threshold) means more clusters
with finer granularity, and accordingly less likely to
get false positives. This observation is demonstrated
in Figure 6(a), which shows the false positive rate
versus threshold for a range of dimensionality between
18 and 170. The false positive rate decreases as the
threshold increases for every dimensionality. It is
especially prominent with the lowest dimensionality,
18.
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Figure 6. Impact of threshold

Similarly, in Figure 6(b), the false negative rate in-
creases as the threshold increases because a smaller ra-
dius leads to more clusters than needed. Therefore,
there is clearly a tradeoff to be made between the false
positive and false negative rates. The clustering accu-
racy is also affected by the threshold as shown in Fig-
ure 6(c). Depending on the dimensionality, a threshold



between 0.75 and 0.9 maximizes the clustering accu-
racy.

Note that false positives are tolerable for some ap-
plications, but they may be completely intolerable for
others [1]. So are false negatives. Therefore, an appro-
priate choice of threshold will vary from application to
application.

5.2. Dimensionality

Dimensionality is another important parameter that
affects performance. Because using fewer dimensions
means that ignored dimensions cannot contribute to
separating paths any more, the false positive rate in-
creases as dimensionality decreases, while the false neg-
ative rate decreases.

Figure 6 shows that, with a low threshold (below
0.85), the decrease in the false positive rate as dimen-
sionality increases is larger than the increase in the
false negative rate. Therefore, the overall clustering
accuracy is usually better with higher dimensionality
as shown in Figure 7. With a high threshold (above
0.9), however, it is the opposite; the clustering accu-
racy gets worse with more dimensions. The reason is

1
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Figure 7. Tradeoff between accuracy and di-
mensionality

as follows. More dimensions often contribute to sepa-
rating paths. However, if a threshold is high (mean-
ing a small radius), the false positive rate is negligible,
which means that the separations caused by additional
dimensions are more likely to become false negatives
than to correct false positives.

Even with a low threshold, increasing dimensional-
ity is not the best choice. The overhead of maintain-
ing the index structure must be taken into account;
it is well-known that high dimensionality often incurs
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Figure 8. Overhead of high dimensionality

significant overhead in multidimensional indexing. To
demonstrate this, we plot in Figure 8 the CPU time
required for clustering as a function of dimensionality.
Since the actual CPU time depends on many factors,
we normalize it so that the CPU time of the fastest
case (16 paths with 18 dimensions) is equal to one unit
of time. With a C++ implementation on a Pentium
2GHz machine, one unit of time is about 5 millisec-
onds.

Figure 8 shows that the CPU time increases rapidly
as the number of dimensions increases, especially with
a large number of paths. Hence, the dimensionality
should be kept minimal as long as the false positive and
negative rates are acceptable. Considering the results
in Figures 6 and 7, we believe that 36 dimensions are
more than sufficient in most applications, and that 18
dimensions are reasonable if used with a high threshold.

5.3. Scalability

The main goal of the clustering approach proposed
in this paper is to achieve better scalability than the use
of pairwise comparisons. While the multidimensional
indexing improves the theoretical bound on time com-
plexity, it would be more interesting to study when and
how much the proposed approach outperforms the use
of pairwise comparisons.

In Figure 9, we compare the proposed multidi-
mensional indexing approach against the pairwise ap-
proach. Both approaches use DCW as a shared con-
gestion detection technique. We plot the CPU time re-
quired for clustering versus the number of paths for dif-
ferent dimensionalities. Two different scales, less than
70 paths in Figure 9(a) and up to 1024 paths in Fig-
ure 9(b), are considered. The CPU time is normalized
so that the case with 18 dimensions and 16 paths takes
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The comparison for a small number of paths pre-
sented in Figure 9(a) shows the overhead caused by
multidimensional indexing. The multidimensional in-
dexing approach takes nontrivial time to maintain a
complicated data structure. Therefore, the pairwise
approach is faster if 61 or more dimensions are used
to cluster less than about 30 paths. However, due to
its better time complexity, our approach exhibits bet-
ter performance when the number of paths gets larger.
Notice that the difference in slope between curves due
to different time complexity.

This better CPU time performance is clearer when
the curves are extended in Figure 9(b). Because of
its O(N?) complexity, the pairwise approach curve di-
verges from the other curves as the number of paths
increases. The CPU time increase with dimensionality
is significant, and low dimensionalities incur a fairly
small overhead. Since the difference between 18 and
36 dimensions in terms of accuracy is rather large as
observed in Figure 6, 36 dimensions would be a reason-

able choice in practice.

6. Conclusion and Future Work

For large-scale distributed systems such as overlay
networks, it is crucial to identify bottlenecks in the
network so as to allocate network resources efficiently.
However, previously proposed techniques to detect net-
work bottlenecks shared by multiple paths do not scale
well because they handle only two paths at a time.
We proposed a scalable approach to cluster paths shar-
ing congestion by employing multidimensional indexing
and wavelet transform. It outperforms previous ap-
proaches when dealing with more than tens of paths.
The granularity of clustering is controllable by adjust-
ing the neighbor search radius. We also investigated
tradeoffs between time-space complexity and accuracy
with different dimensionalities.

Our future work involves applying the pro-
posed clustering approach to large-scale overlay net-
works. Because a full implementation of path clus-
tering in the context of an overlay network re-
quires application-specific knowledge, we presented
application-independent steps only in this paper. We
will first extend them to overlay multicast, for which
application-specific steps were already investigated and
presented [13]. Further extension to a general overlay
topology is also planned. As in the case of overlay mul-
ticast, other overlay networks will benefit from scalable
path clustering by using the clustering information to
improve its topology and, in turn, overall throughput.
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